Some (in)translatability results for normal
logic programs and propositional theories

Tomi Janhunen

Helsinki University of Technology

Department of Computer Science and Engineering
P.O. Box 5400

FI-02015 TKK (Finland)

Tomi.Janhunen@tkk.fi

ABSTRACTIN this article, we compare the expressive powers of classes of normal logic programs
that are obtained by constraining the number of positive subgedls the bodies of rules. The
comparison is based on the existence/nonexistence of polynomial, faithful, and modular (PFM)
translation functions between the classes. As a result, we obtain a strict ordering among the
classes under consideration. Binary programs< 2) are shown to be as expressive as uncon-
strained programs but strictly more expressive than unary programs () which, in turn, are
strictly more expressive than atomic programs= 0). We also take propositional theories into
consideration and prove them to be strictly less expressive than atomic programs. In spite of the
gap in expressiveness, we develop a faithful but non-modular translation function from normal
programs to propositional theories. We consider this as a breakthrough due to sub-quadratic
time complexity (of the order df P|| x log, |Hb(P)[). Furthermore, we present a prototype
implementation of the translation function and demonstrate its promising performance with SAT
solvers using three benchmark problems.

KEYWORDSmodularity, translation functions, expressive power, stable model semantics, answer
set programming, satisfiability solvers.

1. Introduction

Normal logic programs under the stable model semantics [GEL 88] are well-suited
for a variety of knowledge representation tasks. Typically, a programmer solves a
problem at hand (i) by formulating it as a logic program whose stable models corre-
spond to the solutions of the problem and (ii) by computing stable modeds&wver
sets[GEL 90]) for the program using a special-purpose search engine. The reader is
referred e.g. to [MAR 99, NIE 99, GEL 02] for examples of using this kind of con-
straint programming paradigm, also knownaswer set programminfASP). The

Journal of Applied Non-Classical Logics.Volume 16 — No. 1-2/2006, pages 35 to 86

36 JANCL —16/2006. Implementation of Logics

paradigm differs from conventional logic programming [EMD 76, LLO 87] which is
based on query evaluation using the resolution principle [ROB 65]. The success of
stable models and answer set programming is much due to efficient implementations,
such assMODELS[SIM 02] andbLv [EIT 98], which were developed in the 90s.

A basic approach to computing stable models is to usach and boundearch
algorithm [SUB 95] and thavell-founded modelVAN 91] as an approximation in
order to prune search space. Even tighter approximations can be employed given
some assumptions (truth values of atoms) on stable models to be computed [SIM 02].
One particular approximation technique tries to apply raestrapositively if the
headh of a ruleh < ay,...,a, is known/assumed to be false in a stable madel
being computed, then one of the positive subgaali® the body must also be false
in M. This becomes particularly effective when= 1 or all other atoms except
a; are known/assumed to be true . Thena; can be inferred to be false W
which refines the approximation a bit. These observations lead to the basic question
that initiated our researcHs it possible to reduce the number of positive subgoals
appearing in rules in order to accelerate contrapositive reasoning?

To address this problem, we analyze the expressiveness of classes of logic pro-
grams that are obtained by restricting the number of positive subgoals in the bodies of
rules. The aim is to develop and apply a method that is similar to the one developed for
non-monotonic logics [JAN 99b, JAN 03a]. According to this method, a basic step is
to check the existence ofolynomial, faithful and modulafPFM) translation func-
tions between classes. If such a translation function turns out to be non-existent, then
the syntactic constraints imposed on the classes are significant and affect expressive
power. In particular, if there is no PFM translation function that reduces the number of
positive subgoals, then the reduction is likely to be infeasible in practice as it cannot be
done in a localized (modular) way. The results of the expressiveness analysis indicate
that the number of positive subgoals in a rule can be reduced down to two, but going
below that limit is impossible in a faithful and modular way. In spite of this negative
result, we manage to develop a faithful amah-modulay but still fairly systematic,
translation functiofilr 1 for removing positive subgoals altogether.

The elimination of positive subgoals is also interesting as concerns propositional
logic: by composindlrar with Clark’s completion procedure [CLA 78] we obtain a
novel reduction from normal logic programs to propositional theories. This opens new
prospects as regards implementing ASP using SAT solvers for actual computations: a
program can be reduced completely before computing models for the resulting propo-
sitional theory. This is in contrast with earlier approaches [LIN 04, LIE 04] that in-
troduceloop formulasand extend the completion of the program incrementally while
computing models. Moreover, by analyzing and composing reductions from ASP to
SAT we gain new insight into their relationship. In fact, many problems that have
been solved using ASP have also formulations as classical satisfiability problems. But
such formulations tend to be more tedious to accomplish and less concise. For in-
stance, formulating an Al planning problem is much easier as a normal logic program
[DIM 97] than as a set of clauses [KAU 96]. Such practical experiences suggest a

Some (in)translatability results 37

real difference in expressive power which has already been demonstrated in terms of
formal counter-examples [NIE 99].

These observations on the interconnection of ASP and satisfiability checking led
to a further objective for our research. The goal is to develop efficient reductions
from ASP to propositional theories and thus combine the knowledge representation
capabilities of ASP with the efficiency of SAT solvers so that we can benefit from their
rapid development. In this article, we approach this goal in the following respects.
First, propositional theories are taken into account in the expressiveness analysis to
better understand their relationship with the classes of normal logic programs under
consideration. Second, a concrete reduction from ASP to propositional satisfiability
is developed following the lines discussed above. Third, preliminary experiments are
conducted using a prototype implementation and existing solvers. We aim at a proof of
concept by comparing the performance of our translation-based approach with others.

The rest of this article is organized as follows. In Section 2, we review the syntax
and semantics of the formalisms of our interest: normal logic programs and propo-
sitional theories. Moreover, we distinguish syntactic subclasses of normal logic pro-
grams to be analyzed in the sequel. Three central properties of translation functions
are distinguished in Section 3: polynomiality, faithfulness, and modularity. Conse-
quently, a method for comparing the expressive powers of classes of logic programs is
established. The actual expressiveness analysis takes place in Section 4. The classes
of logic programs are ordered on the basis of their expressive powers which gives rise
to an expressive power hierarchy for the classes under consideration. These compar-
isons involve intranslatability results that count on the modularity property. This is
why we pursue non-modular translation functions in Section 6. A particular objective
in this respect is to translate faithfully normal logic programs into propositional the-
ories in sub-quadratic time (The resulting translation function is based an alternative
characterization of stable models devised earlier in Section 5.) After that related work
is addressed in Section 7. We present a prototype implementation of the translation
in Section 8 and compare its performance with a variety of answer set solvers using
three benchmark problems. Finally, we present our conclusions in Section 9.

2. Preliminaries

In this section, we review the basic terminology and definitions of normal logic
programs as well as propositional theories.

2.1. Normal logic programs

In this article, we restrict ourselves to the purely propositional case and consider
only programs that consist of propositional atdm& normal (logic) programP is a
set ofruleswhich are expressions of the form

1. Programs with variables, constants and function symbols are encompassed implicitly
through Herbrand instantiation. However, the forthcoming expressiveness analysis is based

38 JANCL - 16/2006. Implementation of Logics

a<—biy,....b,,~cy,...,~Cp (1)

wherea is an atom, andby,...,b,} and{c,...,c,,} form sets of atoms. Here
~ denoteglefault negatioror Clark’s negation as failure to provfCLA 78], which
differs fromclassical negatiomenoted by-. We definedefault literalsin the standard
way using~ as negation, and given a set of atoriswe let~A denote the set of
negative literal{~a | a € A}. Intuitively speaking, a rule of the form (1) is used as
follows: theheadH(r) = a of r can be inferred by applyingwhenever the conditions
in the bodyB(r) = {by,...,b,} U{~cy,...,~cy} of r are met. This is the case
when thepositive body atomg B*(r) = {by,...,b,} are inferable by the rules
of the program, but not theegative body atom& B~ (r) = {c1,...,¢n}. These
intuitions will be made exact by model theory presented in Section 2.2.

In the sequel, the class of normal programs is denote® bWe extend the pre-
ceding notations to cover any € P. For instanceH(P) = {H(r) | r € P}, and
B(P), BT(P), andB~(P) are analogously defined. The positive partof a ruler
is defined adi(r) «— BT (r). A (normal) programP is positive if » = r* holds for
allrulesr € P. In addition to positive programs, we distinguish normal programs that
are obtained by restricting the number of positive body atoms allowed in a.rule

DEFINITION 1. — A ruler of a normal program is calle@tomic, unary or binary,
if [B*(r)| =0, |B*(r)| <1, or |B*(r)| < 2, respectively.

Moreover, we say that a ruleis strictly unary if [B*(r)| = 1, i.e. itis unary and
not atomic.Strictly binary rules are defined analogously, {BT (r)| = 2. We extend
these conditions to cover a normal progr&nmn the obvious wayP is atomic, unary,
or binary if every rule ofP satisfies the respective condition. E.g.,aaomic normal
program P contains only rules of the form «— ~cy, ..., ~c,,. The conditions set
in Definition 1 imply that atomic programs are unary ones and unary programs are
binary ones. Consequently, the respective classes of normal programs (dengted by
U, andB) are ordered by inclusion as followst ¢ &4 ¢ B C P. The last includes
alsonon-binarynormal programs having at least one ruleith [B*(r)| > 2.

The same syntactic restrictions can be applied within the clagesifivenormal
programsP™ C P. For instance, any unary positive program consists of rules of the
very simple formsa «— andb « c. We let the superscripted symbols", U/*, BT
denote the respective subclasse®df, which are ordered analogousi/™ c U+ C
Bt c P*. Moreover,C* C C holds for each clas§ amongA, U/, andB.

2.2. Semantics
Normal programs can be given a standard model-theoretic semantics. For now, the
Herbrand baséib(P) of a normal logic progran® is defined as the set of atoms that

appear in the rules @P, although a slightly more general definition will be introduced

on finite programs and Herbrand instances, which means that function symbols are not fully
covered.

Some (in)translatability results 39

in Section 3.1. Aninterpretation/ C Hb(P) of a normal programP determines
which atoms of Hb(P) aretrue (a € I) and which atoms aralse(a € Hb(P) — I).

A negative default literalva is given a classical interpretation at this poifit= ~a

<= I [~ a. Given a set of literald, we definel = L <= I = [for every

I € L. The interpretation of rules is similar to that of classical implicatiohg=

holds for a ruler iff < I = B(r) impliesI = H(r). Finally, an interpretatiod

is a (classical) model aP (I = P)iff I |=r for everyr € P. However, the classical
semantics is not sufficient to capture the intended meaning of default literals and we
have to distinguish models that are minimal in the following sense.

DEFINITION 2. — A modelM = P is a minimal model of if and only if there is
no modelM’ = P such thatM’ C M.

In particular, every positive prograi is guaranteed to possess a unique minimal
model of which equals to the intersection of all model®df.LO 87]. We letLM(P)
stand for this particular model, i.e. theast modebf P. The least model semantics
is inherentlymonotonic if P C P’ holds for two positive programs, thdiV(P) C
LM(P’). Moreover, the least mod&M(P) can be constructed iteratively as follows;
see [LLO 87] for a complete treatment. Define an operdtpron sets of atomsl C
Hb(P) by settingTp(A) = {H(r) | r € P andB™*(r) C A}. The iteration sequence
of the operatofT p is defined inductively: (i(lTp 10 =0, (i) Tp 77 = Tp(Tp T
i—1)fori >0, and (i) Tp T w=,., Tp 1 4. Itfollows thatLM(P) = Tp 1
w = Up(Tp) which is reached in a finite number of stepsHfis finite. Given a
positive programP and an atoma € LM(P), we define thdevel numbetev(a) of a
as the least natural numbesuch that € Tp 1 4.

Gelfond and Lifschitz [GEL 88] propose a way to apply the least model semantics
to an arbitrary normal prograt. Given an interpretatiod/ C Hb(P), i.e. a model
candidate, their idea is to redué¥to a positive program

PM =yt |re PandM NB~(r) = 0}.2)

In this way, the negative default literals appearing in the bodies of the rulés of
are simultaneously interpreted with respecifo Since the reducP? is a positive
program, it has a natural semantics determined by the least bt). Equating
this model with the model candidalé used to reducé leads to the idea dftability.

DEeFINITION 3 ([GEL 88]). — An interpretation)/ C Hb(P) of a normal logic
programP is a stable model oP <= M = LM(PM).

In general, a normal logic program need not have a unique stable modé} (see
Example 4 below) nor a stable models at all ($&6n Example 4). The minimality
of stable models is demonstrated By in Example 4:M’ = {a, b} is not stable. In
contrast to the least models of positive programs, stable models may changerin a
monotonicway which implies that conclusions may be retracted under stable model

2. The conditions of Definition 1 have been designed to be compatible with Gelfond-Lifschitz
reduction: IfP belongs to a clas§ € {A,U, B, P} andM C Hb(P), thenP™ € C*.

40 JANCL - 16/2006. Implementation of Logics

semantics. This is demonstrated below using progr@nsnd @2 in Example 4.
Normal logic programs are well-suited for a variety of knowledge representation and
reasoning tasks. The reader is referred e.g. to [MAR 99, NIE 99] for further examples
on using normal logic programs for such tasks in practice.

EXAMPLE 4. — (i) ProgramP; = {a < ~b; b« ~a}® has two stable models
M, = {a} and My = {b}. (ii) ProgramP, = {a < ~a} has no stable models. (iii)
ProgramP; = {a « b; b < a} has a unique stable mod&l = {). (iv) Programs
Q1 = {a — ~b} andQs = Q1 U {b <} have unique stable model$, = {a} and
Ny = {b}, respectively, bufV; Z Ns. O

We emphasize that the semantics of the logic programs in the classes introduced
so far is determined by the stable/least model semantics. Nevertheless, we would like
to remind the reader about its predecessor, namely the one basepported models
[APT 88]. A modelM C Hb(P) of P is supported byP if and only if for each atom
a true in M there is arule- € P such thatti(r) = a andM = B(r). In contrast to
[APT 88], our definition ofT' » covers only positive programs and we have to B$é
to characterize supported models in termJpf

PROPOSITIONS. — AninterpretationV/ C Hb(P) is a supported model @7 <—
M = Tpu(M).

PROOF. — NowM = P < M E PM «— Tpu(M) C M [APT 88, Lemma
2]. On the other hand, the interpretatidfi is supported by? < M is supported
by PM «—= M C Tpu (M) [APT 88, Lemma 3]. n

Thus every stable (resp. supported) moddPa$ also a supported (resp. classical)
model of P [MAR 92] but not necessarily vice versa. For instant€, = {a,b} is a
supported model oP; (resp.N’ = {b} is a classical model af,) in Example 4.

2.3. Propositional theories

We defineclassical literalsin the standard way using classical negatioas the
connective. AclauseC is a finite set of classical literals

{31,...,an,_|b1,...,_‘bm} (3)

representing a disjunction of its constituents.prpositional theory in a conjunc-
tive normal fornt is a set of clause$ representing a conjunction of the clauses (3)
contained inS. In the sequel, the class of propositional theories is denotg@by

Given a set of clauseS, we letHb(S) denote its Herbrand base so that inter-
pretations/ for S can be defined as subsetsHif(.S) in analogy to Section 2.2. The
satisfaction relatiof= is defined in the standard way for clauses (3). Similarly to logic
programs, a set of clausésgives rise to a set of models\/ C Hb(S) | M E S},

3. To avoid confusions, we use semicologistt separate rules in logic programs.
4. Without loss of generality under polynomial and faithful translations; see Section 3.3.

Some (in)translatability results 41

but the essential difference is that all classical models are taken into account. A set of
clausessS is satisfiablef it has at least one model, anmhsatisfiableotherwise.

3. Translation functions

The author has analyzed the expressive powermnfmonotonic logicén a sys-
tematic fashion [JAN 99b, JAN 03a, JAN 00a] which extends previous results ob-
tained by Imielinski [IMI 87] and Gottlob [GOT 95]. The comparison is based on the
existence/non-existence pblynomial faithful andmodular (PFM) translation func-
tions between non-monotonic logics under consideration. As a result, the expressive
power hierarchy (EPH) of non-monotonic logics [JAN 03a] was gradually established.
In this section, we propose an analogous framework to compare the expressive pow-
ers of classe€ of logic programs. We begin by making certain general assumptions
about (classes of) logic programs in Section 3.1. Based on these assumptions we are
ready to define the notion efsible equivalencén Section 3.2 and to introduce PFM
translation functions between classes of logic programs in Section 3.3. The resulting
classification method for expressiveness analysis is summarized in Section 3.4.

3.1. General assumptions about (classes of) logic programs

At this level of abstraction, logic prograni3 are understood syntactically as sets
of expressions built of propositional atoms. This is to cover also other formalisms
in addition to those introduced in Section 2. There we defined the Herbrand base
Hb(P) as the set of atoms that effectivedppearin P. Basically, we would like
to apply the same principle at this level abstraction, but sometimes there is a need
to extendHb(P) with certain atoms that do not appearfh This kind of a setting
may arise e.g. when a particular logic progratris being optimized. Suppose that
an atoma € Hb(P) is recognized useless in the progréhand all of its occurrences
(and possibly the rules involved) are removed fremThusa ¢ Hb(P’) holds for the
resulting progran®’. Let us mention® = {a <— a} andP’ = {) as concrete examples
of such programs, whose least models coincide. The facttsdorgotten in this way
impedes the comparison &f and P’ in a sense (to be made precise in Section 3.2),
since their Herbrand bases become different according to our preliminary definition.
For this reason, we propose a revised definitiéts(P) is any fixed set of atoms
containing all atoms that actually appear in the rule®ofThusHb(P) acts as the
symbol tableof P which also contributes to the length of the program; viewed now
as a pair(P, Hb(P)) rather than just a set of rules. For instance, the ffaifa})
properly represents the progra discussed above.

However, there is a further aspect of atoms that affects the way we treat Herbrand
bases, namely thésibility of atoms. Itis typical in answer set programming that only
certain atoms appearing in a program are relevant for representing the solutions of the
problem being solved. Others act as auxiliary concepts that can be usidagnfrom
the user altogether. In fact, the choice of such concepts may vary in other programs

42 JANCL - 16/2006. Implementation of Logics

written for the same problem. As a side effect, the models assigned to programs
may differ already on the basis of auxiliary atoms although they capture the same set
of solutions. Rather than introducing a hiding mechanism in the rule language, we
let the programmérdecide the visible part afib(P), i.e. Hb, (P) C Hb(P) which
determines the set of hidden atoHis, (P) = Hb(P)—Hb, (P). The ideas presented

so far are combined in the following definition.

DEFINITION 6. — A logic program is a triple(P, Hb,, (P), Hby, (P)) where

1) P is a set of syntactic expressions (e.g. rules) built of propositional atoms,

2) Hb, (P) andHby, (P) are disjoint sets of atoms and determine the visible and
hidden Herbrand bases of the program, respectively, and

3) all atoms occurring inP are contained irtib(P) = Hb, (P) U Hby,(P).
Finally, we defindib, (P) as the set of atomse Hb(P) not occurring inP.

Note that the atoms dib, (P) can be viewed aadditionalatoms that just extend
Hb(P). By a slight abuse of notation, we often uBerather than the whole triple
when referring to a programiP, Hb, (P), Hby(P)). To ease the treatment of pro-
grams in the sequel, we make some default assumptions regarding tH&&B)sand
Hb, (P). Unless otherwise stated, we assume that(P) = Hb(P), Hb,(P) = 0,
andHb, (P) = 0, i.e. Hb(P) contains only atoms that actually appea#in

EXAMPLE 7. — Given P = {a « ~b}, the default interpretation is th&h(P) =
{a,b}, Hby(P) = Hb(P) = {a,b}, andHb,(P) = (). To make an exception, we
have to add explicitly thaib, (P) = {a,c} andHby(P) = {b}, for example. O

Having now settled our concerns regarding the Herbrand bases of programs, we
make some general assumptions about classes of logic programs. These will be needed
when the requirements for translation functions are formulated in Sections 3.2 and 3.3.

DEFINITION 8. — Any clas< of logic programs must satisfy the following.

Al. EveryP € C and its Herbrand baselb, (P) andHb, (P) arefinite.

A2. The clas€ has asemantic operatoSem¢ which maps a progran® € C to a
set of interpretation§em¢ (P) C 2HP(P) which determines the semanticsrf

The first assumption reflects the fact that we take propositional logic programs
as potential inputs to translator programs as well as solvers that compute models for
them. Hence we must be able to encode any program under consideration as a finite
string of symbols. This excludes the possibility of instantiating a logic program in-
volving variables and function symbols to a fully propositional one. By the second
assumption, the semantics of each progtanm a classC is determined by a set of
total ® interpretationsSemc (P). Given an interpretatiod € Semc(P), each atom

5. E.g., the front-end of theMoDELS system [SIM 02] enables visibility control in terms of
hideandshowstatements.

6. Itis quite possible to generalize A2 to coymartial modelslike the well-wounded model
[VAN 91], but such models are not addressed in this article.

Some (in)translatability results 43

a € Hb(P) is assigned to either true or false as done in Sections 2.2 and 2.3. Hence
we assume a two-valued semantics for each class of logic programs in this article.

It is easy to see that the finite fragments of the classes of logic progfanto-
duced in Section 2.1 satisfy these assumptions. In the sequel, we identify these classes
with their finite fragments. The semantic operator is given below in (4). Note that the
stable semantics coincides with the least model semantics in the case of positive pro-
grams. Due to flexibility of Definitions 6 and 8 it is possible to view the class of finite
propositional theorie®7 as a class of logic programs given the respective semantic
operator in (5). This enables the comparison of these classes in sections to come.

Seme(P) = SM(P) = {M C Hb(P) | M = LM(PM)} (4)
Sempr (S) = CM(S) = {M C Hb(S) | M = 5})

3.2. Visible equivalence

Having defined the semantics of logic programs on an abstract level, the next issue
is to define the conditions on which two representati#esnd) of a given class of
logic programsC can be considered to be equivalent. It is natural that the answer
to this question goes back to semantics. A straightforward notion of equivalence is
obtained by equatin§em¢ (P) andSem¢ (Q). This corresponds to the basic notion of
equivalence proposed for normal programs under stable model semantics, but stronger
notions have also been proposed. For instance, Lifschitz et al. [LIF 01] corBider
and @ strongly equivalengiven thatSem¢(P U R) = Sem¢(Q U R) for all other
programsR. Consequently, the strong equivalencaond@ implies thatP and@
can be freely used as substitutes of each other. Although such a notion seems attractive
at the first glance, a drawback is that it is rather restrictive — allowing only relatively
straightforward semantics-preserving modifications to rules [EIT 04].

Both approaches share another problem: the modelsiin: (P) and Sem¢(Q)
have to be identical subsetsldb(P) andHb(Q), respectively. Therefore, we propose
a notion of equivalence which tries to take the interfaces of logic programs properly
into account. The idea is that atomsHib,, (P) andHby, (Q) are considered as local
to P and@ and negligible as far as the equivalence of the programs is concerned.

DEFINITION 9. — Logic programsP € C and@ € C’ arevisibly equivalentdenoted
by P =, Q, ifand only ifHb, (P) = Hb,(Q) and there is a bijectiorf : Sem¢(P) —
Semc: (@) such that for everyM € Seme(P),

M N Hby (P) = £(M) N Hby (Q). (6)

Note that this notion of equivalence can be applied both within a single class of
logic programs, and between different classes, which may be syntactically and/or se-

44 JANCL - 16/2006. Implementation of Logics

mantically different. This is a very important aspect, as we intend to study the inter-
relationships of such classes of programs in the sequel.

ExXAMPLE 10. — Consider a progran® = {a «<— ~b; b « ~a; ¢+« a; c « ~a}
with Hb,(P) = {a,c} and stable modeld3/; = {a,c} and My = {b,c}. Thus
Hb,(P) = {b} remains hidden when we compafewith a set of clause$ =
{{a,d}, {—a,~d}, {a,c}, {—a,c}} possessing exactly two classical modals =
{a,c} andN; = {d, c}, asHb(S) = {a,c,d}. We can hided by settingHb, (S) =
{a,c}. ThenP =, S holds, astHb,(P) = Hb,(S) and there is a bijection from
f: SM(P) — CM(S) that (i) mapsM; to N; so thatM; N Hb,(P) = {a,c} =
N; NHb,(Q), and (i) maps\M; to N so thathMs NHb, (P) = {c} = N2 NHb,(Q).
]

PROPOSITION11. — =, is an equivalence relation among all programs.

PrRoOOF. — The reflexivity of =, follows essentially by the identity mapping:
Sem¢ (P) — Sem¢(P) for any P from anyC. The symmetry of=, is also easily
obtained. GivenP? =, Q@ for any programs” and(@ from any classe€ and(’, the
existence of an inverse for a bijectigh: Sem¢(P) — Seme (Q) is guaranteed. For
the transitivity of=,, let f; and f, be the respective bijections involved ih=, @
and@ =, RwhereP € Cy, Q € C, andR € C3. ltis clear thatf; o f5 is also
a bijection, and we have for al/ € Semg, (P) that M N Hb,(P) = fi(M) N
Hb,(Q) = fo(f1(M)) NHby(R) = (f1 o fo)(M) nHb,(R). Moreover,Hb, (P) =
Hb,(Q) andHb, (Q) = Hb,(R) imply Hb, (P) = Hb,(R). ThusP =, R. [

It is worthwhile to do some comparisons. By settiHy, (P) = Hb(P) and
Hb,(Q) = Hb(Q), the relation=,, becomes very close to the notion of weak equiva-
lence discussed in the beginning of this section, if interpreted with respect to the class
of normal programs under the stable model semantics. The only difference is the im-
plied additional requirement thalib(P) = Hb(Q) in order toP = Q@ to hold. By the
approach taken in Section 3.1 this requirement becomes of little account: Herbrand
bases are always extendible to m>(P) = Hb(Q). Actually, we can state the
same abouts, using a generalized notion of weak equivalenPe= (@ is defined to
hold for P € C and@ € ¢’ <= Semc¢(P) = Seme/ (Q). Itis clear that= is also an
equivalence relation among all programs.

PrRoPOSITION12 ([JAN 03]). — If P and @ are logic programs having equal
Herbrand baseélb, (P), Hb(P), Hb,(Q), andHb(Q), thenP = Q <— P =, Q.

As regards the equivalence of logic programs, an alternative approach is to use

theirskepticalandbraveconsequences as a criterion. A propositional formutased

on Hb, (P) is a skeptical (resp. brave) consequence’aff M | ¢ for all (resp.

for some)M € SM(P). For the sake of comparison, we defiffeand @ to be
equivalent in the skeptical (resp. brave) sense, denBted, @ (resp.P =1, Q) iff

Hb, (P) = Hb,(Q) and the skeptical (resp. brave) consequencd3 afid() are the
same. Yet weaker notion of equivalence is obtained by usimgistencyas the only
criteria: P =, Q iff Hb,(P) = Hb,(Q) andSM(P) = 0 += SM(Q) = (). These
alternative notions of equivalence relate with visible equivalence as follows.

Some (in)translatability results 45

PrROPOSITION13. — Let P and @ be two logic programs. TheR =, @ implies
bothP =, @ and P =,;, Q which, in turn, separately imply =, Q.

PROOF. — Supposéb, (P) = Hb,(Q) since these implications hold otherwise.
(i) If P #. Q, then we may assumeM(P) = () andSM(Q) # 0 without loss
of generality. It follows thatl is a skeptical consequence Bf but not that of@,
i.,e. P #, Q. On the other hand] is a brave consequence €f but not that of
P which indicates thaf” #,;, Q. (i) If P #,5 Q, we may assume without loss of
generality thaty has a skeptical consequeng®dased orfib, (Q) = Hb, (P) which

is not that of P. Then there is\/ € SM(P) such thatM [~ ¢. AssumingP =, @,
there is a bijectionf so thatN = f(M) € SM(Q) coincides with withAM up to
Hb,(P) = Hb,(Q). It follows that N [~ ¢. A contradiction, asp is a skeptical
consequence d@f. HenceP #, Q. (iii) Analogously, if P #,1, @, we may assume a
brave consequencgof P which is based ofilb, (P) = Hb,(Q) and which is not a
brave consequence &f. It follows thatM = ¢ for someM € SM(P). Let us then
assumeP =, @ and letf be the respective bijection for stable models. Théek= ¢
holds forN = f(M) € Hb(Q), a contradiction. Thu® #, Q. |

The converse implications do not hold in general. Poe {a «+ ~b} and@ = ()
with Hb, (P) = Hb,(Q) = {a}, we haveSM(P) = {{a}} andSM(Q) = {0}
so thatP =,. Q. However,a is a skeptical/brave conclusion @t but not that
of Q. ThusP #,, Q andP #,, @. On the other hand, let us considBr =
{a <~ bja—c¢;b— ~c;c — ~b} andQ = {a <} with Hb,(P) = Hb,(Q) = {a}.
Now P =,s Q andP =3, @ asSM(P) = {{a, b}, {a,c}} andSM(Q) = {{a}}. But
a bijective correspondence betwedvi(P) andSM(Q) is impossible. Thu® #, Q.

3.3. Requirements for translation functions

We are now ready to formulate our criteria for a translation funcfion C — C’
that transforms logic prograni3 of one clas€ into logic programslr(P) of another
classC’. In many cases of interest, the latter class is a subclass or a superafass of
but it makes also sense to perform translations between classes that are incomparable
in this respect (such @ andP7 introduced so far). It is assumed below that both
the source class and the target clas® satisfy assumptions listed in Definition 8.

DEFINITION 14. — A translation functiornlr : C — C’ is polynomialif and only if
for all programsP € C, the time required to compute the translatién(P) € C' is
polynomial in|| P||, i.e. the length of” in symbols.

Note that the length of the translati¢|Tr(P)|| is also polynomial in|P|| if Tr
is polynomial. In many cases, even linear time translation functions can be devised
for particular classes of logic programs. Such transformations are highly desirable to
allow efficient transformation of knowledge from one representation to another.

DEFINITION 15. — A translation functiorilr : C — (’ is faithful if and only if for
al PeC,P=, Tr(P).

46 JANCL - 16/2006. Implementation of Logics

Here we emphasize th& =, Tr(P) implies Hb,(P) = Hb,(Tr(P)) by the
definition of=,. Thus a faithful translation functiofir may introduce new atoms,
which have to remain invisible, or forget old invisible atoms. Moreover, if we insist
on polynomiality, then the number of new atoms gets limited, too. The possibility of
introducing new atoms is a crucial option for translation functions to be presented in
the sequel. This is because new atoms serve as shorthands for more complex logical
expressions that save space and enable translation functions between certain classes.

The existence of a bijectiofi betweerSem¢ (P) andSemc: (Tr(P)) ensures that
the semantics aP is captured bylr (P) to a sufficient degree as regards ASP: there is
a bijective correspondence of models and the models coincide Hp.toP). Recall
that in ASP the models ifiem¢ (P) correspond to the solutions of the problem being
solved, and such a tight relationship is necessary in order to preseraertiteerof
solutions. This is an important aspect often neglected in literature. The number of
solutions would not be preserved if the notion of faithfulness were weakened by re-
placing=, in Definition 15 with any of the weaker equivalence relatieng, =,
and=,. considered in Proposition 13. On the other hand, if a particular translation
function Tr is proved faithful in the sense of Definition 15, then aRc=,s Tr(P),
P =, Tr(P), and P =,. Tr(P) hold for all P € C, i.e. Tr preserves skepti-
cal and brave conclusions as well as consistency within the language determined by
Hb,(P) = Hb,(Tr(P)). Nevertheless, any intranslatability results may be affected
by such weakenings. E.qg., if a faithful translation is proved non-existent asinthe
proof may not be valid if weaker notions of faithfulness are taken into consideration.

The third requirement for translation functions, nanmalydularity, is based on the
idea of combiningisjoint program modules together. The module conditions below
make precise which combinations of programs are considered appropriate.

DEFINITION 16. — Logic programsP € C and() € C satisfymodule conditionsf
and only if

M1. PNnQ =0,

M2. Hb,(P) N Hb,(Q) = 0,

M3. Hby, (P) N Hb(Q) = 0, and

M4. Hb(P) N Hby(Q) = 0.

DEFINITION 17. — A translation functiorilr : C — C’ is modularif and only if for
all programsP € C and@ € C satisfying module conditions M1-M4,

Tr(PUQ) =Tr(P)UTr(Q))]
and the translationgr (P) and Tr(Q) satisfy module conditions M1-M4.

The aim of the modularity condition is to enforce the localitylofwith respect to
subprogramg” and@ which can be viewed as program modules that interact through

7. Tosee why M2 is analogous to M1, note that for a normal progfaan atoma € Hb, (P)
is parallel to auselesgtautological) rulea < a € P such thata does not occur elsewhere in
the program. Such rules do not affect stable models but may create new classical models.

Some (in)translatability results 47

visible atoms only. By (7), the modulésand@ have to be separately translatable and
the translationlr (P U Q) is obtained as the union of the translations of the modules.
In addition, a modular translation function is supposed to preserve module conditions
M1-M4, i.e. the respective translatiofis(P) and Tr(Q) are supposed to remain
disjoint and share only visible atoms. The modularity condition becomes void when
programs share rules or hidden atoms.

PrROPOSITION18 ([JAN 038]). — If Try : Cy — C; andTry : Co — C3 are two
polynomial, faithful, or modular translation functions, then their composition o
Try : C; — C3 is also polynomial, faithful, or modular, respectively.

3.4. Classification method

The criteria collected in Definitions 14-17 lead to a method for comparing classes
of logic programs on the basis of their expressive power. We say that a translation
functionTr : C — C’ is PFM if and only if it is polynomial, faithful, and modular
simultaneously. If there exists such a translation funcliepwe writeC <ppy C’ to
denote that the clag® is at least as expressive # clas€’. This is simply because
the essentials of any prografhe C can be captured using the translatibr{ P) € C’.

In certain cases, we are able to construct a counter-example which shows that a PFM
translation function is impossible, denoted®ypry C'. The base relationSpry
and<pgry @among classes of logic programs form the cornerstones of the classification
method — giving rise to relations given in Table 1.

Table 1. Relations used by the classification method

Relation Definition Explanation

C <prm C' | C <ppm €' andC’ £Lppy C | C is strictly less expressivimanC’

C =prm C' | C <ppm €’ andC’ <ppym C | C andC’ areequally expressive

C #prm C' | C £ppMm €' andC’ £Lppy C | C andC’ areincomparable

It is sometimes convenient to introduce variants of the relatiops, and £prum
which are obtained by dropping some of the three requirements and the corresponding
letter(s) in the notation. For instance, if we establiskry; C’ for certain classe§
andC’ of logic programs, the@ £pgy C’ follows immediately. Alsonon-modular
translation functions will be addressed in this article and the resulting relationships
involve <p rather than<ppy. In certain cases, it is easy to establish relationships
regarding<prny. By the following, we address a frequently appearing case where the
syntax is generalized while the semantics is kept compatible with the original one.

PrROPOSITION19 ([JAN 03]). — If C and(’ are two classes of logic programs
such thatC C ¢’ andSem¢(P) = Seme, (P) forall P € C, thenC <ppm C'.

48 JANCL - 16/2006. Implementation of Logics

In many cases, we manage to construct faithful translation functions that only add
new hidden atoms to programs being translated. The following proposition provides
us with a sufficient set of conditions using which faithfulness can be proved in a sys-
tematic fashion. The proof [JAN 03b] employs the second condition to establish that
Ext is indeed an injective function fro8emc (P) to Seme: (Tr (P)) whereas the third
condition ensures thdtxt is a surjection and thus also a bijection.

PROPOSITION20. — A translation functionTr : ¢ — (' is faithful if for every
programP € C,

1) Hb(P) C Hb(Tr(P)) andHb, (Tr(P)) = Hb, (P);

2) there is an extension operatdlxt : Sem¢(P) — Seme (Tr(P)) such that
VM € Seme(P) : M = Ext(M) N Hb(P); and

3)if N € Seme: (Tr(P)), thenM = N N Hb(P) € Semc(P) such thatN =
Ext(M).

4. Expressive power analysis

In this section, we compare the expressive powers of the classes of logic programs
introduced in Section 2.1 using the classification method presented in Section 3.4.
Due to the nature of the syntactic constraints, the key problem is to see whether there
are ways to reduce the number of positive body literals in the bodies of rules. The
results of this section will indicate that this is possible to some extent, but not in
general, i.e. there is no faithful and modular way of remowahgpositive body literals
from rules. As a preparation for the expressive power analysis, we distinguish certain
properties program modules and positive programs in Section 4.1. Then we analyze
the expressiveness of the class of normal progr&nasd its subclassesA(¢/, and
B) in Section 4.2. The stable model semantics in its full generality makes the analysis
rather intricate and involved. The analysis of positive programs is much easier and
we basically skip it by concluding analogous relationships for the classes of positive
programs. Finally, we take classical propositional logic into consideration in Section
4.3 and relate sets of clauses under classical models with the other classes.

4.1. Some properties of program modules and positive programs

We prepare the forthcoming expressive power analysis by presenting two useful
properties of program modules under the least/stable model semantics. The first prop-
erty is related with a positive prografu @ consisting of two subprogranizd and@
so that the module conditions M1-M4 from Definition 16 are satisfied. Here the aim is
to provide sufficient conditions for removing either one of the modules by evaluating
its effect on the joint least mod&M (P U @) and by replacing it with a compensating
atomic program. Formally, we propose a reduction that yields a set of atomic rules.

Some (in)translatability results 49

DEFINITION 21. — Given a positive normal progran® € P* and an interpre-
tation I, the visible net reductionof P is P} = {a < | a € Hb,(P) NI} so that
Hb, (Py) = Hb(Py) = Hb,(P) which makes all atoms d? visible.

The reduced prograrty overestimates’ in a sense, since «— may be included
in Py even if there is no rule € P such thattl(r) = a. However, the reducP;’ can
be formed externally without knowing exactly which rules constitute the program
being reduced. In addition, we assumed that the interpretatiom®efinition 21 may
contain atoms outsidHb(P). This setting is easily realized whéenis placed as a
program module in the context of another progr@mif I is a model forP U @, then
the set of atoms encoded as atomic rule®’jncan be understood as the maximum
contribution of the rules of” for the atoms that are true ih In the sequel, we will
apply the visible net reduction w.r.t. least models in the following way.

LEMMA 22 ([JAN 03]). — Let P and@ be two positive programs satisfying the
module conditions M1-M4 antd = LM(PUQ) C Hb(P)UHb(Q). ThenLM(Py,U
Q) = M N (Hby(P) UHb(Q)) holds for the visible net redudty,.

The second property allows us to combine stable models of program modules un-
der certain circumstances to form a stable model for a larger program.

LEMMA 23 ([JAN 038]). — Let P and@ be two normal programs satisfying the
module conditions. I/ € SM(P), N € SM(Q), and M N Hb,(P) NHb,(Q) =
NNHb, (P)NHb,(Q),thenM UN € SM(PUQ) and(PUQ)MYN = pMyQN.

We need a subsidiary result abautary programsP: if an atoma is included
in LM(P), then P contains at least one atomic rule which causes the atdonbe
inferable by the strictly unary rules d?, i.e. to be included i.M(P). Note that
LM(P) = (for any strictly unary progran®.

LEMMA 24. — Let P = P, U P, be a unary positive program wherg contains the
strictly unary rules ofP and P, contains the atomic rules @?. If a € LM(P), then
P, contains an atomic rulé < such thats € LM(P; U {b «}).

PRoOOF. — We use complete induction on the level numbet(a) > 0 to prove the
claim for any atoma € LM(P; U Fy) = LM(P).

For the base case, assume fleafa) = 1 which implies thatt € Tp,up, T 1 =
Tpup,(0). Thusa < must appear itPy. Itis also clear thah € Tp, sy 1

Tp,ufacy () SO thata € LM(Py U {a <}).

1
1

Then consider the case tHat(a) = ¢ > 1. Thena € Tp,up, T ¢ and thereis a
unary rulea < b € P; suchthab € Tp,up, Ti— 1. Sinceb € LM(P; U Fy) and
0 < lev(b) < lev(a) = 4, it follows by the inductive hypothesis that there is an atomic
rulec — in P, such thab € LM(P; U {c «<}). This impliesa € LM(P; U {c «}),
because the rule — b belongs taP; .]

LEMMA 25. — For positive atomic program$, LM(P) = {H(r) | r € P} =
H(P).

PROOF. — Obviously, we havé M(P) = Ifp(Tp) = Tp(0) = {H(r) |r € P}. m

50 JANCL - 16/2006. Implementation of Logics

4.2. Expressiveness analysis of normal programs

In Section 2.1, we identify three subclassegPoivhich are obtained by restrict-
ing the syntax of the rules whereas the semantics of logic programs in these classes
remains unchanged. Thus we obtain the relationsHigsern U <prm B <prm P
directly by Proposition 19, but it remains open whether these relationships are strict or
not. We begin with a study of the relationstBp<pry P. In fact, anynon-binaryrule

a <« by,...,b,,~cq,...,~c, Wheren > 2 can be rewritten to reduce the number
of positive body literals that appear in the rule. One technique is to introduecé
new atomsy?, ..., al,_; and a set of binary rul€brgn(r):
a <« by,al,~cy,...,~Cp;
al « bg,al; ...; al 5« by_1,al_4; (8)
ar_q < by.
It may be tempting to copy the negative body literals;, . . ., ~c,, to every rule

in (8), but that would lead to a quadratic translation and we prefer a linear one for the
sake of efficiency. The new atom§, ..., a],_; carry the identity or- because they

are supposed to Hecal to and hidden irilrg;x (7). This arrangement ensures that
the module conditions M3 and M4, i.élby, (Trgix(r1)) N Hb(Trpn(r2)) = 0 and
Hb(Trpn(r1)) N Hby (Trein(r2)) = 0, hold for any two non-binary rules andr

sharing no hidden atoms. The translatibigy extends for programs as follows.

DEFINITION 26. — For everyP € P, defineTrgin(P) =

{r|re PandB*(r)| <2} U U{TI“B[N(’I“) |r € PandBY(r)| >2}. (9)

Moreover, letb, (Trgin(P)) = Hby (P) andHb, (Trgin(P)) = Hb,(P).

To ease correctness considerations, we define for each non-binary glé,
the translationTrgn(r) in (8), and an interpretatiod C Hb(P), the set ofim-
plied body atomdBA(r, I) which containsa from (8) whenevef < i < n and
bi+1 € I,...,b, € I. For binary rules € P, IBA(r,I) = 0. Then we may define
IBA(P,I) = |J{IBA(r,I) | r € P} for a normal progranmP and an interpretation
I C Hb(P). Note that the Herbrand baseh(Trgin(P)) of the whole translation is
obtained aglb(P) U IBA(P, Hb(P)).

LEMMA 27 ([JAN 038]). — Let P be a normal program andrpgx (P) its trans-
lation into a binary normal program.

1) If My € My C Hb(P) and M; | PM2, thenN; = Trein(P)2 where
Ny =M U IBA(P, JV[l) and N, = M, UIBA(P, MQ)

2) If Ny C Ny C Hb(TI‘BIN(P)) and N; }: TI"BIN(P)Nz, thenM; C M, and
My ’: PM> hold forM; = N; me(P) andM; = Ny me(P)

8. Inpractice, such atoms can be created using a numbering scheme that also takes the identity
of r into account to avoid a clash with numbers introduced for other rules.

Some (in)translatability results 51

PROPOSITION28 ([JAN 03]). — Let P be a normal logic program. I/ is a
stable model of?, thenN = M UIBA(P, M) is a stable model dfrgx(P) such
that M = N N Hb(P).

PrROPOSITION29 ([JAN 03]). — Let P be a normal logic program. IfV is a
stable model offrpn(P), thenM = N N Hb(P) is a stable model oP such that
N = M UIBA(P, M).

THEOREM30. — P <ppm B.

PROOF. — Let us begin with the faithfulness dfrgyn. It is clear by Definition
26 thatHb(P) C Hb(Trgin(P)) andHb, (Trgin(P)) = Hb,(P). By Proposition
28 there is an extension functidixtginy : SM(P) — SM(Trgin(P)) that maps
M e SM(P) into N = Extgin(M) = M UIBA(P, M) included inSM(Trgin(P))
such thatM = N N Hb(P). In addition to this, we know by Proposition 29 that if
N e SM(TI‘BIN(P)), thenM = NN Hb(P) S SM(P) andN = Extgin (M) Thus
Trpy is faithful by Proposition 20.

To establish modularity ofrgix, let P and@ be two normal programs such that
the module conditions M1-M4 from Definition 16 are satisfied. It is obvious by Defi-
nition 26 thatTrgin(PUQ) = Trein(P)UTrein(Q). Let us then establish M1-M4.

(M1) Suppose thdlrgn(P) andTrgin (@) share a rule. Two cases arise.

1) Suppose that € P. Then|B*(r)| < 2 holds by the definition offrgn (P).
Moreover, it follows thatr ¢ @, asP N @ = () by the module conditions. It follows
thatr ¢ Trpin(Q), @ contradiction.

2) Suppose that € Trgn(r’) for some non-binary rule’ € P. It follows by the
module conditions that’ ¢ Q. This means that no rule froffirgix (1) is mcluded
in Trpin(Q), since these rules are uniquely determined by new atdms. ., a’_,
which depend on’, a contradiction.

It follows that Trgin (P) N Trein (Q) = 0.

(M2) BecauseP and(satisfy M2, we know thatlb,(P) N Hb,(Q) =
Definition 26, these sets are preservedibyy, i.e. Hb, (Trgin(P)) = Hb,) and
Hba(TI"BIN (Q)) = Hba(Q) ThUSHba(TI‘BIN(P)) n Hba(TI'BIN (Q)) 0.

(M3) Let us then assume thalby, (Trgn(P)) and Hb(Trgn(Q)) share some
atoma. Again, two cases arise.

1) Assume that € Hby, (P). SinceP and(@ satisfy module conditions, we know
thata ¢ Hb(Q). Sincea € Hb(Trpn(Q)), the atoma must be one of the new
atomsa?,...,a" _, associated with a non-binary rutlee @ with |[B*(r)] = n. A

contradiction by Definition 26, as € Hby,(P) and P is also subject to translation as
a module ofP U Q.

2) Suppose that € Hby, (Trgin(P)) — Hby(P). Thena must be one of the new
atomsa?,...,a’ _, associated with a non-binary rutee P with [BT(r)| = n. If
a € Hb(Q), thena is not new, a contradiction. i € Hb(Trpn(Q)) — Hb(Q), then

52 JANCL - 16/2006. Implementation of Logics

a must be one of the new atora§ associated with a non-binary rulé € Q with
[B*(r")| > 2. Such atoms are different by Definition 26, a contradiction.

ThUSth(TI'BIN (P)) N Hb(TI‘BIN (Q)) = (.
(M4) The last module condition follows by symmetry w.r.t the preceding one.

By Definition 26 and the modularity 6frgiy, the translatiorlrgn (P) of a nor-
mal programP € P can be computed on a rule-by-rule basis. Moreover, the trans-
lation can be done in time linear ihP||, because (i) binary rules can be passed on
unmodified and (ii) any non-binary rule (1) consisting2ef + 3m + 2 symbols is
replaced byn rules (8) consisting of6 + 3m) + (n —2) x 6 +4 = 6n + 3m — 2
symbols, (iii) the atoms b, (P) remain intact.]

COROLLARY 31. — B =ppym P.

The mainintranslatabilityresult of this article follows: it is established that binary
rules are not expressible in terms of unary rules even if we allow arbitrary number of
negative literals in the bodies of rules or use an arbitrary number of unary rules.

THEOREM32. — B £rM U.

PROOF. — Let us assume that there is a faithful and modular translation function
Tryn from binary normal logic programs to unary ones. We intend to afipiyy

to a strictly binary normal logic progra®® = {a < b,c; b+« c,a; c < a,b}in
conjunction with atomic programd; = {a <}, 4 = {b <}, andA43 = {c <}.

For these programdib,(B) = Hb(B) = {a,b,c}, Hb,(A;) = Hb(A4;) = {a},
Hb,(A2) = Hb(As) = {b}, andHb, (A43) = Hb(A3) = {c}. As there are no invis-

ible atoms and the rules of the four programs are all distinct, the module conditions
from Definition 16 are trivially satisfied.

Note that the rules aB essentially express that if any two of the atamb, andc
are inferable, then the third one should be, too. Thus each of the programsU A,,
BUAsU A3, andBU A3 U A; has a unique stable mod®l = {a, b, c}. SinceTryy
is faithful and modular, there are respective unigue stable models

Ny = LM(TI‘UN(B)Nl U TI‘UN(Al)Nl U TrUN(AQ)Nl)
Ny = LM(TI‘UN(B)N2 U TrUN(A2)N2 U TI‘UN(A;;)N2) (10)
N3 = LM(TI‘UN(B)N3 U Tl"UN(Ag)N3 U TI'UN(Al)NS)

of the translationTryn(BUA; U A), Trun(BU A3 U As), andTryn (BU A3 U Ay).

These three stable models have to be assumed different, as the modules constituting
the respective translations may involve invisible atoms and each of them is based on a
different combination of modules.

Let us then turn our attention to the first equation in (10) and the “missing mod-
ule” Tryx(A4s). Note thatAs has a unique stable modé&f; = {c}. Let N} =
LM(Tryn(A4s)Ns) be the corresponding unique stable modellofin (As), as im-
plied by the faithfulness oflryyn. Note thatTryn(B U A; U Ay) and Tryn(As)
satisfy the module conditions, @& U A; U A, and A3 do andTryy is modular. In

Some (in)translatability results 53

additiOﬂ,Hbv(Tl"UN (B UAd; U AQ)) N HbV(TI‘UN (A3)) = {C} and both/NV; anng’)
containc so that we may apply Lemma 23 to conclude tNatJ N} is a stable model
of TI‘UN(B UA U A2) @] TI‘UN(A?,) which equals td[‘I'UN(B UAiUA U Ag) by
the modularity ofTryyn. Moreover, the reduct of the translation w.i¥; U IV§ is
Trun(B U A; U A2)N U Tryn (As) s,

We let N{ stand for the unique stable modelBifyx(A;) which is guaranteed to
exist by symmetry and which corresponds to the unique stable niddet {a} of
A;. Similarly, let N be the unique stable model correspondingfe = {b}. Then
we may conclude that als¥, U N] and N3 U N/, are stable models afryn(BUA; U
AsUA3) by using the last two equations of (10) concernivigand N3 in a symmetric
fashion. On the other hand/ is the unique stable model & U A; U A5 U As, too.
But thenTryn (B U A; U A U A3) must have a unique stable model — implying that
N;UN} = NUN{ = N3UNJ. Thus we may distinguisiv = NyNHb(Tryn(B)) =
Ny NHb(Tryn(B)) = N3 N Hb(Tryn(B)), and rewrite the preceding equalities as

N UN| U N} = LM(Tryn(B)N U Tryn(A1)N U Tryy (A2)N2)
N U N} U N = LM(Tryn(B)N U Trux (A42) N2 U Trun (4s)Vs) (11)
N U N} U N} = LM(Tryn(B)N U Trux(A43)Ns U Trun (A1) M)

which still correspond to the unique stable model¥afn (B U A; U As), Tryn(BU

As U A3), andTryn (B U A3 U Ay), respectively. We proceed by reducing the first
equation in (11) using Lemma 22. Note tHat/n(A41)UTryn(A42) = Trun(A1UA2)

by the modularity ofTryn andHb, (Trun(A; U A2)) = {a,b} C Hb(Tryx(B)).
Thus we obtainV = LM(Tryn(B)Y U {a «; b «}) by Lemma 22. Recall that
N containsc in addition toa andb. Let Tryn(B)2 andTryx(B)Y denote the dis-
joint sets of atomic and strictly unary rules Bfyx (B)Y, respectively. It follows by
Lemma 24 that there is an atomic rde— in Tryx(B){ U {a «; b «} such that

c € LM(Trux(B)Y U {d «}). As LM(-) is a monotonic operator, we obtain two
casest € LM(Tryn(B)Y U {a «}) orc € LM(Trun(B)Y U {b «}).

In the first case, we obtaia € LM(Tryx(B)N U Tryn(A4;)N1) by the mono-
tonicity of the operatoE.M(+) again. Recall thatlb, (Tryn(As)) = Hby(As) = {c}
by the definition ofTryn. As a result of applying Lemma 22 to the third equation
in (11), Tryn(A4s)Ns is reduced to{c <}, so thatN U N] = LM(Tryx(B)N U
Trun(A;)NM U{c «}). Sincec belongs td.M(Tryn(B)N UTryn(A;)™) this sim-
plifies to N U N} = LM(Tryx(B)Y U Tryn(4;)N1). BecauséV C Hb(Tryx(B)),
Ni{ C Hb(Tryx(41)), and N and N coincide on the atoms ifib, (Tryn(B)) N
Hb, (Tryn(A4;)) = {a}, we getTryn(B)N = Tryn(B)NYM and Tryn(4;)N =
Tryn(A;)NYNi. Then the modularity offryy implies N U N} = LM(Tryx(B U
Ap)NUN), ThusTryx (BUA,) possesses a stable mod&l N/ containing{a, b, c}.
A contradiction, since3 U A; has a unique stable modg}.

In the second case, we can analogously construct a stable mbdelV, for
Tryn(B U Ay) using the second equation in (11). Again, this is a contradiction,
as{a,b,c} C N U N} and{b} is the unique stable model & U A,. n

COROLLARY 33. — B ﬁpFM U, U <ppm B, andU <ppum P.

54 JANCL - 16/2006. Implementation of Logics

It remains to explore the strictness of the relationshig pry U. At this point, it
is worth demonstrating a particular translation technique [SCH 95, Proof of Theorem
3.10], which suitably exploits new atoms and negative literals and thus serves as a
potential candidate for a faithful and modular translation function ftbio A.

ExAMPLE 34. — Consider program$; = {a<— b} andP, = {b—c} and a
translation of P, U P, into an atomic normal logic prografirscu(P; U Ps) =
TrSCH(Pl) U TI"SCH(PQ) = {a — NB; b« Nb} U {b «— ~C; C+— NC} where the
intuitive reading of the new atontsandc is thatb andc are false, respectively. The
translation tries to capture the rulesiising a kind of double negation. In particular,
the rulesb — ~b andc « ~c can be understood to encode the standard closed world
assumption [REI 78]: according to these ruteandc are false by default.

Let us then analyze the behavior Bf U P, and Trscu (P U P») when they are
placed in the context ofly = (), Ay = {a+}, 42 = {b«}, andA; = {c +}.
The programd’; U P, U A; where: € {0, 1,2, 3} have unique stable modeld, =
0, My = {a}, My = {a,b}, and M5 = {a,b,c}, respectively. Accordingly, the
translationsIrsc (P U P> U A;) wherei € {0,1, 2,4} have unique stable models
Ny = {E,E}, Ny = {a,B,E}, Ny = {a, b,E}, andN; = {a, b,C}. |

The translatiorilrscn (P U P») seems to capture the essentialspfu P, in a
modular and faithful manner. However, severe problems arise with programs con-
taining an inferential loop that lets one to infefrom a, for instance. The simplest
possible example of this kind B = {a < a} having a minimal modeLM(P) = .

But the translatioMrscu (P) = {a «— ~a; 3 «— ~a} has two stable modelsg} and

{a}. The former stable model is what we would expect on the basis of Example 34,
but the latter is spurious — dashing our hopesToscy being faithful and modular

in general. Next we prove that the problems wWithycy cannot be settled.

THEOREM35. — U £pum A.

PROOF. — Suppose there is a faithful and modular translation funcliogr from

U to A. Then we analyze two unary normal prograbis = {a < b} andU; =

{b « a}, their combinations with atomic normal programs = {b <} and A, =

{a «}, and their translations und@ir5t. To check the module conditions, we note
thatHb, (U;) = Hb(U;) = {a,b} = Hb(U3) = Hb,(U;), Hby (A1) = Hb(4,) =

{b}, andHb,(A2) = Hb(As) = {a}. Because there are no hidden atoms and the
rules of the four programs are distinct, the module conditions are trivially satisfied by
U, and A4, by Us; and A, by U; U Ay andUs U As, and bylU; U Us and Ay U As.

The progranT/; U A; has a unique stable modkl; = LM(U; U A;) = {a, b}.
The translatior a1 (U; U A1) = Trar(Ur) UTrat(4;) and the modularity ofr ot
impliesHb, (Trar (U1 UA1)) = Hb, (U1 UA;) = {a,b}. SinceTrar is also faithful,
the translationilror(U; U A;) has a unique stable modal;, = LM (Trar (U U
Al)Nl) = LM(TI‘AT(Ul)Nl UTI‘AT(Al)Nl) such thal{a, b} C N;. Thenit holds by
symmetry thaf\ly, = LM(UsUA5) = {a, b} is the unique stable model 65U A, and
Ny = LM(Trar(UzUA2)N?) is the unique stable model of the translatioinr (U, U

Some (in)translatability results 55

Ag) = TI‘AT(UQ) U TI‘AT(AQ), for WhiCthV(TI‘AT(UQ U Ag)) = HbV(UQ U AQ) =
{a, b} holds, so thafa,b} C Ns.

Recall thatTrar(U; U A1) = Trar(Up) U Trar (A1) is an atomic program and
a € LM(Trat(Up)™M UTrar(A;)™). Thusa «+ belongs to the reduct by Lemma 25.
Sincea ¢ Hb, (TraT(A;1)) anda € Hb,(Trar(U;)) by the faithfulness ofr o, and
the translationgr o1 (U7) andTrar (A,) satisfy module conditions by the modularity
of Trar, we havea ¢ Hb(Trar(A;)). Thusa « cannot belong tarar (A1), So
it must belong tolr ot (U1)N* andb « belongs tdlrat(Us) N2 by symmetry.

Becausel/; U A; and U, U A, satisfy the module conditions, amd, and N,
coincide up to the atoms ifib, (Tr a1 (U1 UA2))NHby (Trar (U2 UA5)) = {a, b}, we
know by Lemma 23 thav; U N, is a stable model 6fr o1 (U; UA;) UTrar (U2 U As)
which equals tdFrAT(Ul) U TI"AT(Al) U TI"AT(UQ) UTI‘AT(AQ) e TI‘AT(U1] Ug) @]
Trar(A; U Ay) by the modularity oflr . Moreover, the redudfTrar(U; U A7) U
Trat(Us U Ag))M1YUN2 s the union of Tra (U U A;)™M andTrat(Us U A2)M2, e,
Tl“AT(Ul)Nl U TTAT(UQ)N2 U TI“AT(Al)Nl U TI'AT(AQ)Nz.

Since the visible partélb, (Trat(41)) = {b} andHb,(Trar(A42)) = {a} are
contained inHb(Trar(U; U Us)), it follows by Lemma 22 that the projectioN =
(NluNg)ﬂHb(TI'AT(Ul UUQ)) = LM(TI‘AT(Ul)NlUTI'AT(UQ)Nzu{a —; b H})
Sincea «+ belongs toTrar(U;)™ andb « to Trat(Uz)N2, we can establish that
N = LM(Trar(U1)™ U Trar(U2)™2). Moreover, the equalitylrar(Up)™M U
Trat(Uz)™M2 = Trap(U; U Us)Y follows by the definition ofV and the fact thaiv,
and N, coincide on the atoms contained ifb, (Trar(U1)) = Hby(Trar(Us)) =
{a,b}. ThusN = LM(Trar(U; U Uz)") is a stable model 6trar (U U Us).

SinceHbv(U1 U UQ) = Hb(U1 U UQ) = {a, b} andev(TI'AT(Ul @] UQ)) =
Hb, (U U Us) by the faithfulness ofrar, andN N Hby, (Trar(U; UUs)) = {a, b},
the faithfulness oflrr implies thatU; U U has a stable modell = {a,b}. A
contradiction, a$ is the unique stable model 6f, U Us.]

COROLLARY 36. — U £ppMm A, A <ppm U, A <ppm B, and A <ppm P.

Corollary 36 completes our view as regards the mutual relationshigk &f, 15,
andP. However, we may continue the analysis by comparing the respective classes of
positive programs with them. To this end, we re€ail <pgy; C holds by Proposition
19 for any of the classesunder consideration. Strictness follows quite easily.

THEOREM37. — ForanyC € {A,U,B,P},C £r CT.

PROOF. — Let us assume that there is a faithful translation funcfiorfrom C to
C™. Consider a logic prograrf®? = {a «— ~a} which serves as a representative of the
classC. Let @ be the translatiofir(P) in C*. Now P has no stable models, but the
translationQ has a unique stable modeM(Q). A contradiction, adr is faithful. m

COROLLARY 38. — ForanyC € {A,U,B,P},C £prm CT andCt <ppum C.

Finally, let us conclude the mutual relationships of the positive classes. As before,
we obtainA™ <ppy UT <ppm BT <ppm P immediately by Proposition 19. On

56 JANCL - 16/2006. Implementation of Logics

the other hand, Theorems 30, 32 and 35 specialize to the case of positive programs
although slightly simpler counter-examples could be used as done in [JAN 03b].

THEOREM39. — P* <ppm BY, BT £pm U, andUt £y AT
COROLLARY 40. — At <ppm UT, U <ppm BT, and Bt =pry PT.

The relationships established so far give rise toekpressive power hierarchy
(EPH) of logic programs which is illustrated in Figure 1. To conclude, the classes of
the hierarchy indicate that the number of positive body literals can be limited to two
without an effective loss of expressive power (re@lhy from Section 4.2). Itis
easy to inspect that the proof of Theorem 37 remains valid even if we consider weaker
notions of faithfulness based on the equivalence relatiogs=.1,, and=,. addressed
in Proposition 13. Thus the gap between a positive dfasand the respective class
C remains intact for alC € {A,U,B,P}. Quite similarly, the relationships in the
lower end of the hierarchy are not affected ungef and=,,, since positive programs
have unique stable models and thas =,,, and=,,, coincide. For the same reason
=,. IS uninteresting and the respective notion of faithfulness would equate all positive
classes. Finally, we emphasize that the strict relationshipsry U andid <ppy B
may cease to hold under weaker notions of faithfulness but we leave the analysis
as future work. The counter-examples of Theorems 32 and 35 cover the notion of
Definition 15 which we consider as the most appropriate one for ASP.

A <ppmw U <ppm B =prm P
= = =
= = &)
sl [al) [al
V Vv V

Figure 1. Expressive power hierarchy (EPH) based on polynomial, faithful and mod-
ular (PFM) translation functions

4.3. Comparison with propositional logic

Let us now concentrate on the case of propositional logic analyze its expressive
power within our framework. It is assumed that a propositional th&ais/given as a
set of clauses of the form (8)The fundamentadatisfiability problen(SAT) is about
checking if a given set of clauséshas a model in the classical sense. However, in
this article, we are interested in all models®father than checking the existence of

9. Any propositional theory can be transformed into clausal form and the transformation is
linear if new atoms can be introduced [TSE 83]. Without new atoms it takes a lot of space to
transform formulas lik§a; A by) V -+ -V (an A by) into clausal form.

Some (in)translatability results 57

a model. The reason is that we assume in analogy to ASP that the models of a set of
clausesS correspond to the solutions of the problem formalizedb'adt is possible

to capture the models of a set of clausewith the stable models of a translation of

S into a normal program. In fact, we can do this using only atomic rules. The basic
idea is as follows. The rules — ~3 anda «— ~a are needed to select the truth
value of each atoa € Hb(S). Herea ¢ Hb(S) is a new atom meaning thatis

false (c.f. Example 34). Given these rules, we obtain all model candidatesdsr

the stable models of the rules. Yet we have to ensure that every clause (3) is satisfied.
This is accomplished by introducing a new atbd Hb(.S) and an atomic rule

f<—Nf,Nal,...,Nan,NBh...,NBnL (12)

for each clause (3) if. These kinds of rules exclude model candidates in which some
of the clauses is false. If the full syntax of normal programs is assumed, then it would
be more intuitive to use a rule of the fofm— by, ..., b,,, ~f,~ay,...,~a, which

is not atomic, but “double negation” is needed in order to make the rule atomic. Yet
another technique is given in [NIE 99]: a new atans introduced for each clause

(3) which is translated inte < a;; ...; ¢ < a,; ¢« by; ...; ¢ « b,,. Then

(12) can be replaced by— ~f, ~c. However, to meet the module conditions from
Definition 16, we have to localize the choice of truth values. For this reason we
translate a clauseof the form (3) into a set of rules

Trip(c) = {f¢ «— ~f¢ ~ay, ..., ~a,, ~b§, ..., ~b¢ } U
{a; — ~a§; af — ~a; |0<i<n}U (13)
wheref, af,...,a%, andb{,...,bS, are new atoms that are uniquector his implies
that the choice of the truth value of an ataris shared by the rules in which the atom
appears. However, these choices are synchronizedsahared among the rules, and
this is howa is assigned a unique truth value.

DEFINITION 41. — A set of clauses is translated into
Trip(S) = U{TrLp(c) |c € S}U{a «— ~a; 3+ ~a|aecHb,(S)}

with Hba(TI‘Lp(S)) = @, HbV(TI"LP(S)) = HbV(S), andeh(Ter(S)) = th(S)
U{fc|ceStu{a®|ce Sandaappearsinc} U{a|a € Hb,(S5)}.

A particular feature of the translatidir,p (.S) is that all atoms oHb(.S) actually
appear in the rules dfrpp(S) and thusHb, (Trp(S)) remains empty. The rules
associated with the atoms Hfib,(S) are necessary in order to capture the classical
models ofS properly, sincéib(S) may contain atoms that do not appear in the clauses
of S; and according to Section 2.3 classical model§ afre subsets diib(S). Given
a set of clauses, an interpretatiod/ C Hb(S), and a clause € S, we define the set
of complementary atomSA (¢, M) which containsa® whenevera appears inc and
a ¢ M. For the sefS as whole, we let

CA(S, M) = J{CA(e,M) |c€ Sy U{a]acHb,(S) - M} (14)

58 JANCL - 16/2006. Implementation of Logics

which takes also the additional atoms frdiib,(S) properly into account. We are
now ready to address the correctness of the translation furitiign

PrROPOSITION42 ([JAN 03B]). — LetS be a set of clauses. ¥/ C Hb(S) is a
classical model o, thenN = M U CA(S, M) is a stable model dT'r1,p(.5) such
that N N Hb(S) = M.

PrRoPOSITION43 ([JAN 038]). — LetS be a set of clauses. ¥ C Hb(Trpp(S5))
is a stable model 6fri,p(S), thenM = NNHb(S) = S andN = M UCA(S, M).

THEOREM44 ([JAN 038]). — PT <ppum A.

On the other hand, it is impossible to translate an atomic normal programo
a set of clauses in a faithful and modular way. This result has been established by
Niemela [NIE 99, Proposition 4.3] for normal programs in general, but different no-
tions of faithfulness and modularity are employed in Niemel&’s proof.

THEOREM45. — A £\ PT.

PrROOF. — Let us assume that there exists a faithful and modular translation function
Tr : A — P7T. Then consider atomic normal logic prograis = {a — ~a} and

P, = {a <} with Hb,(P;) = Hb(P;) = Hby(P2) = Hb(P) = {a}. Itis clear
that P, and P, satisfy the module conditions from Definition 16. The progrBrhas

no stable models whil&, has a unique stable modkl = {a}. SinceTr is faithful,

the translatiorIr(P;) must be propositionally inconsistent. By the modularity of
Tr, the translationlx (P, U P,) = Tr(P;) U Tr(P.) which is also propositionally
inconsistent, i.e. has no models. But this contradicts the faithfulne$s, aince M

is also the unique stable model Bf U P,. Hence there is no sucl.]

COROLLARY 46. — P7 <ppum C holds foranyC € {A, U, B, P}.
THEOREMA47. — PT % C* holds for anyC € {A,U, B, P}.

PROOF. — The set of clauseS = {{a, ~a}} has two classical model&/; = () and
M, = {a} which cannot be faithfully captured by a positive program= Tr(S)
possessing a unique stable moosi(P). [

THEOREM48. — CT £pym P7 holds for all classes™ € {AT, U, B+, Pt}.

PROOF. — Suppose there is a faithful and modular translation funcliogf, from
C* toPT. Consider program#;, = {a <} and P, = () with Hb,(P;) = Hb(P;) =
{a} fori € {1,2}. ThenHb,(P>) = {a} and module conditions are satisfied. Now
P, and P, have unique stable moddiai(P;) = {a} andLM(P,) =), respectively.

It follows by the faithfulness offr¢y, that the unique classical models Bfcr, (P;)
andTrgr, (P;) are Ny and N, such thatM; = Ny N {a} and My = No N {a}. It
follows thatTrcp,(Py) = a andTrer(P) | —a. On the other hand, we know by
the modularity ofTrcy, that Tror (Pr U Py) = Tron (P1) U Trer (Py). It follows that
Tren(PL U Pe) = a A —a, i.e. Tren (P U Py) has no models. However, the program
P, U P, has a unique stable modeM(P; U P,) = {a}, a contradiction. [

COROLLARY 49. — C* #ppy PT holds for all classe€ € {A, U, B, P}.

Some (in)translatability results 59

To conclude, we have located the exact positio®@fin EPH (recall Figure 1).

5. Yet another characterization of stability

In spite of the negative results presented in the previous section, our further objec-
tive is to pursue non-modular alternatives in Section 6. To enable a particular transla-
tion technique therein, we concentrate here on establishing &imeacterizationof
stable models based on supported models possesgnglaxumbering#. Roughly
speaking, the idea is to extend level numbers, first introduced for positive programs
and their least models in Section 2.2, to the case of normal programs.

As suggested by the definition of supported models, we define thesghjpdrting
rulesSR(P,I) = {re P | I =B(r)} C P for any normal progran? and an
interpretation/ C Hb(P). Thus each rule € SR(P, I) provides a support fdf(r).

DEFINITION 50. — Let M be a supported model of a normal progrdm A function
from M U SR(P, M) to N is a level numbering w.r.t)/ iff for every atoma € M:

#a = min{#r | r € SR(P, M) anda = H(r)} (15)
and for every rule- € SR(P, M),
_ [max{#b|be BT (r)} +1,if Bf(r) #0.
= { 1, otherwise. (16)

It is important to realize that a level numbering need not exist for every supported
model. This is demonstrated by the following example.

ExampPLE 51. — Consider a logic progran® consisting of two ruleg; = a < b
andry, = b < a. There are two supported models®f M; = () and M, = {a, b}.
The first model has a trivial level numbering with a domaifh U SR(P, M;) = (.
For My, the domainM, U SR(P, My) = M, U P. The requirements in Definition 50
lead to four equationstta = #rq, #r1 = #b + 1, #b = #ro, and#r, = #a + 1.
From these, we obtaiffa = #a + 2. So there is no level numbering w.itl,. O

PROPOSITIONS2. — Let M be a supported model of a normal progrdm If there
is a level numberingt w.r.t. M, then+ is unique.

PROOF. — Let #; and+#, be two level numberings w.r.fi/. It can be shown by
induction on#; (x) > 0 that#; (z) = #2(x) for everyz € M USR(P, M). [

An obvious question is how one can determine level numberings in practice. In
fact, the scheme introduced in Section 2.2 can be extended to cover rules as well.

DEFINITION 53. — Let P be a positive program and/ = LM(P). Let us define
level numberdev(a) for atomsa € M as in Section 2.2. Given any rulec P such
that B (r) = B(r) C M, define the level number
+ if B+
lev(r) = { max{lev(b) | b € B (r)} + 1,if BT(r) # 0.

1, otherwise. 17

60 JANCL —16/2006. Implementation of Logics

Assigning level numbers in this way is compatible with Definition 50.

LEMMA 54 ([JAN 03]). — Let P be a positive program)/ = LM(P), and
ae M.

1) For everyr € SR(P, M) such thatt(r) = a, lev(r) > lev(a).

2) There isr € SR(P, M) such that(r) = a andlev(r) = lev(a).

Then the characterization of stable models is then established as follows.
THEOREM55. — Let P be a normal program.

1) If M is a stable model oP, thenM is a supported model @ and there exists
a unique level numberingt : M U SR(P, M) — N w.rt. M defined as follows.

(i) For a € M, let#a = lev(a).
(i) For r € SR(P, M), let#r = lev(r™).
2) If M is a supported model d? and there is a level numbering w.r.t. M, then
is unigue andV/ is a stable model of.

PrROOF. — (1) Let M be a stable model aP. ThenM is also a supported model of
P [MAR 92]. Recall that each € SR(P, M) satisfiesM |= B(r) which implies that
rt e PM B*(r) C M, andH(r) € M, asM is also a classical model @?. Let us
now establish the requirements of Definition 50.

Consider anya € M. It should be established thata is the minimum among
{#r | r € SR(P,M) andH(r) = a}. Itis clear that this set is non-empty, a8 is
a supported model oP. Then consider any € SR(P, M) such thatH(r) = a.
Now #r is defined adev(r*) given in (17). Sincer € SR(P, M), we obtainr* €
SR(PM, M). Thus#r = lev(r™) > lev(a) by the first claim of Lemma 54. By the
second claim, there is a ruté € SR(PY, M) such that(r’) = a andlev(r’) =
lev(a). Then there is a rule” € SR(P, M) such that’ = (+”)*, H(r"") = a and
#r"” = lev(r”) = lev(a). Thus#a = lev(a) is the minimum in question. Then
consider any- € SR(P, M). There are two possibilities. B™(r) =), we obtain
BT (r™) = 0 so that#r = lev(r*) = 1 by (17). This is in perfect harmony with
Definition 50. On the other hand, B*(r) # 0, then#r = lev(r™) is defined as
max{lev(b) | b € BT (r*)} 4+ 1. SinceB™ (r*) = B*(r) and#b = lev(b) for each
b € B*(r) by definition, we know that#r = lev(r™) coincides withmax{#b |
b€ BT(r)} + 1 as insisted by Definition 50. Thu is a level numbering w.r.tM
and the uniqueness &f follows by Proposition 52.

(2) Let M be a supported model d? and# a level numbering w.r.tM. The
uniqueness of# follows by Proposition 52. It follows that/ = P andM = PM.
Thus it is immediately clear thdtM(P™) is contained in)M. It remains to prove
that M C LM(PM). We use complete induction offta > 1 to show thata € M
impliesa € LM(P™). Base case#a = 1. Suppose thai ¢ M. Since#a = 1,
the only possibility is that there is € SR(P, M) with H(r) = a andB™(r) = 0.
It follows thata « belongs toPY so thata € LM(P™). Induction step: #a =
n > 1. Suppose thad € M. Since#a > 1, there is a rule € SR(P, M) such

Some (in)translatability results 61

thatH(r) = a, BT(r) # 0, and#a = #r. Then consider any € B*(r). Since
#r = max{#b’ | b’ € BT(r)} + 1, we obtain#b < n. Moreoverr € SR(P, M)
implies thatb € M. Thusb € LM(P) by the inductive hypothesis and we have
established thaB ™ (r) C LM(P™). On the other hand; € SR(P, M) implies that
r* =a« BT(r) € PM. Itfollows thata € LM(P™M).]

6. Non-modular translation functions

In Section 4, we show that faithful and modular translations cannot be established
between certain classes of logic programs. However, this does not exclude the pos-
sibility that a polynomial and faithful, buton-modulartranslation function could be
devised for the classes involved. Such alternatives are taken into consideration now.
We proceed as follows. Section 6.1 covers the case of positive programs for which
non-modular alternatives are easy to obtain. A faithful and non-modular translation
function from normal programs to atomic normal programs is developed in Section
6.2. This is a far more complicated objective as the number of stable models may
vary. Finally, we conduct a comparison with propositional theories in Section 6.3.

6.1. Positive programs revisited

Theorem 39 states th&t™ Ly UT andUd+ £y AT In spite of these relation-
ships, it is straightforward to obtain a faithful and non-modular translation in case of
positive programs. Basically, this boils down to the fact that the least nidd¢P)
can be be computed in polynomial time for aRyc P~.

DEFINITION 56. — For any P € P*, defineTrpy(P) = {a « | a € LM(P)}.
Moreover, letHb, (Trpm(P)) = Hby(P) and Hby (Trm(P)) = Hby(P) so that
Hb,(Trpm(P)) = Hb(P) — LM(P).

THEOREM57. — Pt <pp AT.

PROOF. — It is clear thatTry,y is faithful, sinceHb, (Trm(P)) = Hb,(P) by
definition and Lemma 25 implies that bofA and Tr\(P) have a unique stable
modelLM(P) = LM(Trar(P)). Moreover,Try,y is polynomial, ad.M(P) can be
computed in polynomial time. The iterative characterization from Section 2.2 leads to
a quadratic algorithm, but there is also a linear time algorithm [DOW 84]. =

COROLLARY 58. — At =pp U =pp Bt =pp PT.

The relations<ppy and <pp give rise to diverse classifications for the classes
of positive logic programs. In fact, the relatictipry; iS more accurate so that the
hierarchy obtained witk{pry; is more refined than the one obtained withy.

ExAMPLE 59. — The programs3, A;, A, and A3 from the the proof of Theorem 32
are translated as follow&ry (B U Ay U Ag) = Trpm(B U As U Ag) = Trpm(B U
AsUA;) ={a«—; b«—; ¢}, butTriy(B) = @ with Hb, (Trm(B)) = {a, b, c},

62 JANCL - 16/2006. Implementation of Logics

TI‘LM(Al) = {a <—}, TI‘LM(AQ) = {b <—}, andTrLM(A3) = {C <—} ThUSTI‘LM is
clearly non-modularTryn (BU Ay U Ag) # Trpm(B) UTrpm (A1) UTrpm (Ag). O

Generally speaking, a translation obtained wittoa-modulatranslation function
Trnm is often heavily dependent on the progrdhbeing translated. Already slight
changes taP? may alterTrny (P) completely. This reveals one shortcoming of non-
modular translations: they do not support updates very well. E.g., in Example 59, the
effect of removingAs from Tri (B U A; U As) is drastic aslry (B U A1) = 0.

6.2. Translating normal programs into atomic ones

As shown in Section 6.1, it is easy to obtain a non-modular and faithful translation
function for removing positive body literals in the case of positive programs. The
setting becomes far more complicated when normal logic programs are taken into
consideration, since a normal program may possess several stable models and it is not
clear how to applyIryy from Definition 56. Nevertheless, we intend to develop a
polynomial and faithful translation functidhr ot so that an arbitrary normal program
P gets translated into an atomic progrdinyr(P). Itis clear by the results presented
in Section 4.2 thaflryt must be non-modular if faithfulness is to be expected. Our
idea is to apply the characterization of stable models developed in Section 5 so that
each stable model/ of a normal progranP is eventually captured as a supported
model M of P possessing a level numbering w... To recall the basic concepts
from Section 5 we give an example of a level numbering.

EXAMPLE 60. — Let P = {ry,r2,73} be a (positive) normal program consisting
of the rulesr;y = a «; ro = a <« b; andrsy = b < a so thatHb,(P) =
Hb(P) = {a,b}. The unique stable modéll = LM (P) = {a, b} is supported by
SR(P, M) = P. The unique level numbering w.r.t. M is determined by#r; = 1,
#a =1, #7’3 =2, #b =2, and#TQ =3. O

However, there is no explicit way of representing a level numbering within a nor-
mal program and we have to encode such a numbering using propositional atoms.
Then a natural solution is to use a binary representation for actual level numbers. In
the worst case, every atom Hb(P) is assigned a different level number as demon-
strated in Example 60. Thus the level numbers of atoms may vary frenHb(P)|.

Hence the highest possible level number of a rute P is |Hb(P)| + 1, as forrs in
our example. By leaving room fdras the least binary value, we have to be prepared
for binary numbers consisting of at mé€P = [log, (|Hb(P)| + 2)] bits.

PrRoPOSITIONG1 ([JAN 038]). — If M is a supported model of a normal program
Pand# : MUSR(P,M) — N is a level numbering w.r.tM/, then0 < #a <
2VP — 1 for everya € M and0 < #r < 2VF for everyr € SR(P, M).

The logarithmic factor embodied WP forms an important design criterion for
us in order to keep the length of the translatipfir a1 (P)|| as well as the translation
time proportional td|P|| x VP rather than|P|| x |Hb(P)|. Hence we strive for a

Some (in)translatability results 63

sub-quadratic translation function frofto .A. To get an idea of the potential behind
such an objective, we haweP = 14 for a programP with |Hb(P)| = 10000.

6.2.1. Representing binary counters

We have to fix some notation in order to deal with binary representations of natural
numbers. Given the number of biisand a natural number < n < 2°, we write
nli...j], where0 < i < j < b, for the binary representation af from thei™ bit
to the ;™ bit in the decreasing order of significance. Thus. . . b] gives a complete
binary representation for. Moreover, as a special case of this notation, we may refer
to thes™ bit simply by writingn[i] = n[i. ...

Technically speaking, the idea is to encode the level nunghefor a particular
atoma € Hb(P) using avectoray, ..., a; of new atoms wherg = VP. Such a vector
can be understood as a representationtofiary counteof j bits; the first and the last
atoms corresponding to the most significant and the least significant bits, respectively.
The idea is to equate bitsand1 with the truth values false and true assigned to atoms,
since atoms may take only two values under the stable model semantics. Because the
resulting translation is supposed to be an atomic normal program, positive body literals
are forbidden and we have to introduce the vestor . . , a; of complementary atoms
so that we can condition rules on both values of bits. This is exactly the technique that
was demonstrated in Example 34. In the current setting, the idea is théft Hiteof
the binary counter associated with the atotakes the valué (resp.1) if and only if
a; (resp.a;) cannot be inferred, i.e. the negative literad,; (resp.~a;) is satisfied in
rule bodies. In the sequel, we may introduce a binary counter of the kind above for
any atoma by subscripting it with an indexin the range) < i < j.

In order to express the constraints on level numberings, as demanded by Definition
50, we need certain primitive operations on binary counters. The respective subpro-
grams are listed in Table 2. The size of each subprogram is governed by a parameter
which gives the number of bits used in the binary counters involved. The activation of
all subprograms is controlled by an additional atenThe idea is that the respective
subprograms are activated only whenannot be inferred, i.e. is false under stable
model semantics. Wheneveris true, all atoms involved in these subprograms are
false by default. In the following, we give brief descriptions of the primitives.

1) The subprograrSEL; (a, c) selects a value betweérand2’ — 1 for the binary
counteray, ..., a; associated with an atom

2) The progranNXT,(a, b, c) binds the values of the binary counters associated
with atomsa andb, respectively, so that the latter is the former increased by one (mod
27). Proposition 61 tells us thaTP is big enough to prevent counters from wrapping.
The design ofNXT}(a, b, c) is economical as it does not involve explicit carry bits
and it is based on the following observations about increasing a binary counter by one
(mod27). First, the least significant bit, i.e. th¥ one, is always changed; either from
0to 1 or from1 to 0. Second, any other bit (sa! wherel < i < j) is changed only
if the next less significant bit, i.e. thet 1™ one, changes fromto 0. To see this, it
may be instructive to study the transition fr@h0111 to 011000 whenj = 6.

64 JANCL - 16/2006. Implementation of Logics

Table 2. Encoding primitive operations for binary counters

Primitive | Definition with atomic rules

SEL;(a,c) | {ai <« ~aj,~c; a; < ~a;,~c|0<i<j}

NXT;j(a,b,c) | {b; <« ~a;, ~aif1,~bit1,~c|0<i<j}U
{b; «— ~a;, ~ajt1,~c | 0<i<jtU

{b; «— ~a;,~b;11,~c|0<i<jIU

{b; « ~b;,~c|0<i<j}U

{E — ~ag, ~C; bj — ~ay, NC}

FIX;(a,n,c) | {ai < ~c|0<i < jandn[i] =0} U

{a; — ~c| 0 <i < jandnli] = 1}

LT;(a,b,c) | {It(a,b); « ~a;,~b;,~c |0 <i<j}uU
{lt(a, b); < ~ay, ~b;, ~t(a, b)ir1,~c |0 <i<j}U
{It(a,b); < ~a;, ~by, ~t(a, b)iv1,~c | 0 <i < jIU
{It(a,b); « ~lt(a,b);, ~c| 0 < i < j}

EQ;(a,b,c) | {ea(a,b) « ~aj,~b;, ~c [0 <i < j}U

(a,b)
{eq(a7b) — N?i7wbi7wc | 0<i<]}U
(a;b)

— Neq(a7 b)7 Nc}

3) The subprograrfIX;(a,n, c) assigns a fixed valug < n < 27, in the binary
representation, to the counter associated with the atom

4) The prograniT;(a, b, c) checks if the value of the binary counter associated
with an atoma is strictly lower than the value of the binary counter associated with
another atonb. To keep the program linear iy we need a vector of new atoms
It(a, b)y,...,It(a,b); plus the corresponding vector of complementary atoms. The
atomsit(a, b); andlt(a, b);, which refer to the most significant bits, capture the result.

5) The subprograniQ;(a, b, c) checks if the counters associated with the atoms
a andb hold the same value. The new atosgga, b) andeq(a, b) capture the result.

Our next goal is to specify the intended outcomes of the primitives listed in Table
2. Whenever the value of a counter jobits associated with an atomis chosen to
be0 < n < 27, the contribution of the respective progr&fiL;(a,c) is a set of
atomsAT;f”(a,n) ={a;|0<i<jandn[i|=1} U{a |0<i<jandn[i] =0}
given thatc is not inferable. The subprograNiXT} (b, a, c) is supposed to produce
the same set of atom%Tj“(a, n) given that the counter associated with some other
atomb is holding a valuen such that: = m + 1 mod 27. On the other hand, the

Some (in)translatability results 65

result of a subprograrhT, (a, b, c), when the atone is assigned to false, is given in
(18) below. It is assumed that the values of the counters associated with theaatoms
andb aren andm in the range® < n < 27 and0 < m < 27, respectively.

1
ATJ-t(a,n7 b,m) = {lt(a,b); |0 <i<jandn[i...j] <mli...j]} U

{lt(a,b); |0 < i< jandn[i...j] >m[i...j]}. (18)

The result of testing the equality of the counters is defined analogously. The outcome
for EQ,(a, b, c), whenc is not inferable, is\T" (a, n, b,m) = {eq(a,b) | n = m} U
{eq(a,b) | n # m}. Finally, given an atom and a set of atom& — such as a stable
model of a program involving the subprograms under consideration — wertiaact

the value of the counter, . . . , a; associated with an atomby

val;(a, N) = {27" |0 <i < janda, € N}. (19)

It follows thatval;(a, N)[i] = 1 <= a; € N holds for eactd < i < j. Moreover,
we haveval;(a, ATS" (a,n)) = n forany0 < n < 27.

6.2.2. A non-modular translation function

In this section, we concentrate on composing a non-modular translation function
Trar : P — Ain four steps by applying the characterization of stable models from
Section 5. Accordingly, the overall translatidinar(P) of a normal logic progran®
will divide in four parts summarized below:

1) Trsypp (P) that captures a supported modélof P;
2) Trerr (P) that represents a level numbering candidétie terms of counters;

3) Tryvn (P) that imposes constraints on the candidgteand its domain\/ U
SR(P, M) so that each atom € M satisfies (15); and

4) Tryax (P) that similarly enforces (16) for each rutes SR(P, M).

The details of these translations will be given in Definitions 62—65 to be presented
below. Of course, we aim at a faithful translati@inar(P) that captures each sta-
ble modelM € SM(P) with some stable modeéV € SM(Trar(P)) in a bijective
fashion. In the subsequent informal discussion, weMsand N as a pair of stable
models involved in the resulting bijective relationship. However, the description of
the exact structure d¥ is postponed until Section 6.2.3 where the polynomiality and
faithfulness ofIrar is eventually established in Theorem 74. Meanwhile, Example
67 may be useful for the reader to better access the forthcoming definititin, of

The first part of the translatiofir o1 (P), i.e. Trsupp (P), defines the complemen-
tary atoma for each atoma € Hb(P). Such atoms enable the removal of positive
subgoals using the technique already presented in Example 34,4.63%(r) in a
rule r is roughly captured by a negative literah. However, spurious (supported)
models will result and we need the restlafsr (P) to exclude the non-stable ones.

66 JANCL — 16/2006. Implementation of Logics

DEFINITION 62. — For a normal programP, define an atomic normal program

TrSUPP(P) = {5 «— ~a ‘ ac Hb(P)} @] (20)

{H(r) « ~bt(r); bt(r) «— ~bt(r) |r € P} U
{bt(r) « ~B*(r),~B~(r) | r € P}.

Basically, a rule- € P could be rewritten al(r) < ~B+(r),~B~(r), but other
parts of the overall translation require us to determine whebdklgof » is true. This
is why new atomt(r) andbt(r) are introduced for each € P. Note that copying
the transformed body aof to other parts of the translation would imply a quadratic
blow-up and we neebtt(r) for eachr € P in order to save space. The next part of the
translation introduces binary counters which represent a level numbering candidate.

DEFINITION 63. — For a normal programP, define an atomic normal program

Trorr(P) = | [SELvp(ctr(a),a) UNXTyp(ctr(a), nxt(a),a)] U
a€Hb(P)

U FIXyp(ctr(r),1,bt(r)) U
reP andB+ (r)=0

U SELyp(ctr(r), bt(r)). (21)
reP andB+ (r)#£0

In this way, two new atometr(a) andnxt(a), which act as names of two counters,
are introduced for each atome Hb(P). The eventual purpose of these counters is
to hold the valuegta and#a + 1, respectively, in case thatbelongs to the domain
of a level numbering#, i.e.a € M; or equivalentlya ¢ N. However, at this point,
the primitives included infrcrr (P) choose a value fottr(a) and define the value
of nxt(a) as the successor of the valuecof(a) modulo2¥”. Quite similarly, a new
atomctr(r) and the respective counter is introduced for eaehP to eventually hold
#r whenr is in the domain of4, i.e.r € SR(P, M), or equivalentlybt(r) &€ N. In
case of an atomic rule € P with B*(r) = (), the countertr(r) is assigned a fixed
valuel and no choice is made in accordance with Definition 50.

The translatiorilrcg (P) is sufficient for choosing a candidate level numbering
for a supported modél! of P that is to be captured by the rulesTagypp (P). We
have to introduce constraints in order to ensure that the candidate is indeed a level
numbering, as dictated by Definition 50. We start with the conditions imposed on
rulesr € P and in particular, whem € SR(P, M) holds, i.e.M = B(r). This
explains whybt(r) is used as a controlling atdfhin the forthcoming translation. As
explained above, the case of atomic rules P with B* (r) = is already covered by

10. Recall that such atoms appear as negative conditions in the subprograms listed in Table 2.

Some (in)translatability results 67

Trerr(P) which assigns a fixed value — the natural number- to ctr(r). But for
non-atomic rules € P with BT (r) # @, the maximization principle from Definition
50 must be expressed e.g. as follows.

DEFINITION 64. — Letx be a new atom not appearing b (P). For an non-atomic
rule r € P and a number of bits, defineTryax(r,b) = Uaemm Tryax(r, b, a)
where for anya € B*(r), the translationTryax (r, b,a) =

LTy (ctr(r), nxt(a), bt(r)) UEQ(ctr(r), nxt(a), bt(r)) U

{x — ~x, ~bt(r), ~It(ctr(r), nxt(a))1} U

{max(r) « ~bt(r), ~eq(ctr(r), nxt(a))}.

For a normal programP, define an atomic prograffiryiax (P) = J{Trymax (r, VP)|
r € PandBT(r) # 0} U{x < ~x,~bt(r),~max(r) | r € P andB™(r) # 0}.

An informal description follows. The rules ifiry o x (7, VP, a) are to be activated
for a non-atomic rule- € SR(P, M) and a positive body atorm € B (r). As a
consequence, the value held &y(r) must be greater than or equal to the value of
nxt(a) which is supposed to be the valueaf(a) increased by one. In addition to
this, the rules fomax(r) in Tryax (r, VP, a) andTryax (P) make the value oftr(r)
equal to the value afxt(a) for somea € B*(r). Thus the value oftr(r) must be the
maximum among the values of the countexs(a) associated with the positive body
atomsa € B*(r). This conforms to the definition @¢r given in Definition 50.

Let us then turn our attention to atomasc Hb(P) that are assigned to true in
a supported model of P satisfyingM = Tpm(M). Then there is a rule €
SR(P, M) such thatH(r) = a. Moreover, the level numbe#a is defined as the
minimum among the respective rules by Definition 50.

DEFINITION 65. — Lety be a new atom not appearing Ifib(P). For a ruler and
a number of bitd, define€Tryn(r, b) =

LTy (ctr(r), ctr(H(r)), bt(r)) UEQ(ctr(r), ctr(H(r)), bt(r)) U
{y « ~y, ~bt(r), ~lt(ctr(r), ctr(H(r))): } U
{min(H(r)) — ~bt(r), ~eq(ctr(r), ctr(H(r)))}.

For a normal programP, define an atomic normal program

TI‘MIN(P) = U TI‘MIN(T’, VP) U {y — VY, Ni, Nmin(a) ‘ ac Hb(P)} (22)
repP

Givena € M and a ruler € SR(P, M) such thatH(r) = a, the rules in
Travn (r, VP) make the value ottr(a) lower than or equal to the value ofr(r).
Moreover, the rules fomin(a) in Tryn (P) ensure that the value ofr(a) equals to
the value ottr(r) for at least one such rufe In this way, the value oftr(a) becomes

68 JANCL —16/2006. Implementation of Logics

necessarily the minimum, which is in harmony with the definitiogafin Definition
50. We are now ready to combine the four translations presented in Definitions 62—65.

DEFINITION 66. — Given a normal progran®, define an atomic normal program
Trar(P) = Trsupp(P) U Trerr (P) U Tryax (P) U Trann (P)
and its visible parib, (TraT(P)) = Hby(P).

By inspecting the four parts dfr o1 (P) once more, we note thdt ot (P) can be
formed in a very systematic fashion by generating certain rules for ea&ch’ and
a € Hb(P). However,Trar is not modular in the sense defined in Section 3.3. A
source of non-modularity is hidden in the number of Bit8 involved in Trar(P).
Given two programg’ and@ satisfying module conditions M1-M4, it is still possible
thatVP < V(P U Q) andVQ < V(P U Q). As a consequence, the counters involved
in Trar(P) andTrar(Q) are based on too few bits, which implies tHat(P) and
Trar(Q) cannot be joined together in order to form the translafiogr (P U Q).

ExamMPLE 67. — Due to high number of rules generated By,+ we have to con-
sider a logic progran® consisting of only one rule = a < a.

The translatiorTrsypp (P) contains four rulesa — ~a; bt(r) <« ~a; bt(r) «
~bt(r); anda «— ~bt(r). Note thatTrsypp(P) has two stable modeld/; =
{3,bt(r)} and M; = {a,bt(r)}. We need the rest dfrar(P) to exclude the lat-
ter. SinceVP = 2, the subprogramSEL;(ctr(a),a), NXTz(ctr(a), nxt(a),a), and
SEL(ctr(r), bt(r)) of Trerr (P) aim to select 2-bit values fofta and#r, but only
whena andbt(r) are false. Otherwise, these counters remain inactive.

The prograniIryax (P) consists of two subprogramsl's (ctr(r), nxt(a), bt(r))
andEQ,(ctr(r), nxt(a), bt(r)) plus the rules « ~x, ~bt(r), ~It(ctr(r), nxt(a));
max(r) « ~bt(r), ~eq(ctr(r), nxt(a)); andx <« ~x, ~bt(r), ~max(r). They com-
pare#r and#a -+ 1 (modulo2? = 4) and the net effect of the constraints is tiat =
#a + 1. Similarly, the translatiofTry;n (P) comprises oL Ts(ctr(r), ctr(a), bt(r))
andEQ,(ctr(r), ctr(a), bt(r)) augmented by «— ~y, ~bt(r), ~It(ctr(r), ctr(a))s;
min(H(r)) <« ~bt(r), ~eq(ctr(r),ctr(a)); andy «— ~y,~a,~min(a) and they
effectively state thattr = #a. Note that in analogy t&rcTr(P), the rules of
Trpax (P) andTryn (P) are activated only whe® andbt(r) are false; or equiva-
lently a andbt(r) are true by the structure @fsypp (P). Consequently)/s becomes
unstable agtr = #a + 1 and#r = #a cannot be satisfied simultaneously. O

6.2.3. Correctness of the translation functi@it s

The correctness dfrar is addressed next. In order to describe the correspon-
dence between stable models, the following definitions make explicit how a stable
model M of a normal progran® can be extended to a stable modélof the trans-
lation TraT(P). This is becausd8rr(P) involves many new atoms, the truth val-
ues of which have to be determined. First of all, we deal with atoms that are es-
sentially defined by the rules @frsypp(P) and define the respective extension op-
eratorExtsypp (P, M) for P and M below. Recall that in addition to reproducing

Some (in)translatability results 69

M, this part of the translation is responsible for defining the complementary atoms
for whicha € Hb(P), and the atomst(r) andbt(r), which detect the satisfaction of
B(r) forrulesr € P. Out of these atoms, the ones included in thésetypp (P, M)
defined below are supposed be true in the corresponding stable Madélr o1 (P).

DEFINITION 68. — For a normal programP and an interpretation/ of P, define
an extension operator by settiftxtsypp (P, M) = M U{3a|a € Hb(P) — M} U
{bt(r) | r € SR(P,M)} U {bt(r) | r € P— SR(P,M)}.

By the following definition, we introduce similar extension operators for the other
parts of Trar(P). For instance, the rules ifircTgr (P) are responsible for selecting
correct values for the counters whose purpose is to capture the unique level numbering
#w.rt. M. As aresult, the atoms iixtcrr (P, M, #) ought to be marked true iN'.

The last two parts of the translation contribute atoms involved in the constraints on the
values of the counters, which implement the maximization/minimization principles
from Definition 50. Again, the respective extension operakas ax and Extyn
determine which atoms evaluate to true given\/, and+.

DEFINITION 69. — For a normal programP, an interpretationM of P, and a
function# : M USR(P, M) — {0,...,2V" — 1}, define the following operators:

Extorr(P, M, #) = | J AT (ctr(a), #a) U
aeM

U ATSE (nxt(a), #a + 1 mod 2¥F) U U ATSp (ctr(r),1) U

aeM r€SR(P,M) andB+ (r)=0

U ATSE (ctr(r), #7). (23)

r€SR(P,M) and B+ ()0

Extyax (P, M, #) = {max(r) | r € SR(P, M) andB*(r) # 0} U

U ATp (ctr(r), #r,nxt(a), #a + 1 mod 2¥7) U
reSR(P,M) andacB+ (1)
U AT (ctr(r), #r, nxt(a), #a + 1 mod 2¥7). (24)

re€SR(P,M) andaeB+ (r)

EXtMIN(P, M7#) = {min(a) | ac M} @]
U AT%P(ctr(r),#r, ctr(H(r)), #H(r)) U

reSR(P,M)

U ATS (ctr(r), #r, ctr(H(r), #H(r)). (25)

reSR(P,M)

70 JANCL - 16/2006. Implementation of Logics

The four extensions operators introduced so far are combined into one extension
operator for the whole translatidfr o (P). It should be yet emphasized that the four
sets of atoms involved in Definition 70 are disjoint.

DEFINITION 70. — For a normal programP, an interpretation)/ C Hb(P) of P,
and a function# : M USR(P, M) — {0, ...,2VF — 1}, defineExtat (P, M, #) =
Extsupp (F)7 M) U EXtCTR(P, M, #) U EXtMAx(P, M, #) U Extyin (P, M, #)

The correctness of the translation functidbm is addressed in Propositions 71
and 73 as well as Theorem 74.

PROPOSITION71 ([JAN 038]). — Let P be a normal program. If\/ is a stable
model of P and# is the corresponding level numbering w.At., then the interpreta-
tion N = Extar (P, M, #) is a stable model 6fr o1 (P) such thatM = NNHb(P).

DEFINITION 72. — Let P be a normal program/ N C Hb(Trar(P)) an inter-
pretation of the translatiorilrar(P), and M = N N Hb(P). Define a function
#: MUSR(P,M) — {0,...,2VF — 1} by setting

1) #a = valyp(ctr(a), N) for atomsa € M, and
2) #r = valyp(ctr(r), N) for rulesr € SR(P, M).

PrROPOSITION73 ([JAN 03]). — Let P be a normal program. IfV is a stable
model of the translatioAr o (P), thenM = N N Hb(P) is a stable model oP and
N = Extar (P, M, #) where# is defined as in Definition 72.

THEOREM74. — P <pp A.

However, due to the size and intricacy Bfar, we skip the proof of correctness
that can be found in [JAN 03b]. An important concept used in the proofs is the one
of local stability given in Definition 75 below. As established in Theorem 76, atomic
programs lend themselves to localizing the fixed point condition behind stable models.
Consequently, the proofs for Propositions 71 and 73 can be established modularly.

DEFINITION 75. — An interpretation/ is locally stablew.r.t. a normal progran® if
and only ifT N H(P) = LM(P7).

THEOREM 76. — Let Py, ..., P, beatomicnormal programs such that the sets of
head atomdi(P,), ..., H(P,) form a partition ofH(P) for P = |J'_, P,.

Forany S C {1,...,n}, an interpretation)/ C H(P) is locally stable w.r..
Ps =U,cqg Pi <= M islocally stable w.r.t.P; for everyi € S.

Moreover, an interpretatiod/ C Hb(P) is a stable model aP <— M C H(P)
and M is locally stable w.r.tP; for everyi € {1,...,n}.

In analogy to the classes of positive programs, the four classes of normal programs
reside in the same expressiveness class if measured by the existence of polynomial and
faithful translation function, i.e. the relatiofgy;.

COROLLARY 77. — A =pr U =pr B =pr P.

Some (in)translatability results 71

On the other hand, let us consider any clé@ss {A,U,B,P}. It follows by
Proposition 19 thaf+ <pr C and by Theorem 37 th& £pr C*. ThusC™ <pr C
holds for all representatives of the two expressiveness classes. The resulting hierar-
chy of classes of logic programs is illustrated in Figure 2. The relationships holding
in this hierarchy remain in force even if we resort to weaker notions of faithfulness
corresponding to equivalence relations addressed in Proposition 13.

A =pr U =pr B =pr P

3 3 <3 3
o . [~
V \% V V

At =pp UT =pr BT =prp P*

Figure 2. Expressive power hierarchy based on polynomial and faithful (PF) transla-
tion functions

6.3. Propositional theories revisited

In general, it is very challenging to translate a normal progranmto a set of
clauses so that a bijective correspondence of models is obtained. For instance, the
approach by Ben-Eliyahu and Dechter [BEN 94] is based on a transformation that is
clearly polynomial, but the produced set of clauses may possess multiple models cor-
responding to one stable modelBf However, atomic programs provide a promising
intermediary representation that is relatively straightforward to translate into clauses.
Here we can apply Clark’s program completion as established by Fages [FAG 94], but
new atoms have to be introduced by the translation funéfigs, in order to keep the
translation function linear; or even polynomial in the first place.

DEFINITION 78. — For an atomic normal progran® € A and an atoma € Hb(P),
letDefp(a) = {r € P | H(r) = a} and define the set of clauses

Tren(a, P) = {{a, -bt(r)} | a € Hb(P) andr € Defp(a)} U
{{—=a} U {bt(r) | r € Defp(a)} | a € Hb(P)} U
{{bt(r)} UB~(r) | r € Defp(a)} U
{{=bt(r),—c} | r € Defp(a) andc € B~ (r)}
wherebt(r) is a new atom for each € P and TroL(P) = U,cmn(p) Trer(a, P)
such thattb, (Trcr (P)) = Hby (P), Hby (Trew(P)) = Hby (P)U{bt(r) | r € P}.

We note that every atom &th(P) appears iffr¢y, (P) so thatHb, (Trcr,(P)) =
(. The intuitive reading obt(r) is the same as in Section 6.2, ike(r) is supposed

72 JANCL - 16/2006. Implementation of Logics

to be true whenever the body of the rulds true. Roughly speaking, the clauses
in the translation ensure that every atane Hb(P) is logically equivalent to the
disjunction of all bodies of rules € P with H(r) = a. More precisely, clauses of
the first two kinds ifllrcy, (a, P) enforce the equivalence of easke Hb(P) with the
disjunction\/{bt(r) | r € Defp(a)}. On the other hand, each disjumetfr) is made
equivalent to the conjunction of negative (classical) litefgls-c | c € B~ (P)} by
clauses of the last two kinds ifrcy,(a, P). The net effect is Clark’s completion for
eacha € Hb(P). This leads to a tight correspondence of models as described next.

DEFINITION 79. — Given an interpretatiod C Hb(P) of P € A, define an exten-
sion operatorExtey, (P, I) = I U {bt(r) | r € SR(P, I)}.

PROPOSITION8O ([JAN 03]). — Let P be an atomic normal program. §/ C
Hb(P) is a supported model d?, thenN = Extcr, (P, M) is a (classical) model of
Trer (P) such thatM = N N Hb(P).

ProPOSITION81 ([JAN 038]). — Let P be an atomic normal program. If an
interpretation N C Hb(Trc,(P)) is a (classical) model offrqy, (P), thenM =
N N Hb(P) is a supported model @? such thatV = Extcr, (P, M).

EXAMPLE 82. — Consider a logic program® which consists of two rules, = a «—

~a andry = a <« ~b and has unique stable model = {a}. The translation
Trer(P) contains clausega, —bt(r1)}, {a, -bt(r2)}, {—a, bt(r1),bt(r2)}, {=b},
{bt(r1),a}, {—bt(r1), —a}, {bt(rs), b}, and{—bt(ry), —b}. There is a unique classi-
cal modelN = {a, bt(r2)} of Trc, (P), as interpretations are restricted to the Her-
brand baséIb(Trcr, (P)) = {a, b, bt(ry), bt(r2)}. O

The translation functiofircy, is clearly non-modular, since the clauses of the type
{—a} U {bt(r) | r € Defp(a)} create a dependency between rules possessing the
same head. Let us then address polynomiality and faithfulness as suggested by the
one-to-one correspondence obtained in Example 82.

PROPOSITION83. — Let P be an atomic normal program. Thed C Hb(P) is a
stable model oP if and only if M is a supported model d?.

PROOF. — (=) This is shown by Marek and Subrahmanian [MAR 92] for normal
programs (including atomic ones).<—) Let M be a supported model d?. Let

us define a functiog# from M U SR(P, M) to N such that#a = 1 foralla € M
and#r = 1for all » € SR(P, M). SinceP is atomic, we hav®* (r) = () for every

r € P and itis easy to inspect from Definition 50 thétis a level numbering w.r.t.
M. ThusM is a stable model oP by Theorem 55.]

THEOREM84. — A <py PT.

PROOF. — An atomic ruler = a <« ~cq,...,~c,, consists of3m + 2 sym-

bols if each atom counts as one symbol and one symbol is reserved for separating
it from other rules. The translation functidn ¢y, translates effectively into clauses
{a,=bt(r)}, {bt(r),c1,...,cm}, {—bt(r),-c1}, ..., and{=bt(r), —c,, } which con-

tain 10m + 11 symbols (including separating commas). In addition, the ruten-
tributes one literal td —a} U {bt(r’) | »’ € Defp(a)} which produces two additional

Some (in)translatability results 73

symbols forr and 4 symbols for each € Hb(P). The translatiorilrcy, (P) can be
produced by going through the rules®f creating the clauses and keeping an account
of atoms that appear as heads in the rules. The clauspU {bt(r') | 7’ € Defp(a)}
needs to be created for such atoms. Thus we condugg to be linear/polynomial.

To establish the faithfulness @t ¢y, let P be an atomic normal program. Note that
Hb(P) C Hb(Trcr(P)) andHb, (Trer(P)) = Hby(P) hold directly by Definition
78. It follows by Propositions 83 and 80 that there is an extension funEtogy, :
SM(P) — CM(Trcr(P)) that mapsy € SM(P) into N = Extcr, (P, M) included
in CM(Trcy,(P)) such thatM = N N Hb(P). Moreover, Propositions 81 and 83
imply that that if N € CM(Trcr(P)), thenM = N N Hb(P) € SM(P) andN =
Extcr, (P, M). Thus we may conclud@rcy, to be faithful by Proposition 20. =

COROLLARY 85. — P7T =pr A =pr U =pp B =pr P.
COROLLARY 86. — C* <pp PT holds foranyC* € {AT, U™, B+, P+}.

7. Related work

The classification method presented in Section 3.4 accommodates the one pro-
posed for non-monotonic logics [JAN 99b, JAN 03a, JAN 00a] to the case of logic
programs. These classification methods are analogous, but there are also major dif-
ferences. The semantics ohan-monotonic theoris determined by a set @&xten-
sions/expansionshich are typically propositionally closed theori&ésather than a set
of interpretations/models. This makes the notions of faithfulness somewhat incompat-
ible although bijective correspondences are aimed by both of them. The concepts of
modularity are also different because the primary objects of study, i.e. non-monotonic
theories and logic programs, are epitomized differently.

We should also comment on the major changes made to earlier versions of the
method presented in [JAN 00b, JAN 01] in which the systematic analysis of logic
programs was initiated. Firstly, the notion of modularity presented in Section 3.3 is
more fine-grained due to module conditions M1-M4 given in Definition 16. More
precisely, the condition (7) is supposed to hold in limited context wRilend @ are
assumed arbitrary in [JAN 00b]. A further difference in modularity is thetP) = P
forall P € C whenTr : ¢’ — C andC C (', i.e.C is a syntactic subclass 6f.
Although this leads to analogous intranslatability results [JAN 00b] it is impossible
to make comparisons with syntactically different classes such&adistinguished
in Section 3.1. This is why we resort to a weaker notion of modularity. A further
difference concerns the notion of faithfulness proposed in Section 3.3. It is weaker
than the one used in [JAN 00b] because the visibility of atoms is taken fully into
account. These kinds of weakenings are in favor of intranslatability results which are
strengthened. However, the resulting expressive power hierarchy is not affected by
the tunings made. But, as discussed in Section 4.2, certain strict relationships in the
hierarchy may cease to hold if still weaker notions of faithfulness are introduced.

11. Recall that a propositionally closed theory is fully determined by the set of its models.

74 JANCL - 16/2006. Implementation of Logics

Module systems are used in programming languages to manage the complexity of
programs as well as to enforce good programming practice. Logic programming is
not an exception in this respect as several proposals for modular composition of logic
programs have been made; see [BUG 94] for a comprehensive study. For instance,
Maher [MAH 93] distinguisheternal predicates fronimportedandexportedoredi-
cates and imposes conditions on program composition yretéFctmodel semantics.

In our terminology and in the propositional case, the first category forms the hidden
part of the Herbrand base while the latter two categories form its visible part. For
us, the distinction of imported and exported atoms is not important and the module
conditions M1-M4 of Definition 16 are much weaker. Again, this favors our negative
results as stated above. Bugliesi et al. [BUG 94] present a very similar conceptualiza-
tion of program modules due to Gaifman and Shapiro accompanied by an algebraic
theory of program composition. Etalle and Gabbrielli [ETA 96] define modules in
analogy to Definition 6 (assuming the propositional case) but leave the hidden part of
the Herbrand base implicit. Their only module condition is very close to ours: the
joint atoms inHb(P) NHb(Q) must be contained iHb, (P) NHb, (Q). One obvious
difference is that? and@ are not required to be disjoint.

Antoniou et al. [ANT 01] apply a modularity condition when developing normal
forms for Nute'sdefeasible logidNUT 94]. Although defeasible logic is based on
a completely different semantics, its rule-based syntax makes it reminiscent of nor-
mal programs. Antoniou et al. consider a translation functiorto be correct, if
D =ppy Tr(D) for every D.*2 This is somewhat analogous to our approach, but
there is no account of visibility of atoms and the semantics of defeasible logic assigns
a unique set of conclusions to each theory. A further property addressed in [ANT 01]
is incrementalitydefined byTr (D1 U D2) =r(p,yur(p,) Tr(D1) U Tr(D3). This
is already very close to (7) in our definition of modularity. However, our notion
is based on syntactical equality rather than semantical equivaleneg. More-
over, there is no counterpart to module conditions in the approach by Antoniou et
al. Actually, they reserve the termodularity for a stronger property described by
D1 U Dy =p(p,yur(p,) D1 U Tr(D2). In contrast to (7), such a condition is not
applicable to translations between classes which are syntactically different. For ex-
ample, consider the case that is a defeasible theory anf;:(D-) is a propositional
theory. The uniorD; U Tr(D5) does not make sense.

As shown in Section 4.3, normal programs cannot be translated into sets of clauses
in a faithful and modular way. Niemela [NIE 99, Proposition 4.3] provides a formal
counter-example in this respect, too, but the result is intentionally strengthened using
much weaker notions of faithfulness and modularity. In spite of these intranslatability
results, the composition of the translation functidirgT andTrcy, from Section 6 is
sufficient to reduce normal logic programs into propositional theories. The resulting
translation function is definitely not modular, but still highly structural so that actual
translations can be computed in a systematic fashion. A transformation that would

12. Here=,(p) denotes semantical equivalence, i.e., the theories yield exactly the same con-
clusions in the languagk(D) of D.

Some (in)translatability results 75

not introduce new atoms seems very unlikely in light of a recent complexity-theoretic
argument by Lifschitz and Razborov [LIF 06]. On the other hand, Niemel& [NIE 99]
presents the basic technique to encode propositional satisfiability problems in terms
of normal logic programs. The translation functi@n,p presented is Section 4.3 is
designed with stronger criteria (i.e. faithfulness and modularity) in mind.

Marek and TruszcZyski [MAR 91] show that checking whether a normal logic
program has a stable model forms an NP-complete decision problem which is analo-
gous to the propositional satisfiability SAT problem [COO 71]. The translation func-
tionsTraT andTrp imply that the computational complexity of the former problem
remains NP-complete under the three syntactic restrictions introduced in Section 2.1.
This indicates that the expressive powers of the claggds, and 53 cannot be dif-
ferentiated in terms of traditional complexity measures. This is mainly because the
reducibilities involved in complexity results preserve only the yes/no answers to deci-
sion problems. In contrast, the relatiemry; based on the existence of a polynomial,
faithful and modular translation function enables us to detect strict differences.

Partial evaluationtechniques have been introduced to rewrite rules of programs
in a semantics preserving way. A good example in this respect is an approach by
Brass and Dix [BRA 97]. They propossuivalence transformatiorfer normal and
disjunctivelogic programs under the stable model semantics [GEL 91]. Partial evalu-
ation is one of such transformations and particularly interesting from our point of view
as it may decrease favorably the number of positive body literals. This takes place,
e.g., when arule «— b is replaced by < ~c anda < ~d given that the definition
of b consists ob «+— ~c andb <+ ~d. A drawback is that partial evaluation may cause
an exponential growth to the length of the program in the worst case. Nevertheless,
partial evaluation preserves the Herbrand base of the program and eventually, it will
produce an atomic normal program if applied as far as possible. E.g., Costantini et
al. [COS 02] use partial evaluation for this purpose. In fact, partial evaluation (also
known asunfolding is admitted by a variety of semantics proposed for normal and
disjunctive programs; see [ARA 95, BRA 97] for a collection of results in this respect.
The more conventional case of definite programs with variables and function symbols
is covered in the survey by Pettorossi and Proietti [PET 94].

Ben-Eliyahu and Dechter [BEN 94] study the possibilities of redubiead-cycle-
freedisjunctive logic programs, under the stable model semantics [GEL 91], to propo-
sitional theories. We restrict our attention to normal programs which form a special
case of head-cycle-free disjunctive programs. Ben-Eliyahu and Dechter [BEN 94,
Theorem 2.8] devise a characterization of stable models that resembles the one devel-
oped in Section 5. However, they impose weaker conditions on level numberings so
that in contrast to Theorem 55, uniqueness cannot be guaranteed. The translation func-
tion Trpp (calledtranslate-2in [BEN 94]) produces a propositional thedfygp (P)
that captures stable models in terms of classical ones. In particular, the fagtathat
equals ta for some atoma € Hb(P) is expressed by making a new atamfa); true
on the classical side. In contrast to the compositiogr o Trcy,, the translation func-
tion Trgp does not necessarily yield a bijective correspondence between models as the

76 JANCL - 16/2006. Implementation of Logics

level numberings used by used by Ben-Eliyahu and Dechter lack uniqueness. More-
over, the language aP is not preserved bifrgp asHb(P) N Hb(Trep(P)) = 0.

A further difference is thaf|/ Trgp (P)|| is quadratic in|| P|| in the worst case. Our
translation functions are more economical in this respg@tcy, (Trar(P))|| is of

the order ofl|P|| x VP, as the binary encoding of level numbers is used. This aspect
of Trar o Tror, makes a difference with respect to a recent translation proposed by
Lin and Zhao [LIN 03]. Their translation function is faithful but quadratid|iR||.

There are also other characterizations of stable models that are closely related to
the one established in Section 5. Fages [FAG 94] calls an interprefatioflb(P)
of a normal progran® well-supportedf and only if there exists a strict well-founded
partial order< on I such that for any atora € I, there exists € SR(P, I) satisfying
H(r) = aandb < afor allb € B*(r). It follows that well-supported models of a
normal progran® are stable models d?, and vice versa [FAG 94]. Given a supported
model M of P and the respective unique level numbering conforming to Definition
50, one can extract a strict well-founded partial ordeas follows: definea < b if
and only ifa € M, b € M, and#a < #b. Furthermore, Fages distinguisha@ssitive
order consistenhormal programs whose models are necessarily well-supported. As a
consequence, the classical models of the completion of a proBrghA 78], or the
supported models aP, coincide with the stable models &

Babovich et al. [BAB 00] and Erdem and Lifschitz [ERD 03] generalize Fages’
results by introducing the notion dightnessfor logic programs. The tightness of a
logic programP is defined relative to a set atordsC Hb(P), which makes Fages’
theorem applicable to a wider range of programs. To point out our contribution in
this respect, we note that atomic normal programs are automatically positive order
consistent, oabsolutelytight [ERD 03]. Therefore, arbitrary normal programs can be
transformed into absolutely tight ones by applyifig,t from Section 6. Yet another
approach [LIN 04] to deal with non-tight programs is to dddp formulasto the
completion in order to exclude supported models which are not stable. This can be
done gradually while computing classical models for the completion. As a drawback,
the number of loop formulas can be exponential in the worst case. In cofitrgste
Trcy, provides a one-shot translation with a fixed length of the ordgdif x VP.

As already discussed in Section 3.2, a basic notion of equivalence is obtained
for a given class of program by requiring that programs possess the same stable
models, i.e.P = Q iff Sem¢(P) = Seme(Q). Lifschitz et al. [LIF 01] and later
Turner [TUR 03] study a stronger condition, which involves an arbitrary coritext
C in which P and@ could be placed as subprograms. ThatHsand () arestrongly
equivalent denoted byP =; Q iff for all R € C, Sem¢(P U R) = Sem¢(Q U R).

The equivalence relatios, introduced in Section 3.2 is more practically oriented, as

it takes the visibility of atoms properly into account. It is justifiable to exclude atoms
formalizing auxiliary concepts as concerns the equivalence of logic programs. This
aspect is also present in Maher's early work [MAH 88] where a number of semantical
concepts is projected with respect to the common Herbrand base of the programs being
compared. But stable models [GEL 88] are not covered due to time of publication.

Some (in)translatability results 77

Quite recently, Woltran [WOL 04] has characterized relativized versions @ind

=, as regards visibility. There are also interesting connections between modularity
and strong equivalence as pointed out by Ferraris and Cabalar [FER 05, CAB 05].
According to their results, modular translations from logic programs into propositional
theories are enabled if their semantics is changed to be determineduidibrium
modelsthat characterize strong equivalence.

node(1..n).
in(V1,V2) :- not out(V1i,V2), node(V1;V2), V1!=V2.
out(V1,V2) :- not in(V1,V2), node(V1;V2), Vi!=V2.
reach(V,V) :- node(V).
reach(V1,V3) :- in(V1,V2), reach(V2,V3),

node (V1;V2;V3), V1!=V2, V1!=V3.
:- not reach(V1,V2), node(V1;V2).

Figure 3. Normal logic program used in the reachability benchmark

8. Experiments

In this section, we present prototype implementations of the translation functions
Trar and Trcy, crafted in Sections 6.2 and 6.3, respectively. By combining these
tools with SAT solvers we obtain a machinery which is sufficient to compute stable
models for normal logic programs in practice. The main objective of this section is
to make a preliminary comparison of this approach with existing answer set solvers
using three benchmark problems. Our first benchmark deals with the reachability of
nodes in graphs whereas the second is about checking the equivalence of normal logic
programs. The computation of Hamiltonian circuits for randomly generated planar
graphs is of interest in our last benchmark.

The implementation of our translation-based approach consists of two tranSlators
calledLP2ATOMIC andLP2SAT, which correspond to the two phases of the transla-
tion. The task of. P2ATOMIC is to translate away positive body atoms from a normal
program given as input in the internal file formatsioDELS[SIM 02]; typically pro-
duced by the front-endPARSE The implementation includes certain optimizations
not addressed in Section 6.2. For instarstegngly connected componerfCCs)
are utilized to reduce the numbers of bits involved in binary counters and to avoid
counters associated with rules in many cases. The latter transle®saT takes the
output ofLP2ATOMIC as its input and produces the completion for the program in the
DIMACS formatunderstood by most SAT solvers.

13. Please visithttp://www.tcs.hut.fi/Software/lp2sat/ for binaries and bench-
marks.

78 JANCL - 16/2006. Implementation of Logics

All experiments reported in this section are run under the Debian GNU/Linux
2.4.26 operating system on a AMD Athlon XP 200067 GHz CPU with 1 GB
memory. We use a variety of systems in the experimen®DELS[SIM 02], CMOD-

ELS [LIE 04], and AssSAT [LIN 04]; as well as combinations ofP2ATOMIC and
LP2sAT with other solvers including three SAT solvexgLSAT [BAY 97], CHAFF4

[MOS 01], andsIEGE®. The system P2ATOMIC+SMODELS combines the two sub-
systems just to get an idea how much overhead results from the removal of posi-
tive body atoms. The three combinationB2SAT+RELSAT, LP2SAT+CHAFF, and
LP2SAT+SIEGE use both of our translators as well as the mentioned SAT solver as
a back-end for the actual computation of stable models. Finally, we incorporate a
strengthened well-founded reduction to these systems (the pvefixis inserted to

the name) by callingMoDELSto simplify the intermediate program representations
before and after invokingp2aTOMIC. The combined systems are implemented as
shell scripts which are distributed in the same directory as binaries. We use three
benchmarks to compare the performance of the systems as reported below.

Table 3. Timings in seconds when computing all stable models

Vertices 2 3 4 5
SMODELS 0.003 | 0.003 | 0.033 12
CMODELS 0.030 | 0.124 293 -
LP2ATOMIC+SMODELS | 0.008 | 0.013 | 0.393 353
LP2SAT+CHAFF 0.009 | 0.023| 1.670 -
LP2SAT+RELSAT 0.005 | 0.018 | 0.657 1879
WF+LP2SAT+RELSAT 0.013| 0.018 | 0.562 1598
Models 1 18 | 1606 | 565080
SCCs with H(C)| > 1 0 3 4 5
Rules (PARSE) 14 39 84 155
Rules (P2ATOMIC) 18 240 664 1920
Clauses((P2sAT) 36 818 | 2386 7642
Clauses\{F+LP2SAT) 10 553 | 1677 5971

— Reachability probleniJAN 04]. This benchmark is based on the complete di-
rected graphD,, with n nodes anch? — n arcs (there are no reflexive arcs). The
problem is to find all subgraphs @¥,, in which all vertices are still reachable from
each other through the remaining arcs. The corresponding test program is given in the
input syntax ofLPARSE (see Figure 3). In the benchmark, the task is to compute all
stable models of the program instantiatedUspRSE whenn varies from2 to 5. As
a result, the number of SCCs involvimgsitive loopsincreases. And in particular,
the number stable models to be computed by the systems increases very rapidly. The
results have been collected in Table 3. Our benchmark is really easyfopELS

14. A very succesful SAT solver in competitions; $82p: //www.satcompetition.org/.
15. Seenttp://www.cs.sfu.ca/"loryan/personal/ for background.

Some (in)translatability results 79

However, the main objective here is to comparoDELS with our approach as it is
based on similar methodology. We did not useSAT nor SIEGE as they have been
designed to compute only one model. Our results indicate that the systems based on
LP2ATOMIC andLP2SAT appear to be faster th@mMoDELS. Whenn = 5, CMODELS
exceeds the time limit df4 hours andcHAFF runs out of memory (1 GB) as the back-

end ofLP2sAT. The systems perform differently when we compute only one stable
model for the program and = 8. The respective timings a®012, 0.043, >10%,

0.80, 2.6 and2.8 seconds for the systems in Table 3; @ne20 seconds fOASSAT.

100000 T T : | |

| assat ave —]

10000 { cmodels ave —X— .

| smodels ave -—X-- o]

1000 F lp2sat+siege ave --E-- //j;/]

100 |]
0 L
g L

§ 10 F -
N -

1 E __

0.1 F]

0.01 F]

0.001 — ' L L !
4 6 8 10 12 14
Number of Queens

Figure 4. Timings in seconds when showing the non-existence of stable models (aver-
aged over 10 runs on the same instance)

— Verifying the equivalence of program®ur second benchmark is related to the
famousn-queens problem where the task is to plaagieens on an x n chess board
so that they do not threaten each other. The idea is to use two orthogonal variants of
a program formulated by Niemela [NIE 99]: one is based on a row-wise placement of
the queens while the other uses columns. The task is to prove the equivalence of the
two programs, which is achieved by (i) combining the programs using a specialized
tool calledLPEQ[JAN 02] and (ii) showing that the result does not have stable models.
In the benchmark, the number of queenis varied from4 to 12. The running times
of four systems have been plotted in FigureaéSAT andCMODELS scale very sim-
ilarly and run out of memory when = 13. The SMODELS system is slightly better
andLP2SAT+SIEGEturns out to be the best combination. Other SAT solvers lead to
slower performance and the well-founded reduction does not really prune the program
instancesSMODELSandLP2SAT+SIEGEcan handler = 13.

— Hamiltonian circuits. Our last benchmark concerns the problem of finding
Hamiltonian circuits on random planar graphs generated generated by the Stanford
Graph Base (SGB). Again, we have to slightly modify a program written by Niemela

80 JANCL —16/2006. Implementation of Logics

[NIE 99], sincechoice rulesare not yet supported hyp2aATOMIC andLP2SAT. In the
benchmark, the number of nodes is varied frointo 40. The results are illustrated

in Figure 5. For small numbers of nodesyoDELS outperforms the others, namely
CMODELS, LP2SAT+SIEGE, andASSAT in the order of improving performance. How-
ever, the average performancefioDELS becomes worse as the number of nodes
approached(while the other three systems scale in a more robust way. Eventually,
the performances afsSSAT andLP2SAT+SIEGEare almost identical. It is worth men-
tioning that the latter cannot be improved by usimigAFF as the back-end nor the
well-founded reduction to simplify its input.

Hamiltonian Circuits on Planar Graphs
10000 F | | | | | _
I cmodels ave — §
1000 L Ip2sat-siege ave —-x-- o]
[assat ave e P
- smodels ave --B-- 7 L
100
0
E
g 10
n
1
0.1
i) _
0.01 [soaaonBeBEgd? | | ! 5
10 15 2 95 20 - "
Nodes

Figure 5. Timings in seconds when computing one stable model (averaged over 100
runs on different instances)

Our three benchmark problems involve basic reasoning tasks in answer set pro-
gramming: (i) finding one stable model, (ii) showing the non-existence of stable mod-
els, and (iii) finding all stable models. The experiments reported above provide us the
first indication that our translation-based approach is becoming competitive with other
systems [LIE 04, LIN 04] employing SAT solvers for the computation of stable mod-
els. Our experience is that this holds mostly for the last two reasoning tasks given that
the number of model candidates that have to be excluded is sufficient. Consequently,
the other systems have to introduce loop formulas which eventually compensate the
larger input program generated by2ATOMIC andLP2SAT in the beginning. How-
ever, if the task is to compute just one stable model for a program that has plenty of
stable models, themssAT andcMODELS can be much faster as they benefit from the
smaller initial representation of the program.

It is also very encouraging that in certain cases, the translation-based approach
even outperforms a native ASP soh@&voDELS [SIM 02] althoughsMoDELS s of

Some (in)translatability results 81

its own league in the first experiment. In this case, the combinatior2Tomic and
SMODELSgives us more insight into the feasibility of removing positive positive body
atoms from rules. When = 5 the translation produced hy2ATOMIC is roughly 15

times longer (in symbols) than the original program whereas a 30-fold increase in the
running time ofSMODELS s perceived. Thus the overall consequences of removing
all positive body atoms seem quite negative which suggests us to study variants of
Trar that preserve positive body atoms whenever possible.

9. Conclusions

This research started from the problem of reducing the number of positive sub-
goals in the bodies of rules of normal logic programs. To analyze this problem, we
propose a classification method based on PFM translation functions in Section 3. The
method is designed for the comparison of classes of logic programs on the basis of
their expressive power and it is applied in Section 4 to the analysis of classes obtained
by restricting the number of positive subgoals in rules. Retrospectively speaking, the
method was obtained by adjusting the one presented in [JAN 00b, JAN 01] in many
respects. In the new design, many objectives are settled: (i) the comparison of classes
which may differ by either syntax or semantics is possible, (ii) the properties charac-
terizing PFM translation functions are preserved under composition, and (iii) our pre-
liminary expressiveness results [JAN 00b] remain valid. Moreover, the development
of the underlying theory forced us to tackle with many important technical details such
as visibility of atoms, mechanisms to extend Herbrand bases, notions of equivalence,
and module conditions. Many of these ideas arose from our practical experience with
answer set programming and experiments with existing implementations.

The expressiveness analysis reveals the main constituents of rule-based reasoning.
In the simplest case, we have just sets of atomic rules describing the state of the
world; and no further inferences are possible. Unary rules enrich this setting by allow-
ing chained inferencewith rules, e.g. we can inferusing rulesa <— b; b « ¢; and
c <. Binary rules incorporate conjunctive conditions to rule-based reasoning. For in-
stance, one can deriwaisinga < b,c; b <+ d; ¢« d; andd <. Non-binary rules
with more than two positive subgoals are easily reducible to these primitive forms, but
our formal counter-examples indicate that binary and unary rules are not expressible
in a faithful and modular way using unary and atomic rules, respectively, whatever
number of rules is used. Moreover, the use of negation as failure in the bodies of rules
does not affect this setting. Looking back to EPH illustrated in Figure 1, the number
of positive body literals appears to be an essential syntactic restriction, as strict dif-
ferences in expressive power can be established. It is also interesting to realize that
propositional theories do not capture reasoning with (atomic) normal programs very
easily, as shown in Section 4.3. There is also practical evidence for this, as many
problems tend to be easier to formalize using rules rather than clauses.

The new characterization of stable models developed in Section 5 is based on
uniquely determined level numberings. This contrasts with earlier characterizations

82 JANCL - 16/2006. Implementation of Logics

which enable the assignment of level numbers even in infinitely many ways. Due to
the strong notion of faithfulness employed herein, unique level numberings are crucial
for the main objective of Section 6, i.e. a polynomial and faithful translation of normal
programs into atomic programs and propositional clauses. The translation function
Trat o Tror, possesses a distinctive combination of features: (i) all finite normal
programsP are covered, (ii) a bijective relationship of models is obtained, (iii) the
Herbrand basélb(P) is preserved, (iv) the lengtiTrcr, (Trat(P))|| as well as the
translation time are of the order gfP|| x log, |Hb(P)|, i.e. sub-quadratic, and (v)
there is no need for incremental updating. We consider this as a breakthrough, since
the best known transformations to date [BEN 94, LIN 03] are quadratic. A further
implication of Trat o Tr¢y, is that various closures of relations, such astthesitive
closure(c.f. [ERD 01]), can be properly captured with classical models. This aspect
is crucial in many applications involving e.g. some form of reachability.

The experiments reported in Section 8 are limited and by no means conclusive.
For us, they serve as a proof of concept while demonstrating that our translation-based
approach can be competitive in certain cases. Nevertheless, we are still pursuing for
new optimizations techniques to be integrated to our translators. A further objective
is to support the fulsMoDELSlanguage involving cardinality and weight constraints
[SIM 02]. Thereafter we can fully benefit from the rapid development and increasing
performance of SAT solvers in the task of computing stable models.

Acknowledgements

The author wishes to thank anonymous referees for their comments and sugges-
tions for improvement as well as Mirek Truszé€ski for the initial idea of applying
techniques from [JAN 99a] to the analysis of normal logic programs.

Due to long history, this research has been supported partially by the Academy of
Finland (under projects #43968onstraint Programming Based on Default Rulgs”
#53695'Applications of Rule-Based Constraint Programminghd #211025Appli-
cations of Constraint Programming Techniqugahd the European Commission (un-
der contract IST-FET-2001-3700Working Group on Answer Set Programming”

10. References

[ANT 01] ANTONIOU G., BILLINGTON D., GOVERNATORI G., MAHER M. J., “Represen-
tation Results for Defeasible Logic’ACM Transactions on Computational Logiml. 2,
num. 2, 2001, p. 255-287.

[APT 88] APTK., BLAIR H., WALKER A., “Towards a Theory of Declarative Knowledge”,
MINKER J., Ed.,Foundations of Deductive Databases and Logic Programnpn@9-148,
Morgan Kaufmann, Los Altos, 1988.

[ARA 95] ARAVINDAN C., DUNG P. M., “On the Correctness of Unfold/Fold Transformation
of Normal and Extended Logic Programggurnal of Logic Programmingvol. 24, num. 3,
1995, p. 201-217.

Some (in)translatability results 83

[BAB 00] BaBovicH Y., ERDEM E., LIFSCHITZ V., “Fages’ Theorem and Answer Set Pro-
gramming”, Proceedings of the 8th International Workshop on Non-Monotonic Reasoning
Breckenridge, Colorado, USA, April 2000, cs.Al/0003042.

[BAY 97] BAYARDO R., SCHRAG R., “Using CSP Look-Back Techniques to Solve Real-
World SAT Instances” Proceedings of the 12th National Conferen8AAl, 1997, p. 203—
208.

[BEN 94] BEN-ELIYAHU R., DECHTERR., “Propositional Semantics for Disjunctive Logic
Programs”, Annals of Mathematics and Atrtificial Intelligenceol. 12, num. 1-2, 1994,
p. 53-87.

[BRA 97] BRASSS, Dix J. “Characterizations of the Disjunctive Stable Semantics by Partial
Evaluation”, Journal of Logic Programmingvol. 32, num. 3, 1997, p. 207-228.

[BUG 94] BUGLIESIM., LAMMA E., MELLO P., “Modularity in Logic Programming” Jour-
nal of Logic Programmingvol. 19-20, 1994, p. 443-502.

[CAB 05] CaBALAR P, FERRARIS P, “Propositional Theories are Strongly Equivalent to
Logic Programs”, Submitted for publication, 2005.

[CLA 78] CLARK K. L., “Negation as Failure”,GALLAIRE H., MINKER J.,, Eds.,Logic and
Data Basesp. 293-322, Plenum Press, New York, 1978.

[COO 71] Cook S. A., “The Complexity of Theorem Proving ProceduresProceedings of
the third Annual ACM Symposium on Theory of Compyt®y1, p. 151-158.

[COS 02] COSTANTINI'S., D’ANTONA O., PROVETTI A., “On the Equivalence and Range of
Applicability of Graph-Based Representations of Logic Progranmtirmation Processing
Letters vol. 84,2002, p. 241-249.

[DIM 97] DimopouLosY., NEBEL B., KOEHLER J., “Encoding Planning Problems in Non-
monotonic Logic Programs”Proceedings of the Fourth European Conference on Planning
Toulouse, France, September 1997, Springer-Verlag, p. 169-181.

[DOW 84] DoOwLING W. F., GALLIER J. H, “Linear-Time Algorithms for Testing the Satis-
fiability of Propositional Horn Formulae”Journal of Logic Programmingvol. 3, 1984,
p. 267-284.

[EIT 98] EITER T., LEONEN., MATEIS C., PFEIFERG., SCARCELLO F., “The KR System
DLV: Progress Report, Comparisons and BenchmarkBtpceedings of the 6th Interna-
tional Conference on Principles of Knowledge Representation and Reas@némgo, Italy,
June 1998, Morgan Kaufmann, p. 406-417.

[EIT 04] EITERT., FINK M., TOMPITSH., WOLTRAN S., “Simplifying Logic Programs un-
der Uniform and Strong EquivalenceRroceedings of LPNMR;Fort Lauderdale, Florida,
January 2004, Springer, p. 87-99, LNAI 2923.

[EMD 76] vaN EMDEN M., KOowALSKI R., “The Semantics of predicate logic as a program-
ming language” Journal of the ACMvol. 23,1976, p. 733-742.

[ERD 01] ERDEM E., LIFSCHITZ V., “Transitive Closure, Answer Sets and Predicate Com-
pletion”, AAAI Spring Symposium on Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and ReasoiiAd\l, 2001.

[ERD 03] ERDEM E., LIFSCHITZ V., “Tight Logic Programs”, Theory and Practice of Logic
Programmingvol. 3, num. 4-5, 2003, p. 499-518.

84 JANCL - 16/2006. Implementation of Logics

[ETA96] ETALLE S. GABBRIELLI M., “Transformations of CLP Modules”, Theoretical
Computer Scienceol. 166, 1996, p. 101-146.

[FAG 94] FaGEs F., “Consistency of Clark’s Completion and Existence of Stable Models”,
Journal of Methods of Logic in Computer Scieneel. 1, 1994, p. 51-60.

[FER 05] FERRARIS P, “On Modular Translations and Strong EquivalenceBARAL C.,
GRECOG., LEONE N., TERRACINA G., Eds.,Proceedings of the 8th International Con-
ference on Logic Programming and Nonmonotonic Reasomiigmante, Italy, September
2005, Springer-Verlag, p. 79-91.

[GEL 88] GELFOND M., LIFSCHITZ V., “The Stable Model Semantics for Logic Program-
ming”, Proceedings of the 5th International Conference on Logic Programn8egttle,
USA, August 1988, The MIT Press, p. 1070-1080.

[GEL 90] GELFOND M., LIFSCHITZ V., “Logic Programs with Classical Negation”,Pro-
ceedings of the 7th International Conference on Logic Programmiegusalem, Israel,
June 1990, The MIT Press, p. 579-597.

[GEL 91] GELFOND M., LIFScHITZz V., “Classical Negation in Logic Programs and Disjunc-
tive Databases"New Generation Computingol. 9, 1991, p. 365-385.

[GEL 02] GELFOND M., LEONE N., “Logic Programming and Knowledge Representation —
The A-Prolog Perspective’Artificial Intelligence vol. 138, 2002, p. 3-38.

[GOT 95] GoTtTLoB G., “Translating Default Logic into Standard Autoepistemic Logic”,
Journal of the ACMvol. 42, num. 2, 1995, p. 711-740.

[IMI87] IMIELINSKI T., “Results on Translating Defaults to CircumscriptiorRrtificial In-
telligence vol. 32,1987, p. 131-146.

[JAN 99a] JANHUNEN T., “Classifying Semi-Normal Default Logic on the Basis of its Expres-
sive Power”, GELFOND M., LEONE N., PFEIFERG., Eds.,Proceedings of the 5th Inter-
national Conference on Logic Programming and Non-Monotonic Reasoning, LPNMR’'99
El Paso, Texas, December 1999, Springer-Verlag, p. 19-33, LNAI 1730.

[JAN 99b] JANHUNEN T., “On the Intertranslatability of Non-monotonic LogicsAnnals of
Mathematics and Atrtificial Intelligenceol. 27, num. 1-4, 1999, p. 79-128.

[JAN 00a] JANHUNEN T., “Capturing Stationary and Regular Extensions with Reiter’s Exten-
sions”, OJEDA-ACIEGO M. et al., Eds.Logics in Atrtificial Intelligence, European Work-
shop, JELIA 2000Malaga, Spain, September/October 2000, Springer-Verlag, p. 102-117,
LNAI 1919.

[JAN 00b] JANHUNEN T., “Comparing the Expressive Powers of Some Syntactically Re-
stricted Classes of Logic Programs”l.LoYD J. et al., Eds. Computational Logic, First
International ConferenceLondon, UK, July 2000, Springer-Verlag, p. 852-866, LNAI
1861.

[JAN 01] JANHUNEN T., “On the Effect of Default Negation on the Expressiveness of Dis-
junctive Rules”, EITER T., FABER W., TRUSZCZYNSKI M., Eds.,Logic Programming
and Nonmonotonic Reasoning, Proceedings of the 6th International Confeldiecma,
Austria, September 2001, Springer-Verlag, p. 93-106, LNAI 2173.

[JAN 02] JANHUNEN T., OIKARINEN E., “Testing the Equivalence of Logic Programs under
Stable Model Semantics”,FLESCA S. et al., Eds. Logics in Atrtificial Intelligence, Pro-

Some (in)translatability results 85

ceedings of the 8th European Confergrnesenza, Italy, September 2002, Springer-Verlag,
p. 493-504, LNAI 2424.

[JAN 03a] JANHUNEN T., “Evaluating the Effect of Semi-Normality on the Expressiveness of
Defaults”, Artificial Intelligence vol. 144, num. 1-2, 2003, p. 233-250.

[JAN 03b] JANHUNEN T., “Translatability and intranslatability results for certain classes of
logic programs”, Series A: Research report num. 82, November 2003, Helsinki University
of Technology, Laboratory for Theoretical Computer Science, Espoo, Finland.

[JAN 04] JANHUNEN T., “Representing Normal Programs with Clausestje MANTARAS
R. L., SAITTA L., Eds.,Proceedings of the 16th European Conference on Artificial Intelli-
gence Valencia, Spain, August 2004, 10S Press, p. 358—-362.

[KAU 96] KauTz H., SELMAN B., “Pushing the Envelope: Planning, Propositional Logic,
and Stochastic Search’Proceedings of the 13th National Conference on Atrtificial Intelli-
gence Portland, Oregon, July 1996.

[LIE 04] LIERLERY., MARATEA M., “CMODELS-2: SAT-based Answer Set Solver Enhanced
to Non-tight Programs”, Proceedings of LPNMR;7Fort Lauderdale, Florida, January
2004, Springer, p. 346-350, LNAI 2923.

[LIF 01] LiFscHITZ V., PEARCED., VALVERDE A., “Strongly Equivalent Logic Programs”,
ACM Transactions on Computational Logiol. 2, 2001, p. 526-541.

[LIF06] LIFscHITZ V., RAzZBOROV A., “Why Are There So Many Loop Formulas?ACM
Transactions on Computational Logiol. 7, num. 2, 2006, To appear, Seetp://www.
acm.org/pubs/tocl/accepted.html.

[LINO3] LIN F.,, ZHAO J. “On Tight Logic Programs and Yet Another Translation from Nor-
mal Logic Programs to Propositional Logic”,GOTTLOB G., WALSH T., Eds.,the 18th
International Joint Conference on Artificial Intelligenc&capulco, Mexico, August 2003,
Morgan Kaufmann, p. 853-858.

[LINO4] LIN F., ZHAO Y., “ASSAT: Computing Answer Sets of a Logic Program by SAT
solvers”, Artificial Intelligence vol. 157, 2004, p. 115-137.

[LLO 87] LLoybp J. Foundations of Logic Programmingpringer-Verlag, Berlin, 1987.

[MAH 88] MAHER M. J., “Equivalences of Logic Programs”"MINKER J., Ed.,Foundations
of Deductive Databases and Logic Programmipg 627-658, Morgan Kaufmann, Los
Altos, 1988.

[MAH 93] MAHER M. J., “A Tranformation System for Deductive Databases Modules with
Perfect Model SemanticsTheoretical Computer Scienceol. 110, num. 2, 1993, p. 377-
403.

[MAR 91] MAREK W., TRUSZCZYNSKI M., “Autoepistemic Logic”, Journal of the ACM
vol. 38,1991, p. 588-619.

[MAR 92] MAREK V. W., SUBRAHMANIAN V. S., “The Relationship between Stable, Sup-
ported, Default and Autoepistemic Semantics for General Logic Prograifiséoretical
Computer Sciencevol. 103, 1992, p. 365-386.

[MAR 99] MAREK W., TRUSZCZYNSKI M., “Stable Models and an Alternative Logic Pro-
gramming Paradigm”,The Logic Programming Paradigm: a 25-Year Perspectpe375—
398, Springer-Verlag, 1999.

86 JANCL —16/2006. Implementation of Logics

[MOS 01] MoskewICzM., MADIGAN C., ZHAO Y., ZHANG L., MALIK S, “CHAFF: Engi-
neering an Efficient SAT Solver’Proceedings of the 39th Design Automation Conference
Las Vegas, 2001.

[NIE 99] NIEMELA I., “Logic Programs with Stable Model Semantics as a Constraint Pro-
gramming Paradigm”Annals of Mathematics and Artificial Intelligenosl. 25, num. 3—
4,1999, p. 241-273.

[NUT 94] NuTE D., “Defeasible Logic”, GaBBAY D., HOGGERC., RoOBINSON J., Eds.,
Handbook of Logic in Artificial Intelligence and Logic Programmiropapter 7, p. 353—
395, Oxford Science Publications, 1994.

[PET 94] PETTOROSSIA., PROIETTI M., “Transformation of Logic Programs: Foundations
and Techniques”Journal of Logic Programmingvol. 19-20, 1994, p. 261-320.

[REI 78] REITER R., “On Closed World Data Bases”, GALLAIRE H., MINKER J., Eds.,
Logic and Data Basep. 55—76, Plenum Press, New York, 1978.

[ROB 65] RoBINSONJ. A, “A Machine-Oriented Logic Based on the Resolution Principle”,
Journal of the ACMvol. 12, num. 1, 1965, p. 23-41.

[SCH 95] ScHLIPF J., “The Expressive Powers of the Logic Programming Semantidtiy-
nal of Computer and System Scienaes. 51, 1995, p. 64-86.

[SIM02] SIMONS P, NIEMELA 1., SOININEN T., “Extending and Implementing the Stable
Model Semantics”Artificial Intelligence vol. 138, num. 1-2, 2002, p. 181-234.

[SUB 95] SuBrRAHMANIAN V., NAU D., VaGco C., “WFS + Branch and Bound = Stable
Models”, IEEE Transactions on Knowledge and Data Engineeria. 7, num. 3, 1995,
p. 362-377.

[TSE 83] TSEITING. S, “Onthe Complexity of Derivation in Propositional Calculus3jEk -
MANN J., WRIGHTSON G., Eds.,Automation of Reasoning 2: Classical Papers on Com-
putational Logic 1967-197(. 466-483, Springer, Berlin, Heidelberg, 1983.

[TUR 03] TuRNERH., “Strong Equivalence Made Easy: Nested Expressions and Weight Con-
straints”, Theory and Practice of Logic Programmingpl. 3, num. 4-5, 2003, p. 609-622.

[VAN 91] VAN GELDERA., ROSSK., SCHLIPFJ., “The Well-Founded Semantics for General
Logic Programs” Journal of the ACMvol. 38, num. 3, 1991, p. 620-650.

[WOL 04] WOLTRAN S., “Characterizations for Relativized Notions of Equivalence in An-
swer Set Programming”ALFERESJ., LEITE J., Eds. Logics in Artificial Intelligence: 9th
European Conferen¢&pringer Verlag, September 2004, p. 161-173, LNAI 3229.

