
Some (in)translatability results for normal
logic programs and propositional theories

Tomi Janhunen

Helsinki University of Technology
Department of Computer Science and Engineering
P.O. Box 5400
FI-02015 TKK (Finland)

Tomi.Janhunen@tkk.fi

ABSTRACT.In this article, we compare the expressive powers of classes of normal logic programs
that are obtained by constraining the number of positive subgoals (n) in the bodies of rules. The
comparison is based on the existence/nonexistence of polynomial, faithful, and modular (PFM)
translation functions between the classes. As a result, we obtain a strict ordering among the
classes under consideration. Binary programs (n ≤ 2) are shown to be as expressive as uncon-
strained programs but strictly more expressive than unary programs (n ≤ 1) which, in turn, are
strictly more expressive than atomic programs (n = 0). We also take propositional theories into
consideration and prove them to be strictly less expressive than atomic programs. In spite of the
gap in expressiveness, we develop a faithful but non-modular translation function from normal
programs to propositional theories. We consider this as a breakthrough due to sub-quadratic
time complexity (of the order of||P || × log2 |Hb(P)|). Furthermore, we present a prototype
implementation of the translation function and demonstrate its promising performance with SAT
solvers using three benchmark problems.

KEYWORDS:modularity, translation functions, expressive power, stable model semantics, answer
set programming, satisfiability solvers.

1. Introduction

Normal logic programs under the stable model semantics [GEL 88] are well-suited
for a variety of knowledge representation tasks. Typically, a programmer solves a
problem at hand (i) by formulating it as a logic program whose stable models corre-
spond to the solutions of the problem and (ii) by computing stable models (oranswer
sets[GEL 90]) for the program using a special-purpose search engine. The reader is
referred e.g. to [MAR 99, NIE 99, GEL 02] for examples of using this kind of con-
straint programming paradigm, also known asanswer set programming(ASP). The

Journal of Applied Non-Classical Logics.Volume 16 – No. 1–2/2006, pages 35 to 86

36 JANCL – 16/2006. Implementation of Logics

paradigm differs from conventional logic programming [EMD 76, LLO 87] which is
based on query evaluation using the resolution principle [ROB 65]. The success of
stable models and answer set programming is much due to efficient implementations,
such asSMODELS [SIM 02] andDLV [EIT 98], which were developed in the 90s.

A basic approach to computing stable models is to use abranch and boundsearch
algorithm [SUB 95] and thewell-founded model[VAN 91] as an approximation in
order to prune search space. Even tighter approximations can be employed given
some assumptions (truth values of atoms) on stable models to be computed [SIM 02].
One particular approximation technique tries to apply rulescontrapositively: if the
headh of a ruleh ← a1, . . . , an is known/assumed to be false in a stable modelM
being computed, then one of the positive subgoalsai in the bodymust also be false
in M . This becomes particularly effective whenn = 1 or all other atoms except
a1 are known/assumed to be true inM . Thena1 can be inferred to be false inM
which refines the approximation a bit. These observations lead to the basic question
that initiated our research:Is it possible to reduce the number of positive subgoals
appearing in rules in order to accelerate contrapositive reasoning?

To address this problem, we analyze the expressiveness of classes of logic pro-
grams that are obtained by restricting the number of positive subgoals in the bodies of
rules. The aim is to develop and apply a method that is similar to the one developed for
non-monotonic logics [JAN 99b, JAN 03a]. According to this method, a basic step is
to check the existence of apolynomial, faithful and modular(PFM) translation func-
tions between classes. If such a translation function turns out to be non-existent, then
the syntactic constraints imposed on the classes are significant and affect expressive
power. In particular, if there is no PFM translation function that reduces the number of
positive subgoals, then the reduction is likely to be infeasible in practice as it cannot be
done in a localized (modular) way. The results of the expressiveness analysis indicate
that the number of positive subgoals in a rule can be reduced down to two, but going
below that limit is impossible in a faithful and modular way. In spite of this negative
result, we manage to develop a faithful andnon-modular, but still fairly systematic,
translation functionTrAT for removing positive subgoals altogether.

The elimination of positive subgoals is also interesting as concerns propositional
logic: by composingTrAT with Clark’s completion procedure [CLA 78] we obtain a
novel reduction from normal logic programs to propositional theories. This opens new
prospects as regards implementing ASP using SAT solvers for actual computations: a
program can be reduced completely before computing models for the resulting propo-
sitional theory. This is in contrast with earlier approaches [LIN 04, LIE 04] that in-
troduceloop formulasand extend the completion of the program incrementally while
computing models. Moreover, by analyzing and composing reductions from ASP to
SAT we gain new insight into their relationship. In fact, many problems that have
been solved using ASP have also formulations as classical satisfiability problems. But
such formulations tend to be more tedious to accomplish and less concise. For in-
stance, formulating an AI planning problem is much easier as a normal logic program
[DIM 97] than as a set of clauses [KAU 96]. Such practical experiences suggest a

Some (in)translatability results 37

real difference in expressive power which has already been demonstrated in terms of
formal counter-examples [NIE 99].

These observations on the interconnection of ASP and satisfiability checking led
to a further objective for our research. The goal is to develop efficient reductions
from ASP to propositional theories and thus combine the knowledge representation
capabilities of ASP with the efficiency of SAT solvers so that we can benefit from their
rapid development. In this article, we approach this goal in the following respects.
First, propositional theories are taken into account in the expressiveness analysis to
better understand their relationship with the classes of normal logic programs under
consideration. Second, a concrete reduction from ASP to propositional satisfiability
is developed following the lines discussed above. Third, preliminary experiments are
conducted using a prototype implementation and existing solvers. We aim at a proof of
concept by comparing the performance of our translation-based approach with others.

The rest of this article is organized as follows. In Section 2, we review the syntax
and semantics of the formalisms of our interest: normal logic programs and propo-
sitional theories. Moreover, we distinguish syntactic subclasses of normal logic pro-
grams to be analyzed in the sequel. Three central properties of translation functions
are distinguished in Section 3: polynomiality, faithfulness, and modularity. Conse-
quently, a method for comparing the expressive powers of classes of logic programs is
established. The actual expressiveness analysis takes place in Section 4. The classes
of logic programs are ordered on the basis of their expressive powers which gives rise
to an expressive power hierarchy for the classes under consideration. These compar-
isons involve intranslatability results that count on the modularity property. This is
why we pursue non-modular translation functions in Section 6. A particular objective
in this respect is to translate faithfully normal logic programs into propositional the-
ories in sub-quadratic time (The resulting translation function is based an alternative
characterization of stable models devised earlier in Section 5.) After that related work
is addressed in Section 7. We present a prototype implementation of the translation
in Section 8 and compare its performance with a variety of answer set solvers using
three benchmark problems. Finally, we present our conclusions in Section 9.

2. Preliminaries

In this section, we review the basic terminology and definitions of normal logic
programs as well as propositional theories.

2.1. Normal logic programs

In this article, we restrict ourselves to the purely propositional case and consider
only programs that consist of propositional atoms1. A normal (logic) programP is a
set ofruleswhich are expressions of the form

1. Programs with variables, constants and function symbols are encompassed implicitly
through Herbrand instantiation. However, the forthcoming expressiveness analysis is based

38 JANCL – 16/2006. Implementation of Logics

a← b1, . . . , bn,∼c1, . . . ,∼cm (1)

wherea is an atom, and{b1, . . . , bn} and{c1, . . . , cm} form sets of atoms. Here
∼ denotesdefault negationor Clark’s negation as failure to prove[CLA 78], which
differs fromclassical negationdenoted by¬. We definedefault literalsin the standard
way using∼ as negation, and given a set of atomsA, we let∼A denote the set of
negative literals{∼a | a ∈ A}. Intuitively speaking, a ruler of the form (1) is used as
follows: theheadH(r) = a of r can be inferred by applyingr whenever the conditions
in the bodyB(r) = {b1, . . . , bn} ∪ {∼c1, . . . ,∼cm} of r are met. This is the case
when thepositive body atomsin B+(r) = {b1, . . . , bn} are inferable by the rules
of the program, but not thenegative body atomsin B−(r) = {c1, . . . , cm}. These
intuitions will be made exact by model theory presented in Section 2.2.

In the sequel, the class of normal programs is denoted byP. We extend the pre-
ceding notations to cover anyP ∈ P. For instance,H(P) = {H(r) | r ∈ P}, and
B(P), B+(P), andB−(P) are analogously defined. The positive partr+ of a ruler
is defined asH(r) ← B+(r). A (normal) programP is positive, if r = r+ holds for
all rulesr ∈ P . In addition to positive programs, we distinguish normal programs that
are obtained by restricting the number of positive body atoms allowed in a ruler.

DEFINITION 1. — A rule r of a normal program is calledatomic, unary or binary,
if |B+(r)| = 0, |B+(r)| ≤ 1, or |B+(r)| ≤ 2, respectively.

Moreover, we say that a ruler is strictly unary if |B+(r)| = 1, i.e. it is unary and
not atomic.Strictlybinary rules are defined analogously, i.e.|B+(r)| = 2. We extend
these conditions to cover a normal programP in the obvious way:P is atomic, unary,
or binary if every rule ofP satisfies the respective condition. E.g., anatomic normal
programP contains only rules of the forma ← ∼c1, . . . ,∼cm. The conditions set
in Definition 1 imply that atomic programs are unary ones and unary programs are
binary ones. Consequently, the respective classes of normal programs (denoted byA,
U , andB) are ordered by inclusion as follows:A ⊂ U ⊂ B ⊂ P. The last includes
alsonon-binarynormal programs having at least one ruler with |B+(r)| > 2.

The same syntactic restrictions can be applied within the class ofpositivenormal
programsP+ ⊂ P. For instance, any unary positive program consists of rules of the
very simple formsa ← andb ← c. We let the superscripted symbolsA+, U+, B+

denote the respective subclasses ofP+, which are ordered analogouslyA+ ⊂ U+ ⊂
B+ ⊂ P+. Moreover,C+ ⊂ C holds for each classC amongA, U , andB.

2.2. Semantics

Normal programs can be given a standard model-theoretic semantics. For now, the
Herbrand baseHb(P) of a normal logic programP is defined as the set of atoms that
appear in the rules ofP , although a slightly more general definition will be introduced

on finite programs and Herbrand instances, which means that function symbols are not fully
covered.

Some (in)translatability results 39

in Section 3.1. AninterpretationI ⊆ Hb(P) of a normal programP determines
which atomsa of Hb(P) aretrue (a ∈ I) and which atoms arefalse(a ∈ Hb(P)− I).
A negative default literal∼a is given a classical interpretation at this point:I |= ∼a
⇐⇒ I 6|= a. Given a set of literalsL, we defineI |= L ⇐⇒ I |= l for every
l ∈ L. The interpretation of rules is similar to that of classical implications:I |= r
holds for a ruler iff ⇐⇒ I |= B(r) impliesI |= H(r). Finally, an interpretationI
is a (classical) model ofP (I |= P) iff I |= r for everyr ∈ P . However, the classical
semantics is not sufficient to capture the intended meaning of default literals and we
have to distinguish models that are minimal in the following sense.

DEFINITION 2. — A modelM |= P is a minimal model ofP if and only if there is
no modelM ′ |= P such thatM ′ ⊂M .

In particular, every positive programP is guaranteed to possess a unique minimal
model of which equals to the intersection of all models ofP [LLO 87]. We letLM(P)
stand for this particular model, i.e. theleast modelof P . The least model semantics
is inherentlymonotonic: if P ⊆ P ′ holds for two positive programs, thenLM(P) ⊆
LM(P ′). Moreover, the least modelLM(P) can be constructed iteratively as follows;
see [LLO 87] for a complete treatment. Define an operatorTP on sets of atomsA ⊆
Hb(P) by settingTP (A) = {H(r) | r ∈ P andB+(r) ⊆ A}. The iteration sequence
of the operatorTP is defined inductively: (i)TP ↑ 0 = ∅, (ii) TP ↑ i = TP (TP ↑
i− 1) for i > 0, and (iii) TP ↑ ω =

⋃
i<ω TP ↑ i. It follows thatLM(P) = TP ↑

ω = lfp(TP) which is reached in a finite number of steps ifP is finite. Given a
positive programP and an atoma ∈ LM(P), we define thelevel numberlev(a) of a
as the least natural numberi such thata ∈ TP ↑ i.

Gelfond and Lifschitz [GEL 88] propose a way to apply the least model semantics
to an arbitrary normal programP . Given an interpretationM ⊆ Hb(P), i.e. a model
candidate, their idea is to reduceP to a positive program

PM = {r+ | r ∈ P andM ∩ B−(r) = ∅}.2 (2)

In this way, the negative default literals appearing in the bodies of the rules ofP
are simultaneously interpreted with respect toM . Since the reductPM is a positive
program, it has a natural semantics determined by the least modelLM(PM). Equating
this model with the model candidateM used to reduceP leads to the idea ofstability.

DEFINITION 3 ([GEL 88]). — An interpretationM ⊆ Hb(P) of a normal logic
programP is a stable model ofP ⇐⇒ M = LM(PM).

In general, a normal logic program need not have a unique stable model (seeP1 in
Example 4 below) nor a stable models at all (seeP2 in Example 4). The minimality
of stable models is demonstrated byP3 in Example 4:M ′ = {a, b} is not stable. In
contrast to the least models of positive programs, stable models may change in anon-
monotonicway which implies that conclusions may be retracted under stable model

2. The conditions of Definition 1 have been designed to be compatible with Gelfond-Lifschitz
reduction: IfP belongs to a classC ∈ {A,U ,B,P} andM ⊆ Hb(P), thenP M ∈ C+.

40 JANCL – 16/2006. Implementation of Logics

semantics. This is demonstrated below using programsQ1 andQ2 in Example 4.
Normal logic programs are well-suited for a variety of knowledge representation and
reasoning tasks. The reader is referred e.g. to [MAR 99, NIE 99] for further examples
on using normal logic programs for such tasks in practice.

EXAMPLE 4. — (i) ProgramP1 = {a← ∼b; b← ∼a}3 has two stable models
M1 = {a} andM2 = {b}. (ii) ProgramP2 = {a← ∼a} has no stable models. (iii)
ProgramP3 = {a← b; b← a} has a unique stable modelM = ∅. (iv) Programs
Q1 = {a← ∼b} andQ2 = Q1 ∪ {b←} have unique stable modelsN1 = {a} and
N2 = {b}, respectively, butN1 6⊆ N2. 2

We emphasize that the semantics of the logic programs in the classes introduced
so far is determined by the stable/least model semantics. Nevertheless, we would like
to remind the reader about its predecessor, namely the one based onsupported models
[APT 88]. A modelM ⊆ Hb(P) of P is supported byP if and only if for each atom
a true inM there is a ruler ∈ P such thatH(r) = a andM |= B(r). In contrast to
[APT 88], our definition ofTP covers only positive programs and we have to usePM

to characterize supported models in terms ofTP .

PROPOSITION5. — An interpretationM ⊆ Hb(P) is a supported model ofP ⇐⇒
M = TP M (M).

PROOF. — Now M |= P ⇐⇒ M |= PM ⇐⇒ TP M (M) ⊆M [APT 88, Lemma
2]. On the other hand, the interpretationM is supported byP ⇐⇒ M is supported
by PM ⇐⇒ M ⊆ TP M (M) [APT 88, Lemma 3]. ■

Thus every stable (resp. supported) model ofP is also a supported (resp. classical)
model ofP [MAR 92] but not necessarily vice versa. For instance,M ′ = {a, b} is a
supported model ofP3 (resp.N ′ = {b} is a classical model ofQ1) in Example 4.

2.3. Propositional theories

We defineclassical literalsin the standard way using classical negation¬ as the
connective. AclauseC is a finite set of classical literals

{a1, . . . , an,¬b1, . . . ,¬bm} (3)

representing a disjunction of its constituents. Apropositional theory in a conjunc-
tive normal form4 is a set of clausesS representing a conjunction of the clauses (3)
contained inS. In the sequel, the class of propositional theories is denoted byPT .

Given a set of clausesS, we let Hb(S) denote its Herbrand base so that inter-
pretationsI for S can be defined as subsets ofHb(S) in analogy to Section 2.2. The
satisfaction relation|= is defined in the standard way for clauses (3). Similarly to logic
programs, a set of clausesS gives rise to a set of models{M ⊆ Hb(S) | M |= S},

3. To avoid confusions, we use semicolons “;” to separate rules in logic programs.
4. Without loss of generality under polynomial and faithful translations; see Section 3.3.

Some (in)translatability results 41

but the essential difference is that all classical models are taken into account. A set of
clausesS is satisfiableif it has at least one model, andunsatisfiableotherwise.

3. Translation functions

The author has analyzed the expressive powers ofnon-monotonic logicsin a sys-
tematic fashion [JAN 99b, JAN 03a, JAN 00a] which extends previous results ob-
tained by Imielinski [IMI 87] and Gottlob [GOT 95]. The comparison is based on the
existence/non-existence ofpolynomial, faithful andmodular(PFM) translation func-
tions between non-monotonic logics under consideration. As a result, the expressive
power hierarchy (EPH) of non-monotonic logics [JAN 03a] was gradually established.
In this section, we propose an analogous framework to compare the expressive pow-
ers of classesC of logic programs. We begin by making certain general assumptions
about (classes of) logic programs in Section 3.1. Based on these assumptions we are
ready to define the notion ofvisible equivalencein Section 3.2 and to introduce PFM
translation functions between classes of logic programs in Section 3.3. The resulting
classification method for expressiveness analysis is summarized in Section 3.4.

3.1. General assumptions about (classes of) logic programs

At this level of abstraction, logic programsP are understood syntactically as sets
of expressions built of propositional atoms. This is to cover also other formalisms
in addition to those introduced in Section 2. There we defined the Herbrand base
Hb(P) as the set of atoms that effectivelyappear in P . Basically, we would like
to apply the same principle at this level abstraction, but sometimes there is a need
to extendHb(P) with certain atoms that do not appear inP . This kind of a setting
may arise e.g. when a particular logic programP is being optimized. Suppose that
an atoma ∈ Hb(P) is recognized useless in the programP and all of its occurrences
(and possibly the rules involved) are removed fromP . Thusa 6∈ Hb(P ′) holds for the
resulting programP ′. Let us mentionP = {a← a} andP ′ = ∅ as concrete examples
of such programs, whose least models coincide. The fact thata is forgotten in this way
impedes the comparison ofP andP ′ in a sense (to be made precise in Section 3.2),
since their Herbrand bases become different according to our preliminary definition.
For this reason, we propose a revised definition:Hb(P) is any fixed set of atoms
containing all atoms that actually appear in the rules ofP . ThusHb(P) acts as the
symbol tableof P which also contributes to the length of the program; viewed now
as a pair〈P, Hb(P)〉 rather than just a set of rules. For instance, the pair〈∅, {a}〉
properly represents the programP ′ discussed above.

However, there is a further aspect of atoms that affects the way we treat Herbrand
bases, namely thevisibility of atoms. It is typical in answer set programming that only
certain atoms appearing in a program are relevant for representing the solutions of the
problem being solved. Others act as auxiliary concepts that can be usuallyhiddenfrom
the user altogether. In fact, the choice of such concepts may vary in other programs

42 JANCL – 16/2006. Implementation of Logics

written for the same problem. As a side effect, the models assigned to programs
may differ already on the basis of auxiliary atoms although they capture the same set
of solutions. Rather than introducing a hiding mechanism in the rule language, we
let the programmer5 decide the visible part ofHb(P), i.e.Hbv(P) ⊆ Hb(P) which
determines the set of hidden atomsHbh(P) = Hb(P)−Hbv(P). The ideas presented
so far are combined in the following definition.

DEFINITION 6. — A logic program is a triple〈P, Hbv(P), Hbh(P)〉 where

1) P is a set of syntactic expressions (e.g. rules) built of propositional atoms,

2) Hbv(P) andHbh(P) are disjoint sets of atoms and determine the visible and
hidden Herbrand bases of the program, respectively, and

3) all atoms occurring inP are contained inHb(P) = Hbv(P) ∪Hbh(P).

Finally, we defineHba(P) as the set of atomsa ∈ Hb(P) not occurring inP .

Note that the atoms ofHba(P) can be viewed asadditionalatoms that just extend
Hb(P). By a slight abuse of notation, we often useP rather than the whole triple
when referring to a program〈P, Hbv(P), Hbh(P)〉. To ease the treatment of pro-
grams in the sequel, we make some default assumptions regarding the setsHb(P) and
Hbv(P). Unless otherwise stated, we assume thatHbv(P) = Hb(P), Hbh(P) = ∅,
andHba(P) = ∅, i.e.Hb(P) contains only atoms that actually appear inP .

EXAMPLE 7. — GivenP = {a← ∼b}, the default interpretation is thatHb(P) =
{a, b}, Hbv(P) = Hb(P) = {a, b}, andHbh(P) = ∅. To make an exception, we
have to add explicitly thatHbv(P) = {a, c} andHbh(P) = {b}, for example. 2

Having now settled our concerns regarding the Herbrand bases of programs, we
make some general assumptions about classes of logic programs. These will be needed
when the requirements for translation functions are formulated in Sections 3.2 and 3.3.

DEFINITION 8. — Any classC of logic programs must satisfy the following.

A1. EveryP ∈ C and its Herbrand basesHbv(P) andHbh(P) arefinite.

A2. The classC has asemantic operatorSemC which maps a programP ∈ C to a
set of interpretationsSemC(P) ⊆ 2Hb(P) which determines the semantics ofP .

The first assumption reflects the fact that we take propositional logic programs
as potential inputs to translator programs as well as solvers that compute models for
them. Hence we must be able to encode any program under consideration as a finite
string of symbols. This excludes the possibility of instantiating a logic program in-
volving variables and function symbols to a fully propositional one. By the second
assumption, the semantics of each programP in a classC is determined by a set of
total 6 interpretationsSemC(P). Given an interpretationI ∈ SemC(P), each atom

5. E.g., the front-end of theSMODELSsystem [SIM 02] enables visibility control in terms of
hideandshowstatements.
6. It is quite possible to generalize A2 to coverpartial modelslike the well-wounded model

[VAN 91], but such models are not addressed in this article.

Some (in)translatability results 43

a ∈ Hb(P) is assigned to either true or false as done in Sections 2.2 and 2.3. Hence
we assume a two-valued semantics for each class of logic programs in this article.

It is easy to see that the finite fragments of the classes of logic programsC intro-
duced in Section 2.1 satisfy these assumptions. In the sequel, we identify these classes
with their finite fragments. The semantic operator is given below in (4). Note that the
stable semantics coincides with the least model semantics in the case of positive pro-
grams. Due to flexibility of Definitions 6 and 8 it is possible to view the class of finite
propositional theoriesPT as a class of logic programs given the respective semantic
operator in (5). This enables the comparison of these classes in sections to come.

SemC(P) = SM(P) = {M ⊆ Hb(P) |M = LM(PM)} (4)

SemPT (S) = CM(S) = {M ⊆ Hb(S) |M |= S} (5)

3.2. Visible equivalence

Having defined the semantics of logic programs on an abstract level, the next issue
is to define the conditions on which two representativesP andQ of a given class of
logic programsC can be considered to be equivalent. It is natural that the answer
to this question goes back to semantics. A straightforward notion of equivalence is
obtained by equatingSemC(P) andSemC(Q). This corresponds to the basic notion of
equivalence proposed for normal programs under stable model semantics, but stronger
notions have also been proposed. For instance, Lifschitz et al. [LIF 01] considerP
andQ strongly equivalentgiven thatSemC(P ∪ R) = SemC(Q ∪ R) for all other
programsR. Consequently, the strong equivalence ofP andQ implies thatP andQ
can be freely used as substitutes of each other. Although such a notion seems attractive
at the first glance, a drawback is that it is rather restrictive — allowing only relatively
straightforward semantics-preserving modifications to rules [EIT 04].

Both approaches share another problem: the models inSemC(P) andSemC(Q)
have to be identical subsets ofHb(P) andHb(Q), respectively. Therefore, we propose
a notion of equivalence which tries to take the interfaces of logic programs properly
into account. The idea is that atoms inHbh(P) andHbh(Q) are considered as local
to P andQ and negligible as far as the equivalence of the programs is concerned.

DEFINITION 9. — Logic programsP ∈ C andQ ∈ C′ arevisibly equivalent, denoted
byP ≡v Q, if and only ifHbv(P) = Hbv(Q) and there is a bijectionf : SemC(P)→
SemC′(Q) such that for everyM ∈ SemC(P),

M ∩Hbv(P) = f(M) ∩Hbv(Q). (6)

Note that this notion of equivalence can be applied both within a single class of
logic programs, and between different classes, which may be syntactically and/or se-

44 JANCL – 16/2006. Implementation of Logics

mantically different. This is a very important aspect, as we intend to study the inter-
relationships of such classes of programs in the sequel.

EXAMPLE 10. — Consider a programP = {a← ∼b; b← ∼a; c← a; c← ∼a}
with Hbv(P) = {a, c} and stable modelsM1 = {a, c} andM2 = {b, c}. Thus
Hbh(P) = {b} remains hidden when we compareP with a set of clausesS =
{{a, d}, {¬a,¬d}, {a, c}, {¬a, c}} possessing exactly two classical modelsN1 =
{a, c} andN2 = {d, c}, asHb(S) = {a, c, d}. We can hided by settingHbv(S) =
{a, c}. ThenP ≡v S holds, asHbv(P) = Hbv(S) and there is a bijection from
f : SM(P) → CM(S) that (i) mapsM1 to N1 so thatM1 ∩ Hbv(P) = {a, c} =
N1∩Hbv(Q), and (ii) mapsM2 to N2 so thatM2∩Hbv(P) = {c} = N2∩Hbv(Q).

2

PROPOSITION11. — ≡v is an equivalence relation among all programs.

PROOF. — The reflexivity of≡v follows essentially by the identity mappingi :
SemC(P) → SemC(P) for any P from anyC. The symmetry of≡v is also easily
obtained. GivenP ≡v Q for any programsP andQ from any classesC andC′, the
existence of an inverse for a bijectionf : SemC(P) → SemC′(Q) is guaranteed. For
the transitivity of≡v, let f1 andf2 be the respective bijections involved inP ≡v Q
andQ ≡v R whereP ∈ C1, Q ∈ C2, andR ∈ C3. It is clear thatf1 ◦ f2 is also
a bijection, and we have for allM ∈ SemC1(P) that M ∩ Hbv(P) = f1(M) ∩
Hbv(Q) = f2(f1(M)) ∩Hbv(R) = (f1 ◦ f2)(M) ∩Hbv(R). Moreover,Hbv(P) =
Hbv(Q) andHbv(Q) = Hbv(R) imply Hbv(P) = Hbv(R). ThusP ≡v R. ■

It is worthwhile to do some comparisons. By settingHbv(P) = Hb(P) and
Hbv(Q) = Hb(Q), the relation≡v becomes very close to the notion of weak equiva-
lence discussed in the beginning of this section, if interpreted with respect to the class
of normal programs under the stable model semantics. The only difference is the im-
plied additional requirement thatHb(P) = Hb(Q) in order toP ≡ Q to hold. By the
approach taken in Section 3.1 this requirement becomes of little account: Herbrand
bases are always extendible to meetHb(P) = Hb(Q). Actually, we can state the
same about≡v using a generalized notion of weak equivalence:P ≡ Q is defined to
hold forP ∈ C andQ ∈ C′ ⇐⇒ SemC(P) = SemC′(Q). It is clear that≡ is also an
equivalence relation among all programs.

PROPOSITION 12 ([JAN 03B]). — If P and Q are logic programs having equal
Herbrand basesHbv(P), Hb(P), Hbv(Q), andHb(Q), thenP ≡ Q ⇐⇒ P ≡v Q.

As regards the equivalence of logic programs, an alternative approach is to use
theirskepticalandbraveconsequences as a criterion. A propositional formulaφ based
on Hbv(P) is a skeptical (resp. brave) consequence ofP iff M |= φ for all (resp.
for some)M ∈ SM(P). For the sake of comparison, we defineP and Q to be
equivalent in the skeptical (resp. brave) sense, denotedP ≡vs Q (resp.P ≡vb Q) iff
Hbv(P) = Hbv(Q) and the skeptical (resp. brave) consequences ofP andQ are the
same. Yet weaker notion of equivalence is obtained by usingconsistencyas the only
criteria:P ≡vc Q iff Hbv(P) = Hbv(Q) andSM(P) = ∅ ⇐⇒ SM(Q) = ∅. These
alternative notions of equivalence relate with visible equivalence as follows.

Some (in)translatability results 45

PROPOSITION13. — Let P andQ be two logic programs. ThenP ≡v Q implies
bothP ≡vs Q andP ≡vb Q which, in turn, separately implyP ≡vc Q.

PROOF. — SupposeHbv(P) = Hbv(Q) since these implications hold otherwise.
(i) If P 6≡vc Q, then we may assumeSM(P) = ∅ andSM(Q) 6= ∅ without loss
of generality. It follows that⊥ is a skeptical consequence ofP but not that ofQ,
i.e. P 6≡vs Q. On the other hand,> is a brave consequence ofQ but not that of
P which indicates thatP 6≡vb Q. (ii) If P 6≡vs Q, we may assume without loss of
generality thatQ has a skeptical consequenceφ based onHbv(Q) = Hbv(P) which
is not that ofP . Then there isM ∈ SM(P) such thatM 6|= φ. AssumingP ≡v Q,
there is a bijectionf so thatN = f(M) ∈ SM(Q) coincides with withM up to
Hbv(P) = Hbv(Q). It follows that N 6|= φ. A contradiction, asφ is a skeptical
consequence ofQ. HenceP 6≡v Q. (iii) Analogously, ifP 6≡vb Q, we may assume a
brave consequenceφ of P which is based onHbv(P) = Hbv(Q) and which is not a
brave consequence ofQ. It follows thatM |= φ for someM ∈ SM(P). Let us then
assumeP ≡v Q and letf be the respective bijection for stable models. ThenN |= φ
holds forN = f(M) ∈ Hb(Q), a contradiction. ThusP 6≡v Q. ■

The converse implications do not hold in general. ForP = {a← ∼b} andQ = ∅
with Hbv(P) = Hbv(Q) = {a}, we haveSM(P) = {{a}} andSM(Q) = {∅}
so thatP ≡vc Q. However,a is a skeptical/brave conclusion ofP but not that
of Q. ThusP 6≡vs Q and P 6≡vb Q. On the other hand, let us considerP =
{a← b; a← c; b← ∼c; c← ∼b} andQ = {a←} with Hbv(P) = Hbv(Q) = {a}.
Now P ≡vs Q andP ≡vb Q asSM(P) = {{a, b}, {a, c}} andSM(Q) = {{a}}. But
a bijective correspondence betweenSM(P) andSM(Q) is impossible. ThusP 6≡v Q.

3.3. Requirements for translation functions

We are now ready to formulate our criteria for a translation functionTr : C → C′
that transforms logic programsP of one classC into logic programsTr(P) of another
classC′. In many cases of interest, the latter class is a subclass or a superclass ofC,
but it makes also sense to perform translations between classes that are incomparable
in this respect (such asP andPT introduced so far). It is assumed below that both
the source classC and the target classC′ satisfy assumptions listed in Definition 8.

DEFINITION 14. — A translation functionTr : C → C′ is polynomial if and only if
for all programsP ∈ C, the time required to compute the translationTr(P) ∈ C′ is
polynomial in||P ||, i.e. the length ofP in symbols.

Note that the length of the translation||Tr(P)|| is also polynomial in||P || if Tr
is polynomial. In many cases, even linear time translation functions can be devised
for particular classes of logic programs. Such transformations are highly desirable to
allow efficient transformation of knowledge from one representation to another.

DEFINITION 15. — A translation functionTr : C → C′ is faithful if and only if for
all P ∈ C, P ≡v Tr(P).

46 JANCL – 16/2006. Implementation of Logics

Here we emphasize thatP ≡v Tr(P) implies Hbv(P) = Hbv(Tr(P)) by the
definition of≡v. Thus a faithful translation functionTr may introduce new atoms,
which have to remain invisible, or forget old invisible atoms. Moreover, if we insist
on polynomiality, then the number of new atoms gets limited, too. The possibility of
introducing new atoms is a crucial option for translation functions to be presented in
the sequel. This is because new atoms serve as shorthands for more complex logical
expressions that save space and enable translation functions between certain classes.

The existence of a bijectionf betweenSemC(P) andSemC′(Tr(P)) ensures that
the semantics ofP is captured byTr(P) to a sufficient degree as regards ASP: there is
a bijective correspondence of models and the models coincide up toHbv(P). Recall
that in ASP the models inSemC(P) correspond to the solutions of the problem being
solved, and such a tight relationship is necessary in order to preserve thenumberof
solutions. This is an important aspect often neglected in literature. The number of
solutions would not be preserved if the notion of faithfulness were weakened by re-
placing≡v in Definition 15 with any of the weaker equivalence relations≡vs, ≡vb,
and≡vc considered in Proposition 13. On the other hand, if a particular translation
functionTr is proved faithful in the sense of Definition 15, then alsoP ≡vs Tr(P),
P ≡vb Tr(P), andP ≡vc Tr(P) hold for all P ∈ C, i.e. Tr preserves skepti-
cal and brave conclusions as well as consistency within the language determined by
Hbv(P) = Hbv(Tr(P)). Nevertheless, any intranslatability results may be affected
by such weakenings. E.g., if a faithful translation is proved non-existent using≡v, the
proof may not be valid if weaker notions of faithfulness are taken into consideration.

The third requirement for translation functions, namelymodularity, is based on the
idea of combiningdisjoint program modules together. The module conditions below
make precise which combinations of programs are considered appropriate.

DEFINITION 16. — Logic programsP ∈ C andQ ∈ C satisfymodule conditionsif
and only if

M1. P ∩Q = ∅,
M2. Hba(P) ∩Hba(Q) = ∅,7
M3. Hbh(P) ∩Hb(Q) = ∅, and

M4. Hb(P) ∩Hbh(Q) = ∅.
DEFINITION 17. — A translation functionTr : C → C′ is modular if and only if for
all programsP ∈ C andQ ∈ C satisfying module conditions M1–M4,

Tr(P ∪Q) = Tr(P) ∪ Tr(Q) (7)

and the translationsTr(P) andTr(Q) satisfy module conditions M1–M4.

The aim of the modularity condition is to enforce the locality ofTr with respect to
subprogramsP andQ which can be viewed as program modules that interact through

7. To see why M2 is analogous to M1, note that for a normal programP , an atoma ∈ Hba(P)
is parallel to auseless(tautological) rulea ← a ∈ P such thata does not occur elsewhere in
the program. Such rules do not affect stable models but may create new classical models.

Some (in)translatability results 47

visible atoms only. By (7), the modulesP andQ have to be separately translatable and
the translationTr(P ∪Q) is obtained as the union of the translations of the modules.
In addition, a modular translation function is supposed to preserve module conditions
M1–M4, i.e. the respective translationsTr(P) and Tr(Q) are supposed to remain
disjoint and share only visible atoms. The modularity condition becomes void when
programs share rules or hidden atoms.

PROPOSITION18 ([JAN 03B]). — If Tr1 : C1 → C2 andTr2 : C2 → C3 are two
polynomial, faithful, or modular translation functions, then their compositionTr1 ◦
Tr2 : C1 → C3 is also polynomial, faithful, or modular, respectively.

3.4. Classification method

The criteria collected in Definitions 14–17 lead to a method for comparing classes
of logic programs on the basis of their expressive power. We say that a translation
function Tr : C → C′ is PFM if and only if it is polynomial, faithful, and modular
simultaneously. If there exists such a translation functionTr, we writeC ≤PFM C′ to
denote that the classC′ is at least as expressive asthe classC. This is simply because
the essentials of any programP ∈ C can be captured using the translationTr(P) ∈ C′.
In certain cases, we are able to construct a counter-example which shows that a PFM
translation function is impossible, denoted byC 6≤PFM C′. The base relations≤PFM

and6≤PFM among classes of logic programs form the cornerstones of the classification
method – giving rise to relations given in Table 1.

Table 1. Relations used by the classification method

Relation Definition Explanation

C <PFM C′ C ≤PFM C′ andC′ 6≤PFM C C is strictly less expressivethanC′

C =PFM C′ C ≤PFM C′ andC′ ≤PFM C C andC′ areequally expressive

C 6=PFM C′ C 6≤PFM C′ andC′ 6≤PFM C C andC′ areincomparable

It is sometimes convenient to introduce variants of the relations≤PFM and 6≤PFM

which are obtained by dropping some of the three requirements and the corresponding
letter(s) in the notation. For instance, if we establishC 6≤FM C′ for certain classesC
andC′ of logic programs, thenC 6≤PFM C′ follows immediately. Also,non-modular
translation functions will be addressed in this article and the resulting relationships
involve≤PF rather than≤PFM. In certain cases, it is easy to establish relationships
regarding≤PFM. By the following, we address a frequently appearing case where the
syntax is generalized while the semantics is kept compatible with the original one.

PROPOSITION19 ([JAN 03B]). — If C andC′ are two classes of logic programs
such thatC ⊆ C′ andSemC(P) = SemC′(P) for all P ∈ C, thenC ≤PFM C′.

48 JANCL – 16/2006. Implementation of Logics

In many cases, we manage to construct faithful translation functions that only add
new hidden atoms to programs being translated. The following proposition provides
us with a sufficient set of conditions using which faithfulness can be proved in a sys-
tematic fashion. The proof [JAN 03b] employs the second condition to establish that
Ext is indeed an injective function fromSemC(P) toSemC′(Tr(P)) whereas the third
condition ensures thatExt is a surjection and thus also a bijection.

PROPOSITION 20. — A translation functionTr : C → C′ is faithful if for every
programP ∈ C,

1) Hb(P) ⊆ Hb(Tr(P)) andHbv(Tr(P)) = Hbv(P);
2) there is an extension operatorExt : SemC(P) → SemC′(Tr(P)) such that

∀M ∈ SemC(P) : M = Ext(M) ∩Hb(P); and

3) if N ∈ SemC′(Tr(P)), thenM = N ∩ Hb(P) ∈ SemC(P) such thatN =
Ext(M).

4. Expressive power analysis

In this section, we compare the expressive powers of the classes of logic programs
introduced in Section 2.1 using the classification method presented in Section 3.4.
Due to the nature of the syntactic constraints, the key problem is to see whether there
are ways to reduce the number of positive body literals in the bodies of rules. The
results of this section will indicate that this is possible to some extent, but not in
general, i.e. there is no faithful and modular way of removingall positive body literals
from rules. As a preparation for the expressive power analysis, we distinguish certain
properties program modules and positive programs in Section 4.1. Then we analyze
the expressiveness of the class of normal programsP and its subclasses (A, U , and
B) in Section 4.2. The stable model semantics in its full generality makes the analysis
rather intricate and involved. The analysis of positive programs is much easier and
we basically skip it by concluding analogous relationships for the classes of positive
programs. Finally, we take classical propositional logic into consideration in Section
4.3 and relate sets of clauses under classical models with the other classes.

4.1. Some properties of program modules and positive programs

We prepare the forthcoming expressive power analysis by presenting two useful
properties of program modules under the least/stable model semantics. The first prop-
erty is related with a positive programP ∪Q consisting of two subprogramsP andQ
so that the module conditions M1–M4 from Definition 16 are satisfied. Here the aim is
to provide sufficient conditions for removing either one of the modules by evaluating
its effect on the joint least modelLM(P ∪Q) and by replacing it with a compensating
atomic program. Formally, we propose a reduction that yields a set of atomic rules.

Some (in)translatability results 49

DEFINITION 21. — Given a positive normal programP ∈ P+ and an interpre-
tation I, the visible net reductionof P is P v

I = {a← | a ∈ Hbv(P) ∩ I} so that
Hbv(P v

I) = Hb(P v
I) = Hbv(P) which makes all atoms ofP v

I visible.

The reduced programP v
I overestimatesP in a sense, sincea ← may be included

in P v
I even if there is no ruler ∈ P such thatH(r) = a. However, the reductP v

I can
be formed externally without knowing exactly which rules constitute the programP
being reduced. In addition, we assumed that the interpretationI in Definition 21 may
contain atoms outsideHb(P). This setting is easily realized whenP is placed as a
program module in the context of another programQ. If I is a model forP ∪Q, then
the set of atoms encoded as atomic rules inP v

I can be understood as the maximum
contribution of the rules ofP for the atoms that are true inI. In the sequel, we will
apply the visible net reduction w.r.t. least models in the following way.

LEMMA 22 ([JAN 03B]). — Let P andQ be two positive programs satisfying the
module conditions M1–M4 andM = LM(P∪Q) ⊆ Hb(P)∪Hb(Q). ThenLM(P v

M∪
Q) = M ∩ (Hbv(P) ∪Hb(Q)) holds for the visible net reductP v

M .

The second property allows us to combine stable models of program modules un-
der certain circumstances to form a stable model for a larger program.

LEMMA 23 ([JAN 03B]). — Let P andQ be two normal programs satisfying the
module conditions. IfM ∈ SM(P), N ∈ SM(Q), andM ∩ Hbv(P) ∩ Hbv(Q) =
N ∩Hbv(P)∩Hbv(Q), thenM ∪N ∈ SM(P ∪Q) and(P ∪Q)M∪N = PM ∪QN .

We need a subsidiary result aboutunary programsP : if an atoma is included
in LM(P), thenP contains at least one atomic rule which causes the atoma to be
inferable by the strictly unary rules ofP , i.e. to be included inLM(P). Note that
LM(P) = ∅ for any strictly unary programP .

LEMMA 24. — LetP = P1 ∪P0 be a unary positive program whereP1 contains the
strictly unary rules ofP andP0 contains the atomic rules ofP . If a ∈ LM(P), then
P0 contains an atomic ruleb← such thata ∈ LM(P1 ∪ {b←}).
PROOF. — We use complete induction on the level numberlev(a) > 0 to prove the
claim for any atoma ∈ LM(P1 ∪ P0) = LM(P).

For the base case, assume thatlev(a) = 1 which implies thata ∈ TP1∪P0 ↑ 1 =
TP1∪P0(∅). Thusa ← must appear inP0. It is also clear thata ∈ TP1∪{a←} ↑ 1 =
TP1∪{a←}(∅) so thata ∈ LM(P1 ∪ {a←}).

Then consider the case thatlev(a) = i > 1. Thena ∈ TP1∪P0 ↑ i and there is a
unary rulea ← b ∈ P1 such thatb ∈ TP1∪P0 ↑ i− 1. Sinceb ∈ LM(P1 ∪ P0) and
0 < lev(b) < lev(a) = i, it follows by the inductive hypothesis that there is an atomic
rule c← in P0 such thatb ∈ LM(P1 ∪ {c←}). This impliesa ∈ LM(P1 ∪ {c←}),
because the rulea← b belongs toP1. ■

LEMMA 25. — For positive atomic programsP , LM(P) = {H(r) | r ∈ P} =
H(P).

PROOF. — Obviously, we haveLM(P) = lfp(TP) = TP (∅) = {H(r) | r ∈ P}. ■

50 JANCL – 16/2006. Implementation of Logics

4.2. Expressiveness analysis of normal programs

In Section 2.1, we identify three subclasses ofP which are obtained by restrict-
ing the syntax of the rules whereas the semantics of logic programs in these classes
remains unchanged. Thus we obtain the relationshipsA ≤PFM U ≤PFM B ≤PFM P
directly by Proposition 19, but it remains open whether these relationships are strict or
not. We begin with a study of the relationshipB ≤PFM P. In fact, anynon-binaryrule
a ← b1, . . . , bn,∼c1, . . . ,∼cm wheren > 2 can be rewritten to reduce the number
of positive body literals that appear in the rule. One technique is to introducen − 1
new atomsar

1, . . . , a
r
n−1 and a set of binary rulesTrBIN(r):

a← b1, a
r
1,∼c1, . . . ,∼cm;

ar
1 ← b2, a

r
2; . . . ; ar

n−2 ← bn−1, a
r
n−1;

ar
n−1 ← bn.

(8)

It may be tempting to copy the negative body literals∼c1, . . . ,∼cm to every rule
in (8), but that would lead to a quadratic translation and we prefer a linear one for the
sake of efficiency. The new atomsar

1, . . . , a
r
n−1 carry the identity orr because they

are supposed to belocal8 to r and hidden inTrBIN(r). This arrangement ensures that
the module conditions M3 and M4, i.e.Hbh(TrBIN(r1)) ∩ Hb(TrBIN(r2)) = ∅ and
Hb(TrBIN(r1)) ∩ Hbh(TrBIN(r2)) = ∅, hold for any two non-binary rulesr1 andr2

sharing no hidden atoms. The translationTrBIN extends for programs as follows.

DEFINITION 26. — For everyP ∈ P, defineTrBIN(P) =

{r | r ∈ P and|B+(r)| ≤ 2} ∪
⋃
{TrBIN(r) | r ∈ P and|B+(r)| > 2}. (9)

Moreover, letHbv(TrBIN(P)) = Hbv(P) andHba(TrBIN(P)) = Hba(P).

To ease correctness considerations, we define for each non-binary ruler ∈ P ,
the translationTrBIN(r) in (8), and an interpretationI ⊆ Hb(P), the set ofim-
plied body atomsIBA(r, I) which containsar

i from (8) whenever0 < i < n and
bi+1 ∈ I, . . . , bn ∈ I. For binary rulesr ∈ P , IBA(r, I) = ∅. Then we may define
IBA(P, I) =

⋃{IBA(r, I) | r ∈ P} for a normal programP and an interpretation
I ⊆ Hb(P). Note that the Herbrand baseHb(TrBIN(P)) of the whole translation is
obtained asHb(P) ∪ IBA(P, Hb(P)).

LEMMA 27 ([JAN 03B]). — Let P be a normal program andTrBIN(P) its trans-
lation into a binary normal program.

1) If M1 ⊆ M2 ⊆ Hb(P) and M1 |= PM2 , thenN1 |= TrBIN(P)N2 where
N1 = M1 ∪ IBA(P, M1) andN2 = M2 ∪ IBA(P, M2).

2) If N1 ⊆ N2 ⊆ Hb(TrBIN(P)) andN1 |= TrBIN(P)N2 , thenM1 ⊆ M2 and
M1 |= PM2 hold forM1 = N1 ∩Hb(P) andM2 = N2 ∩Hb(P).

8. In practice, such atoms can be created using a numbering scheme that also takes the identity
of r into account to avoid a clash with numbers introduced for other rules.

Some (in)translatability results 51

PROPOSITION28 ([JAN 03B]). — Let P be a normal logic program. IfM is a
stable model ofP , thenN = M ∪ IBA(P, M) is a stable model ofTrBIN(P) such
thatM = N ∩Hb(P).

PROPOSITION 29 ([JAN 03B]). — Let P be a normal logic program. IfN is a
stable model ofTrBIN(P), thenM = N ∩ Hb(P) is a stable model ofP such that
N = M ∪ IBA(P, M).

THEOREM 30. — P ≤PFM B.

PROOF. — Let us begin with the faithfulness ofTrBIN. It is clear by Definition
26 thatHb(P) ⊆ Hb(TrBIN(P)) andHbv(TrBIN(P)) = Hbv(P). By Proposition
28 there is an extension functionExtBIN : SM(P) → SM(TrBIN(P)) that maps
M ∈ SM(P) into N = ExtBIN(M) = M ∪ IBA(P, M) included inSM(TrBIN(P))
such thatM = N ∩ Hb(P). In addition to this, we know by Proposition 29 that if
N ∈ SM(TrBIN(P)), thenM = N ∩Hb(P) ∈ SM(P) andN = ExtBIN(M). Thus
TrBIN is faithful by Proposition 20.

To establish modularity ofTrBIN, let P andQ be two normal programs such that
the module conditions M1–M4 from Definition 16 are satisfied. It is obvious by Defi-
nition 26 thatTrBIN(P ∪Q) = TrBIN(P)∪TrBIN(Q). Let us then establish M1–M4.

(M1) Suppose thatTrBIN(P) andTrBIN(Q) share a ruler. Two cases arise.

1) Suppose thatr ∈ P . Then|B+(r)| ≤ 2 holds by the definition ofTrBIN(P).
Moreover, it follows thatr 6∈ Q, asP ∩ Q = ∅ by the module conditions. It follows
thatr 6∈ TrBIN(Q), a contradiction.

2) Suppose thatr ∈ TrBIN(r′) for some non-binary ruler′ ∈ P . It follows by the
module conditions thatr′ 6∈ Q. This means that no rule fromTrBIN(r′) is included
in TrBIN(Q), since these rules are uniquely determined by new atomsar′

1 , . . . , ar′
n−1

which depend onr′, a contradiction.

It follows thatTrBIN(P) ∩ TrBIN(Q) = ∅.
(M2) BecauseP andQ satisfy M2, we know thatHba(P) ∩ Hba(Q) = ∅. By

Definition 26, these sets are preserved byTrBIN, i.e.Hba(TrBIN(P)) = Hba(P) and
Hba(TrBIN(Q)) = Hba(Q). ThusHba(TrBIN(P)) ∩Hba(TrBIN(Q)) = ∅.

(M3) Let us then assume thatHbh(TrBIN(P)) andHb(TrBIN(Q)) share some
atoma. Again, two cases arise.

1) Assume thata ∈ Hbh(P). SinceP andQ satisfy module conditions, we know
that a 6∈ Hb(Q). Sincea ∈ Hb(TrBIN(Q)), the atoma must be one of the new
atomsar

1, . . . , a
r
n−1 associated with a non-binary ruler ∈ Q with |B+(r)| = n. A

contradiction by Definition 26, asa ∈ Hbh(P) andP is also subject to translation as
a module ofP ∪Q.

2) Suppose thata ∈ Hbh(TrBIN(P)) − Hbh(P). Thena must be one of the new
atomsar

1, . . . , a
r
n−1 associated with a non-binary ruler ∈ P with |B+(r)| = n. If

a ∈ Hb(Q), thena is not new, a contradiction. Ifa ∈ Hb(TrBIN(Q))− Hb(Q), then

52 JANCL – 16/2006. Implementation of Logics

a must be one of the new atomsar′
i associated with a non-binary ruler′ ∈ Q with

|B+(r′)| > 2. Such atoms are different by Definition 26, a contradiction.

ThusHbh(TrBIN(P)) ∩Hb(TrBIN(Q)) = ∅.
(M4) The last module condition follows by symmetry w.r.t the preceding one.

By Definition 26 and the modularity ofTrBIN, the translationTrBIN(P) of a nor-
mal programP ∈ P can be computed on a rule-by-rule basis. Moreover, the trans-
lation can be done in time linear in||P ||, because (i) binary rules can be passed on
unmodified and (ii) any non-binary rule (1) consisting of2n + 3m + 2 symbols is
replaced byn rules (8) consisting of(6 + 3m) + (n − 2) × 6 + 4 = 6n + 3m − 2
symbols, (iii) the atoms inHba(P) remain intact. ■

COROLLARY 31. — B =PFM P.

The mainintranslatabilityresult of this article follows: it is established that binary
rules are not expressible in terms of unary rules even if we allow arbitrary number of
negative literals in the bodies of rules or use an arbitrary number of unary rules.

THEOREM 32. — B 6≤FM U .

PROOF. — Let us assume that there is a faithful and modular translation function
TrUN from binary normal logic programs to unary ones. We intend to applyTrUN

to a strictly binary normal logic programB = {a← b, c; b← c, a; c← a, b} in
conjunction with atomic programsA1 = {a←}, A2 = {b←}, andA3 = {c←}.
For these programs,Hbv(B) = Hb(B) = {a, b, c}, Hbv(A1) = Hb(A1) = {a},
Hbv(A2) = Hb(A2) = {b}, andHbv(A3) = Hb(A3) = {c}. As there are no invis-
ible atoms and the rules of the four programs are all distinct, the module conditions
from Definition 16 are trivially satisfied.

Note that the rules ofB essentially express that if any two of the atomsa, b, andc
are inferable, then the third one should be, too. Thus each of the programsB∪A1∪A2,
B∪A2∪A3, andB∪A3∪A1 has a unique stable modelM = {a, b, c}. SinceTrUN

is faithful and modular, there are respective unique stable models




N1 = LM(TrUN(B)N1 ∪ TrUN(A1)N1 ∪ TrUN(A2)N1)
N2 = LM(TrUN(B)N2 ∪ TrUN(A2)N2 ∪ TrUN(A3)N2)
N3 = LM(TrUN(B)N3 ∪ TrUN(A3)N3 ∪ TrUN(A1)N3)

(10)

of the translationsTrUN(B∪A1∪A2), TrUN(B∪A2∪A3), andTrUN(B∪A3∪A1).
These three stable models have to be assumed different, as the modules constituting
the respective translations may involve invisible atoms and each of them is based on a
different combination of modules.

Let us then turn our attention to the first equation in (10) and the “missing mod-
ule” TrUN(A3). Note thatA3 has a unique stable modelM3 = {c}. Let N ′3 =
LM(TrUN(A3)N ′

3) be the corresponding unique stable model ofTrUN(A3), as im-
plied by the faithfulness ofTrUN. Note thatTrUN(B ∪ A1 ∪ A2) andTrUN(A3)
satisfy the module conditions, asB ∪ A1 ∪ A2 andA3 do andTrUN is modular. In

Some (in)translatability results 53

addition,Hbv(TrUN(B ∪ A1 ∪ A2)) ∩ Hbv(TrUN(A3)) = {c} and bothN1 andN ′3
containc so that we may apply Lemma 23 to conclude thatN1 ∪N ′3 is a stable model
of TrUN(B ∪ A1 ∪ A2) ∪ TrUN(A3) which equals toTrUN(B ∪ A1 ∪ A2 ∪ A3) by
the modularity ofTrUN. Moreover, the reduct of the translation w.r.t.N1 ∪ N ′3 is
TrUN(B ∪A1 ∪A2)N1 ∪ TrUN(A3)N ′

3 .

We letN ′1 stand for the unique stable model ofTrUN(A1) which is guaranteed to
exist by symmetry and which corresponds to the unique stable modelM1 = {a} of
A1. Similarly, letN ′2 be the unique stable model corresponding toM2 = {b}. Then
we may conclude that alsoN2∪N ′1 andN3∪N ′2 are stable models ofTrUN(B∪A1∪
A2∪A3) by using the last two equations of (10) concerningN2 andN3 in a symmetric
fashion. On the other hand,M is the unique stable model ofB ∪A1 ∪A2 ∪ A3, too.
But thenTrUN(B ∪A1 ∪A2 ∪A3) must have a unique stable model — implying that
N1∪N ′3 = N2∪N ′1 = N3∪N ′2. Thus we may distinguishN = N1∩Hb(TrUN(B)) =
N2 ∩Hb(TrUN(B)) = N3 ∩Hb(TrUN(B)), and rewrite the preceding equalities as





N ∪N ′1 ∪N ′2 = LM(TrUN(B)N ∪ TrUN(A1)N ′
1 ∪ TrUN(A2)N ′

2)
N ∪N ′2 ∪N ′3 = LM(TrUN(B)N ∪ TrUN(A2)N ′

2 ∪ TrUN(A3)N ′
3)

N ∪N ′3 ∪N ′1 = LM(TrUN(B)N ∪ TrUN(A3)N ′
3 ∪ TrUN(A1)N ′

1)
(11)

which still correspond to the unique stable models ofTrUN(B∪A1∪A2), TrUN(B∪
A2 ∪ A3), andTrUN(B ∪ A3 ∪ A1), respectively. We proceed by reducing the first
equation in (11) using Lemma 22. Note thatTrUN(A1)∪TrUN(A2) = TrUN(A1∪A2)
by the modularity ofTrUN andHbv(TrUN(A1 ∪ A2)) = {a, b} ⊆ Hb(TrUN(B)).
Thus we obtainN = LM(TrUN(B)N ∪ {a←; b←}) by Lemma 22. Recall that
N containsc in addition toa andb. Let TrUN(B)N

0 andTrUN(B)N
1 denote the dis-

joint sets of atomic and strictly unary rules ofTrUN(B)N , respectively. It follows by
Lemma 24 that there is an atomic ruled ← in TrUN(B)N

0 ∪ {a←; b←} such that
c ∈ LM(TrUN(B)N

1 ∪ {d←}). As LM(·) is a monotonic operator, we obtain two
cases:c ∈ LM(TrUN(B)N ∪ {a←}) or c ∈ LM(TrUN(B)N ∪ {b←}).

In the first case, we obtainc ∈ LM(TrUN(B)N ∪ TrUN(A1)N ′
1) by the mono-

tonicity of the operatorLM(·) again. Recall thatHbv(TrUN(A3)) = Hbv(A3) = {c}
by the definition ofTrUN. As a result of applying Lemma 22 to the third equation
in (11), TrUN(A3)N ′

3 is reduced to{c←}, so thatN ∪ N ′1 = LM(TrUN(B)N ∪
TrUN(A1)N ′

1 ∪{c←}). Sincec belongs toLM(TrUN(B)N ∪TrUN(A1)N ′
1) this sim-

plifies toN ∪N ′1 = LM(TrUN(B)N ∪TrUN(A1)N ′
1). BecauseN ⊆ Hb(TrUN(B)),

N ′1 ⊆ Hb(TrUN(A1)), andN andN ′1 coincide on the atoms inHbv(TrUN(B)) ∩
Hbv(TrUN(A1)) = {a}, we getTrUN(B)N = TrUN(B)N∪N ′

1 andTrUN(A1)N ′
1 =

TrUN(A1)N∪N ′
1 . Then the modularity ofTrUN impliesN ∪ N ′1 = LM(TrUN(B ∪

A1)N∪N ′
1). ThusTrUN(B∪A1) possesses a stable modelN∪N ′1 containing{a, b, c}.

A contradiction, sinceB ∪A1 has a unique stable model{a}.
In the second case, we can analogously construct a stable modelN ∪ N ′2 for

TrUN(B ∪ A2) using the second equation in (11). Again, this is a contradiction,
as{a, b, c} ⊆ N ∪N ′2 and{b} is the unique stable model ofB ∪A2. ■

COROLLARY 33. — B 6≤PFM U , U <PFM B, andU <PFM P.

54 JANCL – 16/2006. Implementation of Logics

It remains to explore the strictness of the relationshipA ≤PFM U . At this point, it
is worth demonstrating a particular translation technique [SCH 95, Proof of Theorem
3.10], which suitably exploits new atoms and negative literals and thus serves as a
potential candidate for a faithful and modular translation function fromU toA.

EXAMPLE 34. — Consider programsP1 = {a← b} and P2 = {b← c} and a
translation ofP1 ∪ P2 into an atomic normal logic programTrSCH(P1 ∪ P2) =
TrSCH(P1) ∪ TrSCH(P2) = {a← ∼b; b← ∼b} ∪ {b← ∼c; c← ∼c} where the
intuitive reading of the new atomsb andc is thatb andc are false, respectively. The
translation tries to capture the rules ofP using a kind of double negation. In particular,
the rulesb← ∼b andc← ∼c can be understood to encode the standard closed world
assumption [REI 78]: according to these rulesb andc are false by default.

Let us then analyze the behavior ofP1 ∪ P2 andTrSCH(P1 ∪ P2) when they are
placed in the context ofA0 = ∅, A1 = {a←}, A2 = {b←}, andA3 = {c←}.
The programsP1 ∪ P2 ∪ Ai wherei ∈ {0, 1, 2, 3} have unique stable modelsM0 =
∅, M1 = {a}, M2 = {a, b}, andM3 = {a, b, c}, respectively. Accordingly, the
translationsTrSCH(P1 ∪ P2 ∪ Ai) wherei ∈ {0, 1, 2, 4} have unique stable models
N0 = {b, c}, N1 = {a, b, c}, N2 = {a, b, c}, andN3 = {a, b, c}. 2

The translationTrSCH(P1 ∪ P2) seems to capture the essentials ofP1 ∪ P2 in a
modular and faithful manner. However, severe problems arise with programs con-
taining an inferential loop that lets one to infera from a, for instance. The simplest
possible example of this kind isP = {a← a} having a minimal modelLM(P) = ∅.
But the translationTrSCH(P) = {a← ∼a; a← ∼a} has two stable models{a} and
{a}. The former stable model is what we would expect on the basis of Example 34,
but the latter is spurious — dashing our hopes forTrSCH being faithful and modular
in general. Next we prove that the problems withTrSCH cannot be settled.

THEOREM 35. — U 6≤FM A.

PROOF. — Suppose there is a faithful and modular translation functionTrAT from
U to A. Then we analyze two unary normal programsU1 = {a← b} andU2 =
{b← a}, their combinations with atomic normal programsA1 = {b←} andA2 =
{a←}, and their translations underTrAT. To check the module conditions, we note
thatHbv(U1) = Hb(U1) = {a, b} = Hb(U2) = Hbv(U1), Hbv(A1) = Hb(A1) =
{b}, andHbv(A2) = Hb(A2) = {a}. Because there are no hidden atoms and the
rules of the four programs are distinct, the module conditions are trivially satisfied by
U1 andA1, by U2 andA2, by U1 ∪A1 andU2 ∪A2, and byU1 ∪ U2 andA1 ∪A2.

The programU1 ∪ A1 has a unique stable modelM1 = LM(U1 ∪ A1) = {a, b}.
The translationTrAT(U1∪A1) = TrAT(U1)∪TrAT(A1) and the modularity ofTrAT

impliesHbv(TrAT(U1∪A1)) = Hbv(U1∪A1) = {a, b}. SinceTrAT is also faithful,
the translationTrAT(U1 ∪ A1) has a unique stable modelN1 = LM(TrAT(U1 ∪
A1)N1) = LM(TrAT(U1)N1 ∪TrAT(A1)N1) such that{a, b} ⊆ N1. Then it holds by
symmetry thatM2 = LM(U2∪A2) = {a, b} is the unique stable model ofU2∪A2 and
N2 = LM(TrAT(U2∪A2)N2) is the unique stable model of the translationTrAT(U2∪

Some (in)translatability results 55

A2) = TrAT(U2) ∪TrAT(A2), for whichHbv(TrAT(U2 ∪A2)) = Hbv(U2 ∪A2) =
{a, b} holds, so that{a, b} ⊆ N2.

Recall thatTrAT(U1 ∪ A1) = TrAT(U1) ∪ TrAT(A1) is an atomic program and
a ∈ LM(TrAT(U1)N1∪TrAT(A1)N1). Thusa← belongs to the reduct by Lemma 25.
Sincea 6∈ Hbv(TrAT(A1)) anda ∈ Hbv(TrAT(U1)) by the faithfulness ofTrAT, and
the translationsTrAT(U1) andTrAT(A1) satisfy module conditions by the modularity
of TrAT, we havea 6∈ Hb(TrAT(A1)). Thusa ← cannot belong toTrAT(A1)N1 . So
it must belong toTrAT(U1)N1 andb← belongs toTrAT(U2)N2 by symmetry.

BecauseU1 ∪ A1 andU2 ∪ A2 satisfy the module conditions, andN1 andN2

coincide up to the atoms inHbv(TrAT(U1∪A2))∩Hbv(TrAT(U2∪A2)) = {a, b}, we
know by Lemma 23 thatN1∪N2 is a stable model ofTrAT(U1∪A1)∪TrAT(U2∪A2)
which equals toTrAT(U1)∪TrAT(A1)∪TrAT(U2)∪TrAT(A2) = TrAT(U1∪U2)∪
TrAT(A1 ∪A2) by the modularity ofTrAT. Moreover, the reduct(TrAT(U1 ∪A1) ∪
TrAT(U2 ∪A2))N1∪N2 is the union ofTrAT(U1 ∪A1)N1 andTrAT(U2 ∪A2)N2 , i.e.
TrAT(U1)N1 ∪ TrAT(U2)N2 ∪ TrAT(A1)N1 ∪ TrAT(A2)N2 .

Since the visible partsHbv(TrAT(A1)) = {b} andHbv(TrAT(A2)) = {a} are
contained inHb(TrAT(U1 ∪ U2)), it follows by Lemma 22 that the projectionN =
(N1∪N2)∩Hb(TrAT(U1∪U2)) = LM(TrAT(U1)N1∪TrAT(U2)N2∪{a←; b←}).
Sincea ← belongs toTrAT(U1)N1 andb ← to TrAT(U2)N2 , we can establish that
N = LM(TrAT(U1)N1 ∪ TrAT(U2)N2). Moreover, the equalityTrAT(U1)N1 ∪
TrAT(U2)N2 = TrAT(U1 ∪ U2)N follows by the definition ofN and the fact thatN1

andN2 coincide on the atoms contained inHbv(TrAT(U1)) = Hbv(TrAT(U2)) =
{a, b}. ThusN = LM(TrAT(U1 ∪ U2)N) is a stable model ofTrAT(U1 ∪ U2).

SinceHbv(U1 ∪ U2) = Hb(U1 ∪ U2) = {a, b} andHbv(TrAT(U1 ∪ U2)) =
Hbv(U1 ∪ U2) by the faithfulness ofTrAT, andN ∩Hbv(TrAT(U1 ∪ U2)) = {a, b},
the faithfulness ofTrAT implies thatU1 ∪ U2 has a stable modelM = {a, b}. A
contradiction, as∅ is the unique stable model ofU1 ∪ U2. ■

COROLLARY 36. — U 6≤PFM A,A <PFM U ,A <PFM B, andA <PFM P.

Corollary 36 completes our view as regards the mutual relationships ofA, U , B,
andP. However, we may continue the analysis by comparing the respective classes of
positive programs with them. To this end, we recallC+ ≤PFM C holds by Proposition
19 for any of the classesC under consideration. Strictness follows quite easily.

THEOREM 37. — For anyC ∈ {A,U ,B,P}, C 6≤F C+.

PROOF. — Let us assume that there is a faithful translation functionTr from C to
C+. Consider a logic programP = {a← ∼a} which serves as a representative of the
classC. Let Q be the translationTr(P) in C+. Now P has no stable models, but the
translationQ has a unique stable modelLM(Q). A contradiction, asTr is faithful. ■

COROLLARY 38. — For anyC ∈ {A,U ,B,P}, C 6≤PFM C+ andC+ <PFM C.
Finally, let us conclude the mutual relationships of the positive classes. As before,

we obtainA+ ≤PFM U+ ≤PFM B+ ≤PFM P+ immediately by Proposition 19. On

56 JANCL – 16/2006. Implementation of Logics

the other hand, Theorems 30, 32 and 35 specialize to the case of positive programs
although slightly simpler counter-examples could be used as done in [JAN 03b].

THEOREM 39. — P+ ≤PFM B+, B+ 6≤FM U+, andU+ 6≤FM A+.

COROLLARY 40. — A+ <PFM U+, U+ <PFM B+, andB+ =PFM P+.

The relationships established so far give rise to theexpressive power hierarchy
(EPH) of logic programs which is illustrated in Figure 1. To conclude, the classes of
the hierarchy indicate that the number of positive body literals can be limited to two
without an effective loss of expressive power (recallTrBIN from Section 4.2). It is
easy to inspect that the proof of Theorem 37 remains valid even if we consider weaker
notions of faithfulness based on the equivalence relations≡vs,≡vb, and≡vc addressed
in Proposition 13. Thus the gap between a positive classC+ and the respective class
C remains intact for allC ∈ {A,U ,B,P}. Quite similarly, the relationships in the
lower end of the hierarchy are not affected under≡vs and≡vb since positive programs
have unique stable models and thus≡v, ≡vs, and≡vb coincide. For the same reason
≡vc is uninteresting and the respective notion of faithfulness would equate all positive
classes. Finally, we emphasize that the strict relationshipsA <PFM U andU <PFM B
may cease to hold under weaker notions of faithfulness but we leave the analysis
as future work. The counter-examples of Theorems 32 and 35 cover the notion of
Definition 15 which we consider as the most appropriate one for ASP.

A <PFM U <PFM B =PFM P

<
P
F
M

<
P
F
M

<
P
F
M

A+ <PFM U+ <PFM B+ =PFM P+

Figure 1. Expressive power hierarchy (EPH) based on polynomial, faithful and mod-
ular (PFM) translation functions

4.3. Comparison with propositional logic

Let us now concentrate on the case of propositional logic analyze its expressive
power within our framework. It is assumed that a propositional theoryS is given as a
set of clauses of the form (3).9 The fundamentalsatisfiability problem(SAT) is about
checking if a given set of clausesS has a model in the classical sense. However, in
this article, we are interested in all models ofS rather than checking the existence of

9. Any propositional theory can be transformed into clausal form and the transformation is
linear if new atoms can be introduced [TSE 83]. Without new atoms it takes a lot of space to
transform formulas like(a1 ∧ b1) ∨ · · · ∨ (an ∧ bn) into clausal form.

Some (in)translatability results 57

a model. The reason is that we assume in analogy to ASP that the models of a set of
clausesS correspond to the solutions of the problem formalized asS. It is possible
to capture the models of a set of clausesS with the stable models of a translation of
S into a normal program. In fact, we can do this using only atomic rules. The basic
idea is as follows. The rulesa ← ∼a anda ← ∼a are needed to select the truth
value of each atoma ∈ Hb(S). Herea 6∈ Hb(S) is a new atom meaning thata is
false (c.f. Example 34). Given these rules, we obtain all model candidates forS as
the stable models of the rules. Yet we have to ensure that every clause (3) is satisfied.
This is accomplished by introducing a new atomf 6∈ Hb(S) and an atomic rule

f ← ∼f,∼a1, . . . ,∼an,∼b1, . . . ,∼bm (12)

for each clause (3) inS. These kinds of rules exclude model candidates in which some
of the clauses is false. If the full syntax of normal programs is assumed, then it would
be more intuitive to use a rule of the formf ← b1, . . . , bm,∼f,∼a1, . . . ,∼an which
is not atomic, but “double negation” is needed in order to make the rule atomic. Yet
another technique is given in [NIE 99]: a new atomc is introduced for each clause
(3) which is translated intoc ← a1; . . . ; c ← an; c ← b1; . . . ; c ← bm. Then
(12) can be replaced byf ← ∼f,∼c. However, to meet the module conditions from
Definition 16, we have to localize the choice of truth values. For this reason we
translate a clausec of the form (3) into a set of rules

TrLP(c) = {fc ← ∼fc,∼a1, . . . ,∼an,∼bc
1, . . . ,∼bc

m} ∪
{ai ← ∼ac

i ; ac
i ← ∼ai | 0 < i ≤ n} ∪

{bi ← ∼bc
i ; bc

i ← ∼bi | 0 < i ≤ m}
(13)

wherefc, ac
1, . . . , a

c
n, andbc

1, . . . , b
c
m are new atoms that are unique toc. This implies

that the choice of the truth value of an atoma is shared by the rules in which the atom
appears. However, these choices are synchronized, asa is shared among the rules, and
this is howa is assigned a unique truth value.

DEFINITION 41. — A set of clausesS is translated into

TrLP(S) =
⋃{TrLP(c) | c ∈ S} ∪ {a← ∼a; a← ∼a | a ∈ Hba(S)}

with Hba(TrLP(S)) = ∅, Hbv(TrLP(S)) = Hbv(S), andHbh(TrLP(S)) = Hbh(S)
∪{fc | c ∈ S} ∪ {ac | c ∈ S anda appears inc} ∪ {a | a ∈ Hba(S)}.

A particular feature of the translationTrLP(S) is that all atoms ofHb(S) actually
appear in the rules ofTrLP(S) and thusHba(TrLP(S)) remains empty. The rules
associated with the atoms inHba(S) are necessary in order to capture the classical
models ofS properly, sinceHb(S) may contain atoms that do not appear in the clauses
of S; and according to Section 2.3 classical models ofS are subsets ofHb(S). Given
a set of clausesS, an interpretationM ⊆ Hb(S), and a clausec ∈ S, we define the set
of complementary atomsCA(c,M) which containsac whenevera appears inc and
a 6∈M . For the setS as whole, we let

CA(S, M) =
⋃
{CA(c,M) | c ∈ S} ∪ {a | a ∈ Hba(S)−M} (14)

58 JANCL – 16/2006. Implementation of Logics

which takes also the additional atoms fromHba(S) properly into account. We are
now ready to address the correctness of the translation functionTrLP.

PROPOSITION42 ([JAN 03B]). — Let S be a set of clauses. IfM ⊆ Hb(S) is a
classical model ofS, thenN = M ∪ CA(S, M) is a stable model ofTrLP(S) such
thatN ∩Hb(S) = M .

PROPOSITION43 ([JAN 03B]). — LetS be a set of clauses. IfN ⊆ Hb(TrLP(S))
is a stable model ofTrLP(S), thenM = N ∩Hb(S) |= S andN = M ∪CA(S, M).

THEOREM 44 ([JAN 03B]). — PT ≤PFM A.

On the other hand, it is impossible to translate an atomic normal programP into
a set of clauses in a faithful and modular way. This result has been established by
Niemelä [NIE 99, Proposition 4.3] for normal programs in general, but different no-
tions of faithfulness and modularity are employed in Niemelä’s proof.

THEOREM 45. — A 6≤FM PT .

PROOF. — Let us assume that there exists a faithful and modular translation function
Tr : A → PT . Then consider atomic normal logic programsP1 = {a← ∼a} and
P2 = {a←} with Hbv(P1) = Hb(P1) = Hbv(P2) = Hb(P2) = {a}. It is clear
thatP1 andP2 satisfy the module conditions from Definition 16. The programP1 has
no stable models whileP2 has a unique stable modelM = {a}. SinceTr is faithful,
the translationTr(P1) must be propositionally inconsistent. By the modularity of
Tr, the translationTr(P1 ∪ P2) = Tr(P1) ∪ Tr(P2) which is also propositionally
inconsistent, i.e. has no models. But this contradicts the faithfulness ofTr, sinceM
is also the unique stable model ofP1 ∪ P2. Hence there is no suchTr. ■

COROLLARY 46. — PT <PFM C holds for anyC ∈ {A,U ,B,P}.
THEOREM 47. — PT 6≤F C+ holds for anyC ∈ {A,U ,B,P}.
PROOF. — The set of clausesS = {{a,¬a}} has two classical modelsM1 = ∅ and
M2 = {a} which cannot be faithfully captured by a positive programP = Tr(S)
possessing a unique stable modelLM(P). ■

THEOREM 48. — C+ 6≤FM PT holds for all classesC+ ∈ {A+,U+,B+,P+}.
PROOF. — Suppose there is a faithful and modular translation functionTrCL from
C+ toPT . Consider programsP1 = {a←} andP2 = ∅ with Hbv(Pi) = Hb(Pi) =
{a} for i ∈ {1, 2}. ThenHba(P2) = {a} and module conditions are satisfied. Now
P1 andP2 have unique stable modelsLM(P1) = {a} andLM(P2) = ∅, respectively.
It follows by the faithfulness ofTrCL that the unique classical models ofTrCL(P1)
andTrCL(P2) areN1 andN2 such thatM1 = N1 ∩ {a} andM2 = N2 ∩ {a}. It
follows thatTrCL(P1) |= a andTrCL(P2) |= ¬a. On the other hand, we know by
the modularity ofTrCL thatTrCL(P1 ∪ P2) = TrCL(P1) ∪ TrCL(P2). It follows that
TrCL(P1 ∪ P2) |= a ∧ ¬a, i.e.TrCL(P1 ∪ P2) has no models. However, the program
P1 ∪ P2 has a unique stable modelLM(P1 ∪ P2) = {a}, a contradiction. ■

COROLLARY 49. — C+ 6=PFM PT holds for all classesC ∈ {A,U ,B,P}.

Some (in)translatability results 59

To conclude, we have located the exact position ofPT in EPH (recall Figure 1).

5. Yet another characterization of stability

In spite of the negative results presented in the previous section, our further objec-
tive is to pursue non-modular alternatives in Section 6. To enable a particular transla-
tion technique therein, we concentrate here on establishing a newcharacterizationof
stable models based on supported models possessing alevel numbering#. Roughly
speaking, the idea is to extend level numbers, first introduced for positive programs
and their least models in Section 2.2, to the case of normal programs.

As suggested by the definition of supported models, we define the set ofsupporting
rules SR(P, I) = {r ∈ P | I |= B(r)} ⊆ P for any normal programP and an
interpretationI ⊆ Hb(P). Thus each ruler ∈ SR(P, I) provides a support forH(r).

DEFINITION 50. — LetM be a supported model of a normal programP . A function
fromM ∪ SR(P,M) toN is a level numbering w.r.t.M iff for every atoma ∈M :

#a = min{#r | r ∈ SR(P, M) anda = H(r)} (15)

and for every ruler ∈ SR(P, M),

#r =
{

max{#b | b ∈ B+(r)}+ 1, if B+(r) 6= ∅.
1, otherwise.

(16)

It is important to realize that a level numbering need not exist for every supported
model. This is demonstrated by the following example.

EXAMPLE 51. — Consider a logic programP consisting of two rulesr1 = a ← b
andr2 = b ← a. There are two supported models ofP : M1 = ∅ andM2 = {a, b}.
The first model has a trivial level numbering with a domainM1 ∪ SR(P, M1) = ∅.
ForM2, the domainM2 ∪ SR(P,M2) = M2 ∪ P . The requirements in Definition 50
lead to four equations:#a = #r1, #r1 = #b + 1, #b = #r2, and#r2 = #a + 1.
From these, we obtain#a = #a + 2. So there is no level numbering w.r.t.M2. 2

PROPOSITION52. — LetM be a supported model of a normal programP . If there
is a level numbering# w.r.t. M , then# is unique.

PROOF. — Let #1 and#2 be two level numberings w.r.t.M . It can be shown by
induction on#1(x) > 0 that#1(x) = #2(x) for everyx ∈M ∪ SR(P,M). ■

An obvious question is how one can determine level numberings in practice. In
fact, the scheme introduced in Section 2.2 can be extended to cover rules as well.

DEFINITION 53. — Let P be a positive program andM = LM(P). Let us define
level numberslev(a) for atomsa ∈ M as in Section 2.2. Given any ruler ∈ P such
thatB+(r) = B(r) ⊆M , define the level number

lev(r) =
{

max{lev(b) | b ∈ B+(r)}+ 1, if B+(r) 6= ∅.
1, otherwise.

(17)

60 JANCL – 16/2006. Implementation of Logics

Assigning level numbers in this way is compatible with Definition 50.

LEMMA 54 ([JAN 03B]). — Let P be a positive program,M = LM(P), and
a ∈M .

1) For everyr ∈ SR(P, M) such thatH(r) = a, lev(r) ≥ lev(a).
2) There isr ∈ SR(P, M) such thatH(r) = a andlev(r) = lev(a).

Then the characterization of stable models is then established as follows.

THEOREM 55. — LetP be a normal program.

1) If M is a stable model ofP , thenM is a supported model ofP and there exists
a unique level numbering# : M ∪ SR(P, M)→ N w.r.t. M defined as follows.

(i) For a ∈M , let #a = lev(a).
(ii) For r ∈ SR(P, M), let #r = lev(r+).

2) If M is a supported model ofP and there is a level numbering# w.r.t. M , then
is unique andM is a stable model ofP .

PROOF. — (1) LetM be a stable model ofP . ThenM is also a supported model of
P [MAR 92]. Recall that eachr ∈ SR(P,M) satisfiesM |= B(r) which implies that
r+ ∈ PM , B+(r) ⊆ M , andH(r) ∈ M , asM is also a classical model ofP . Let us
now establish the requirements of Definition 50.

Consider anya ∈ M . It should be established that#a is the minimum among
{#r | r ∈ SR(P, M) andH(r) = a}. It is clear that this set is non-empty, asM is
a supported model ofP . Then consider anyr ∈ SR(P, M) such thatH(r) = a.
Now #r is defined aslev(r+) given in (17). Sincer ∈ SR(P, M), we obtainr+ ∈
SR(PM ,M). Thus#r = lev(r+) ≥ lev(a) by the first claim of Lemma 54. By the
second claim, there is a ruler′ ∈ SR(PM ,M) such thatH(r′) = a and lev(r′) =
lev(a). Then there is a ruler′′ ∈ SR(P, M) such thatr′ = (r′′)+, H(r′′) = a and
#r′′ = lev(r′′) = lev(a). Thus#a = lev(a) is the minimum in question. Then
consider anyr ∈ SR(P, M). There are two possibilities. IfB+(r) = ∅, we obtain
B+(r+) = ∅ so that#r = lev(r+) = 1 by (17). This is in perfect harmony with
Definition 50. On the other hand, ifB+(r) 6= ∅, then#r = lev(r+) is defined as
max{lev(b) | b ∈ B+(r+)}+ 1. SinceB+(r+) = B+(r) and#b = lev(b) for each
b ∈ B+(r) by definition, we know that#r = lev(r+) coincides withmax{#b |
b ∈ B+(r)} + 1 as insisted by Definition 50. Thus# is a level numbering w.r.t.M
and the uniqueness of# follows by Proposition 52.

(2) Let M be a supported model ofP and# a level numbering w.r.t.M . The
uniqueness of# follows by Proposition 52. It follows thatM |= P andM |= PM .
Thus it is immediately clear thatLM(PM) is contained inM . It remains to prove
that M ⊆ LM(PM). We use complete induction on#a > 1 to show thata ∈ M
impliesa ∈ LM(PM). Base case:#a = 1. Suppose thata ∈ M . Since#a = 1,
the only possibility is that there isr ∈ SR(P, M) with H(r) = a andB+(r) = ∅.
It follows that a ← belongs toPM so thata ∈ LM(PM). Induction step: #a =
n > 1. Suppose thata ∈ M . Since#a > 1, there is a ruler ∈ SR(P,M) such

Some (in)translatability results 61

that H(r) = a, B+(r) 6= ∅, and#a = #r. Then consider anyb ∈ B+(r). Since
#r = max{#b′ | b′ ∈ B+(r)} + 1, we obtain#b < n. Moreoverr ∈ SR(P, M)
implies thatb ∈ M . Thusb ∈ LM(PM) by the inductive hypothesis and we have
established thatB+(r) ⊆ LM(PM). On the other hand,r ∈ SR(P, M) implies that
r+ = a← B+(r) ∈ PM . It follows thata ∈ LM(PM). ■

6. Non-modular translation functions

In Section 4, we show that faithful and modular translations cannot be established
between certain classes of logic programs. However, this does not exclude the pos-
sibility that a polynomial and faithful, butnon-modulartranslation function could be
devised for the classes involved. Such alternatives are taken into consideration now.
We proceed as follows. Section 6.1 covers the case of positive programs for which
non-modular alternatives are easy to obtain. A faithful and non-modular translation
function from normal programs to atomic normal programs is developed in Section
6.2. This is a far more complicated objective as the number of stable models may
vary. Finally, we conduct a comparison with propositional theories in Section 6.3.

6.1. Positive programs revisited

Theorem 39 states thatB+ 6≤FM U+ andU+ 6≤FM A+. In spite of these relation-
ships, it is straightforward to obtain a faithful and non-modular translation in case of
positive programs. Basically, this boils down to the fact that the least modelLM(P)
can be be computed in polynomial time for anyP ∈ P+.

DEFINITION 56. — For any P ∈ P+, defineTrLM(P) = {a← | a ∈ LM(P)}.
Moreover, letHbv(TrLM(P)) = Hbv(P) and Hbh(TrLM(P)) = Hbh(P) so that
Hba(TrLM(P)) = Hb(P)− LM(P).

THEOREM 57. — P+ ≤PF A+.

PROOF. — It is clear thatTrLM is faithful, sinceHbv(TrLM(P)) = Hbv(P) by
definition and Lemma 25 implies that bothP and TrLM(P) have a unique stable
modelLM(P) = LM(TrAT(P)). Moreover,TrLM is polynomial, asLM(P) can be
computed in polynomial time. The iterative characterization from Section 2.2 leads to
a quadratic algorithm, but there is also a linear time algorithm [DOW 84]. ■

COROLLARY 58. — A+ =PF U+ =PF B+ =PF P+.

The relations≤PFM and≤PF give rise to diverse classifications for the classes
of positive logic programs. In fact, the relation≤PFM is more accurate so that the
hierarchy obtained with≤PFM is more refined than the one obtained with≤PF.

EXAMPLE 59. — The programsB, A1, A2 andA3 from the the proof of Theorem 32
are translated as follows:TrLM(B ∪A1 ∪A2) = TrLM(B ∪A2 ∪A3) = TrLM(B ∪
A3∪A1) = {a←; b←; c←}, butTrLM(B) = ∅with Hba(TrLM(B)) = {a, b, c},

62 JANCL – 16/2006. Implementation of Logics

TrLM(A1) = {a←}, TrLM(A2) = {b←}, andTrLM(A3) = {c←}. ThusTrLM is
clearly non-modular:TrLM(B ∪A1 ∪A2) 6= TrLM(B)∪TrLM(A1)∪TrLM(A2). 2

Generally speaking, a translation obtained with anon-modulartranslation function
TrNM is often heavily dependent on the programP being translated. Already slight
changes toP may alterTrNM(P) completely. This reveals one shortcoming of non-
modular translations: they do not support updates very well. E.g., in Example 59, the
effect of removingA2 from TrLM(B ∪A1 ∪A2) is drastic asTrLM(B ∪A1) = ∅.

6.2. Translating normal programs into atomic ones

As shown in Section 6.1, it is easy to obtain a non-modular and faithful translation
function for removing positive body literals in the case of positive programs. The
setting becomes far more complicated when normal logic programs are taken into
consideration, since a normal program may possess several stable models and it is not
clear how to applyTrLM from Definition 56. Nevertheless, we intend to develop a
polynomial and faithful translation functionTrAT so that an arbitrary normal program
P gets translated into an atomic programTrAT(P). It is clear by the results presented
in Section 4.2 thatTrAT must be non-modular if faithfulness is to be expected. Our
idea is to apply the characterization of stable models developed in Section 5 so that
each stable modelM of a normal programP is eventually captured as a supported
modelM of P possessing a level numbering w.r.t.M . To recall the basic concepts
from Section 5 we give an example of a level numbering.

EXAMPLE 60. — Let P = {r1, r2, r3} be a (positive) normal program consisting
of the rulesr1 = a ←; r2 = a ← b; and r3 = b ← a so thatHbv(P) =
Hb(P) = {a, b}. The unique stable modelM = LM(P) = {a, b} is supported by
SR(P, M) = P . The unique level numbering# w.r.t. M is determined by#r1 = 1,
#a = 1, #r3 = 2, #b = 2, and#r2 = 3. 2

However, there is no explicit way of representing a level numbering within a nor-
mal program and we have to encode such a numbering using propositional atoms.
Then a natural solution is to use a binary representation for actual level numbers. In
the worst case, every atom inHb(P) is assigned a different level number as demon-
strated in Example 60. Thus the level numbers of atoms may vary from1 to |Hb(P)|.
Hence the highest possible level number of a ruler ∈ P is |Hb(P)| + 1, as forr2 in
our example. By leaving room for0 as the least binary value, we have to be prepared
for binary numbers consisting of at most∇P = dlog2(|Hb(P)|+ 2)e bits.

PROPOSITION61 ([JAN 03B]). — If M is a supported model of a normal program
P and # : M ∪ SR(P,M) → N is a level numbering w.r.t.M , then0 < #a <
2∇P − 1 for everya ∈M and0 < #r < 2∇P for everyr ∈ SR(P, M).

The logarithmic factor embodied in∇P forms an important design criterion for
us in order to keep the length of the translation||TrAT(P)|| as well as the translation
time proportional to||P || × ∇P rather than||P || × |Hb(P)|. Hence we strive for a

Some (in)translatability results 63

sub-quadratic translation function fromP toA. To get an idea of the potential behind
such an objective, we have∇P = 14 for a programP with |Hb(P)| = 10000.

6.2.1. Representing binary counters

We have to fix some notation in order to deal with binary representations of natural
numbers. Given the number of bitsb and a natural number0 ≤ n < 2b, we write
n[i . . . j], where0 < i ≤ j ≤ b, for the binary representation ofn from theith bit
to thejth bit in the decreasing order of significance. Thusn[1 . . . b] gives a complete
binary representation forn. Moreover, as a special case of this notation, we may refer
to theith bit simply by writingn[i] = n[i . . . i].

Technically speaking, the idea is to encode the level number#a for a particular
atoma ∈ Hb(P) using avectora1, . . . , aj of new atoms wherej = ∇P . Such a vector
can be understood as a representation of abinary counterof j bits; the first and the last
atoms corresponding to the most significant and the least significant bits, respectively.
The idea is to equate bits0 and1 with the truth values false and true assigned to atoms,
since atoms may take only two values under the stable model semantics. Because the
resulting translation is supposed to be an atomic normal program, positive body literals
are forbidden and we have to introduce the vectora1, . . . , aj of complementary atoms
so that we can condition rules on both values of bits. This is exactly the technique that
was demonstrated in Example 34. In the current setting, the idea is that theith bit of
the binary counter associated with the atoma takes the value0 (resp.1) if and only if
ai (resp.ai) cannot be inferred, i.e. the negative literal∼ai (resp.∼ai) is satisfied in
rule bodies. In the sequel, we may introduce a binary counter of the kind above for
any atoma by subscripting it with an indexi in the range0 < i ≤ j.

In order to express the constraints on level numberings, as demanded by Definition
50, we need certain primitive operations on binary counters. The respective subpro-
grams are listed in Table 2. The size of each subprogram is governed by a parameterj
which gives the number of bits used in the binary counters involved. The activation of
all subprograms is controlled by an additional atomc. The idea is that the respective
subprograms are activated only whenc cannot be inferred, i.e.c is false under stable
model semantics. Wheneverc is true, all atoms involved in these subprograms are
false by default. In the following, we give brief descriptions of the primitives.

1) The subprogramSELj(a, c) selects a value between0 and2j − 1 for the binary
countera1, . . . , aj associated with an atoma.

2) The programNXTj(a, b, c) binds the values of the binary counters associated
with atomsa andb, respectively, so that the latter is the former increased by one (mod
2j). Proposition 61 tells us that∇P is big enough to prevent counters from wrapping.
The design ofNXTj(a, b, c) is economical as it does not involve explicit carry bits
and it is based on the following observations about increasing a binary counter by one
(mod2j). First, the least significant bit, i.e. thejth one, is always changed; either from
0 to 1 or from1 to 0. Second, any other bit (sayith where1 ≤ i < j) is changed only
if the next less significant bit, i.e. thei + 1th one, changes from1 to 0. To see this, it
may be instructive to study the transition from010111 to 011000 whenj = 6.

64 JANCL – 16/2006. Implementation of Logics

Table 2. Encoding primitive operations for binary counters

Primitive Definition with atomic rules

SELj(a, c) {ai ← ∼ai,∼c; ai ← ∼ai,∼c | 0 < i ≤ j}
NXTj(a, b, c) {bi ← ∼ai,∼ai+1,∼bi+1,∼c | 0 < i < j}∪

{bi ← ∼ai,∼ai+1,∼c | 0 < i < j}∪
{bi ← ∼ai,∼bi+1,∼c | 0 < i < j}∪
{bi ← ∼bi,∼c | 0 < i < j}∪
{bj ← ∼aj ,∼c; bj ← ∼aj ,∼c}

FIXj(a, n, c) {ai ← ∼c | 0 < i ≤ j andn[i] = 0}∪
{ai ← ∼c | 0 < i ≤ j andn[i] = 1}

LTj(a, b, c) {lt(a, b)i ← ∼ai,∼bi,∼c | 0 < i ≤ j}∪
{lt(a, b)i ← ∼ai,∼bi,∼lt(a, b)i+1,∼c | 0 < i < j}∪
{lt(a, b)i ← ∼ai,∼bi,∼lt(a, b)i+1,∼c | 0 < i < j}∪
{lt(a, b)i ← ∼lt(a, b)i,∼c | 0 < i ≤ j}

EQj(a, b, c) {eq(a, b)← ∼ai,∼bi,∼c | 0 < i ≤ j}∪
{eq(a, b)← ∼ai,∼bi,∼c | 0 < i ≤ j}∪
{eq(a, b)← ∼eq(a, b),∼c}

3) The subprogramFIXj(a, n, c) assigns a fixed value0 ≤ n < 2j , in the binary
representation, to the counter associated with the atoma.

4) The programLTj(a, b, c) checks if the value of the binary counter associated
with an atoma is strictly lower than the value of the binary counter associated with
another atomb. To keep the program linear inj, we need a vector of new atoms
lt(a, b)1, . . . , lt(a, b)j plus the corresponding vector of complementary atoms. The
atomslt(a, b)1 andlt(a, b)1, which refer to the most significant bits, capture the result.

5) The subprogramEQj(a, b, c) checks if the counters associated with the atoms

a andb hold the same value. The new atomseq(a, b) andeq(a, b) capture the result.

Our next goal is to specify the intended outcomes of the primitives listed in Table
2. Whenever the value of a counter ofj bits associated with an atoma is chosen to
be 0 ≤ n < 2j , the contribution of the respective programSELj(a, c) is a set of
atomsATctr

j (a, n) = {ai | 0 < i ≤ j andn[i] = 1} ∪ {ai | 0 < i ≤ j andn[i] = 0}
given thatc is not inferable. The subprogramNXTj(b, a, c) is supposed to produce
the same set of atomsATctr

j (a, n) given that the counter associated with some other
atomb is holding a valuem such thatn = m + 1 mod 2j . On the other hand, the

Some (in)translatability results 65

result of a subprogramLTj(a, b, c), when the atomc is assigned to false, is given in
(18) below. It is assumed that the values of the counters associated with the atomsa
andb aren andm in the ranges0 ≤ n < 2j and0 ≤ m < 2j , respectively.

ATlt
j (a, n, b,m) = {lt(a, b)i | 0 < i ≤ j andn[i . . . j] < m[i . . . j]} ∪

{lt(a, b)i | 0 < i ≤ j andn[i . . . j] ≥ m[i . . . j]}. (18)

The result of testing the equality of the counters is defined analogously. The outcome
for EQj(a, b, c), whenc is not inferable, isATeq

j (a, n, b,m) = {eq(a, b) | n = m} ∪
{eq(a, b) | n 6= m}. Finally, given an atoma and a set of atomsN — such as a stable
model of a program involving the subprograms under consideration — we mayextract
the value of the countera1, . . . , aj associated with an atoma by

valj(a, N) =
∑
{2j−i | 0 < i ≤ j andai ∈ N}. (19)

It follows thatvalj(a, N)[i] = 1 ⇐⇒ ai ∈ N holds for each0 < i ≤ j. Moreover,
we havevalj(a, ATctr

j (a, n)) = n for any0 ≤ n < 2j .

6.2.2. A non-modular translation function

In this section, we concentrate on composing a non-modular translation function
TrAT : P → A in four steps by applying the characterization of stable models from
Section 5. Accordingly, the overall translationTrAT(P) of a normal logic programP
will divide in four parts summarized below:

1) TrSUPP(P) that captures a supported modelM of P ;

2) TrCTR(P) that represents a level numbering candidate# in terms of counters;

3) TrMIN(P) that imposes constraints on the candidate# and its domainM ∪
SR(P, M) so that each atoma ∈M satisfies (15); and

4) TrMAX(P) that similarly enforces (16) for each ruler ∈ SR(P, M).

The details of these translations will be given in Definitions 62–65 to be presented
below. Of course, we aim at a faithful translationTrAT(P) that captures each sta-
ble modelM ∈ SM(P) with some stable modelN ∈ SM(TrAT(P)) in a bijective
fashion. In the subsequent informal discussion, we useM andN as a pair of stable
models involved in the resulting bijective relationship. However, the description of
the exact structure ofN is postponed until Section 6.2.3 where the polynomiality and
faithfulness ofTrAT is eventually established in Theorem 74. Meanwhile, Example
67 may be useful for the reader to better access the forthcoming definition ofTrAT.

The first part of the translationTrAT(P), i.e.TrSUPP(P), defines the complemen-
tary atoma for each atoma ∈ Hb(P). Such atoms enable the removal of positive
subgoals using the technique already presented in Example 34, i.e.a ∈ B+(r) in a
rule r is roughly captured by a negative literal∼a. However, spurious (supported)
models will result and we need the rest ofTrAT(P) to exclude the non-stable ones.

66 JANCL – 16/2006. Implementation of Logics

DEFINITION 62. — For a normal programP , define an atomic normal program

TrSUPP(P) = {a← ∼a | a ∈ Hb(P)} ∪
{H(r)← ∼bt(r); bt(r)← ∼bt(r) | r ∈ P} ∪
{bt(r)← ∼B+(r),∼B−(r) | r ∈ P}.

(20)

Basically, a ruler ∈ P could be rewritten asH(r)← ∼B+(r),∼B−(r), but other
parts of the overall translation require us to determine when thebodyof r is true. This
is why new atomsbt(r) andbt(r) are introduced for eachr ∈ P . Note that copying
the transformed body ofr to other parts of the translation would imply a quadratic
blow-up and we needbt(r) for eachr ∈ P in order to save space. The next part of the
translation introduces binary counters which represent a level numbering candidate.

DEFINITION 63. — For a normal programP , define an atomic normal program

TrCTR(P) =
⋃

a∈Hb(P)

[SEL∇P (ctr(a), a) ∪NXT∇P (ctr(a), nxt(a), a)] ∪

⋃

r∈P andB+(r)=∅
FIX∇P (ctr(r), 1, bt(r)) ∪

⋃

r∈P andB+(r)6=∅
SEL∇P (ctr(r), bt(r)). (21)

In this way, two new atomsctr(a) andnxt(a), which act as names of two counters,
are introduced for each atoma ∈ Hb(P). The eventual purpose of these counters is
to hold the values#a and#a + 1, respectively, in case thata belongs to the domain
of a level numbering#, i.e. a ∈ M ; or equivalently,a 6∈ N . However, at this point,
the primitives included inTrCTR(P) choose a value forctr(a) and define the value
of nxt(a) as the successor of the value ofctr(a) modulo2∇P . Quite similarly, a new
atomctr(r) and the respective counter is introduced for eachr ∈ P to eventually hold
#r whenr is in the domain of#, i.e.r ∈ SR(P,M), or equivalentlybt(r) 6∈ N . In
case of an atomic ruler ∈ P with B+(r) = ∅, the counterctr(r) is assigned a fixed
value1 and no choice is made in accordance with Definition 50.

The translationTrCTR(P) is sufficient for choosing a candidate level numbering
for a supported modelM of P that is to be captured by the rules inTrSUPP(P). We
have to introduce constraints in order to ensure that the candidate is indeed a level
numbering, as dictated by Definition 50. We start with the conditions imposed on
rules r ∈ P and in particular, whenr ∈ SR(P,M) holds, i.e.M |= B(r). This
explains whybt(r) is used as a controlling atom10 in the forthcoming translation. As
explained above, the case of atomic rulesr ∈ P with B+(r) = ∅ is already covered by

10. Recall that such atoms appear as negative conditions in the subprograms listed in Table 2.

Some (in)translatability results 67

TrCTR(P) which assigns a fixed value — the natural number1 — to ctr(r). But for
non-atomic rulesr ∈ P with B+(r) 6= ∅, the maximization principle from Definition
50 must be expressed e.g. as follows.

DEFINITION 64. — Letx be a new atom not appearing inHb(P). For an non-atomic
rule r ∈ P and a number of bitsb, defineTrMAX(r, b) =

⋃
a∈B+(r) TrMAX(r, b, a)

where for anya ∈ B+(r), the translationTrMAX(r, b, a) =

LTb(ctr(r), nxt(a), bt(r)) ∪ EQb(ctr(r), nxt(a), bt(r)) ∪
{x← ∼x,∼bt(r),∼lt(ctr(r), nxt(a))1} ∪
{max(r)← ∼bt(r),∼eq(ctr(r), nxt(a))}.

For a normal programP , define an atomic programTrMAX(P) =
⋃{TrMAX(r,∇P)|

r ∈ P andB+(r) 6= ∅} ∪ {x← ∼x,∼bt(r),∼max(r) | r ∈ P andB+(r) 6= ∅}.
An informal description follows. The rules inTrMAX(r,∇P, a) are to be activated

for a non-atomic ruler ∈ SR(P, M) and a positive body atoma ∈ B+(r). As a
consequence, the value held byctr(r) must be greater than or equal to the value of
nxt(a) which is supposed to be the value ofctr(a) increased by one. In addition to
this, the rules formax(r) in TrMAX(r,∇P, a) andTrMAX(P) make the value ofctr(r)
equal to the value ofnxt(a) for somea ∈ B+(r). Thus the value ofctr(r) must be the
maximum among the values of the countersnxt(a) associated with the positive body
atomsa ∈ B+(r). This conforms to the definition of#r given in Definition 50.

Let us then turn our attention to atomsa ∈ Hb(P) that are assigned to true in
a supported modelM of P satisfyingM = TP M (M). Then there is a ruler ∈
SR(P, M) such thatH(r) = a. Moreover, the level number#a is defined as the
minimum among the respective rules by Definition 50.

DEFINITION 65. — Let y be a new atom not appearing inHb(P). For a ruler and
a number of bitsb, defineTrMIN(r, b) =

LTb(ctr(r), ctr(H(r)), bt(r)) ∪ EQb(ctr(r), ctr(H(r)), bt(r)) ∪
{y← ∼y,∼bt(r),∼lt(ctr(r), ctr(H(r)))1} ∪
{min(H(r))← ∼bt(r),∼eq(ctr(r), ctr(H(r)))}.

For a normal programP , define an atomic normal program

TrMIN(P) =
⋃

r∈P

TrMIN(r,∇P) ∪ {y← ∼y,∼a,∼min(a) | a ∈ Hb(P)}. (22)

Given a ∈ M and a ruler ∈ SR(P, M) such thatH(r) = a, the rules in
TrMIN(r,∇P) make the value ofctr(a) lower than or equal to the value ofctr(r).
Moreover, the rules formin(a) in TrMIN(P) ensure that the value ofctr(a) equals to
the value ofctr(r) for at least one such ruler. In this way, the value ofctr(a) becomes

68 JANCL – 16/2006. Implementation of Logics

necessarily the minimum, which is in harmony with the definition of#a in Definition
50. We are now ready to combine the four translations presented in Definitions 62–65.

DEFINITION 66. — Given a normal programP , define an atomic normal program

TrAT(P) = TrSUPP(P) ∪ TrCTR(P) ∪ TrMAX(P) ∪ TrMIN(P)

and its visible partHbv(TrAT(P)) = Hbv(P).

By inspecting the four parts ofTrAT(P) once more, we note thatTrAT(P) can be
formed in a very systematic fashion by generating certain rules for eachr ∈ P and
a ∈ Hb(P). However,TrAT is not modular in the sense defined in Section 3.3. A
source of non-modularity is hidden in the number of bits∇P involved inTrAT(P).
Given two programsP andQ satisfying module conditions M1–M4, it is still possible
that∇P < ∇(P ∪Q) and∇Q < ∇(P ∪Q). As a consequence, the counters involved
in TrAT(P) andTrAT(Q) are based on too few bits, which implies thatTrAT(P) and
TrAT(Q) cannot be joined together in order to form the translationTrAT(P ∪Q).

EXAMPLE 67. — Due to high number of rules generated byTrAT we have to con-
sider a logic programP consisting of only one ruler = a← a.

The translationTrSUPP(P) contains four rules:a← ∼a; bt(r)← ∼a; bt(r)←
∼bt(r); and a ← ∼bt(r). Note thatTrSUPP(P) has two stable modelsM1 =
{a, bt(r)} andM1 = {a, bt(r)}. We need the rest ofTrAT(P) to exclude the lat-
ter. Since∇P = 2, the subprogramsSEL2(ctr(a), a), NXT2(ctr(a), nxt(a), a), and
SEL2(ctr(r), bt(r)) of TrCTR(P) aim to select 2-bit values for#a and#r, but only
whena andbt(r) are false. Otherwise, these counters remain inactive.

The programTrMAX(P) consists of two subprogramsLT2(ctr(r), nxt(a), bt(r))
andEQ2(ctr(r), nxt(a), bt(r)) plus the rulesx← ∼x,∼bt(r),∼lt(ctr(r), nxt(a))1;
max(r)← ∼bt(r),∼eq(ctr(r), nxt(a)); andx← ∼x,∼bt(r),∼max(r). They com-
pare#r and#a+1 (modulo22 = 4) and the net effect of the constraints is that#r =
#a + 1. Similarly, the translationTrMIN(P) comprises ofLT2(ctr(r), ctr(a), bt(r))
andEQ2(ctr(r), ctr(a), bt(r)) augmented byy ← ∼y,∼bt(r),∼lt(ctr(r), ctr(a))1;
min(H(r)) ← ∼bt(r),∼eq(ctr(r), ctr(a)); and y ← ∼y,∼a,∼min(a) and they
effectively state that#r = #a. Note that in analogy toTrCTR(P), the rules of
TrMAX(P) andTrMIN(P) are activated only whena andbt(r) are false; or equiva-
lently a andbt(r) are true by the structure ofTrSUPP(P). Consequently,M2 becomes
unstable as#r = #a + 1 and#r = #a cannot be satisfied simultaneously. 2

6.2.3. Correctness of the translation functionTrAT

The correctness ofTrAT is addressed next. In order to describe the correspon-
dence between stable models, the following definitions make explicit how a stable
modelM of a normal programP can be extended to a stable modelN of the trans-
lation TrAT(P). This is becauseTrAT(P) involves many new atoms, the truth val-
ues of which have to be determined. First of all, we deal with atoms that are es-
sentially defined by the rules ofTrSUPP(P) and define the respective extension op-
eratorExtSUPP(P, M) for P andM below. Recall that in addition to reproducing

Some (in)translatability results 69

M , this part of the translation is responsible for defining the complementary atomsa,
for whicha ∈ Hb(P), and the atomsbt(r) andbt(r), which detect the satisfaction of
B(r) for rulesr ∈ P . Out of these atoms, the ones included in the setExtSUPP(P, M)
defined below are supposed be true in the corresponding stable modelN of TrAT(P).

DEFINITION 68. — For a normal programP and an interpretationM of P , define
an extension operator by settingExtSUPP(P, M) = M ∪ {a | a ∈ Hb(P)−M} ∪
{bt(r) | r ∈ SR(P,M)} ∪ {bt(r) | r ∈ P − SR(P, M)}.

By the following definition, we introduce similar extension operators for the other
parts ofTrAT(P). For instance, the rules inTrCTR(P) are responsible for selecting
correct values for the counters whose purpose is to capture the unique level numbering
w.r.t.M . As a result, the atoms inExtCTR(P, M, #) ought to be marked true inN .
The last two parts of the translation contribute atoms involved in the constraints on the
values of the counters, which implement the maximization/minimization principles
from Definition 50. Again, the respective extension operatorsExtMAX andExtMIN

determine which atoms evaluate to true givenP , M , and#.

DEFINITION 69. — For a normal programP , an interpretationM of P , and a
function# : M ∪ SR(P,M)→ {0, . . . , 2∇P − 1}, define the following operators:

ExtCTR(P, M, #) =
⋃

a∈M

ATctr
∇P (ctr(a),#a) ∪

⋃

a∈M

ATctr
∇P (nxt(a),#a + 1 mod 2∇P) ∪

⋃

r∈SR(P,M) andB+(r)=∅
ATctr
∇P (ctr(r), 1) ∪

⋃

r∈SR(P,M) andB+(r)6=∅
ATctr
∇P (ctr(r),#r). (23)

ExtMAX(P, M, #) = {max(r) | r ∈ SR(P, M) andB+(r) 6= ∅} ∪
⋃

r∈SR(P,M) anda∈B+(r)

ATlt
∇P (ctr(r),#r, nxt(a), #a + 1 mod 2∇P) ∪

⋃

r∈SR(P,M) anda∈B+(r)

ATeq
∇P (ctr(r),#r, nxt(a), #a + 1 mod 2∇P). (24)

ExtMIN(P,M, #) = {min(a) | a ∈M} ∪
⋃

r∈SR(P,M)

ATlt
∇P (ctr(r), #r, ctr(H(r)), #H(r)) ∪

⋃

r∈SR(P,M)

ATeq
∇P (ctr(r), #r, ctr(H(r)), #H(r)). (25)

70 JANCL – 16/2006. Implementation of Logics

The four extensions operators introduced so far are combined into one extension
operator for the whole translationTrAT(P). It should be yet emphasized that the four
sets of atoms involved in Definition 70 are disjoint.

DEFINITION 70. — For a normal programP , an interpretationM ⊆ Hb(P) of P ,
and a function# : M ∪ SR(P, M)→ {0, . . . , 2∇P − 1}, defineExtAT(P, M, #) =
ExtSUPP(P, M) ∪ ExtCTR(P, M, #) ∪ ExtMAX(P, M, #) ∪ ExtMIN(P, M, #).

The correctness of the translation functionTrAT is addressed in Propositions 71
and 73 as well as Theorem 74.

PROPOSITION71 ([JAN 03B]). — Let P be a normal program. IfM is a stable
model ofP and# is the corresponding level numbering w.r.t.M , then the interpreta-
tionN = ExtAT(P, M, #) is a stable model ofTrAT(P) such thatM = N∩Hb(P).

DEFINITION 72. — Let P be a normal program,N ⊆ Hb(TrAT(P)) an inter-
pretation of the translationTrAT(P), and M = N ∩ Hb(P). Define a function
: M ∪ SR(P, M)→ {0, . . . , 2∇P − 1} by setting

1) #a = val∇P (ctr(a), N) for atomsa ∈M , and

2) #r = val∇P (ctr(r), N) for rulesr ∈ SR(P, M).

PROPOSITION73 ([JAN 03B]). — Let P be a normal program. IfN is a stable
model of the translationTrAT(P), thenM = N ∩Hb(P) is a stable model ofP and
N = ExtAT(P,M, #) where# is defined as in Definition 72.

THEOREM 74. — P ≤PF A.

However, due to the size and intricacy ofTrAT, we skip the proof of correctness
that can be found in [JAN 03b]. An important concept used in the proofs is the one
of local stabilitygiven in Definition 75 below. As established in Theorem 76, atomic
programs lend themselves to localizing the fixed point condition behind stable models.
Consequently, the proofs for Propositions 71 and 73 can be established modularly.

DEFINITION 75. — An interpretationI is locally stablew.r.t. a normal programP if
and only ifI ∩H(P) = LM(P I).

THEOREM 76. — Let P1, . . . , Pn beatomicnormal programs such that the sets of
head atomsH(P1), . . . , H(Pn) form a partition ofH(P) for P =

⋃n
i=1 Pi.

For any S ⊆ {1, . . . , n}, an interpretationM ⊆ H(P) is locally stable w.r.t.
PS =

⋃
i∈S Pi ⇐⇒ M is locally stable w.r.t.Pi for everyi ∈ S.

Moreover, an interpretationM ⊆ Hb(P) is a stable model ofP ⇐⇒ M ⊆ H(P)
andM is locally stable w.r.t.Pi for everyi ∈ {1, . . . , n}.

In analogy to the classes of positive programs, the four classes of normal programs
reside in the same expressiveness class if measured by the existence of polynomial and
faithful translation function, i.e. the relation≤FM.

COROLLARY 77. — A =PF U =PF B =PF P.

Some (in)translatability results 71

On the other hand, let us consider any classC ∈ {A,U ,B,P}. It follows by
Proposition 19 thatC+ ≤PF C and by Theorem 37 thatC 6≤PF C+. ThusC+ <PF C
holds for all representatives of the two expressiveness classes. The resulting hierar-
chy of classes of logic programs is illustrated in Figure 2. The relationships holding
in this hierarchy remain in force even if we resort to weaker notions of faithfulness
corresponding to equivalence relations addressed in Proposition 13.

A =PF U =PF B =PF P

<
P
F

<
P
F

<
P
F

<
P
F

A+ =PF U+ =PF B+ =PF P+

Figure 2. Expressive power hierarchy based on polynomial and faithful (PF) transla-
tion functions

6.3. Propositional theories revisited

In general, it is very challenging to translate a normal programP into a set of
clauses so that a bijective correspondence of models is obtained. For instance, the
approach by Ben-Eliyahu and Dechter [BEN 94] is based on a transformation that is
clearly polynomial, but the produced set of clauses may possess multiple models cor-
responding to one stable model ofP . However, atomic programs provide a promising
intermediary representation that is relatively straightforward to translate into clauses.
Here we can apply Clark’s program completion as established by Fages [FAG 94], but
new atoms have to be introduced by the translation functionTrCL in order to keep the
translation function linear; or even polynomial in the first place.

DEFINITION 78. — For an atomic normal programP ∈ A and an atoma ∈ Hb(P),
let DefP (a) = {r ∈ P | H(r) = a} and define the set of clauses

TrCL(a, P) = {{a,¬bt(r)} | a ∈ Hb(P) andr ∈ DefP (a)} ∪
{{¬a} ∪ {bt(r) | r ∈ DefP (a)} | a ∈ Hb(P)} ∪
{{bt(r)} ∪ B−(r) | r ∈ DefP (a)} ∪
{{¬bt(r),¬c} | r ∈ DefP (a) andc ∈ B−(r)}

wherebt(r) is a new atom for eachr ∈ P and TrCL(P) =
⋃

a∈Hb(P) TrCL(a, P)
such thatHbv(TrCL(P)) = Hbv(P), Hbh(TrCL(P)) = Hbh(P)∪{bt(r) | r ∈ P}.

We note that every atom ofHb(P) appears inTrCL(P) so thatHba(TrCL(P)) =
∅. The intuitive reading ofbt(r) is the same as in Section 6.2, i.e.bt(r) is supposed

72 JANCL – 16/2006. Implementation of Logics

to be true whenever the body of the ruler is true. Roughly speaking, the clauses
in the translation ensure that every atoma ∈ Hb(P) is logically equivalent to the
disjunction of all bodies of rulesr ∈ P with H(r) = a. More precisely, clauses of
the first two kinds inTrCL(a, P) enforce the equivalence of eacha ∈ Hb(P) with the
disjunction

∨{bt(r) | r ∈ DefP (a)}. On the other hand, each disjunctbt(r) is made
equivalent to the conjunction of negative (classical) literals

∧{¬c | c ∈ B−(P)} by
clauses of the last two kinds inTrCL(a, P). The net effect is Clark’s completion for
eacha ∈ Hb(P). This leads to a tight correspondence of models as described next.

DEFINITION 79. — Given an interpretationI ⊆ Hb(P) of P ∈ A, define an exten-
sion operatorExtCL(P, I) = I ∪ {bt(r) | r ∈ SR(P, I)}.
PROPOSITION80 ([JAN 03B]). — Let P be an atomic normal program. IfM ⊆
Hb(P) is a supported model ofP , thenN = ExtCL(P, M) is a (classical) model of
TrCL(P) such thatM = N ∩Hb(P).

PROPOSITION 81 ([JAN 03B]). — Let P be an atomic normal program. If an
interpretationN ⊆ Hb(TrCL(P)) is a (classical) model ofTrCL(P), thenM =
N ∩Hb(P) is a supported model ofP such thatN = ExtCL(P, M).

EXAMPLE 82. — Consider a logic programP which consists of two rulesr1 = a←
∼a and r2 = a ← ∼b and has unique stable modelM = {a}. The translation
TrCL(P) contains clauses{a,¬bt(r1)}, {a,¬bt(r2)}, {¬a, bt(r1), bt(r2)}, {¬b},
{bt(r1), a}, {¬bt(r1),¬a}, {bt(r2), b}, and{¬bt(r2),¬b}. There is a unique classi-
cal modelN = {a, bt(r2)} of TrCL(P), as interpretations are restricted to the Her-
brand baseHb(TrCL(P)) = {a, b, bt(r1), bt(r2)}. 2

The translation functionTrCL is clearly non-modular, since the clauses of the type
{¬a} ∪ {bt(r) | r ∈ DefP (a)} create a dependency between rules possessing the
same heada. Let us then address polynomiality and faithfulness as suggested by the
one-to-one correspondence obtained in Example 82.

PROPOSITION83. — Let P be an atomic normal program. ThenM ⊆ Hb(P) is a
stable model ofP if and only ifM is a supported model ofP .

PROOF. — (=⇒) This is shown by Marek and Subrahmanian [MAR 92] for normal
programs (including atomic ones). (⇐=) Let M be a supported model ofP . Let
us define a function# from M ∪ SR(P, M) to N such that#a = 1 for all a ∈ M
and#r = 1 for all r ∈ SR(P, M). SinceP is atomic, we haveB+(r) = ∅ for every
r ∈ P and it is easy to inspect from Definition 50 that# is a level numbering w.r.t.
M . ThusM is a stable model ofP by Theorem 55. ■

THEOREM 84. — A ≤PF PT .

PROOF. — An atomic ruler = a ← ∼c1, . . . ,∼cm consists of3m + 2 sym-
bols if each atom counts as one symbol and one symbol is reserved for separating
it from other rules. The translation functionTrCL translatesr effectively into clauses
{a,¬bt(r)}, {bt(r), c1, . . . , cm}, {¬bt(r),¬c1}, . . . , and{¬bt(r),¬cm} which con-
tain 10m + 11 symbols (including separating commas). In addition, the ruler con-
tributes one literal to{¬a} ∪ {bt(r′) | r′ ∈ DefP (a)} which produces two additional

Some (in)translatability results 73

symbols forr and 4 symbols for eacha ∈ Hb(P). The translationTrCL(P) can be
produced by going through the rules ofP , creating the clauses and keeping an account
of atoms that appear as heads in the rules. The clause{¬a}∪{bt(r′) | r′ ∈ DefP (a)}
needs to be created for such atoms. Thus we concludeTrCL to be linear/polynomial.

To establish the faithfulness ofTrCL, letP be an atomic normal program. Note that
Hb(P) ⊆ Hb(TrCL(P)) andHbv(TrCL(P)) = Hbv(P) hold directly by Definition
78. It follows by Propositions 83 and 80 that there is an extension functionExtCL :
SM(P)→ CM(TrCL(P)) that mapsM ∈ SM(P) into N = ExtCL(P, M) included
in CM(TrCL(P)) such thatM = N ∩ Hb(P). Moreover, Propositions 81 and 83
imply that that ifN ∈ CM(TrCL(P)), thenM = N ∩ Hb(P) ∈ SM(P) andN =
ExtCL(P,M). Thus we may concludeTrCL to be faithful by Proposition 20. ■

COROLLARY 85. — PT =PF A =PF U =PF B =PF P.

COROLLARY 86. — C+ <PF PT holds for anyC+ ∈ {A+,U+,B+,P+}.

7. Related work

The classification method presented in Section 3.4 accommodates the one pro-
posed for non-monotonic logics [JAN 99b, JAN 03a, JAN 00a] to the case of logic
programs. These classification methods are analogous, but there are also major dif-
ferences. The semantics of anon-monotonic theoryis determined by a set ofexten-
sions/expansionswhich are typically propositionally closed theories11 rather than a set
of interpretations/models. This makes the notions of faithfulness somewhat incompat-
ible although bijective correspondences are aimed by both of them. The concepts of
modularity are also different because the primary objects of study, i.e. non-monotonic
theories and logic programs, are epitomized differently.

We should also comment on the major changes made to earlier versions of the
method presented in [JAN 00b, JAN 01] in which the systematic analysis of logic
programs was initiated. Firstly, the notion of modularity presented in Section 3.3 is
more fine-grained due to module conditions M1–M4 given in Definition 16. More
precisely, the condition (7) is supposed to hold in limited context whileP andQ are
assumed arbitrary in [JAN 00b]. A further difference in modularity is thatTr(P) = P
for all P ∈ C whenTr : C′ → C andC ⊂ C′, i.e. C is a syntactic subclass ofC′.
Although this leads to analogous intranslatability results [JAN 00b] it is impossible
to make comparisons with syntactically different classes such asPT distinguished
in Section 3.1. This is why we resort to a weaker notion of modularity. A further
difference concerns the notion of faithfulness proposed in Section 3.3. It is weaker
than the one used in [JAN 00b] because the visibility of atoms is taken fully into
account. These kinds of weakenings are in favor of intranslatability results which are
strengthened. However, the resulting expressive power hierarchy is not affected by
the tunings made. But, as discussed in Section 4.2, certain strict relationships in the
hierarchy may cease to hold if still weaker notions of faithfulness are introduced.

11. Recall that a propositionally closed theory is fully determined by the set of its models.

74 JANCL – 16/2006. Implementation of Logics

Module systems are used in programming languages to manage the complexity of
programs as well as to enforce good programming practice. Logic programming is
not an exception in this respect as several proposals for modular composition of logic
programs have been made; see [BUG 94] for a comprehensive study. For instance,
Maher [MAH 93] distinguishesinternalpredicates fromimportedandexportedpredi-
cates and imposes conditions on program composition underperfectmodel semantics.
In our terminology and in the propositional case, the first category forms the hidden
part of the Herbrand base while the latter two categories form its visible part. For
us, the distinction of imported and exported atoms is not important and the module
conditions M1–M4 of Definition 16 are much weaker. Again, this favors our negative
results as stated above. Bugliesi et al. [BUG 94] present a very similar conceptualiza-
tion of program modules due to Gaifman and Shapiro accompanied by an algebraic
theory of program composition. Etalle and Gabbrielli [ETA 96] define modules in
analogy to Definition 6 (assuming the propositional case) but leave the hidden part of
the Herbrand base implicit. Their only module condition is very close to ours: the
joint atoms inHb(P)∩Hb(Q) must be contained inHbv(P)∩Hbv(Q). One obvious
difference is thatP andQ are not required to be disjoint.

Antoniou et al. [ANT 01] apply a modularity condition when developing normal
forms for Nute’sdefeasible logic[NUT 94]. Although defeasible logic is based on
a completely different semantics, its rule-based syntax makes it reminiscent of nor-
mal programs. Antoniou et al. consider a translation functionTr to be correct, if
D ≡L(D) Tr(D) for everyD.12 This is somewhat analogous to our approach, but
there is no account of visibility of atoms and the semantics of defeasible logic assigns
a unique set of conclusions to each theory. A further property addressed in [ANT 01]
is incrementalitydefined byTr(D1 ∪ D2) ≡L(D1)∪L(D2) Tr(D1) ∪ Tr(D2). This
is already very close to (7) in our definition of modularity. However, our notion
is based on syntactical equality= rather than semantical equivalence≡v. More-
over, there is no counterpart to module conditions in the approach by Antoniou et
al. Actually, they reserve the termmodularity for a stronger property described by
D1 ∪ D2 ≡L(D1)∪L(D2) D1 ∪ Tr(D2). In contrast to (7), such a condition is not
applicable to translations between classes which are syntactically different. For ex-
ample, consider the case thatD1 is a defeasible theory andTr(D2) is a propositional
theory. The unionD1 ∪ Tr(D2) does not make sense.

As shown in Section 4.3, normal programs cannot be translated into sets of clauses
in a faithful and modular way. Niemelä [NIE 99, Proposition 4.3] provides a formal
counter-example in this respect, too, but the result is intentionally strengthened using
much weaker notions of faithfulness and modularity. In spite of these intranslatability
results, the composition of the translation functionsTrAT andTrCL from Section 6 is
sufficient to reduce normal logic programs into propositional theories. The resulting
translation function is definitely not modular, but still highly structural so that actual
translations can be computed in a systematic fashion. A transformation that would

12. Here≡L(D) denotes semantical equivalence, i.e., the theories yield exactly the same con-
clusions in the languageL(D) of D.

Some (in)translatability results 75

not introduce new atoms seems very unlikely in light of a recent complexity-theoretic
argument by Lifschitz and Razborov [LIF 06]. On the other hand, Niemelä [NIE 99]
presents the basic technique to encode propositional satisfiability problems in terms
of normal logic programs. The translation functionTrLP presented is Section 4.3 is
designed with stronger criteria (i.e. faithfulness and modularity) in mind.

Marek and Truszczýnski [MAR 91] show that checking whether a normal logic
program has a stable model forms an NP-complete decision problem which is analo-
gous to the propositional satisfiability SAT problem [COO 71]. The translation func-
tionsTrAT andTrLP imply that the computational complexity of the former problem
remains NP-complete under the three syntactic restrictions introduced in Section 2.1.
This indicates that the expressive powers of the classesA, U , andB cannot be dif-
ferentiated in terms of traditional complexity measures. This is mainly because the
reducibilities involved in complexity results preserve only the yes/no answers to deci-
sion problems. In contrast, the relation<PFM based on the existence of a polynomial,
faithful and modular translation function enables us to detect strict differences.

Partial evaluationtechniques have been introduced to rewrite rules of programs
in a semantics preserving way. A good example in this respect is an approach by
Brass and Dix [BRA 97]. They proposeequivalence transformationsfor normal and
disjunctivelogic programs under the stable model semantics [GEL 91]. Partial evalu-
ation is one of such transformations and particularly interesting from our point of view
as it may decrease favorably the number of positive body literals. This takes place,
e.g., when a rulea ← b is replaced bya ← ∼c anda ← ∼d given that the definition
of b consists ofb← ∼c andb← ∼d. A drawback is that partial evaluation may cause
an exponential growth to the length of the program in the worst case. Nevertheless,
partial evaluation preserves the Herbrand base of the program and eventually, it will
produce an atomic normal program if applied as far as possible. E.g., Costantini et
al. [COS 02] use partial evaluation for this purpose. In fact, partial evaluation (also
known asunfolding) is admitted by a variety of semantics proposed for normal and
disjunctive programs; see [ARA 95, BRA 97] for a collection of results in this respect.
The more conventional case of definite programs with variables and function symbols
is covered in the survey by Pettorossi and Proietti [PET 94].

Ben-Eliyahu and Dechter [BEN 94] study the possibilities of reducinghead-cycle-
freedisjunctive logic programs, under the stable model semantics [GEL 91], to propo-
sitional theories. We restrict our attention to normal programs which form a special
case of head-cycle-free disjunctive programs. Ben-Eliyahu and Dechter [BEN 94,
Theorem 2.8] devise a characterization of stable models that resembles the one devel-
oped in Section 5. However, they impose weaker conditions on level numberings so
that in contrast to Theorem 55, uniqueness cannot be guaranteed. The translation func-
tion TrBD (calledtranslate-2in [BEN 94]) produces a propositional theoryTrBD(P)
that captures stable models in terms of classical ones. In particular, the fact that#a
equals toi for some atoma ∈ Hb(P) is expressed by making a new atomin(a)i true
on the classical side. In contrast to the compositionTrAT ◦TrCL, the translation func-
tionTrBD does not necessarily yield a bijective correspondence between models as the

76 JANCL – 16/2006. Implementation of Logics

level numberings used by used by Ben-Eliyahu and Dechter lack uniqueness. More-
over, the language ofP is not preserved byTrBD asHb(P) ∩ Hb(TrBD(P)) = ∅.
A further difference is that||TrBD(P)|| is quadratic in||P || in the worst case. Our
translation functions are more economical in this respect:||TrCL(TrAT(P))|| is of
the order of||P || × ∇P , as the binary encoding of level numbers is used. This aspect
of TrAT ◦ TrCL makes a difference with respect to a recent translation proposed by
Lin and Zhao [LIN 03]. Their translation function is faithful but quadratic in||P ||.

There are also other characterizations of stable models that are closely related to
the one established in Section 5. Fages [FAG 94] calls an interpretationI ⊆ Hb(P)
of a normal programP well-supportedif and only if there exists a strict well-founded
partial order≺ onI such that for any atoma ∈ I, there existsr ∈ SR(P, I) satisfying
H(r) = a andb ≺ a for all b ∈ B+(r). It follows that well-supported models of a
normal programP are stable models ofP , and vice versa [FAG 94]. Given a supported
modelM of P and the respective unique level numbering conforming to Definition
50, one can extract a strict well-founded partial order≺ as follows: definea ≺ b if
and only ifa ∈M , b ∈M , and#a < #b. Furthermore, Fages distinguishespositive
order consistentnormal programs whose models are necessarily well-supported. As a
consequence, the classical models of the completion of a programP [CLA 78], or the
supported models ofP , coincide with the stable models ofP .

Babovich et al. [BAB 00] and Erdem and Lifschitz [ERD 03] generalize Fages’
results by introducing the notion oftightnessfor logic programs. The tightness of a
logic programP is defined relative to a set atomsA ⊆ Hb(P), which makes Fages’
theorem applicable to a wider range of programs. To point out our contribution in
this respect, we note that atomic normal programs are automatically positive order
consistent, orabsolutelytight [ERD 03]. Therefore, arbitrary normal programs can be
transformed into absolutely tight ones by applyingTrAT from Section 6. Yet another
approach [LIN 04] to deal with non-tight programs is to addloop formulasto the
completion in order to exclude supported models which are not stable. This can be
done gradually while computing classical models for the completion. As a drawback,
the number of loop formulas can be exponential in the worst case. In contrast,TrAT ◦
TrCL provides a one-shot translation with a fixed length of the order of||P || × ∇P .

As already discussed in Section 3.2, a basic notion of equivalence is obtained
for a given class of programsC by requiring that programs possess the same stable
models, i.e.P ≡ Q iff SemC(P) = SemC(Q). Lifschitz et al. [LIF 01] and later
Turner [TUR 03] study a stronger condition, which involves an arbitrary contextR ∈
C in which P andQ could be placed as subprograms. That is,P andQ arestrongly
equivalent, denoted byP ≡s Q iff for all R ∈ C, SemC(P ∪ R) = SemC(Q ∪ R).
The equivalence relation≡v introduced in Section 3.2 is more practically oriented, as
it takes the visibility of atoms properly into account. It is justifiable to exclude atoms
formalizing auxiliary concepts as concerns the equivalence of logic programs. This
aspect is also present in Maher’s early work [MAH 88] where a number of semantical
concepts is projected with respect to the common Herbrand base of the programs being
compared. But stable models [GEL 88] are not covered due to time of publication.

Some (in)translatability results 77

Quite recently, Woltran [WOL 04] has characterized relativized versions of≡ and
≡s as regards visibility. There are also interesting connections between modularity
and strong equivalence as pointed out by Ferraris and Cabalar [FER 05, CAB 05].
According to their results, modular translations from logic programs into propositional
theories are enabled if their semantics is changed to be determined byequilibrium
modelsthat characterize strong equivalence.

node(1..n).
in(V1,V2) :- not out(V1,V2), node(V1;V2), V1!=V2.
out(V1,V2) :- not in(V1,V2), node(V1;V2), V1!=V2.
reach(V,V) :- node(V).
reach(V1,V3) :- in(V1,V2), reach(V2,V3),

node(V1;V2;V3), V1!=V2, V1!=V3.
:- not reach(V1,V2), node(V1;V2).

Figure 3. Normal logic program used in the reachability benchmark

8. Experiments

In this section, we present prototype implementations of the translation functions
TrAT andTrCL crafted in Sections 6.2 and 6.3, respectively. By combining these
tools with SAT solvers we obtain a machinery which is sufficient to compute stable
models for normal logic programs in practice. The main objective of this section is
to make a preliminary comparison of this approach with existing answer set solvers
using three benchmark problems. Our first benchmark deals with the reachability of
nodes in graphs whereas the second is about checking the equivalence of normal logic
programs. The computation of Hamiltonian circuits for randomly generated planar
graphs is of interest in our last benchmark.

The implementation of our translation-based approach consists of two translators13

calledLP2ATOMIC andLP2SAT, which correspond to the two phases of the transla-
tion. The task ofLP2ATOMIC is to translate away positive body atoms from a normal
program given as input in the internal file format ofSMODELS[SIM 02]; typically pro-
duced by the front-endLPARSE. The implementation includes certain optimizations
not addressed in Section 6.2. For instance,strongly connected components(SCCs)
are utilized to reduce the numbers of bits involved in binary counters and to avoid
counters associated with rules in many cases. The latter translator,LP2SAT takes the
output ofLP2ATOMIC as its input and produces the completion for the program in the
DIMACS formatunderstood by most SAT solvers.

13. Please visithttp://www.tcs.hut.fi/Software/lp2sat/ for binaries and bench-
marks.

78 JANCL – 16/2006. Implementation of Logics

All experiments reported in this section are run under the Debian GNU/Linux
2.4.26 operating system on a AMD Athlon XP 2000+1.67 GHz CPU with 1 GB
memory. We use a variety of systems in the experiments:SMODELS[SIM 02], CMOD-
ELS [LIE 04], and ASSAT [LIN 04]; as well as combinations ofLP2ATOMIC and
LP2SAT with other solvers including three SAT solversRELSAT [BAY 97], CHAFF14

[MOS 01], andSIEGE15. The systemLP2ATOMIC+SMODELScombines the two sub-
systems just to get an idea how much overhead results from the removal of posi-
tive body atoms. The three combinationsLP2SAT+RELSAT, LP2SAT+CHAFF, and
LP2SAT+SIEGE use both of our translators as well as the mentioned SAT solver as
a back-end for the actual computation of stable models. Finally, we incorporate a
strengthened well-founded reduction to these systems (the prefixWF+ is inserted to
the name) by callingSMODELS to simplify the intermediate program representations
before and after invokingLP2ATOMIC. The combined systems are implemented as
shell scripts which are distributed in the same directory as binaries. We use three
benchmarks to compare the performance of the systems as reported below.

Table 3. Timings in seconds when computing all stable models

Vertices 2 3 4 5
SMODELS 0.003 0.003 0.033 12
CMODELS 0.030 0.124 293 -
LP2ATOMIC+SMODELS 0.008 0.013 0.393 353
LP2SAT+CHAFF 0.009 0.023 1.670 -
LP2SAT+RELSAT 0.005 0.018 0.657 1879
WF+LP2SAT+RELSAT 0.013 0.018 0.562 1598
Models 1 18 1606 565080
SCCs with|H(C)| > 1 0 3 4 5
Rules (LPARSE) 14 39 84 155
Rules (LP2ATOMIC) 18 240 664 1920
Clauses (LP2SAT) 36 818 2386 7642
Clauses (WF+LP2SAT) 10 553 1677 5971

– Reachability problem[JAN 04]. This benchmark is based on the complete di-
rected graphDn with n nodes andn2 − n arcs (there are no reflexive arcs). The
problem is to find all subgraphs ofDn in which all vertices are still reachable from
each other through the remaining arcs. The corresponding test program is given in the
input syntax ofLPARSE (see Figure 3). In the benchmark, the task is to compute all
stable models of the program instantiated byLPARSE whenn varies from2 to 5. As
a result, the number of SCCs involvingpositive loopsincreases. And in particular,
the number stable models to be computed by the systems increases very rapidly. The
results have been collected in Table 3. Our benchmark is really easy forSMODELS.

14. A very succesful SAT solver in competitions; seehttp://www.satcompetition.org/.
15. Seehttp://www.cs.sfu.ca/~loryan/personal/ for background.

Some (in)translatability results 79

However, the main objective here is to compareCMODELS with our approach as it is
based on similar methodology. We did not useASSAT nor SIEGE as they have been
designed to compute only one model. Our results indicate that the systems based on
LP2ATOMIC andLP2SAT appear to be faster thanCMODELS. Whenn = 5, CMODELS

exceeds the time limit of24 hours andCHAFF runs out of memory (1 GB) as the back-
end ofLP2SAT. The systems perform differently when we compute only one stable
model for the program andn = 8. The respective timings are0.012, 0.043, >104,
0.80, 2.6 and2.8 seconds for the systems in Table 3; and0.020 seconds forASSAT.

0.001

0.01

0.1

1

10

100

1000

10000

100000

4 6 8 10 12 14

Se
co

nd
s

Number of Queens

assat ave
cmodels ave
smodels ave
lp2sat+siege ave

Figure 4. Timings in seconds when showing the non-existence of stable models (aver-
aged over 10 runs on the same instance)

– Verifying the equivalence of programs.Our second benchmark is related to the
famousn-queens problem where the task is to placen queens on ann×n chess board
so that they do not threaten each other. The idea is to use two orthogonal variants of
a program formulated by Niemelä [NIE 99]: one is based on a row-wise placement of
the queens while the other uses columns. The task is to prove the equivalence of the
two programs, which is achieved by (i) combining the programs using a specialized
tool calledLPEQ [JAN 02] and (ii) showing that the result does not have stable models.
In the benchmark, the number of queensn is varied from4 to 12. The running times
of four systems have been plotted in Figure 4.ASSAT andCMODELS scale very sim-
ilarly and run out of memory whenn = 13. TheSMODELS system is slightly better
andLP2SAT+SIEGE turns out to be the best combination. Other SAT solvers lead to
slower performance and the well-founded reduction does not really prune the program
instances.SMODELSandLP2SAT+SIEGEcan handlen = 13.

– Hamiltonian circuits. Our last benchmark concerns the problem of finding
Hamiltonian circuits on random planar graphs generated generated by the Stanford
Graph Base (SGB). Again, we have to slightly modify a program written by Niemelä

80 JANCL – 16/2006. Implementation of Logics

[NIE 99], sincechoice rulesare not yet supported byLP2ATOMIC andLP2SAT. In the
benchmark, the number of nodes is varied from10 to 40. The results are illustrated
in Figure 5. For small numbers of nodes,SMODELS outperforms the others, namely
CMODELS, LP2SAT+SIEGE, andASSAT in the order of improving performance. How-
ever, the average performance ofSMODELS becomes worse as the number of nodes
approaches40 while the other three systems scale in a more robust way. Eventually,
the performances ofASSAT andLP2SAT+SIEGEare almost identical. It is worth men-
tioning that the latter cannot be improved by usingCHAFF as the back-end nor the
well-founded reduction to simplify its input.

0.01

0.1

1

10

100

1000

10000

10 15 20 25 30 35 40

Se
co

nd
s

Nodes

Hamiltonian Circuits on Planar Graphs

cmodels ave
lp2sat+siege ave
assat ave
smodels ave

Figure 5. Timings in seconds when computing one stable model (averaged over 100
runs on different instances)

Our three benchmark problems involve basic reasoning tasks in answer set pro-
gramming: (i) finding one stable model, (ii) showing the non-existence of stable mod-
els, and (iii) finding all stable models. The experiments reported above provide us the
first indication that our translation-based approach is becoming competitive with other
systems [LIE 04, LIN 04] employing SAT solvers for the computation of stable mod-
els. Our experience is that this holds mostly for the last two reasoning tasks given that
the number of model candidates that have to be excluded is sufficient. Consequently,
the other systems have to introduce loop formulas which eventually compensate the
larger input program generated byLP2ATOMIC andLP2SAT in the beginning. How-
ever, if the task is to compute just one stable model for a program that has plenty of
stable models, thenASSAT andCMODELS can be much faster as they benefit from the
smaller initial representation of the program.

It is also very encouraging that in certain cases, the translation-based approach
even outperforms a native ASP solverSMODELS [SIM 02] althoughSMODELS is of

Some (in)translatability results 81

its own league in the first experiment. In this case, the combination ofLP2ATOMIC and
SMODELSgives us more insight into the feasibility of removing positive positive body
atoms from rules. Whenn = 5 the translation produced byLP2ATOMIC is roughly 15
times longer (in symbols) than the original program whereas a 30-fold increase in the
running time ofSMODELS is perceived. Thus the overall consequences of removing
all positive body atoms seem quite negative which suggests us to study variants of
TrAT that preserve positive body atoms whenever possible.

9. Conclusions

This research started from the problem of reducing the number of positive sub-
goals in the bodies of rules of normal logic programs. To analyze this problem, we
propose a classification method based on PFM translation functions in Section 3. The
method is designed for the comparison of classes of logic programs on the basis of
their expressive power and it is applied in Section 4 to the analysis of classes obtained
by restricting the number of positive subgoals in rules. Retrospectively speaking, the
method was obtained by adjusting the one presented in [JAN 00b, JAN 01] in many
respects. In the new design, many objectives are settled: (i) the comparison of classes
which may differ by either syntax or semantics is possible, (ii) the properties charac-
terizing PFM translation functions are preserved under composition, and (iii) our pre-
liminary expressiveness results [JAN 00b] remain valid. Moreover, the development
of the underlying theory forced us to tackle with many important technical details such
as visibility of atoms, mechanisms to extend Herbrand bases, notions of equivalence,
and module conditions. Many of these ideas arose from our practical experience with
answer set programming and experiments with existing implementations.

The expressiveness analysis reveals the main constituents of rule-based reasoning.
In the simplest case, we have just sets of atomic rulesa ← describing the state of the
world; and no further inferences are possible. Unary rules enrich this setting by allow-
ing chained inferenceswith rules, e.g. we can infera using rulesa← b; b← c; and
c←. Binary rules incorporate conjunctive conditions to rule-based reasoning. For in-
stance, one can derivea usinga← b, c; b← d; c← d; andd←. Non-binary rules
with more than two positive subgoals are easily reducible to these primitive forms, but
our formal counter-examples indicate that binary and unary rules are not expressible
in a faithful and modular way using unary and atomic rules, respectively, whatever
number of rules is used. Moreover, the use of negation as failure in the bodies of rules
does not affect this setting. Looking back to EPH illustrated in Figure 1, the number
of positive body literals appears to be an essential syntactic restriction, as strict dif-
ferences in expressive power can be established. It is also interesting to realize that
propositional theories do not capture reasoning with (atomic) normal programs very
easily, as shown in Section 4.3. There is also practical evidence for this, as many
problems tend to be easier to formalize using rules rather than clauses.

The new characterization of stable models developed in Section 5 is based on
uniquely determined level numberings. This contrasts with earlier characterizations

82 JANCL – 16/2006. Implementation of Logics

which enable the assignment of level numbers even in infinitely many ways. Due to
the strong notion of faithfulness employed herein, unique level numberings are crucial
for the main objective of Section 6, i.e. a polynomial and faithful translation of normal
programs into atomic programs and propositional clauses. The translation function
TrAT ◦ TrCL possesses a distinctive combination of features: (i) all finite normal
programsP are covered, (ii) a bijective relationship of models is obtained, (iii) the
Herbrand baseHb(P) is preserved, (iv) the length||TrCL(TrAT(P))|| as well as the
translation time are of the order of||P || × log2 |Hb(P)|, i.e. sub-quadratic, and (v)
there is no need for incremental updating. We consider this as a breakthrough, since
the best known transformations to date [BEN 94, LIN 03] are quadratic. A further
implication ofTrAT ◦TrCL is that various closures of relations, such as thetransitive
closure(c.f. [ERD 01]), can be properly captured with classical models. This aspect
is crucial in many applications involving e.g. some form of reachability.

The experiments reported in Section 8 are limited and by no means conclusive.
For us, they serve as a proof of concept while demonstrating that our translation-based
approach can be competitive in certain cases. Nevertheless, we are still pursuing for
new optimizations techniques to be integrated to our translators. A further objective
is to support the fullSMODELS language involving cardinality and weight constraints
[SIM 02]. Thereafter we can fully benefit from the rapid development and increasing
performance of SAT solvers in the task of computing stable models.

Acknowledgements

The author wishes to thank anonymous referees for their comments and sugges-
tions for improvement as well as Mirek Truszczyński for the initial idea of applying
techniques from [JAN 99a] to the analysis of normal logic programs.

Due to long history, this research has been supported partially by the Academy of
Finland (under projects #43963“Constraint Programming Based on Default Rules”,
#53695“Applications of Rule-Based Constraint Programming”, and #211025“Appli-
cations of Constraint Programming Techniques”) and the European Commission (un-
der contract IST-FET-2001-37004“Working Group on Answer Set Programming”).

10. References

[ANT 01] ANTONIOU G., BILLINGTON D., GOVERNATORI G., MAHER M. J., “Represen-
tation Results for Defeasible Logic”,ACM Transactions on Computational Logic, vol. 2,
num. 2, 2001, p. 255-287.

[APT 88] APT K., BLAIR H., WALKER A., “Towards a Theory of Declarative Knowledge”,
M INKER J., Ed.,Foundations of Deductive Databases and Logic Programming, p. 89–148,
Morgan Kaufmann, Los Altos, 1988.

[ARA 95] ARAVINDAN C., DUNG P. M., “On the Correctness of Unfold/Fold Transformation
of Normal and Extended Logic Programs”,Journal of Logic Programming, vol. 24, num. 3,
1995, p. 201–217.

Some (in)translatability results 83

[BAB 00] BABOVICH Y., ERDEM E., L IFSCHITZ V., “Fages’ Theorem and Answer Set Pro-
gramming”, Proceedings of the 8th International Workshop on Non-Monotonic Reasoning,
Breckenridge, Colorado, USA, April 2000, cs.AI/0003042.

[BAY 97] BAYARDO R., SCHRAG R., “Using CSP Look-Back Techniques to Solve Real-
World SAT Instances”,Proceedings of the 12th National Conference, AAAI, 1997, p. 203–
208.

[BEN 94] BEN-ELIYAHU R., DECHTER R., “Propositional Semantics for Disjunctive Logic
Programs”, Annals of Mathematics and Artificial Intelligence, vol. 12, num. 1–2, 1994,
p. 53–87.

[BRA 97] BRASSS., DIX J., “Characterizations of the Disjunctive Stable Semantics by Partial
Evaluation”,Journal of Logic Programming, vol. 32, num. 3, 1997, p. 207–228.

[BUG 94] BUGLIESI M., LAMMA E., MELLO P., “Modularity in Logic Programming”,Jour-
nal of Logic Programming, vol. 19–20, 1994, p. 443–502.

[CAB 05] CABALAR P., FERRARIS P., “Propositional Theories are Strongly Equivalent to
Logic Programs”, Submitted for publication, 2005.

[CLA 78] CLARK K. L., “Negation as Failure”,GALLAIRE H., M INKER J., Eds.,Logic and
Data Bases, p. 293-322, Plenum Press, New York, 1978.

[COO 71] COOK S. A., “The Complexity of Theorem Proving Procedures”,Proceedings of
the third Annual ACM Symposium on Theory of Computing, 1971, p. 151–158.

[COS 02] COSTANTINI S., D’A NTONA O., PROVETTI A., “On the Equivalence and Range of
Applicability of Graph-Based Representations of Logic Programs”,Information Processing
Letters, vol. 84, 2002, p. 241–249.

[DIM 97] DIMOPOULOSY., NEBEL B., KOEHLER J., “Encoding Planning Problems in Non-
monotonic Logic Programs”,Proceedings of the Fourth European Conference on Planning,
Toulouse, France, September 1997, Springer-Verlag, p. 169–181.

[DOW 84] DOWLING W. F., GALLIER J. H., “Linear-Time Algorithms for Testing the Satis-
fiability of Propositional Horn Formulae”,Journal of Logic Programming, vol. 3, 1984,
p. 267–284.

[EIT 98] EITER T., LEONE N., MATEIS C., PFEIFER G., SCARCELLO F., “The KR System
DLV : Progress Report, Comparisons and Benchmarks”,Proceedings of the 6th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, Trento, Italy,
June 1998, Morgan Kaufmann, p. 406–417.

[EIT 04] EITER T., FINK M., TOMPITS H., WOLTRAN S., “Simplifying Logic Programs un-
der Uniform and Strong Equivalence”,Proceedings of LPNMR-7, Fort Lauderdale, Florida,
January 2004, Springer, p. 87–99, LNAI 2923.

[EMD 76] VAN EMDEN M., KOWALSKI R., “The Semantics of predicate logic as a program-
ming language”,Journal of the ACM, vol. 23, 1976, p. 733-742.

[ERD 01] ERDEM E., L IFSCHITZ V., “Transitive Closure, Answer Sets and Predicate Com-
pletion”, AAAI Spring Symposium on Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reasoning, AAAI, 2001.

[ERD 03] ERDEM E., L IFSCHITZ V., “Tight Logic Programs”,Theory and Practice of Logic
Programming, vol. 3, num. 4–5, 2003, p. 499–518.

84 JANCL – 16/2006. Implementation of Logics

[ETA 96] ETALLE S., GABBRIELLI M., “Transformations of CLP Modules”,Theoretical
Computer Science, vol. 166, 1996, p. 101–146.

[FAG 94] FAGES F., “Consistency of Clark’s Completion and Existence of Stable Models”,
Journal of Methods of Logic in Computer Science, vol. 1, 1994, p. 51-60.

[FER 05] FERRARIS P., “On Modular Translations and Strong Equivalence”,BARAL C.,
GRECO G., LEONE N., TERRACINA G., Eds.,Proceedings of the 8th International Con-
ference on Logic Programming and Nonmonotonic Reasoning, Diamante, Italy, September
2005, Springer-Verlag, p. 79–91.

[GEL 88] GELFOND M., L IFSCHITZ V., “The Stable Model Semantics for Logic Program-
ming”, Proceedings of the 5th International Conference on Logic Programming, Seattle,
USA, August 1988, The MIT Press, p. 1070–1080.

[GEL 90] GELFOND M., L IFSCHITZ V., “Logic Programs with Classical Negation”,Pro-
ceedings of the 7th International Conference on Logic Programming, Jerusalem, Israel,
June 1990, The MIT Press, p. 579–597.

[GEL 91] GELFOND M., L IFSCHITZ V., “Classical Negation in Logic Programs and Disjunc-
tive Databases”,New Generation Computing, vol. 9, 1991, p. 365–385.

[GEL 02] GELFOND M., LEONE N., “Logic Programming and Knowledge Representation –
The A-Prolog Perspective”,Artificial Intelligence, vol. 138, 2002, p. 3–38.

[GOT 95] GOTTLOB G., “Translating Default Logic into Standard Autoepistemic Logic”,
Journal of the ACM, vol. 42, num. 2, 1995, p. 711-740.

[IMI 87] IMIELINSKI T., “Results on Translating Defaults to Circumscription”,Artificial In-
telligence, vol. 32, 1987, p. 131–146.

[JAN 99a] JANHUNEN T., “Classifying Semi-Normal Default Logic on the Basis of its Expres-
sive Power”, GELFOND M., LEONE N., PFEIFER G., Eds.,Proceedings of the 5th Inter-
national Conference on Logic Programming and Non-Monotonic Reasoning, LPNMR’99,
El Paso, Texas, December 1999, Springer-Verlag, p. 19–33, LNAI 1730.

[JAN 99b] JANHUNEN T., “On the Intertranslatability of Non-monotonic Logics”,Annals of
Mathematics and Artificial Intelligence, vol. 27, num. 1-4, 1999, p. 79–128.

[JAN 00a] JANHUNEN T., “Capturing Stationary and Regular Extensions with Reiter’s Exten-
sions”, OJEDA-ACIEGO M. et al., Eds.,Logics in Artificial Intelligence, European Work-
shop, JELIA 2000, Málaga, Spain, September/October 2000, Springer-Verlag, p. 102–117,
LNAI 1919.

[JAN 00b] JANHUNEN T., “Comparing the Expressive Powers of Some Syntactically Re-
stricted Classes of Logic Programs”,LLOYD J. et al., Eds.,Computational Logic, First
International Conference, London, UK, July 2000, Springer-Verlag, p. 852–866, LNAI
1861.

[JAN 01] JANHUNEN T., “On the Effect of Default Negation on the Expressiveness of Dis-
junctive Rules”, EITER T., FABER W., TRUSZCZYŃSKI M., Eds.,Logic Programming
and Nonmonotonic Reasoning, Proceedings of the 6th International Conference, Vienna,
Austria, September 2001, Springer-Verlag, p. 93–106, LNAI 2173.

[JAN 02] JANHUNEN T., OIKARINEN E., “Testing the Equivalence of Logic Programs under
Stable Model Semantics”,FLESCA S. et al., Eds.,Logics in Artificial Intelligence, Pro-

Some (in)translatability results 85

ceedings of the 8th European Conference, Cosenza, Italy, September 2002, Springer-Verlag,
p. 493–504, LNAI 2424.

[JAN 03a] JANHUNEN T., “Evaluating the Effect of Semi-Normality on the Expressiveness of
Defaults”, Artificial Intelligence, vol. 144, num. 1–2, 2003, p. 233–250.

[JAN 03b] JANHUNEN T., “Translatability and intranslatability results for certain classes of
logic programs”, Series A: Research report num. 82, November 2003, Helsinki University
of Technology, Laboratory for Theoretical Computer Science, Espoo, Finland.

[JAN 04] JANHUNEN T., “Representing Normal Programs with Clauses”,DE MÁNTARAS

R. L., SAITTA L., Eds.,Proceedings of the 16th European Conference on Artificial Intelli-
gence, Valencia, Spain, August 2004, IOS Press, p. 358–362.

[KAU 96] KAUTZ H., SELMAN B., “Pushing the Envelope: Planning, Propositional Logic,
and Stochastic Search”,Proceedings of the 13th National Conference on Artificial Intelli-
gence, Portland, Oregon, July 1996.

[LIE 04] L IERLER Y., MARATEA M., “CMODELS-2: SAT-based Answer Set Solver Enhanced
to Non-tight Programs”, Proceedings of LPNMR-7, Fort Lauderdale, Florida, January
2004, Springer, p. 346–350, LNAI 2923.

[LIF 01] L IFSCHITZ V., PEARCE D., VALVERDE A., “Strongly Equivalent Logic Programs”,
ACM Transactions on Computational Logic, vol. 2, 2001, p. 526-541.

[LIF 06] L IFSCHITZ V., RAZBOROV A., “Why Are There So Many Loop Formulas?”,ACM
Transactions on Computational Logic, vol. 7, num. 2, 2006, To appear, seehttp://www.
acm.org/pubs/tocl/accepted.html.

[LIN 03] L IN F., ZHAO J., “On Tight Logic Programs and Yet Another Translation from Nor-
mal Logic Programs to Propositional Logic”,GOTTLOB G., WALSH T., Eds.,the 18th
International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 2003,
Morgan Kaufmann, p. 853–858.

[LIN 04] L IN F., ZHAO Y., “ASSAT: Computing Answer Sets of a Logic Program by SAT
solvers”,Artificial Intelligence, vol. 157, 2004, p. 115–137.

[LLO 87] LLOYD J., Foundations of Logic Programming, Springer-Verlag, Berlin, 1987.

[MAH 88] MAHER M. J., “Equivalences of Logic Programs”,M INKER J., Ed.,Foundations
of Deductive Databases and Logic Programming, p. 627–658, Morgan Kaufmann, Los
Altos, 1988.

[MAH 93] MAHER M. J., “A Tranformation System for Deductive Databases Modules with
Perfect Model Semantics”,Theoretical Computer Science, vol. 110, num. 2, 1993, p. 377–
403.

[MAR 91] MAREK W., TRUSZCZYŃSKI M., “Autoepistemic Logic”, Journal of the ACM,
vol. 38, 1991, p. 588–619.

[MAR 92] MAREK V. W., SUBRAHMANIAN V. S., “The Relationship between Stable, Sup-
ported, Default and Autoepistemic Semantics for General Logic Programs”,Theoretical
Computer Science, vol. 103, 1992, p. 365–386.

[MAR 99] MAREK W., TRUSZCZYŃSKI M., “Stable Models and an Alternative Logic Pro-
gramming Paradigm”,The Logic Programming Paradigm: a 25-Year Perspective, p. 375–
398, Springer-Verlag, 1999.

86 JANCL – 16/2006. Implementation of Logics

[MOS 01] MOSKEWICZ M., MADIGAN C., ZHAO Y., ZHANG L., MALIK S., “CHAFF: Engi-
neering an Efficient SAT Solver”,Proceedings of the 39th Design Automation Conference,
Las Vegas, 2001.

[NIE 99] NIEMELÄ I., “Logic Programs with Stable Model Semantics as a Constraint Pro-
gramming Paradigm”,Annals of Mathematics and Artificial Intelligence, vol. 25, num. 3–
4, 1999, p. 241–273.

[NUT 94] NUTE D., “Defeasible Logic”, GABBAY D., HOGGER C., ROBINSON J., Eds.,
Handbook of Logic in Artificial Intelligence and Logic Programming, chapter 7, p. 353–
395, Oxford Science Publications, 1994.

[PET 94] PETTOROSSIA., PROIETTI M., “Transformation of Logic Programs: Foundations
and Techniques”,Journal of Logic Programming, vol. 19–20, 1994, p. 261–320.

[REI 78] REITER R., “On Closed World Data Bases”, GALLAIRE H., M INKER J., Eds.,
Logic and Data Bases, p. 55–76, Plenum Press, New York, 1978.

[ROB 65] ROBINSON J. A., “A Machine-Oriented Logic Based on the Resolution Principle”,
Journal of the ACM, vol. 12, num. 1, 1965, p. 23-41.

[SCH 95] SCHLIPF J., “The Expressive Powers of the Logic Programming Semantics”,Jour-
nal of Computer and System Sciences, vol. 51, 1995, p. 64–86.

[SIM 02] SIMONS P., NIEMELÄ I., SOININEN T., “Extending and Implementing the Stable
Model Semantics”,Artificial Intelligence, vol. 138, num. 1–2, 2002, p. 181–234.

[SUB 95] SUBRAHMANIAN V., NAU D., VAGO C., “WFS + Branch and Bound = Stable
Models”, IEEE Transactions on Knowledge and Data Engineering, vol. 7, num. 3, 1995,
p. 362–377.

[TSE 83] TSEITIN G. S., “On the Complexity of Derivation in Propositional Calculus”,SIEK-
MANN J., WRIGHTSON G., Eds.,Automation of Reasoning 2: Classical Papers on Com-
putational Logic 1967-1970, p. 466-483, Springer, Berlin, Heidelberg, 1983.

[TUR 03] TURNERH., “Strong Equivalence Made Easy: Nested Expressions and Weight Con-
straints”,Theory and Practice of Logic Programming, vol. 3, num. 4–5, 2003, p. 609–622.

[VAN 91] VAN GELDER A., ROSSK., SCHLIPF J., “The Well-Founded Semantics for General
Logic Programs”,Journal of the ACM, vol. 38, num. 3, 1991, p. 620–650.

[WOL 04] WOLTRAN S., “Characterizations for Relativized Notions of Equivalence in An-
swer Set Programming”,ALFERESJ., LEITE J., Eds.,Logics in Artificial Intelligence: 9th
European Conference, Springer Verlag, September 2004, p. 161–173, LNAI 3229.

