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ABSTRACTPervasive information systems give an overview of whatalighvironments should
look like in the future. From a data-centric point of viewaditional databases have to be
used alongside with non-conventional data sources lika daeams, services and events. In
this paper, we tackle the definition of continuous queriesilmioing standard relations, data
streams and services in a declarative language extendirlg 8@ first define virtual tables
with binding patterns as a way to get a unified view of the paeaenvironment. Relations,
data streams and services can be homogeneously querieg ass@QL-like language, on top
of which query optimization can be performed. We also intoeda new clause defining the
optimizing criteria to dynamically choose the best way todia each event.

RESUME. Les systemes d'information pervasifs montrent la tendancee que seront les envi-
ronnements informatiques de demain. D’un point de vue éaftinnées, les bases de données
classiques doivent cohabiter avec des sources de donnéesongentionnelles comme les flux
de données, les services et les événements. Dans cet,artice abordons la définition de
requétes continues combinant les relations classiqued]ug de données et les services dans
un langage déclaratif étendant SQL. Nous définissons t@lkiodd les tables virtuelles avec
des binding patterns afin d’obtenir une vue unifiée de I'amnement pervasif. Relations, flux
de données et services peuvent étre utilisés de manieregéomaans des requétes exprimées
dans un langage a la SQL, sur lesquelles une optimisatioegeéte peut étre effectuée. Nous
introduisons également une nouvelle clause définissardrigses d’optimisation permettant
de choisir dynamiquement le moyen optimum de traiter chégaaement.
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1. Introduction

Pervasive information systems give an overview of whattdigénvironments
should look like in the future. Information systems tend &rbore and more de-
centralized and autonomous, at the infrastructure leveledisas at the data and pro-
cess level. On the one hand, personal computers and othéhdldrdevices are now
democratized and take a large part of information systemsth® other hand, data
sources may be distributed over large area through netvtlbaksange from a world-
wide network like the Internet to local peer-to-peer conioes like for sensors.

Even data tend to change their form to handle informatioradyinity. The rela-
tional paradigm has been widely adopted in DataBase Managiesystems (DBMS)
for many years, but other forms of data sources are now entgrgiainly as data
streams and services.

Queries in traditional DBMS are “snapshot queries” exprdds SQL: a query
is evaluated with the current state of the database, anckthat iis a static relational
table. The “snapshot” term expresses that the result repteonly the state of the
database at the moment of the query, and is never updatdadiamic data sources,
“snapshot queries” may be not sufficient as it would be cowjut-expensive to
periodically execute them and obtain up-to-date results.

Data streams open new opportunities to view and manage dgsgsiems, such
as sensor networks. The concept of queries that last in teaked continuous
queriegChenet al., 2000), allows to define queries whose results are contsiyop-
dated as data “flow” in the data streams. Data Stream Manage®gstems (DSMS)
have been studied in many works (Abaati al, 2005; Arasuet al., 2003; Chan-
drasekararet al, 2003; Cherniacket al, 2003; Franklinet al, 2005b; Tianet
al., 2003; Yacet al., 2003).

With the development of autonomous devices and locatigexddent function-
alities, information systems tend to become what Mark Weéeiser, 1991) called
ubiquitous systems, or pervasive systems. Pervasivasyg¢ieckeet al, 2004; Bru-
mitt et al,, 2000; Estriret al,, 2002; Garlaret al,, 2002; Grimmet al., 2004) are dis-
tributed systems of devices able to communicate with ottiersigh network links.
They offer to users access to devices and control over theirament through vari-
ous types of interfaces.

The abstraction of device functionalities allows the syste automate some of
the possible interactions between heterogeneous deinoagler to facilitate the use
of the whole system. Such device functionalities are oftgmesented by services. As
devices may be sensors or effectors, services may repgsertinteractions with the
physical environment, like taking a photo from a camera epldiying a picture on a
screen. These interactions bridge the gap between the ¢cmgeuavironment and the
user environment, and can be managed by the pervasive systangh such services.

In this paper, we will consider a way to use and compose seswiith the notion of
service-orientedjueries. From a data-centric point of view, traditionabdases have
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to be used alongside with non-conventional data sourcesdliita streams, services
and events to deal with new properties such as dynamicitgnamy and decentral-
ization. Query languages and processing techniques ndexlddapted to those data
sources. Data management systems tend to evolve from DBNISBIS to a more
general concept of DataSpace Support Plateform (DSSP)KHiraet al, 2005a). A
DSSP is intended to deal with “large amount of interrelatetddisparately managed
data”. In this context, the definition of continuous quegesnbining standard rela-
tions, data streams and services in a declarative languagyeding SQL is clearly an
ambitious and motivating goal. We begin by illustrating gneblem with an example
that will be used as a running example throughout this paper.

1.1. Motivating example

The motivating example is inspired by the night surveillaacenario presented in
Aorta (Xueet al, 2005). It illustrates the need for the integration of seegifrom a
dynamic environment in a declarative query language andgsociated optimization
techniques.

The night surveillance scenario considers a room contgimnotion sensors and
network cameras. The surveillance consists of handlingtedeom motion sensors to
trigger a photo of the location of the involved sensor anetadst to the administrators
via their cell phones. The cameras need to pan/tilt/zooro¢ad on a given location
(if achievable) before actually taking the photo. This cgufation phase is costly
in term of response time to an event and depends on the dyrséatécof the device
(current head position of the camera), so a cost-basedagi@iwof the optimal device
is needed.

In order to express this behavior in a declarative way, théremment can be
described using data schemas for the entities and the ewrmtsfunctions for the
interactions with the devices. Then, a query language aintd SQL can express
the specified behavior in terms of joins, selections andtfans. Query optimization
techniques can be applied to optimize the entire process.

In Aorta (Xueet al, 2005), this environment is modeled using three data ssurce
a relation containing phone numbers of administratorsiasteeam for sensor events
(indicating its current location and its horizontal accat®n value ‘accel_x’), and a
“virtual device table” for cameras. Three functions arealeeded for the scenario:
taking a photo, sending a photo to a cell phone, and chechatgtcamera is able to
take a photo of a location.

The continuous query for the night surveillance scenariayiien in Aor-
taSQL (Xueet al,, 2005) in Table 1: arAction Querycalled “night_surveillance”
is active from midnight to 6:00 am every day (effART andsToPclauses).
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Table 1. Query in AortaSQL for the night surveillance scenario froorta

CREATE AQ night_surveillance AS
SELECT sendphoto( p.number, photo(c.ip_address,s.location,"photos/admin") )
FROM sensor s, camera c, phone p
WHERE s.accel_x > 500
AND coverage( c.id, s.location )
AND p.owner = "admin"
START atTime(0,0,0) -- 00:00:00
STOP  atTime(6,0,0) -- 06:00:00

Despite the interest of Aorta, the following observatioas be made:

1) at the query language definition level, no clear distorctis made between
event management and stream management. For example,dbdkie scenario, an
eventis represented as a tuple in the “sensor” data strens, foowever still handled
as an event: it triggers a single interaction with a deviakiftg one photo) and may
not be duplicated due to a join with a relation or anothelstreThis semantics is not
compatible with other DSMS like in (Araset al., 2003; Yaocet al., 2003; Franklinet
al., 2005b; Chandrasekaratal.,, 2003);

2) the optimizing criteria are implicit: in the above scanathe goal of the query
is to choose the camera with the least estimated responeefdineach event, and
cannot be declaratively modified to choose another critelilee, for example, the
photo quality;

3) at the query processing level, logical and physical stejesn to be merge in a
single step. This choice limits the opportunities for quepyimization techniques;

4) only limited support is provided for continuous query gessing. Specific op-
erators for streams, like windows over streams ([&hal.,, 2004) or relation-to-stream
operators (Araset al,, 2003), are not tackled, as well as joining several stre asles,
tions and virtual device tables.

Expressing queries such as the night surveillance scereqgigres a framework
that remains compatible with standard continuous querggssing, allowing to reuse
the query optimization techniques of DSMS, and that intexgr¢ghe notion of interac-
tion with devices like in Aorta.

1.2. Evolution of continuous queries

In this paper, we present an ongoing effort to develop a freonle for Service-
oriented Continuous QuerigSoCQs), whose aim is to integrate servides, dis-
tributed functionalities, in continuous queries over dsti@ams. SoCQs allow the
definition of queries combining standard relations, dat@eshs and services using a
homogeneous representation, in a declarative languagedirng SQL.

The first requirement to achieve this ambitious goal is tongedi common frame-
work to deal with non-conventional data sources. Relataomisdata streams can share
the same representation as time-varying multisets of sliide in (Arasuet al., 2003).
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We propose to represent sets of similar services as vidbbds containing a tuple per
service and associated with one or more binding patterosd§tuet al, 1999; Gold-
manet al., 2000; Srivastavat al., 2006) indicating which virtual attributes correspond
to input and output parameters of the service functions. @épkbackward compat-
ibility with standard DBMS as we use standard relations,levbktending the power
of expression of queries to handle the notion of time. Eventdlare represented as
data streams, in order to avoid the mismatch between evedtstandard data tuples.

SoCQs can imply services that are statically bound (Goldetead., 2000; Sri-
vastaveet al., 2006) or dynamically discovered in the pervasive infoiorasystem,
like in (Pigeotet al, 2007). In pervasive environments, those queries can esseth
vices to access to distributed functionalities. The optisgavices (at a given time
for a given data set) are selected and called during queguér@. SoCQs can then
express an event management functionality like eventifigesnd composition, and
perform cost-based optimal calls to services. Continuawesigs can evolve from
data-oriented queries to service-oriented queries.

In this setting, the main contributions of this paper are :

— an extension of SQL to homogeneously express operatorselations, data
streams and services, and an associated query processimigige to handle time-
variations of data and dynamic calls to services during @xec. An additionacoL-
LAPSE clause in the SQL syntax is proposed to define an optimiziitgrmn over
groups of tuples;

— the development of a prototype of a query processor for Sp@@m which
first experimental results over synthetic data are destrifidne SoCQ processor is
inspired by the STREAM prototype (Arast al., 2003), a DSMS developed at Stan-
ford University, and allows to show both the power of expi@s®f SoCQs and the
capabilities of the query processor.

In Section 2, we situate our problem within the related wohksSection 3, we de-
fine a homogeneous representation for non-conventiorabtairces as virtual tables.
We tackle query processing techniques for virtual tablesthacoLLAPSEclause in
Section 4. We describe our implementation prototype antldssome experimental
results in Section 5. We then conclude and discuss some speaesi in Section 6.

2. Related work
2.1. Data streams

In modern information systems, some data sources may germatinuous un-
bounded streams of data elements. For compatibility with rdlational model,
data streams are commonly modeled as an append-only mgltissmestamped tu-
ples whereas relations are considered as time-varyingsetdtof tuples (creation,
update, deletion) as in (Araset al, 2003). This widely adopted model (Abadi
et al, 2005; Chandrasekaragt al, 2003; Cherniacket al, 2003; Franklinet
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al., 2005b; Tiaret al, 2003; Yacet al, 2003) allows to manage structured data streams
along with relations.

Time is an important notion for data streams. Tuples haverdaron the stream,
which is often supposed to be the order of arrival, and arestamped. Timestamps
are also supposed to reference a shared system clock, &tbeavgynchronization
mechanism is required (Bargaal., 2006).

2.2. Costly data sources

Some data sources or function evaluations may be slow, iteservices or sensed
attributes. Introducing asynchronous calls to data seuaoel synchronization oper-
ators in query execution plans, like in (Goldmetnal., 2000), allows to process in-
complete tuples until their costly attributes are requirelich gives time to complete
the asynchronous calls and fill in the missing attribute @sluXueet al, 2005) in-
troduces a selection among possible candidates (devifesngfthe same service)
based on their current state, to choose the optimal way ddi&iag a function, here
interacting with a device in a pervasive environment. Fenrtiore, group optimization
allows to optimally distribute simultaneous function exations among the possible
candidates.

2.3. Continuous queries

Continuous queries over data streams are based on thenalgtaradigm. Stan-
dard query operators on relations (Select, Project, Jajgrégate. ..) are then used,
but their semantics may be unclear or ambiguous. (Aeasil, 2003) identifies three
categories of operators to work with streams and relatioglation-to-relation (stan-
dard operators), relation-to-stream, and stream-tdioela Stream-to-stream opera-
tors are absent because they can be composed from othetarperA continuous
query is a tree of operators with streams and/or relatiorispag, and a stream or a
relation as output. Some systems (Yetcal, 2003; Abadiet al,, 2005; Franklinet
al., 2005b) do not express the difference between operatogaags, and work, in
their semantics, only with data streams.

Unbounded tuple streams potentially require unboundedangspace in order
to be joined, as every tuple should be stored to be compartdewery tuple from
the other stream. Tuple sets should then be bounded: a widdéines a bounded
subset of tuples from a stream (it is the only stream-totimaoperator in (Araset
al., 2003)), based on time or on the number of tuples. Slidingdwaivs (Arasuet
al., 2003; Dinget al,, 2004) have a fixed size and continuously move forward (bey. t
last 100 tuples, tuples within the last 5 minutes). Hoppimgdows (Yaoet al., 2003)
have a fixed size and move by hop, defining a range of intengl%eminute window
every 5 minutes). In (Chandrasekaetral, 2003), windows can be defined in a flex-
ible way: the window upper and lower bound are defined seglgréitxed, sliding or
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hopping), allowing various type of windows. (Arastial, 2003) also defines a par-
titioned window as the union of windows over a partitionegain based on attribute
values (e.g. the last 5 tuples for every different ID). Witmelows, join operators
handle bounded sets of tuples and traditional techniquebeapplied. Although the
output is intuitively thought as a stream, join operatoessaen in (Araset al,, 2003)
as relation-to-relation operators: the output is a timeyva relation.

Continuous gueries can be expressed in a declarative lgaghdost of the arti-
cles (Arasuet al,, 2003; Chandrasekarat al., 2003; Franklinet al, 2005b; Yaoet
al., 2003) propose an extension of SQL in order to work with betatronal databases
and data streams. Some articles (Ckeal., 2000) tackle continuous querying over
distributed XML data sets and propose an extension of XML-Qthers (Abadet
al., 2005) are based on a box representation of operators,ssipgegueries as a flow
of tuples. However, when working with the data stream sermmamhixed with the
relational paradigm, SQL tends to be widely adopted as a fmmsguery language
extensions. Data streams are then represented usingianalehema.

The long-running nature of continuous queries changesdfirition of execution
plans in order to handle data streams. One method is theraotish of a global
execution plan, like in (Abadkt al., 2005; Arastet al, 2003; Frankliret al, 2005b;
Yao et al,, 2003), which is an extension of a standard execution plagrevimput and
output of operators are queues of tuples instead of rektids several queries may be
running simultaneously, the system can share common apsratong the different
queries. Another method (Chandrasekagtal., 2003) is to dynamically distribute
tuples to one of their next possible operators (called Esjdeach tuple creating its
own execution plan depending on the dynamic state of themsyst

3. Dealing with non-conventional data sources

Non-conventional data sources are data sources that chanmepresented as tu-
ples in standard relations, like in conventional dataha8ke transactional paradigm
cannot be directly applied to a data management systemdhatds dynamic sources
like data streams, or dynamically discovered services.

For the purpose of integrating non-conventional data ssuic an augmented
DBMS, we propose a homogeneous representation of relatiats streams and ser-
vices through the notion of tables and virtual tables. Wepkee presentation rather
informal, the basic notions being simple.

3.1. Relations and data streams

A relation schemas a name associated with a set of attributes. Edtibutehas
a name and a definition domain of atomic valuegupleover a relation schema is an
element of the Cartesian product of its attribute domaingelation over a relation
schema is a multiset of tuples. Tuples can be inserted iraioB| and be later deleted



40 RSTI-ISI-13/2008. Modeles et langages pour les basesrieéds

from it. A streamcan be defined as a relation where tuples cannot be deleteah)
append-only multiset of tuples. Tuples inserted in a strasgrassociated with their
insertion date.

The following definition of a table is inspired by the work caitd streams in (Arasu
et al, 2003) and the associated prototype. As data sources aaeniythe notion of
time needs to be explicit, in contrast with the transactipaaadigm. Time is repre-
sented as a discrete and ordered domaitinoéstampge.g. positive integer values).
Two events are simultaneous if they are both associatedtgtbame timestamp.

In order to homogeneously represent relations and stre@endefine aable over
a relation schema as a multiset of tuples associated withitigertion timestamps.
In other words, a table represents a relation where each tapssociated with its
insertion timestamp. A table represents a stream if no sugd@ be deleted from the
table. With this definition, a table can homogeneously regmea relation or a stream.

We consider thénstantaneous relatiofArasuet al, 2003) of a table at a given
timestamp as the multiset of tuples that have been insertgbthis timestamp in-
cluded, and that have not yet been deleted. Note that a taplde inserted and
deleted simultaneouslyg. at the same timestamp. For a table representing a stream,
the number of tuples of its instantaneous relation may ordyvgas no tuple can be
deleted: a stream is unbounded.

Example 1 (Tables for relations and streams)Table 2 and Table 3 show two tables
representing a relation “phone” and a stream “sensor”. Thestantaneous relations
for both tables are represented at timestamp 25 and at teng3t30. Note that at
timestamp 30, the tuple “Bob” has been deleted from the “@idable. Note also
that several tuples can be inserted simultaneously, likieregstamp 27 in the “sensor”
table.

Table 2.Schema and two instantaneous relations for the table reptézy the
“phone” relation
TABLE phone( id INTEGER, owner CHAR(10), number CHAR(12))

Timestamp @ 25 Timestamp @ 30
(34,"Alice","+3369911XXXX") @ 10 (34,"Alice" ,"+3369911XXXX") @ 10
(25,"Bob" ,"+3369922XXXX") @ 12 (18, "Charlie", "+3369933XXXX") @ 26

(24,"David" ,"+3369944XXXX") @ 28

Table 3. Schema and two instantaneous relations for the table reptésy the “sen-
sor” stream
TABLE sensor( id INTEGER, accel_x FLOAT, location BYTE)

Timestamp @ 25 Timestamp @ 30
(18, 362.15, ’a’) @ 16 (18, 362.15, ’a’) @ 16
(65, 569.42, ’e’) @ 25 (65, 569.42, ’e’) @ 25

(18, 236.78, ’a’) @ 27
(17, 718.64, ’d’) @ 27
(98, 624.16, ’c’) @ 28
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3.2. Services

A serviceis an external entity (in regard to the query managemengsyghat can
compute one or more functions. We defingeavice interfaces a group of semanti-
cally related functions. A function can have several inpargoneters (may be none)
and several output parameters (at least one). When caltbdatamic values for its
input parameters, a function returns zero, one or sevesaltrénes of atomic values,
each line containing all output parameters.

Example 2 (Service interface)Table 4 shows the definition of a service interface
providing three functionscheckCoveragehat indicates if the service can take a

photo of a given locatiorcheckCost(jhat indicates the cost of taking this photo, and
takePhoto(}hat actually takes it.

Table 4. Example of service interface

SERVICE INTERFACE cameralnterface {

FUNCTION checkCoverage( target BYTE ) : ( status BOOLEAN )
FUNCTION checkCost( target BYTE ) : ( status FLOAT )
FUNCTION takePhoto( target BYTE ) : ( result BLOB )

}

To smoothly integrate services in our framework, we proposese the notion
of binding pattern A binding patternmodels an access pattern to a relational data
source as a specification of “which attributes of a relatiarstie given values when
accessing a set of tuples” (Floresstal,, 1999). A relation with binding patterns can
represent an external data source with limited accessrpaitEloresciet al., 1999)
in the context of data integration. It can also represenhtgrface to an infinite data
source like a web site search engine (Goldregal., 2000), providing a list of URLs
corresponding to some given keywords. In a more general ivagn represent a
data service, e.g. web services providing data sets, asumahielational table like
in (Srivastaveet al., 2006).

In our framework, we propose to definesitual table as a generalization of our
notion of table: its schema can contairtual attributesand is associated withinding
patternsinvolving functions from a service interface.\Artual attributeis an attribute
whose value is set during query executiog, is not set when the tuple is retrieved
from the data source. Rinding patternis a rule that indicates which function from
the service interface has to be invoked in order to retrieeevhlues of some virtual
attributes (the output parameters) when values are sebfioe ®ther virtual attributes
(the input parameters).

Example 3 (Binding patterns) Table 5 shows the definition of a virtual table “cam-
era” and its associated binding patterns using the serviterfacecameralnterface
given in Example 2. The virtual table schema contains onevitnal attribute “id”
and four virtual attributes. When a value is given for thawél attribute “location”,
the three binding patterns can be invoked if needed to inadgetly retrieve the val-

ues of the other virtual attributes “coverage”, “cost” andghoto”.
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Table 5. Schema and binding patterns for the virtual table “camera”

VIRTUAL TABLE camera ( id INTEGER,
location BYTE VIRTUAL,
coverage BOOLEAN VIRTUAL,
cost FLOAT VIRTUAL,
photo BLOB VIRTUAL )

BINDING PATTERNS FOR camera USING cameralnterface {
FUNCTION checkCoverage( location ) : ( coverage )
FUNCTION checkCost( location ) : ( cost )
FUNCTION takePhoto( location ) : ( photo )

}

A virtual table, like non-virtual tables, contains tuplddowever, as those tuples
contains virtual attributes, we refer to them\agual tuples Each virtual tuple is
bound to one service that implements the service interfaed by the virtual table.
A reference to the bound service is stored in a special typasttabute: a service
reference attribute. During query execution, when a biggiattern is invoked for a
virtual tuple, the required function is invoked from the\gee to which this virtual
tuple is bound. Like tuples in a table, virtual tuples canrserted in a virtual table,
and deleted from it.

Example 4 (Virtual tuples) Continuing the previous example, Table 6 shows instan-
taneous relations for the virtual table “cameral,e. the virtual tuples it contains,

at timestamp 25 and 30. Only the non-virtual attribute “ida& a value. The “*”
indicates that no value is set for the four virtual attribsitdocation”, “coverage”,
“cost” and “photo”. Each virtual tuple is bound to a servicéndicated by the ser-
vice reference, e.g. “Camera2”, “Camera3”. Note that theota bound to the service
“Camera2” at timestamp 25 does no longer belong to the takléraestamp 30, be-

cause the service itself is no longer available in the pamesnvironment.

Table 6. Two instantaneous relations at different timestamps fer thtual table

“camera”
Timestamp @ 25
(2, %, x, %, *) # Camera2 @ 12
(3, %, *, %, *) # Camera3 @ 12
(5, *, x, *, *) # Camerab @ 25

Timestamp @ 30

(3, *, *, *, *) # Camera3 @ 12
(5, *, *, %, *) # Camerab @ 25
(8, *, *, %, *) # Camera8 @ 27
(6, *, *, %, *) # Cameraf @ 28

In other words, a virtual table represents a set of servimagging the same func-
tionalities, i.e. implementing the same service interface. Tuples can bendigadly
inserted and deleted whenever such services are discoveeegervasive environ-
ment. The services can also be manually added by a systertopereAn extreme
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case is a virtual table containing one and only stagic virtual tuple i.e. a virtual
tuple that cannot be deleted: the virtual table is then a lginmperface to one stati-
cally bound service, or even one function, as it is used imiptes works (Florescet
al., 1999; Goldmaret al., 2000; Srivastavat al., 2006). We call such a virtual table,
a static virtual table as opposed to the general casdynamic virtual table

Example 5 (Environment for the night surveillance) Using our framework, the en-
vironment for the night surveillance scenario (describedhie motivating example)
can be represented in a homogeneous way with four tablesigAddth the “phone”
and “sensor” tables defined in Example 1, and the “camera’tvial table defined in
Example 3, one more table is required: a static virtual telsendMMS” representing
a function that sends a MMS (Multimedia Message) to a celhpho

To end up, virtual tables generalize the notion of table @spnting a relations
or a stream. It can then be thought as a homogeneous reméserfor all data
sources needed in a pervasive environment: relationgmsestatic and dynamic
virtual tables. Table 7 summarizes the constraints for égudof data sources.

Table 7. Summary of constraints for each type of data sources

Type of Data Source | Tuple Insertion| Tuple Deletion| Binding Patterns
Relation yes yes no
Stream yes no no

Static Virtual Table no no yes

Dynamic Virtual Table yes yes yes

System developers can work with a common representatiomeoflifferent data
sources available in their computing environment. Moredrtgmtly, they can de-
vise their queries involving different types of data sosrasing a single SQL-like
declarative language, without worrying about the paricamplementation of the
data sources. As such, the way we model the environment istalmation towards
the notion of dataspace (Frankknal, 2005a).

4. Query processing for SoCQs

SoCQs are continuous queries over tables for relations atedstreams, and vir-
tual tables for functions and services. Simple queriesttbealexpressed using a SQL-
like declarative language. CQL (Continuous Query Langu&gasuet al., 2003))
provides syntax extensions to SQL in order to handle theifsgiges of data streams
and to enable continuous queries.

As a query language for our framework, an extension of theas¢ios of CQL
is required to include the notion of virtual tables and theoagted processing tech-
niques for virtual tuples.
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However, the introduction of virtual tables raises the neetkfine a new function-
ality: expressing optimization criteria to choose the il tuple(s) among a group
of possibilities. We need to choose the optimal virtual éugdrresponding to an event
so that only the “optimal” service is actually invoked. Wegent a solution to this
need through a new clause in SQL: theLLAPSEclause.

Example 6 For the night surveillance scenario, we need to handle eyeapresented
as tuples in the “sensor” table. In order to take a photo of theent location, those
tuples have to be associated with a “camera” service, repnésd as tuples in the
“camera” virtual table. More than one service may be able & the photo. How-
ever, only one photo is needed: the system should selecotirial” service,i.e.the
service with the least estimated response time. The defirafi“optimal” is context-
dependent: it justifies the introduction, at the declaratigvel, of a new clause in
SQL.

4.1. Continuous query processing with virtual tables

4.1.1. Taking into account virtual tables

All data sources are represented as virtual tables assdaiath binding patterns.
Non-virtual tables are only extreme cases with zero bingattern. In a logical query
plan, intermediary tables between operators are alscavidbles as well as the output
table of the root operator.

After a query is parsed, its semantics is checked using thadat catalog refer-
encing the names and properties for tables and attributissthien transformed into a
logical query plan of operators like joins, selections j@ctions, aggregations.

The metadata catalog also contains the binding pattermgiagsd with virtual
tables. A specific operator, the dependent join (Floregcl.,, 1999), is required to
realize a binding pattern: it provides values for the bigdwattern input attributes (by
an equality predicate with another attribute or a constahte) and allows to retrieve
the values for the binding pattern output attributes. Biggiatterns add constraints on
the join order for the tables: a dependent join operator lshiave values for its input
attributes, so other dependent joins that retrieve thokmsdas the output attributes
of their binding patterns) should occur before.

A dependent join operator produces an output table contgivirtual tuples with
values for the binding pattern input attributes. Howeuds hot already necessary to
invoke the service function associated with the bindingguatto retrieve the output
attribute values. On the contrary, it is interesting to kieptuples as long as possible
in a virtual form (with no values for the output attributes),order to make asyn-
chronous calls (Goldmaet al,, 2000) to the functions and speed up the global query
processing.



Towards SoCQs in pervasive systems 45

Two additional logical operators need to be integrated énaperator tree for each
required binding pattern. Amvocation operatormakes asynchronous calls to the
function associated with the binding pattern, artdrading operatoractually sets the
requested values into the tuple attributes. Note that thecetion operator is not
blocking for the tuples whereas the binding operator carlbk tuple as long as
the corresponding asynchronous call has not returnedstdtrines. The blocking
operator ensures that the virtual attributes involved slilnding pattern have their
actual values for every output tuple it produces. In (Goldrigal., 2000), the bind-
ing operator (called “Request Synchronizer”) is presemtte invocation operator is
integrated in the table scan operator for the data source independence of the in-
vocation operator allows a more flexible query plan and l¢adsrther optimization
possibilities.

Query optimizations techniques can be applied on the lbgigary plan. Opera-
tors can be reorganized in order to minimize the number aeddituples to process,
e.g. by pushing selection operators down before joins oodhicing projections. The
number of function calls can also be minimized, e.g. by pugiselection operators
down before invocation operators. Further optimizatiarhtéques can be applied to
the physical representation of the query plan, like mergmge operators, in order to
compute an optimal physical query plan.

4.1.2. Continuous query execution

In the execution phase, the query processor actually exet¢hié physical query
plan. Whereas in traditional DBMS, the query processor @besca query plan once
to produce a result table, the continuous query processsdsn® schedule every
operator in (near) real-time, in order to process new tujptas the data streams and
insertions/deletions of tuples from the relations, andrappgate them through the
operator tree. (Araset al., 2003) studies some scheduling algorithms for this context

In order to realize the binding patterns, the virtual tuptegessing technique
follows the same principle as thesynchronous iteratiotechnique in (Goldmaet
al., 2000). When processed bybanding operator an input virtual tuple may be du-
plicated according to the number of result lines for the egponding function call:
each result line will produce one output tuple. Every outppte contains a copy of
all the attribute values from the input virtual tuple, inding the input attributes of the
binding pattern. It also contains the values for the outftubates of the binding pat-
tern that are retrieved from the result line. The outputds@re virtual in the general
case: the output table of the operator may still contain seimging patterns for other
virtual attributes.

Example 7 (Using a dynamic virtual table) In Table 8, a SoCQ allows to handle
events from the “sensor” stream (see Table 3): each tupléltaa a “accel_x"value
greater than 500 is associated with every service from thtiali table “camera”
(defined in Example 3 and 4) that covers its location. Thisecage is indicated by
the boolean virtual attribute “coverage”provided by thergiee functioncheckCover-
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age() The virtual attribute “photo” represents an actual photmpided by the service
functiontakePhoto()

Table 8. Example of a query using the virtual table “camera” and theu# table at
different timestamps

SELECT sensor.id,sensor.location,camera.id,camera.photo
FROM sensor,camera
WHERE sensor.accel_x > 500.0

AND sensor.location = camera.location

AND camera.coverage

Timestamp @ 25 Timestamp @ 30
(65, ’e’, 2, BLOB("photoOO1.jpg")) @ 25 (65, ’e’, 2, BLOB("photoOO1.jpg")) @ 25
(65, ’e’, 3, BLOB("photo002.jpg")) @ 25 (65, ’e’, 3 ,BLOB("photo002.jpg")) @ 25
(17, °d’, 3, BLOB("photo0O03.jpg")) @ 27
(17, °d’, 5, BLOB("photoOO4.jpg")) @ 27
(17, °d’, 8, BLOB("photo0O05.jpg")) @ 27
(98, ’c’, 5, BLOB("photoOO6.jpg")) @ 28

4.2. The COLLAPSE clause

Virtual tables provide a mean to represent services thatyaremically discovered
in a pervasive environment. In Example 7, each tuple from“se@sor” stream is
joined with every tuple from the “camera” virtual tablieg. all available services.
Even if a condition on the coverage allows to discard somé&g,ghe result table
may contain several tuples corresponding to one event: thighbinding patterns,
the system has to invoke thakePhoto(function for several services. Although this
behavior may be wanted, the goal of the night surveillaneaaio is to choose the
best way to handle each eveng. to call only the best service to handle an event.
With the “camera” virtual table, the best service for a gil@eation is the one with
the minimum value for the ‘cost’ virtual attribute.

SoCQs may need to explicitly express criteria to choose hienal service for
each event. From a data-centric point of view, the goal ixtaet the first tuple from
a group of tuples according to a given ordering. On the onel hiais similar to the
definition of a top-K query (here with K=1) applied to sub-gps of tuples. On the
other hand, computing one tuple from a group of tuples islam an aggregation.

However, standard aggregation functions like MIN, MAX or @Y accept only
one parameter and return only one value. Some DBMS like RS allow to de-
fine User Defined Aggregates (UDAS) that accept several peteas) but still return
one value. Even if the return value may be composieea structure composed of
several attributes, it does not allow a simple syntax to expthe required optimiza-
tion.

In this setting, we propose a new clause for SQL in order toesgsuch an ag-
gregate in a generic and unambiguous way:abeLAPSEclause. It allows to define
an aggregate function returning several attributes tteatetrieved from the optimal
tuple for each group. Table 9 shows the syntax oftkme LAPSE clause. It has to
immediately follow thecROUP BY clause.
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Table 9. Syntax of theoLLAPSEclause

SELECT ...
FROM ...
WHERE ...
GROUP BY groupAttl, groupAtt2, ...
COLLAPSE (attl,att2,..., attN) INTO name
USING orderAttl [ASCIDESC], orderAtt2 [ASC|DESC], ...
HAVING ...

The set of attributes (“attl”, “att2”, ..., “attN") are theollapsed attributese-
turned by the aggregate function. The optimal tuple cooedp to the first tuple of
the group when it is ordered according to theING part (like with anORDER BY
clause in SQL). ThenTO part defines the name for the set of collapsed attributes, so
that they can be referenced as “name.attribute” insthieeC T clause and/or thaAv-

ING clause. Collapsed attributes can thus be used like othedlatd aggregate values
in these both clauses.

Example 8 (Using acOLLAPSE clause) In Table 10, aCOLLAPSE clause extracts
for each group (“s.id”, “s.location”) the tuple that mininzies the “c.cost” value,
i.e. the first tuple in each group ordered by the “c.cost” value iscanding order.
The name of this collapsed set is “bestCamera”: the collapsgributes are identi-
fied by “bestCamera.cost” and “bestCamera.photo” in theLECTclause and in the
HAVING clause.

Table 10.Example of a query using@oLLAPSEclause

SELECT s.id,s.location,bestCamera.cost,bestCamera.photo
FROM sensor s, camera c
WHERE s.location = c.location
AND c.coverage
GROUP BY s.id, s.location
COLLAPSE (c.cost, c.photo) INTO bestCamera
USING c.cost ASC
HAVING bestCamera.cost < 5

Although we present this clause in the context of SoCQs t@shdhe optimal
service(s) to be called for a given event, it can be appliesther cases, in particu-
lar in non-continuous queries, e.g. in multi-objective ee (Balkeet al., 2004) or
to declaratively define complex aggregations like in (Aldedlal., 2001; Chatzianto-
niou, 1999).

5. Implementation

Continuous query processing techniques are inspired ftandard query process-
ing techniques (Garcia-Moliret al, 1999). However, the introduction of the notion
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of time impacts on the whole conception. We propose an actite of a SoCQ-
enabled DSMS, inspired by an open-source DSMS: STREAM (Aeasl., 2003),
whose prototype has been developed at Stanford Univeysgyfirst briefly describe
the STREAM prototype. We explain the different entitiesdubg a SoCQ processor
and describe the architecture of our SoCQ processor pprofjhe implementation
of the new query operators is tackled in details. We thenrisséirst experimental
results from our prototype.

5.1. The STREAM prototype

STREAM provides support for “a large class of declarativatotaious queries
over continuous streams and traditional stored data satsis(et al, 2003). It is
composed of a CQL parser, a query analyzer that producestxeplans, and a plan
manager that schedules operators to execute the contiguedgs. Execution plans
are optimized at the logical level, then at the physical llevihe prototype allows
to register relations and streams schemas, and to assti@atewith a physical data
source. A physical data source is an interface (in C++) thatirrently implemented
as a file reader for both relations and streams. Support fowrdfata types is provided:
byte, integer, float, and fixed-length string.

In the current implementation, CQL allows to define querigslar to SQL: SE-
LECT — FROM — WHERE — GROUP BY. TheFROM clause is extended to define win-
dows over the streams. The relation-to-stream operatdre@dm, DStream, RStream)
are expressed by a keyword with parenthesis surroundinghioée query text. Ag-
gregation functions are limited to th@N, MAX andAvG functions over integer and
float attributes.

5.2. SoCQ processor entities

The goal of the SoCQ processor is to execute continuousegievier data re-
lations and data streams, with service calls as additioatd dources. Like in
STREAM (Arasuet al,, 2003), relations and streams are represented with a ogifyi
table entity, and table data is considered as a flow of tuglertions and correspond-
ing tuple deletions, called elements. Query operators wottk element queues as
input, and produce elements into an output queue.

However, whereas the STREAM prototype considers relatioms streams only
as element queues (all elements are discarded when thegrasseromed), the SoCQ
processor differentiates between the two types of tabkdations keep their current
content (inserted tuples not yet deleted) and can provigla tio later queries.

The SoCQ processor also manages binding patterns for Mahies. A virtual
table can have several binding patterns. A binding patteso@ates the service ref-
erence attribute of the virtual table and a service interfamction, and maps some
attributes of the virtual table to the input and output pagters of the function.
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Services are external entities implementing some funstjouarrently, a set of shell
scripts) and are mapped to some service interfaces, injcdiat the service imple-
ments all the functions of those interfaces. A service exfee attribute of a virtual
table contains an identifier of a service: a binding pattemm loe realized for every
tuple from this table by calling the associated functionhaf teferenced service.

As virtual attributes of tuples from a virtual table do not/eavalues until they
reach a binding operator in a query, they don’t need to beipals represented in
the source table. A virtual table then has two relation sa@gnits main schema,
associated with binding patterns, and an internal scheorgaining only the non-
virtual attributes. The physical representation of thewadta virtual table is based on
this internal schema. The main schema and its associatdohfipatterns are used at
a logical level to compute query plans.

A query plan represents a SoCQ and is composed of severgl gperators linked
by element queues to other operators or directly to tablesryoperators are:

— relational operators: selections, projections, joirdaggregations (also manag-
ing thecoLLAPSECclause);

— operators specific to streams: istreams and windows;
— operators specific to binding patterns: invocations andibgs.

5.3. SoCQ processor architecture

The architecture of the SOCQ processor is designed to h#maldifferent entities
needed to process SoCQs: tables with binding patternscednterfaces, services,
and query plans. It is composed of seven main modules, assindwigure 1:

— the System Interfacethis module is an interface for system administration. It
parses the user commands and interacts witlsystem Catalo@table management
commands, service interface management commands) or vatBervice Manager
(service registration commands, service mapping commahadso handles the user
queries: the SoCQs are parsed and then routed tQtleey Plan Manager

— theSystem Catalaghis module allows to register the tables and the service in
terfaces. A table is associated with a name, a data schemiiradidg patterns. Its
internal data schema is also computed. A service interfaicketified by a name and
contains a set of functions with their description: funotimme, input and output pa-
rameters, output cardinality. When a table is registeregilable Manageis notified
to physically create the table;

— theService Managerthis module allows to register the services and their map-
pings to service interfaces. A service is associated withyaipal access method (e.g.
executing a shell script) and a physical service identiéiay.(a shell script name). The
module can asynchronously call a service function througtapped interface func-
tion with some given values for the input parameters andmehe output parameters
values;
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— theTable Managerthis module manages the physical tables created throegh th
System Catalaglt allows to connect element queues to a table output, aagdess
to a table input element queue in order to insert and del@legu It computes the
state of the tables from their input element flow (tuple itiser tuple deletion) and
forwards those elements to the connected element queues;

— the Storage Manager this module is responsible for the storage of the table
content: the tuples. It allocates some memory space for teddd and manages the
insertion of new tuples. When a tuple is deleted from itsdaitimay be not immedi-
ately deleted from memory: the module maintains a referenaoet for each tuple so
that its memory space can be released only when it is no loregsted;

— the Data Socket Managerthis module manages external connections to table
output and input through network sockets. It uses a simpdécdeed protocol to send
and receive element flows. Itinteracts with Table Manageto connect to the tables;

—the Query Plan Manager this module interprets SoCQs and optimizes the
queries into physical query plans. A physical query plan tsea of query opera-
tors whose leaf operators are connected to the output ohtldvied tables and the
tree root operator feeds the input of the result table. Soreemediary tables can
be created for operators that need to create tuples (piaje@in...). The module
continuously executes the registered query plaesscheduling every query operator
in (near) real-time, and can dynamically register new quxans or unregister some
existing ones.
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Figure 1. Architecture of the SoCQ processor
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5.4. Focus on new operators

In order to handle SoCQs, we need to implementdbeLAPSE clause into the
aggregation operator, and to develop two new operatorgaiedi to the realization of
binding patterns: the invocation operator and the bindipgrator.

The COLLAPSE clause is an extended aggregation function: it computesesom
aggregated values for a group of tuples. The aggregatioratggeseems then fitted
for the task. However, as those values are taken from thenaptuple based on some
criterion, the operator needs to find this optimal tuple gviEne the group of tuples
is modified (insertion, deletion).

We have implemented this functionality by maintaining adiall tuples sorted by
the optimality criterion, so that the first tuple found fochayroup is the optimal tuple
for this group. A newly inserted tuple must be sorted in tsg but the order is not
modified by a deletion. Standard aggregation functions,dikm, MIN, MAX, can be
computed on the sorted list of tuples as in a standard aggwaeggerator. Collapsed
values are copied from the optimal tuple of a group.

In order to realize the binding patterns, service functisheuld be called and
tuples should be filled in with the result data. Furthermasgnchronous calls allow
the system to process tuples from other operators or to nthlke asynchronous calls
while current calls are pending.

We have implemented this functionality with two operatdrle invocation oper-
ator is configured to call a service interface function. ledeto extract the service
reference attribute and the attributes forming the inpuaipeters from each input
tuple. It can then launch the corresponding asynchrondisstbaough theService
Manager Each call is identified with the tuple identifier so that theding operator
can match tuples with their corresponding call result. Thved¢ation operator, after
launching a call, forwards the tuple via its output elemardue to the next operator.

The binding operator receives the input tuples and bloc&mthntil their cor-
responding result set is provided by tBervice Manager It can then produce the
resulting tuples. However, as the calls are asynchronbeggdll results may arrive in
a random order: the operator needs to ensure that the prbtiydes still follow the
timestamp order.

5.5. Experimentation

The whole architecture has been implemented in C++ on a LINt#&hine. We
choose to experiment the night surveillance scenario fioenmotivating example
with a query similar to Example 8. The actual query is shownahle 11: it involves
the stream “sensor”, the virtual table “camera”, arta LAPSE clause. The window
specification “[now]” indicates that a tuple from the “seris@ble will not be joined
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with tuples inserted at a later timestamp in the other talflae IStream operator
indicates that the output of the query is a stream: outpuesupill never be deleted.

Table 11.Service-oriented Continuous Query for the experimentatibthe night
surveillance scenario

SELECT ISTREAM s.location, best.id, best.cost, best.photo
FROM sensor s [now], camera c
WHERE s.location = c.location
GROUP BY s.location
COLLAPSE (c.cost,c.id,c.photo) INTO best
USING c.cost ASC

To evaluate this query, synthetic data have been genemtsichtlate the envi-
ronment. For the table “sensor”, 100 random tuples have peeerated, with a
timestamp between 2 and 99 indicating a “accel_x" value betw100 and 900 and a
location label between 10 possibilities (“a” to “j"). Theroaras have been simulated
by two shell scripts for the two involved functions of the e interfacegetCost()
andtakePhoto() The two scripts takes the “location” attribute as an inpargmeter.
The getCost()script returns a random cost value, and thkkePhoto()script returns
the location label in uppercase, in order to prove an actat grocessing made by
the function calls.

The query from Table 11 corresponds to the logical query pidfigure 2. The
table “camera” and the windowed table “sensor” are joineclfyartesian product.
Note that the predicate “s.location = c.location” is not i jpredicate, but an indi-
cation for the realization of the binding patterns: the ingttual attribute “location”
from the table “camera” is then an alias for the non-virtu#ilaute “location” from
the table “sensor”.

1
IStream

Binding: takePhoto()
1
Invocation: takePhoto()

Aggregation (COLLAPSE)

Binding: checkCost()
|
Invocation: checkCost()

Join (Cartesian product)

Window [now]
I
Table Table
"sensor" "camera"

Figure 2. Logical query plan for the night surveillance scenario
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The following operators in the logical query plan are theoration and bind-
ing operators that realize the first binding pattern: it jfjdeg the “cost” attribute, by
calling thegetCost()function using the service reference attribute “id” frone tia-
ble “camera”. The aggregation operator can then group thledwby “location” and
extract the optimal tuple according to the minimum “costtiatite. Another pair
of invocation and binding operators realizes the secondibinpattern: it provides
the “photo” attribute for the optimal tuples generated by digygregation operator, by
calling thetakePhoto(¥unction.

In order to execute this query in the SoCQ Processor, sesteqzd need to be done
to prepare the system:

1) launching the SoCQ processor,

2) registering a service interface “iCamera” with the twadtionsgetCost()and
takePhoto()

3) creating the two tables “sensor” and “camera” with asged binding patterns,

4) registering some services (executing the shell scrigtg) mapping them to the
interface “iCamera”,

5) registering the query.

The SoCQ processor is now executing the query. We manuakytione tuple for
each registered service into the table “camera” (two sesvig the actual experimen-
tation). Using a rudimentary interface tool (Figure 3), vamgect the table viewer
(on the left side in the interface) to the query output talieé &e insert the randomly-
generated tuples (on the right side in the interface) ingadivle “sensor”. The inter-
face tool enables to insert elements from an input file attbierent speeds: element
by element, all the elements at the current timestamp, aletements (until the end
of the input file). It also enables to save the query outpuétatio an output file.

All the tuples from the input file have been inserted, timegiafter timestamp.
Tuples have been progressively retrieved from the quergututible into the table
viewer and written into the output file. The beginning of bdits are presented
in Table 12, showing the elements inserted into the tablastse and the elements
retrieved from the query output table between timestampxi118.

The query output table content is as expected: for each timmgs the tuples are
grouped by the ‘location’ attribute and the value of the ‘whattribute corresponds
to the processing of the value of the ‘location’ attributethgtakePhoto(function.

Additional experiments have been scheduled to test theiym with more com-
plex queries and larger data sets.
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Table 12.Beginning of the files containing the tuples to be inserted the “sen-
sor” table (left column) and the tuples retrieved from theeguoutput table. The first
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6. Conclusion

In this paper, we have presented our ongoing work on the freoriefor Service-
oriented Continuous QuerigSoCQs) that enables to build queries over relations,
streams and services. It is built on top of the CQL specificeti(Arasiet al., 2003)
that manage streams and relations.

The SoCQ framework introduces tables and virtual tables asifed mean to
represent relations, streams and services. A virtual tadsevirtual attributes and is
related to a service interface, using binding patternsdicate which virtual attributes
should be used as an input for a service function call orevtd as an output from
a service function call result. At the logical query plandk\a dependent join oper-
ator provides values for the input virtual attributes frothey non-virtual attributes.
During query execution, an invocation operator makes asymous calls to functions
in a non-blocking manner, and a binding operator is useddokblntil the data are
effectively retrieved from the function calls. The undémtyprinciple of virtual tables
can be used as a mean to take in charge the dynamicity of pernes/ironments
where services appear and disappeatr.

Many services may be able to provide a virtual attribute @dtur a specific query.
We have thus introduced tr@oLLAPSE clause that declaratively defines a criterion
for the selection of a sub-set of service function calls. TheLAPSEclause extracts
the top-K tuples from a group of tuples according to a givetedng. It intends
to replace and augment the procedural and ad hoc user-defjggdgates that are
available today.

We have also presented our SoCQ processor prototype,eddpyrthe STREAM
prototype (Arastet al., 2003). Our prototype handles SoCQs over virtual tables rep
resenting relations and streams. It also manages bothdhearse clause and the
binding pattern mechanism.

The experimentation have presented the execution of a So@® the running
example of our article using synthetic data and servicesilgiting devices. It has
demonstrated the capabilities of the SoCQ processor anglotlver of expression of
SoCQs. In future work, we plan to continue the developmetit@prototype in order
to optimize the implementation of the query operators andarove the (currently
basic) query optimizer. Furthermore, we aim to develop aberark involving real
data sets and services from a pervasive environment.
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