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A new proof of completeness
for a relative modal logic

with composition and intersection

Philippe Balbiani

Laboratoire d’informatique de Paris-Nord∗

Abstract This paper is devoted to the completeness issue of RMLCI —
the relative modal logic with composition and intersection — a restriction of
the propositional dynamic logic with intersection. The trouble with RMLCI
is that the operation of intersection is not modally definable. Using the
notion of mosaics, we give a new proof of a theorem considered in a previous
paper “Complete axiomatization of a relative modal logic with composition
and intersection”. The theorem asserts that the proof theory of RMLCI is
complete for the standard Kripke semantics of RMLCI.

1 Introduction

A relative modal logic is a modal logic the modal operators of which depend
on parameters. Among the well-known relative modal logics devised in arti-
ficial intelligence and computer science, there are PDL — the propositional
dynamic logic — introduced by Fischer and Ladner [6], PAL — the propo-
sitional algorithmic logic — set out by Mirkowska [12], DAL — the logic
for data analysis — expounded by Fariñas del Cerro and Or lowska [5], and
BML — the Boolean modal logic — brought in by Gargov and Passy [7].

∗Philippe Balbiani, balbiani@lipn.univ-paris13.fr, Laboratoire d’informatique de Paris-
Nord, Institut Galilée, Université Paris-Nord, 99 avenue Jean-Baptiste Clément, F-93430
Villetaneuse.
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Recently, artificial intelligence and computer science have also given rise to
several relative modal logics for reasoning about common knowledge in a dis-
tributed environment [4]. Beyond doubt, PDL is par excellence an applied
non-classical logic with which it is possible to reason about programs. Its
linguistic basis is the propositional calculus enlarged with a family of modal
operators of the form [a] where a is a program composed by induction via
regular rules in the following way : a = π | A? | a; b | a∨b | a? where π ranges
over the set of the atomic programs and A ranges over the set of the formulas.
Semantically, a program a corresponds to a binary relation of accessibility
R(a) between the states of some presumed universe W , seeing that R(A?) =
{(x, x) : the formula A is true in the state x}, R(a; b) = R(a)◦R(b), R(a∨b)
= R(a) ∪R(b) and R(a?) = R(a)?.
Amid the multifarious restrictions and extensions of PDL, this paper will
take an interest in RMLCI — the relative modal logic with composition and
intersection — which programs are composed by induction via regular rules
in the following way : a = π | a; b | a∧ b, seeing that R(a∧ b) = R(a)∩R(b).
RMLCI is a relative modal logic which decidability is an outcome of the
decidability of IPDL — the propositional dynamic logic with intersection
— demonstrated by Danecki [3]. The complete axiomatisation of RMLCI is
feasible by means of special atomic formulas called names to be interpreted
as true at exactly one state [14]. The question of a name-free axiomatisation
of the concept of validity in all models of RMLCI is interesting because com-
position and intersection figure prominently in several relative modal logics
for which the issue of their complete axiomatization remains to be solved. To
illustrate the truth of this, one may remark that RMLCI is a special case
of a more general notion of a relative modal logic which has been expounded
by Or lowska [13] in the context of incomplete information systems. As well,
one may observe that RMLCI is a fragment of a deontic logic set out by
Meyer [11]. The fact of the matter is that the question of a name-free ax-
iomatisation of the concept of validity in all models of RMLCI is quite an
undertaking in view of the inability of modal logic to define the condition
R(a∧b) ⊇ R(a)∩R(b). In all probability, the obstacles encountered by those
who first tried to axiomatise the concept of validity in all models of IPDL
have something to do with this incapacity.
In a previous paper “Complete axiomatization of a relative modal logic with
composition and intersection”, we have pursued the question of whether the
concept of validity in all models of RMLCI can be elegantly axiomatised.
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Backing up our line of reasoning with the techniques of the subordination
introduced by Cresswell [9], then we have succeeded in proving the complete-
ness of some axiomatisation of our relative modal logic with composition and
intersection. Seeing that we have a few reservations about the portability of
our proof of completeness, our object in writing this paper is to lay out a
new proof of completeness for RMLCI which is based on the techniques of
the mosaics brought in by Nemeti and furthered by Marx [10]. The syntax
of RMLCI is presented in the section 2 whereas the semantics of RMLCI
is presented in the section 3. The axiomatization of RMLCI is expounded
in the section 4 whereas the proof of the completeness of the axiomatization
of RMLCI is organized in the sections 5 and 6.

2 Syntax

What we are mainly concerned with here is the syntax of RMLCI. Let us
consider a countable set Πa of atomic programs as well as a countable set Φa

of atomic formulas. The set Πc of the programs as the set Φc of the formulas
are generated by the following recursive equations where π ranges over Πa

and P ranges over Φa : a = π | a; b | a ∧ b and A = P | ⊥ | A → B | [a]A.
Other connectives are introduced by the usual abbreviations.

3 Semantics

Let us now look at the semantics of RMLCI. In order to clear the ground,
let us give ourselves the means to compare programs between themselves.
In the first place, let ≡ be the least congruence on Πc such that a; (b; c) ≡
(a; b); c, a ∧ (b ∧ c) ≡ (a ∧ b) ∧ c, a ∧ b ≡ b ∧ a and a ∧ a ≡ a. In the second
place, let ≤ be the binary relation on Πc such that a ≤ b iff a ∧ b ≡ a. We
commonly think of frames as relational structures of the form (W,R) where
W is a non-empty set of states and R is a relation of accessibility that maps
Πc to the set of the binary relations on W . More exactly, it is necessary that
R satisfies the following conditions for (W,R) to be called strong frame :
R(a; b) = R(a) ◦ R(b) and R(a ∧ b) = R(a) ∩ R(b) whereas it is necessary
that R satisfies the following conditions for (W,R) to be called weak frame :
R(a; b) = R(a) ◦ R(b) and if a ≤ b then R(a) ⊆ R(b). The following lemma
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holds :

Lemma 1 Let a, b be programs. a ≡ b iff, for all strong frame (W,R), R(a)
= R(b).

Proof : Cf. Bredikhin and Schein [2]. a
It follows immediately that :

Lemma 2 Every strong frame is a weak frame.

Proof : We leave the proof to the reader. a
What is more :

Lemma 3 The problem of proving, for all programs a, b, whether a ≡ b or
not is decidable.

Proof : By showing that expressions of the form a≡ b correspond to formulas
in the decidable ∃?∀? fragment of first order logic, the Bernays-Schönfinkel
class. a
A model is a relational structure of the form (W,R, V ) where (W,R) is a
frame and V is a function that maps Φc to the set of the subsets of W such
that : V (⊥) = ∅, V (A→ B) = {x : if x ∈ V (A) then x ∈ V (B)} and V ([a]A)
= {x : for all y ∈ W , if x R(a) y then y ∈ V (A)}. A formula A is said to be
valid in (W,R, V ) if it satisfies the following condition : V (A) = W . Strong
models constitute the standard Kripke semantics of RMLCI whereas weak
models make up the non-standard Kripke semantics of RMLCI. This brings
us to the question of whether we can axiomatise the concept of validity in the
standard Kripke semantics of RMLCI. It would hardly be an exaggeration
to say that in reality the issue is an extremely complex one. For the simple
reason that the condition R(a∧b) ⊇ R(a)∩R(b) is not modally definable. On
the other hand, thanks to the modal definability of the conditions R(a; b) =
R(a)◦R(b) and R(a) ⊆ R(b), there is no doubt that we can easily axiomatise
the concept of validity in the non-standard Kripke semantics of RMLCI. In
this respect, what we have in mind is to use the concept of p-morphism and
demonstrate that every weak frame is a p-morphic image of a strong frame.
For all frames (W,R), (W ′, R′) and for all function f that maps W to W ′, if f
satisfies the following condition then f is called homomorphism of (W,R) to
(W ′, R′) while (W ′, R′) is called homomorphic image of (W,R) : for all x, y
∈ W , if x R(a) y then f(x) R′(a) f(y). If, moreover, f satisfies the following
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conditions then f is called p-morphism of (W,R) to (W ′, R′) while (W ′, R′)
is called p-morphic image of (W,R) : for all x′ ∈ W ′, there exists x ∈ W
such that f(x) = x′ and, for all x ∈ W and for all y′ ∈ W ′, if f(x) R′(a) y′

then there exists y ∈ W such that x R(a) y and f(y) = y′. The following
result can be obtained :

Lemma 4 Let (W,R), (W ′, R′) be frames, f be a p-morphism of (W,R) to
(W ′, R′), V be a valuation on (W,R) and V ′ be a valuation on (W ′, R′) such
that, for all atomic formula P , V (P ) = {x : f(x) ∈ V ′(P )}. For all formula
A, V (A) = {x : f(x) ∈ V ′(A)}.

Proof : This is the p-morphism lemma, a standard result. a

4 Proof theory

Now is the time to expound the proof theory of RMLCI. The issue at stake
here is one of syntactic characterization of the concept of validity in the
standard Kripke semantics of RMLCI. Together with the classical axioms,
all the instances of the following schemata are axioms of RMLCI : [a](A→
B) → ([a]A → [a]B), 〈a; b〉A ↔ 〈a〉〈b〉A and if a ≤ b then 〈a〉A → 〈b〉A.
Together with the classical rules of inference, all the instances of the following
schema are rules of inference of RMLCI : from A infer [a]A. It is well worth
noting that the use of the binary relation ≤ in the proof theory of RMLCI
has a lot to do with the use of the binary relation ⊆ in the proof theory of
BML brought in by Gargov and Passy [7]. The following theorem holds :

Theorem 1 If a formula is valid in all weak models then it is a theorem of
RMLCI.

Proof : By showing that the canonical model of RMLCI is a weak model. a
What is more :

Proposition 1 The set of the axioms of RMLCI is recursive.

Proof : By lemma 3. a
Finally, there is the related problem of how to eliminate the use of the bi-
nary relation ≤ in the proof theory of RMLCI. Together with the classical
axioms, all the instances of the following schemata are axioms of RMLCI ′ :
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[a](A → B) → ([a]A → [a]B), 〈a; b〉A ↔ 〈a〉〈b〉A, 〈a ∧ b〉A → 〈a〉A and
〈a ∧ b〉A → 〈b〉A. Together with the classical rules of inference, all the in-
stances of the following schemata are rules of inference of RMLCI ′ : from
A infer [a]A and from [a]P ∨ [b]P → [c]P infer [a∧b]A→ [c]A. The following
theorems hold :

Theorem 2 If a formula is a theorem of RMLCI then it is a theorem of
RMLCI ′.

Proof : The easy proof that, for all programs a, b, a ≡ b, and for all formula
A, 〈a〉A→ 〈b〉A is a theorem of RMLCI ′ and 〈b〉A→ 〈a〉A is a theorem of
RMLCI ′ is left to the reader. Now let a, b be programs, a ≤ b, and A be a
formula. Since a ≤ b, then a ∧ b ≡ a and 〈a〉A → 〈a ∧ b〉A is a theorem of
RMLCI ′. Since 〈a∧b〉A→ 〈b〉A is an axiom of RMLCI ′, then 〈a〉A→ 〈b〉A
is a theorem of RMLCI ′. a

Theorem 3 If a formula is a theorem of RMLCI ′ then it is valid in all
strong models.

Proof : By demonstrating that every axiom of RMLCI ′ is valid in all strong
models and that the rules of inference of RMLCI ′ preserve validity for the
class of all strong models. a
However, we do not know whether or not a formula valid in all strong models
is also valid in all weak models. The truth of the matter is that there is no
easy answer to the issue at stake here. So we will not consider this question
before the last section of this paper.

5 Mosaics

With a view to proving that a formula valid in all strong models is also valid
in all weak models, we have decided to demonstrate that every weak frame
is a p-morphic image of a strong frame. This plan necessitates the use of the
concept of mosaic. Let \ be the partial function that maps Πc × IR × IR to
the set of the frames which is defined by induction on the formation rules for
programs in the following way. First of all, for all atomic program π and for
all real numbers x, y, x 6= y, let \(π, x, y) be the frame of the form (W,R)
where W = {x, y} and, for all program c and for all t, u ∈ W , t R(c) u iff :
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• t = x, u = y and π ≤ c.

Secondly, for all programs a, b and for all real numbers x, y, x 6= y, let
\(a; b, x, y) be the frame of the form (W,R) where z is a new real num-
ber, \(a, x, z) = (Wa, Ra), \(b, z, y) = (Wb, Rb), W = Wa ∪Wb and, for all
program c and for all t, u ∈ W , t R(c) u iff :

• either t, u ∈ Wa and t Ra(c) u

• or t ∈Wa \ {z}, u ∈Wb \ {z} and there exist programs c′, c′′ such that
t Ra(c

′) z, z Rb(c
′′) u and c′; c′′ ≤ c

• or t, u ∈ Wb and t Rb(c) u.

Third, for all programs a, b and for all real numbers x, y, x 6= y, let \(a∧b, x, y)
be the frame of the form (W,R) where \(a, x, y) = (Wa, Ra), \(b, x, y) =
(Wb, Rb), W = Wa ∪Wb and, for all program c and for all t, u ∈ W , t R(c)
u iff :

• either t, u ∈ Wa, t 6= x or u 6= y, and t Ra(c) u

• or t = x, u = y and a ∧ b ≤ c

• or t, u ∈ Wb, t 6= x or u 6= y, and t Rb(c) u.

For all program a and for all real numbers x, y, x 6= y, \(a, x, y) is called
mosaic of a with respect to x and y. Let us remember that :

Lemma 5 Let (W ′, R′) be a weak frame, a be a program, x, y be real num-
bers, x 6= y, and x′, y′ ∈ W ′, x′ R′(a) y′. There exists a homomorphism h of
\(a, x, y) to (W ′, R′) such that h(x) = x′ and h(y) = y′.

Proof : By induction on a. a
Our aim is to demonstrate that mosaics are finite irreflexive strong frames.
In this respect, we need to consider the following lemmas :

Lemma 6 Let a be a program and x, y be real numbers, x 6= y. \(a, x, y) is a
finite irreflexive frame of the form (W,R) such that x, y ∈ W , for all program
c, x R(c) y iff a ≤ c and R satisfies the conditions : R(c; d) ⊇ R(c) ◦ R(d)
and R(c ∧ d) = R(c) ∩R(d).

7



Proof : By induction on a. a

Lemma 7 Let a, b be programs, a ≥ b, and x, y, x′, y′ be real numbers, x 6=
y and x′ 6= y′. There exists a homomorphism h of \(a, x, y) to \(b, x′, y′) such
that h(x) = x′ and h(y) = y′.

Proof : The easy proof that, for all programs a, b, a ≡ b, and for all real
numbers x, y, x′, y′, x 6= y and x′ 6= y′, there exists a homomorphism h of
\(a, x, y) to \(b, x′, y′) such that h(x) = x′ and h(y) = y′ and there exists a
homomorphism h′ of \(b, x′, y′) to \(a, x, y) such that h′(x′) = x and h′(y′) =
y is left to the reader. Now let a, b be programs, a ≥ b, and x, y, x′, y′ be real
numbers, x 6= y and x′ 6= y′. Since a ≥ b, then a ∧ b ≡ b and there exists a
homomorphism h of \(a ∧ b, x, y) to \(b, x′, y′) such that h(x) = x′ and h(y)
= y′. Since \(a ∧ b, x, y) is the frame of the form (W,R) where \(a, x, y) =
(Wa, Ra), \(b, x, y) = (Wb, Rb), W = Wa ∪Wb and, for all program c and for
all t, u ∈ W , t R(c) u iff :

• either t, u ∈ Wa, t 6= x or u 6= y, and t Ra(c) u

• or t = x, u = y and a ∧ b ≤ c

• or t, u ∈ Wb, t 6= x or u 6= y, and t Rb(c) u,

then the reader may easily verify that h|Wa is a homomorphism of \(a, x, y)
to \(b, x′, y′) such that h|Wa(x) = x′ and h|Wa(y) = y′. a

Lemma 8 Let a be a program, x′, y′ be real numbers, x′ 6= y′, \(a, x′, y′) be
a frame of the form (W ′, R′), c be a program, t, u be real numbers, t 6= u,
and t′, u′ ∈ W ′, t′ R′(c) u′. There exists a homomorphism h of \(c, t, u) to
(W ′, R′) such that h(t) = t′ and h(u) = u′.

Proof : By induction on a. We should just like to point out that the proof
of lemma 8 makes use of lemma 7. a

Lemma 9 Let a be a program and x′, y′ be real numbers, x′ 6= y′. \(a, x′, y′)
is a frame of the form (W ′, R′) such that R′ satisfies the condition : R′(c; d)
⊆ R′(c) ◦R′(d).

Proof : Let c, d be programs and t′, u′ ∈ W ′, t′ R′(c; d) u′. Suppose now
that, for all z′ ∈ W ′, t′ R′(c) z′ or z′ R′(d) u′. Let t, u be real numbers, t
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6= u. Let \(c; d, t, u) be the frame of the form (W,R) where z is a new real
number, \(c, t, z) = (Wc, Rc), \(d, z, u) = (Wd, Rd), W = Wc ∪Wd and, for
all program e and for all p, q ∈ W , p R(e) q iff :

• either p, q ∈ Wc and p Rc(e) q

• or p ∈ Wc \ {z}, q ∈ Wd \ {z} and there exist programs e′, e′′ such
that p Rc(e

′) z, z Rd(e
′′) q and e′; e′′ ≤ e

• or p, q ∈ Wd and p Rd(e) q.

By lemma 8, there exists a homomorphism h of (W,R) to (W ′, R′) such that
h(t) = t′ and h(u) = u′. Since t Rc(c) z then t R(c) z. Since z Rd(d) u then
z R(d) u. Then t′ R′(c) h(z) and h(z) R′(d) u′, a contradiction. a
It follows immediately that :

Proposition 2 Let a be a program and x, y be real numbers, x 6= y. \(a, x, y)
is a finite irreflexive strong frame of the form (W,R) such that x, y ∈ W and,
for all program c, x R(c) y iff a ≤ c.

Proof : By lemmas 6 and 9. a

6 Completeness

Our intention is to prove that a formula valid in all strong models is also valid
in all weak models. Accordingly, we have no alternative but to demonstrate
that :

Lemma 10 Every weak frame is a p-morphic image of an irreflexive strong
frame.

Proof : Let (W ′, R′) be a weak frame. We use mosaics as components to
build up step by step an irreflexive strong frame (W,R) and a p-morphism f
of (W,R) to (W ′, R′). Let (W0, R0), (W1, R1), . . . be a sequence of frames and
f0, f1, . . . be a sequence of functions that maps W0, W1, . . . to W ′ defined
by induction in the following way.
Basis : Let :

• W0 = W ′,
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• R0 be the function that maps Πc to the set of the binary relations on
W0 such that, for all program a and for all x, y ∈ W0, x R0(a) y and

• f0 be the function that maps W0 to W ′ such that, for all x ∈ W0, f0(x)
= x.

It should be remarked that (W0, R0) is an irreflexive strong frame and f0 is
a surjective homomorphism of (W0, R0) to (W ′, R′).
Hypothesis : Let i be a positive integer, (Wi, Ri) be an irreflexive strong
frame and fi be a surjective homomorphism of (Wi, Ri) to (W ′, R′). What
is more, let c be a program, z ∈ Wi and t′ ∈ W ′ be such that fi(z) R′(c)
t′. In that case, (c, z, t′) is called defect of (Wi, Ri) with respect to (W ′, R′)
and fi. For all defect (c, z, t′) of (Wi, Ri) with respect to (W ′, R′) and fi, let
\(c, z, t) be the frame of the form (W z,t

c , Rz,t
c ) where t is a new real number.

By lemma 5, there exists a homomorphism hz,tc of (W z,t
c , Rz,t

c ) to (W ′, R′)
such that hz,tc (z) = fi(z) and hz,tc (t) = t′.
Step : Our aim is to put right the defects of (Wi, Ri) with respect to (W ′, R′)
and fi. In this respect, let :

• Wi+1 = Wi ∪
⋃{W z,t

c : (c, z, t′) is a defect of (Wi, Ri) with respect to
(W ′, R′) and fi},

• Ri+1 be the function that maps Πc to the set of the binary relations on
Wi+1 such that, for all program a and for all x, y ∈ Wi+1, x Ri+1(a) y
iff :

– either x, y ∈ Wi and x Ri(a) y

– or there exists a defect (c, z, t′) of (Wi, Ri) with respect to (W ′, R′)
and fi such that x ∈ Wi \ {z}, y ∈ W z,t

c \ {z} and there exist
programs a′, a′′ such that x Ri(a

′) z, z Rz,t
c (a′′) y and a′; a′′ ≤ a

– or there exists a defect (c, z, t′) of (Wi, Ri) with respect to (W ′, R′)
and fi such that x, y ∈ W z,t

c and x Rz,t
c (a) y and

• fi+1 be the function that maps Wi+1 to W ′ such that, for all x ∈Wi+1 :

– either x ∈ Wi and fi+1(x) = fi(x)

– or there exists a defect (c, z, t′) of (Wi, Ri) with respect to (W ′, R′)
and fi such that x ∈ W z,t

c and fi+1(x) = hz,tc (x).
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The following facts hold :

Fact 1 (Wi+1, Ri+1) is an irreflexive strong frame.

Proof : See the annex. a

Fact 2 fi+1 is a surjective homomorphism of (Wi+1, Ri+1) to (W ′, R′).

Proof : We leave the proof to the reader. a

Fact 3 Let (c, z, t′) be a defect of (Wi, Ri) with respect to (W ′, R′) and fi.
There exists t ∈ Wi+1 such that z Ri+1(c) t and fi+1(t) = t′.

Proof : We leave the proof to the reader. a
In conclusion, let :

• W =
⋃{Wi : i ≥ 0},

• R be the function that maps Πc to the set of the binary relations on W
such that, for all program a and for all x, y ∈W , there exists a positive
integer i such that x, y ∈ Wi and x R(a) y iff x Ri(a) y and

• f be the function that maps W to W ′ such that, for all x ∈ W , there
exists a positive integer i such that x ∈ Wi and f(x) = fi(x).

There is only one conclusion we can reach, which is that (W,R) is an irreflex-
ive strong frame and f is a p-morphism of (W,R) to (W ′, R′). a
This only goes to show that :

Theorem 4 If a formula is valid in all strong models then it is valid in all
weak models.

Proof : By lemmas 4 and 10. a
Ultimately, then :

Corollary 1 Let A be a formula. The following conditions are equivalent :
A is valid in all weak models, A is a theorem of RMLCI, A is a theorem of
RMLCI ′ and A is valid in all strong models.

Proof : By theorems 1, 2, 3 and 4. a
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7 Conclusion

In a previous paper “Complete axiomatization of a relative modal logic with
composition and intersection”, we have considered essentially the same syn-
tactic characterization of the concept of validity in the standard Kripke se-
mantics of RMLCI. Relying on the techniques of the subordination, we
have demonstrated that the proof theory of RMLCI is complete for the
standard Kripke semantics of RMLCI. Our new proof of completeness for
RMLCI proceeds by showing that every weak frame is a p-morphic image of
an irreflexive strong frame. With regard to this problem, given a weak frame
(W ′, R′), we use mosaics as components to build up step by step an irreflexive
strong frame (W,R) and a p-morphism f of (W,R) to (W ′, R′). Undeniably,
there is some difficulty in proving that mosaics are strong frames. However,
the benefits of our new proof of completeness for RMLCI will almost cer-
tainly outweigh the disadvantages. For the simple reason that it might be
a good thing to consider frames such as mosaics to address the complexity
issue of RMLCI or to resolve the problem of the complete axiomatisation
of IPDL. Questions that remain to be solved.

Acknowledgement

Special acknowledgement is heartly granted to Valentin Goranko, Andreas
Herzig, Dimiter Vakarelov and the two anonymous referees who made several
helpful comments for improving the readability of an earlier version of the
paper.

References
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Annex

Proof of the fact 1 : The easy proof that (Wi+1, Ri+1) is an irreflexive
frame such that Ri+1 satisfies the conditions : Ri+1(a; b) ⊇ Ri+1(a) ◦Ri+1(b)
and Ri+1(a∧ b) = Ri+1(a)∩Ri+1(b) is left to the reader. Let us demonstrate
that, for all program a, for all real numbers u, v, u 6= v, and for all x, y ∈
Wi+1, x Ri+1(a) y, there exists a homomorphism h of \(a, u, v) to (Wi+1, Ri+1)
such that h(u) = x and h(v) = y. We may assume that, for all program a,
for all real numbers u, v, u 6= v, and for all x, y ∈ Wi, x Ri(a) y, there exists
a homomorphism h of \(a, u, v) to (Wi, Ri) such that h(u) = x and h(v) = y.
Let a be a program, u, v be real numbers, u 6= v, and x, y ∈ Wi+1, x Ri+1(a)
y. Then we have to consider three cases.
Case 1 : x, y ∈ Wi and x Ri(a) y. According to our opening hypothesis,
there exists a homomorphism h of \(a, u, v) to (Wi, Ri) such that h(u) = x
and h(v) = y. The reader may easily verify that h is a homomorphism of
\(a, u, v) to (Wi+1, Ri+1).
Case 2 : There exists a defect (c, z, t′) of (Wi, Ri) with respect to (W ′, R′)
and fi such that x ∈Wi \ {z}, y ∈W z,t

c \ {z} and there exist programs a′, a′′

such that x Ri(a
′) z, z Rz,t

c (a′′) y and a′; a′′ ≤ a. Let \(a′; a′′, u, v) be the
frame of the form (Wa′;a′′ , Ra′;a′′) where w is a new real number, \(a′, u, w) =
(Wa′ , Ra′), \(a

′′, w, v) = (Wa′′ , Ra′′), Wa′;a′′ = Wa′ ∪Wa′′ and, for all program
d and for all p, q ∈ Wa′;a′′ , p Ra′;a′′(d) q iff :

• either p, q ∈ Wa′ and p Ra′(d) q

• or p ∈ Wa′ \ {w}, q ∈ Wa′′ \ {w} and there exist programs d′, d′′ such
that p Ra′(d

′) w, w Ra′′(d
′′) q and d′; d′′ ≤ d

• or p, q ∈ Wa′′ and p Ra′′(d) q.

According to our opening hypothesis, there exists a homomorphism ha′ of
(Wa′ , Ra′) to (Wi, Ri) such that ha′(u) = x and ha′(w) = z. By lemma 8, there
exists a homomorphism ha′′ of (Wa′′ , Ra′′) to (W z,t

c , Rz,t
c ) such that ha′′(w) =

z and ha′′(v) = y. Let ha′;a′′ be the mapping of Wa′;a′′ to Wi+1 such that
ha′;a′′|Wa′

= ha′ and ha′;a′′|Wa′′
= ha′′ . The reader may easily verify that ha′;a′′

is a homomorphism of (Wa′;a′′ , Ra′;a′′) to (Wi+1, Ri+1) such that ha′;a′′(u) = x
and ha′;a′′(v) = y. By lemma 7, there exists a homomorphism h of \(a, u, v)
to (Wa′;a′′ , Ra′;a′′) such that h(u) = u and h(v) = v. Then h ◦ ha′;a′′ is a
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homomorphism of \(a, u, v) to (Wi+1, Ri+1) such tha(h ◦ ha′;a′′)(u) = x and
(h ◦ ha′;a′′)(v) = y.
Case 3 : There exists a defect (c, z, t′) of (Wi, Ri) with respect to (W ′, R′)
and fi such that x, y ∈ W z,t

c and x Rz,t
c (a) y. By lemma 8, there exists a

homomorphism h of \(a, u, v) to (W z,t
c , Rz,t

c ) such that h(u) = x and h(v) =
y. The reader may easily verify that h is a homomorphism of \(a, u, v) to
(Wi+1, Ri+1).
Let us demonstrate that Ri+1 satisfies the condition : Ri+1(a; b) ⊆ Ri+1(a) ◦
Ri+1(b). Let a, b be programs and x, y ∈ Wi+1, x Ri+1(a; b) y. Suppose now
that, for all z ∈ Wi+1, x Ri+1(a) z or z Ri+1(b) y. Let u, v be real numbers,
u 6= v. Let \(a; b, u, v) be the frame of the form (Wa;b, Ra;b) where w is a new
real number, \(a, u, w) = (Wa, Ra), \(b, w, v) = (Wb, Rb), Wa;b = Wa ∪ Wb

and, for all program d and for all p, q ∈ Wa;b, p Ra;b(d) q iff :

• either p, q ∈ Wa and p Ra(d) q

• or p ∈ Wa \ {w}, q ∈ Wb \ {w} and there exist programs d′, d′′ such
that p Ra(d

′) w, w Rb(d
′′) q and d′; d′′ ≤ d

• or p, q ∈ Wb and p Rb(d) q.

Then there exists a homomorphism h of (Wa;b, Ra;b) to (Wi+1, Ri+1) such that
h(u) = x and h(v) = y. Since u Ra(a) w then u Ra;b(a) w. Since w Rb(b) v
then w Ra;b(b) v. Then x Ri+1(a) h(w) and h(w) Ri+1(b) y, a contradiction. a
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