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ABSTRACT. Sahlqvist formulas are a syntactically specified class of modal formulas proposed
by Hendrik Sahlqvist in 1975. They are important because of their first-order definability and
canonicity, and hence axiomatize complete modal logics. The first-order properties definable
by Sahlqvist formulas were syntactically characterized byMarcus Kracht in 1993. The present
paper extends Kracht’s theorem to the class of ‘generalizedSahlqvist formulas’ introduced by
Goranko and Vakarelov and describes an appropriate generalization of Kracht formulas.
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1. Introduction

The Sahlqvist theorem is a hard working horse in modal logic.It describes a large
class of first-order definable canonical modal formulas. A standard proof of complete-
ness results boils down to finding relevant first-order properties and corresponding
Sahlqvist formulas and next — to applying Sahlqvist completeness theorem. Also
Sahlqvist formulas are often applied for proofs of negativeresults such as non-finite
axiomatizability.

Kracht’s theorem is an important addition to the Sahlqvist theorem. It explicitly
describes the class of first-order correspondents to Sahlqvist formulas (Kracht, 1993),
(Kracht, 1999). Moreover, it gives an algorithm constructing a Sahlqvist formula from
its first-order analogue.
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So when we encode a first-order condition into a Sahlqvist formula, we implicitly
use Kracht’s algorithm. That is why for axiomatizing modal logics Kracht’s theorem
is not less important than the Sahlqvist theorem.

In (Gorankoet al., 2000), (Gorankoet al., 2006) the Sahlqvist theorem was further
generalized. These results turned out to be at the intersection of at least two research
lines.

The first line came from attempts at axiomatizing many-dimensional modal logics.
Probably, the first known generalized Sahlqvist formula wascub1 (see page 19 of this
paper) for the first time published in (Shehtman, 1978), expressing the ‘cubifying’
property of 3-dimensional product frames (see Figure 1)

(∀x0)∀x1∀x2∀x3 (x0R1x1 ∧ x0R2x2 ∧ x0R3x3 →
→ ∃y(y ∈ R3(R2(x1) ∩R1(x2)) ∧ y ∈ R2(R3(x1) ∩R1(x3))∧
∧y ∈ R1(R2(x3) ∩R3(x2)))) .

(1)

Modifications of this formula were used by A. Kurucz in the proof of some negative
results on≥ 3-dimensional products (Kurucz, 2000), (Kurucz, 2008). Letus also
mention that generalized Sahlqvist formulas appear in axiomatizing 2-dimensional
squares with extinguished diagonal (Kikot, n.d.).
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Figure 1.

First-order conditions like (1) can be illustrated by pictures with black and white
points, and bold and simple arrows, as in Figure 1. A formal analogue of such a
picture is the notion of adiagram. It turns out that under some natural conditions, the
corresponding first-order∀∃-formula is modally definable if and only if the diagram
does not have non-oriented cycles consisting of white points and simple arrows, and,
in the case of modal definability, the∀∃-formula always corresponds to a generalized
Sahlqvist formula (Kikot, 2005).

The second line of research arises from the natural problem —to find sufficient
conditions for first-order definability and canonicity of modal formulas. The relevant
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part starts with (Gorankoet al., 2000) extending the Sahlqvist theorem to polyadic
modal languages. The same paper gives an example of first-order definable and canon-
ical modal formulas that are not Sahlqvist (namely, formulaD2 from Example 31 be-
low). However, the question if these new formulas have Sahlqvist equivalents, was
remaining unsolved for some time. This question was solved by V. Goranko and D.
Vakarelov who introduced the notion of a-persistence and showed that all Sahlqvist
formulas are a-persistent whileD2 is not (Gorankoet al., 2006). It was in (Goranko
et al., 2006) that the notion of a ‘generalized Sahlqvist formula’, that lies in the center
of the present paper, was introduced as a partial case of so called ‘inductive formula’.

Then algorithms were proposed (see (Conradieet al., 2004), (Conradieet al., 2006)
and references therein), for computing first-order equivalents of some modal formulas.
The Sahlqvist theorem was further generalized in (Vakarelov, 2003) and (Vakarelov,
2002), yielding the class of complex Sahlqvist formulas, but they are actually seman-
tically equivalent to standard Sahlqvist formulas.

Another challenging problem is: ‘given a first-order formula, find the modal logic
of the corresponding elementary class’. Let us mention thatthe problems ‘given a first-
order formula, determine if it is modally definable’ and ‘given a modal formula, deter-
mine if it is first-order definable’ are undecidable due to Chagrova’s theorem (Chagrov
et al., 2006). That is why any sufficient condition for modal (or f. o.) definability
is very interesting by itself. In this context besides the above cited Kracht’s result
(Kracht, 1993), (Kracht, 1999) and the study of diagram formulas (Kikot, 2005) we
can make especially mention the brilliant work (Hodkinson,2006) giving an explicit
infinite axiomatization for any elementary class. In some particular cases more con-
cise (although also infinite) axiomatizations are constructed in (Balbianiet al., 2006).
However, we still do not have a criterion of finite axiomatizability for the logics from
(Hodkinson, 2006) and (Balbianiet al., 2006).

The present paper continues the study on modal logics of elementary classes. We
extend the class of Kracht formulas to the class of ‘generalized Kracht formulas’. Then
we propose an algorithm constructing a modal correspondentfor a given generalized
Kracht formula. This modal correspondent is a generalized Sahlqvist formula, and
therefore it is canonical (and, a fortiori, Kripke complete).

Our terminology slightly differs from (Gorankoet al., 2006); in particular, the
notion ‘regular formula’ has a different meaning. Also, theterm ‘safe expression’ is
not the same as in (Blackburnet al., 2002).

2. Regular box-formulas.

We consider the modal languageMLΛ with countably many propositional vari-
ables, unary modalities♦λ and their duals�λ, whereλ ∈ Λ, boolean connectives
∧,∨,¬,→ and boolean constants⊤,⊥. A formula in this language is calledpositive
if it does not contain¬ and→ (but may contain⊥.)
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Recall that in the Sahlqvist theorem ‘boxed atoms’ (i.e. theexpressions of the
form �np) are crucial, because they allow us to obtain the minimal valuation for an
antecedent. In generalized Sahlqvist formulas ‘boxed atoms’ are replaced by ‘regular
box-formulas’.

DEFINITION 1 (GORANKO et al., 2006). — A box-formula is defined by recur-
sion:

– a variablepi is a box-formula;
– if POS is a positive modal formula andBF is a box-formula thenPOS → BF

is a box-formula;
– if BF is a box-formula then�λBF is a box-formula.

Thus a box-formula is equivalent to one of the form

POS1 → �α1(POS2 → �α2(POS3 → . . .→ pi) . . .),

where�αj are sequences of boxes,POSj are positive.

The last variablepi of this formula is called itshead. BF ≻ pi denotes thatpi is
the head of a box-formulaBF .

LetA be a set of box-formulas. Thedependency graphofA is an oriented graph
G = (VA, EA), where the set of verticesVA = {p1, . . . , pn} consists of all variables
occurring inA, and the adjacency relation is

piEApj ⇐⇒ pi occurs (not as a head) in some formulaφ ∈ A with the headpj.

A set of box-formulasA is calledregularif its dependency graph is acyclic,i.e., it does
not contain oriented cycles.

We will use a more convenient technical version of Definition1.

The set of propositional variables is split into countably many groupsp01, p
0
2, p

0
3, . . .,

p11, p
1
2, p

1
3, . . ., p

2
1, p

2
2, p

2
3, . . . and so on. The upper index (called therank) is the num-

ber of the group and the lower index is the number of a variablewithin a group. Put
p̄i = {pi1, p

i
2, p

i
3, . . .}.

DEFINITION 2. — A regular box-formula of rankk is defined by recursion:

– a variablepki is a box-formula of rankk,
– if POS(p̄0, p̄1, . . . , p̄k−1) is a positive modal formula, depending only on

the variables of rank< k and REG is a regular box-formula of rankk then
POS(p̄0, p̄1, . . . , p̄k−1) → REG is a regular box-formula of rankk,

– if REG is a regular box-formula of rankk then�λREG is a regular box-
formula of rankk.

LEMMA 3. — LetA be a set of modal formulas. Then

(1) if A is a set of regular box-formulas (in the sense of Definition 2), thenA is a
regular set of box-formulas (in the sense of Definition 1).
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(2) if A is a regular set of box-formulas, then we can range the propositional vari-
ables (i.e.choose the upper indices) so thatA becomes a set of regular box-formulas.

PROOF. — (1) is trivial. In fact, ifA is a set of regular formulas andpsiEAp
t
j , then

s < t. So the dependency graph does not contain oriented cycles.

We prove (2) by induction on the number of vertices inVA. If it has a single vertex,
the statement is trivial. Suppose it hasn vertices. Since our graph does not have
oriented cycles, there is a vertexv in VA without successors. Supposev corresponds
to a variablepl for somel ≤ n. We eliminate this vertex (and of course, all entering
edges) and obtain the graphG′

A = (V ′
A, E

′
A). Sincev does not have successors,

pl can occur only in the heads of box-formulas fromA. If A′ is obtained fromA
by eliminating box-formulas with the headpl, thenGA′ = G′

A. By the induction
hypothesis we can range the vertices ofG′

A so that all formulas inA′ become regular.
For i 6= l let r(i) be the rank ofpi. Put the rank ofpl to bemax r(i) + 1. ThenA is a
set of regular formulas, since all formulas inA \A′ havepl as their head, and the rank
of pl is maximal. �

Besides the modal languageMLΛ, we need additional languagesL#
k ,LPk andL.

Their vocabularies are

– forLPk : P li (l < k),∩,∪, R−1
λ , R�

λ ,⊤,⊥;

– forL#
k : #, P li (l < k),∩,∪, R−1

λ , R�
λ , Rλ,⊤,⊥;

– forL : xi,∩,∪, R
−1
λ , R�

λ , Rλ,⊤,⊥.

Here⊥,⊤ are constants,P li ,#, xi are variables,R−1
λ , R�

λ , Rλ are unary function
symbols,∩,∪ are binary function symbols. We call the terms of these languages
expressions.

To every regular box-formulaφ of rank k we assign anL#
k -expressionKV φ.

(Later we shall see thatKV φ is the operator for the relative minimal valuation for
the head ofφ.)

First we assign an expressionKPPOS ∈ LPk to every positive formulaPOS :

KP⊤ := ⊤, KP⊥ := ⊥,

KP p
l
i := P li , wherel < k,

KPPOS1∧POS2 := KPPOS1 ∩KPPOS2 ,

KPPOS1∨POS2 := KPPOS1 ∪KPPOS2 ,

KP♦λPOS := R−1
λ (KPPOS),

KP�λPOS := R�
λ (KP

POS).

This definition obviously corresponds to the truth definition in the standard Kripke
semantics. If we have a frameF = (W, (Rλ : λ ∈ Λ)) andθ is a valuation for the
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variablespli, wherel < k, thenθ(POS) is the value ofKPPOS under the interpre-
tationI sending⊤ to W , ⊥ to ∅, P li to θ(pli), R

−1
λ (A) to {x | ∃y xRy andy ∈ A},

R�
λ (A) to {x | ∀y if xRy theny ∈ A}

Now we assign anL#
k -expressionKV φ to any regular box-formulaφ of rankk.

DEFINITION 4. — We set
KV p

k
i := #,

KV POS→ψ := KV ψ(# ∩KPPOS),

KV �λψ := KV ψ(Rλ(#)).

HereKV φ(t) denotes the substitution instance[t/#]KV φ. That is to obtain
KV POS→ψ , we substitute the term# ∩ KPPOS for # in KV ψ, and to obtain
KV �λψ, we substitute the termRλ(#) for # in KV ψ.

EXAMPLE 5. —

1) Letφ = �lλp
1
0. ThenKV φ = Rlλ(#).

2) If φ = �1(♦2p
0
0 → �3p

1
0), thenKV φ = R3(R

−1
2 (P 0

0 ) ∩R1(#)).

�

In a modelM = (W,Rλ, θ), wherex ∈ W , we can evaluateKV φ(x) under the
interpretationI described above and identify it with a certain subset ofW .

LEMMA 6 (ON MONOTONICITY OFKV φ). —KV φ(x) is monotonic with respect to
P li .

PROOF. — This is trivial, since all operations∩,∪, R−1
λ , R�

λ , Rλ are monotonic.�

The next lemma shows that the operatorKV φ really defines the ‘relative minimal
valuation’ for the truth ofφ in the standard Kripke semantics.

LEMMA 7 (ON MINIMALITY OF KV φ). — Let φ be a regular box-formula with a
headpki . Consider a Kripke modelM = (W, (Rλ : λ ∈ Λ), θ) whereθ(pli) = P li
(l ≤ k). Then

M,x |= φ⇐⇒ P ki ⊇ KV φ(x).

PROOF. — The proof is by induction on the length ofφ. If φ is a variable, there is
nothing to prove.

Let φ = POS → ψ. Then

x |= φ⇐⇒ x |= POS → ψ ⇐⇒

( if x |= POS, thenx |= ψ) ⇐⇒

( if x |= POS, thenP ki ⊇ KV ψ(x)) ⇐⇒
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(x 6|= POS orP ki ⊇ KV ψ(x)) ⇐⇒

{x} ∩KPPOS = ∅ orP ki ⊇ KV ψ(x) (2)

There are only two possible values of{x} ∩KPPOS , viz. {x} and∅. A simple
induction argument shows thatKV ψ(∅) = ∅. So by an easy study of cases (2) is
equivalent to

P ki ⊇ KV ψ({x} ∩KPPOS) ⇐⇒

P ki ⊇ KV φ(x).

Let φ = �λψ.
x |= φ⇐⇒ x |= �λψ ⇐⇒

∀y(xRλy ⇒ y |= ψ) ⇐⇒

∀y(xRλy ⇒ P ki ⊇ KV ψ(y)) ⇐⇒ 1

P ki ⊇ KV ψ(Rλ(x)) ⇐⇒

P ki ⊇ KV φ(x).

�

LetA be a finite set of regular box-formulas,P(A) be the set of all subsets ofA.

Consider a setV = {x1, . . . , xn}, and a functionf : V → P(A).

DEFINITION 8. — To every variablepki we assign an expressionKF p
k
i

f of our lan-
guageL (see above) by induction onk. We put

KF
pki
f =

⋃

φ≻pk
i
,φ∈f(xi)

KV Fφf (xi),

whereKV Fφf (xi) is obtained by substituting expressionsKF
pli
f for P li for all l < k

in the expressionKV φ(xi), that we can denote by

KV Fφf (xi) = [KV
pli
f /P li ]l<kKV

φ(xi).

In particular,

KF
p0i
f =

⋃

φ≻p0
i
,φ∈f(xi)

KV φf (xi),

whereKV φf (xi) does not containP ’s.

EXAMPLE 9. — If V = {x1, x2}, f(x1) = {�4p
0
0} and f(x2) = �1(♦2p

0
0 →

�3p
1
0), then

KF
p0
0

f = R4(x1),

1. Here we use the fact thatKV ψ is destributive over arbitrary unions.
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KF
p1
0

f = R3

(

R−1
2 (R4(x1)) ∩R1(x2)

)

.

�

The next lemma shows that the operatorKF
pki
f corresponds to the absolute mini-

mal valuation for a variablepki .

LEMMA 10. — Among all valuationsθ such that for allj xj |= f(xj)
2 there is the

smallest oneθmin, andθmin(p
l
i) = KF

pli
f .

PROOF. — Put
rank(f) = max

xj ∈ V
φ ∈ f(xj)

rank(φ),

where rank(φ) denotes the rank of its head. Let us introduce a new functionf− :
V → A, as follows:

f−(xj) = f(xj) ∩ {φ | rank(φ) < rank(f)}.

It is clear that
rank(f−) ≤ rank(f)− 1

We argue by induction on rankf .

The base: rankf = 0. Then

θmin(p
0
i ) =

⋃

φ≻p0
i
,φ∈f(xj)

KV φ(xj) = KF
p0i
f .

The induction step. Suppose rankf = k. Consider the mapf−. Then by the

induction hypothesis there existsθ−min(p
l
i) = KF

pli
f− for l < k, such that for any

valuationθ−, given on the variables of rank< k

∀j θ−, xj |= f−(xj) → θ− ⊇ θ−min.

Put
θmin(p

k
i ) = KF

pki
f =

⋃

φ≻pk
i
,φ∈f(xj)

KV Fφf (xj).

Suppose that for someθ
∀j F, xj , θ |= f(xj).

2. Strictly speaking, in this lemma we mean that we have a frameF = (W, (Rλ : λ ∈ Λ)) and a
valuation of object variablesg : V → W , so this formula must be read asF, g(xj), θ |= f(xj),
but following Kracht (Kracht, 1999) we will identifyxi with g(xi), and will not take care of the
frameF .
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Let us prove that
θ ⊇ θmin.

Let θ− be a restriction ofθ to variables of rank< k. By the induction hypothesis

θ− ⊇ θ−min.

Consider an arbitraryφ ∈ f(xj) with the headpki . By Lemma 7 (on the minimality of
KV φ)

θ(pki ) ⊇ KV φ(xj)

and by Lemma 6 (on the monotonicity ofKV φ)

KV φ(xj) ⊇ KV Fφf (xj),

hence
θ(pki ) ⊇ KV Fφf (xj).

So
θ(pki ) ⊇

⋃

φ≻pk
i
,φ∈f(xj)

KV Fφf (xj) = θmin(p
k
i )

�

3. Safe expressions

In this section we study the values ofKV F andKF .

DEFINITION 11. —Let B be a set ofL-expressions. Apositive combination of
B (denoted POS(B)) is anyL-expression built from the members ofB using only
∩,∪, R−1

λ , R�
λ ,⊤,⊥ (i. e. all operations ofL exceptingRλ).

DEFINITION 12. —LetK be the minimal class ofL-expressions satisfying the con-
ditions:

– {x1, . . . , xn} ⊆ K,
– if S ∈ K, thenRλ(S) ∈ K,
– if B ⊆ K andS ∈ K thenS ∩ POS(B) ∈ K,

where POS(B) denotes any positive combination ofB.

Now we give another description ofK.

DEFINITION 13. — Letψ be a subexpression ofφ ∈ L. We say that a subexpression
ψ is safe forφ if one of the following holds:

1)ψ = xi;

2)ψ = Rλ(ψ
′), whereψ′ is safe forφ;

3)ψ = ψ′ ∩ ψ′′, where eitherψ′ or ψ′′ is safe forφ.
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LetSub(φ) denote the set of all subexpressions ofφ. We say that an expressionφ
is safe if

1)φ is safe forφ;

2)for every subexpressionRλ(ψ) of φ, ψ is safe forφ.

Some examples of safe expressions arexi, R(x), R(R(x) ∩R−1R(x)),

R(R(x) ∩R−1(⊤)), R
((

R(x) ∩R−1R(x)
)

∩
(

R−1(x) ∩R−1(R(x))
))

.

The Figure 2 shows the dependency tree of the latter expression.

R((R(x) ∩R
−1

R(x)) ∩ (R−1(x) ∩R
−1

R(x)))

(R(x) ∩R
−1

R(x)) ∩ (R−1(x) ∩R
−1

R(x))

R

R(x) ∩R
−1

R(x)

R(x)

x

R
−1

R(x)R(x)

R(x)

x

R
−1(x) ∩R

−1
R(x)

R
−1(x) R

−1
R(x)

R(x)

x

x

R
−1

∩
∩

∩∩∩∩

R

R

R

R
−1

R
−1

Figure 2.

One can easily check that this expression is safe. Denote it by φ. In fact, all
subexpressions on the left branch are safe forφ, henceφ is safe for itself. However,
some of its subexpressions are not safe forφ; they are circled in the picture. But the
operatorR is applied only to the nodes, that are safe forφ.

Examples of non-safe expressions areR−1(x), R(R−1(x)), R(⊤).

LEMMA 14. — For anyL-expressionφ

φ ∈ K ⇐⇒ φ is safe.

PROOF. — By induction on the length ofφ. The base is trivial.

Supposeφ is of the formφ1 ∪ φ2. Thenφ is not safe, andφ /∈ K. The same holds
if φ = R−1

λ (ψ) or φ = R�
λ (ψ).
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Supposeφ = φ1 ∩ φ2.

If φ is safe, then eitherφ1 orφ2 is safe. Without any loss of generality assume that
φ2 is safe. Then by the induction hypothesisφ2 ∈ K. Considerφ1. Since all subex-
pressions of the formRλ(ψ) are safe,φ1 is of the formPOS(ψ1, . . . , ψk), where all
ψi are safe. By the inductive hypothesisψi ∈ K, henceφ = POS(ψ1, . . . , ψk)∩φ2 ∈
K.

The other way round, ifφ1 ∩ φ2 ∈ K, thenφ1 or φ2 is in K, so eitherφ1 or φ2 is
safe, and the other expression is a positive combination of safe expressions. Soφ1∩φ2
is safe.

Supposeφ = Rλ(ψ). If φ is safe, thenψ is safe, soψ ∈ K, henceφ ∈ K. The
other way round, ifφ ∈ K, thenψ ∈ K, andψ is safe; henceφ is safe. �

LEMMA 15. —There is a linear algorithm, which for any given L-expression φ de-
cides, whetherφ is safe (or, according to Lemma 14, whetherφ is inK).

PROOF. — We run through the syntactic tree ofφ starting from its leaves and assign
the value ’safe forφ’, or ’not safe forφ’ to every node (that is, to a subexpression of
φ) according to Definition 13. If we see thatRλ is applied to a node, which is not safe,
we stop and conclude thatφ is not safe. Otherwise, we look whetherφ is safe forφ,
and return the result.

This algorithm takes time proportional to the number of nodes in the syntactical
tree of the expression, hence, it is linear with respect to the length of the given expres-
sionφ. �

COROLLARY 16. — Letφ andψ be safe expressions. After replacing any occurrence
of xi in φ with ψ we obtain a safe expressionφ′.

LEMMA 17 (SOUNDNESS OFK WITH RESPECT TOKV F ). — Let φ be a regular
box-formula of rankk with a headpki , and letA be the set of all regular box-formulas
of ranks≤ k, let f be a map{x1, . . . , xn} → P(A). ThenKV Fφf (xj) is in K, and

hence,KF p
k
i

f is a union of elements ofK.

PROOF. — By induction on the length ofφ within the induction onk. The casek = 0
is trivial. So suppose0 ≤ l < k.

Case 1. Letφ = pki . ThenKV φ = # andKV Fφf (xj) = xj ∈ K.

Case 2. Letφ = POS → ψ. ThenKV φ = KV ψ(# ∩KPPOS) and

KV Fφf (xj) = [KF
pli
f /P

l
i ]KV

ψ(xj ∩KP
POS) =

= [KF
pli
f /P

l
i ]KV

ψ(xj ∩ [KF
pli
f /P

l
i ]KP

POS) ∈ K.

In fact, [KF p
l
i

f /P
l
i ]KV

ψ(xj) = KV Fψf (xj) ∈ K by the induction hypothesis. Con-

siderxj ∩ [KF
pli
f /P

l
i ]KP

POS . Sincel < k, by the induction hypothesisKF p
l
i

f is
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a union of safe expressions. Hence[KF
pli
f /P

l
i ]KP

POS is a positive combination of

safe expressions. That isxj ∩ [KF
pli
f /P

l
i ]KP

POS ∈ K and it is sufficient to apply
Corollary 16.

Case 3. Letφ = �λψ. ThenKV φ = KV ψ(Rλ(#)). Similarly,KV Fφf (xj) is

the result of replacing a single occurrence ofxj with Rλ(xj) in KV Fψf (xj), which is

safe by the induction hypothesis. So Corollary 16 implies thatKV Fφf (xj) ∈ K. �

LEMMA 18 (COMPLETENESS OF K WITH RESPECT TO KV F ). — Let
E(x1, . . . , xk) be a safeL-expression andA be the set of all regular formulas. Then
there exists a function

fE : {x1, . . . , xk} → P(A),

and a formulaφ ∈ ∪ifE(xi) with the headpli such thatE(x1, . . . , xk) = KF
pli
fE =

KV Fφ
fE .

PROOF. — Induction on the length ofE.

The caseE = xi is trivial:

f(xj) =

{

∅, if j 6= i
P 0
i , if j = i

Consider an arbitrary safeE. Then in the syntactical tree ofE there is a path
connectingE with somexi, and passing only through safe subexpressions ofE. We
denote the subexpressions on this path byE0 = {xi}, E1, . . . , Eb = E.

Consider the caseE1 = Rλ(xi). Then considerE′ obtained fromE by replacing
the subexpressionE1 with an expressionE0 (that is we replaceRλ(xi) with xi). Now
we apply the induction hypothesis toE′ and obtain a functionfE

′

, and a formulaφ
with the headpli. Then we replaceφ by�λφ in fE

′

, leavingpli and others components
of fE

′

as they are. This yields us a functionfE , sinceKV �λψ = KV ψ(Rλ(#)) and
the substitution, transformingKV intoKV F is the same forE andE′.

Now consider the caseE1 = {xt} ∩ POS(ψ1, . . . , ψk), where allψj are safe.

By the induction hypothesis, for anyψj there exist functionsfψj and variablespljj .
LetE′ be an expression obtained fromE by replacingE1 with E0. By the induction
hypothesis there exists a functionfE

′

and a formulaφ with the headplm. Without any
loss of generality we may assume that the functionsfψj andfE

′

do not have common
propositional variables and thatl > lj for all j from 1 to k. TakefE

′

, and replace
φ by POS′ → φ, wherePOS′ is obtained from an L-expression POS by replacing
each of subexpressionsψj with pljj , ∨ with ∪, ∧ with ∩,R−1

λ with ♦λ,R�
λ by�λ. We

denote the result byfE
′

′ . PutfE(xi) = fψ1(xi) ∪ . . . ∪ fψk(xi) ∪ fE
′

′ (xi) and the
variableplm. �
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COROLLARY 19. — Let E be a set of safe expressions. Then there exists a function
fE : {x0, . . . , xk} → P(A) and the collection of variables{pE|E ∈ E} 3 such that
for all E ∈ E

E = KF pE
fE .

PROOF. — By Lemma 18 for eachE ∈ E there existfE andpE such thatE =
KF pE

fE . Without any loss of generality we may assume that for differentE fE do not
have common propositional variables. Then we can put

fE(xi) =
⋃

E∈E

fE(xi).

�

Now we see that the classK describes the values ofKV F . So the values ofKF
are in the closure ofK under∪.

REMARK 20. — This definition of safety does not coincide with the notion of ‘safety
under bisimulations’ from (Blackburnet al., 2002).

DEFINITION 21 (BLACKBURN et al., 2002). — A first-order formulaα(x, y) is
called safe under bisimulation if for all Kripke modelsM andM ′, bisimulationZ
between them and pointsx0 ∈ M , x′0 ∈ M such thatxZx′ for all y0 if M |=
α[x \ x0, y \ y0] then there isy′0 ∈M ′ such thatM ′ |= α[x \ x′0, y \ y

′
0] andyZy′.

One can generalize this definition to the following.

DEFINITION 22. —A first-order formulaα(x1, . . . , xn, y) is called safe under
bisimulations if for for all Kripke modelsM andM ′, bisimulationZ between them
and pointsxi ∈ M , x′i ∈ M ( 1 ≤ i ≤ n) such thatxiZx′i for all y0 if
M |= α[xi \ x

0
i , y \ y

0] then there isy′0 ∈ M ′ such thatM ′ |= α[xi \ (x
0
i )

′, y \ y′0]
andyZy′.

We may conjecture that these two definitions of safety (the syntactic safety from
this paper and safety under bisimulation) coincide. However, this is not the case.
Indeed, the formulay ∈ R(R(x1)∩R(x2)) is safe according to our definition, but not
safe under bisimulations. �

4. Generalized Sahlqvist formulas

DEFINITION 23 (GORANKO et al., 2006). — A generalized Sahlqvist implica-
tion is a formulaGSA → ⊥, whereGSA4 is built from regular box-formulas and
negative formulas (that is, negations of positive formulas) using only∧,∨,♦λ. If we

3. According to our notation,pE actually denotesplEiE
4. Generalized Sahlqvist Antecedent
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prohibit the use∨ in GSA, we obtain the definition of ageneralized simple Sahlqvist
implication.

A generalized Sahlqvist formula5 is a formula built up from generalized Sahlqvist
implications by applying boxes and conjunctions, and by applying disjunctions only
to formulas without common proposition letters.

The reduction of a generalized Sahlqvist formula to a generalized simple Sahlqvist
implication is standard (Blackburnet al., 2002). So without any loss of generality we
may consider a generalized simple Sahlqvist implicationGSA → ⊥, whereGSA
is built from regular box-formulas and negative formulas using only∧ and♦λ. It is
convenient to represent such formulas with labelled trees of a special kind, similar to
syntactical trees.

DEFINITION 24. —Consider a structurêT = (W, (Rλ : λ ∈ Λ)). A path fromx1
to xn in T̂ is a sequencex1λ1x2λ2x3 . . . xn, wherexi ∈ W , λi ∈ Λ andxiRλi

xi+1

in T̂ . Two pathsx1λ1x2λ2x3 . . . xn andx′1λ
′
1x

′
2λ

′
2x

′
3 . . . x

′
n are calledequalif for all

1 ≤ i ≤ n xi = x′i and for all1 ≤ i ≤ n− 1 λi = λ′i.

A pair (T̂ , r) is called atree with a rootr if the following holds

1) r ∈W ,

2)R−1
λ (r) = ∅ for all λ ∈ Λ,

3) for all x 6= r there is a unique path fromr to x.

Let A be a set of modal formulas. Alabelled tree with a rootr is a tupleT =
(W, (Rλ : λ ∈ Λ), r, f), where(W, (Rλ : λ ∈ Λ), r) is a tree with a rootr andf (a
label function) is a map fromW toP(A).

DEFINITION 25. —Letφ be built up from formulas ofA by applying only diamonds
and conjunction. Areduced syntactical treeof a formulaφ is a labelled tree defined
by induction on the length ofφ.

Case 1:φ = a, wherea ∈ A. ThenT φ contains a single pointx. The mapfφ

takesx to {a} and the relationsRφλ are empty.

Case 2:φ = χ∧ψ. Then putWφ = (Wχ\{rχ})∪ (Wψ\{rψ})∪{rφ}, whererφ

is some new point. The relationsRλ onWχ andWψ remain the same, andrφRλw
iff w ∈ Wχ andrχRχλw or w ∈ Wψ andrψRψλw. The mapfφ sendsrφ to fχ(rχ) ∪
fψ(rψ) and is equal tofχ or fψ in all other points.

Case 3:φ = ♦λψ. ThenWφ = Wψ ∪ {rφ}, whererφ is a new point. TheRµ for
µ 6= λ we leave untouched, and toRλ we add an arrow, joiningrφ with rψ . We put
f(rφ) = ∅, and do not changef in all other points.

EXAMPLE 26. — The reduced syntactical tree of the formula

φ = ♦(�p ∧�q ∧ ♦(♦�q ∧ ♦��p)) ∧ p

5. In subsequent publications Goranko and Vakarelov refer to these formulas as the monadic
inductive formulas
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is shown in the Figure 3. �

p

�p, �q

�q ��p

Figure 3.

LEMMA 27. — LetA be an arbitrary set of modal formulas and letφ be built from
formulas ofA using only∧ and♦λ. Let T φ = (Wφ, (Rφλ : λ ∈ Λ), rφ, fφ) be a
reduced syntactical tree ofφ. Then for all framesF = (W,Rλ : λ ∈ Λ) for any
valuationθ F, x, θ |= φ iff there exists a monotonic maph : T φ → F (that is for all
x, y ∈ Wφ if xRφλy thenh(x)Rλh(y)) such thath(rφ) = x and for anyw ∈ Wφ,
a ∈ A if a ∈ fφ(w) thenF, h(w), θ |= a.

The proof of the Lemma 27 trivially follows from the semantics of∧ and♦λ.

For Sahlqvist formulasA is the set of all boxed atoms and negative formulas. For
generalized Sahlqvist formulasA is the set of all regular box-formulas and negative
formulas.

The next lemma shows the standard second-order quantifier elimination in a simple
generalized Sahlqvist implication.

LEMMA 28. — (cf. (Gorankoet al., 2006) and (Blackburnet al., 2002), Section 3.6)
Letφ be a simple generalized Sahlqvist implicationφ with a reduced syntactical tree
T = ({y0, y1, . . . , yn}, (R

T
λ : λ ∈ Λ), y0, f). Let fREG(yi) = f(yi) ∩ REG, and

fNEG(yi) = f(yi) ∩ NEG whereREG andNEG are respectively the sets of all
regular box-formulas and all negative formulas. Then the first-order correspondent of
φ is of the form

[(xj ∈ KF
pki
fREG

)#/P ki (xj)]∀x1 . . . ∀xn





∧

yiR
T
λ
yj

xiRλxj → (3)

∨

ψ∈fNEG(yj)

(xj |= ¬ψ)∗



 .
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HereKF p
k
i

fREG
is the minimal valuation ( see Definition 8),# denotes the first-order

transcription ofxj ∈ KF
pki
fREG

, defined on the page 17, and∗ means the standard
first-order translation of a modal formula.

PROOF. — The proof is standard. As in the Sahlqvist theorem, we can eliminate the
second-order quantifiers by substituting appropriate (minimal) valuations.

Letφ be a simple generalized Sahlqvist implication with a reduced syntactical tree
T = ({y0, y1, . . . , yn}, (R

T
λ : λ ∈ Λ), y0, f). Then for any frameF , F, x0 |= φ is

equivalent to the universal second order formula

∀P k1i1 . . . ∀P kmim



∃x1 . . . ∃xn





∧

yiR
T
λ
yj

xiRλxj ∧
∧

i

(xi |= f(yi))
∗



→ ⊥



 ,

where for a set of modal formulasf(yi) the notationxi |= f(yi) means that in the
pointxi all members off(yi) are true.

Now we can put the existential quantifiers in the prefix. Sincethey are in the
antecedent of the implication, they become universal:

∀P k1i1 . . . ∀P kmim ∀x1 . . . ∀xn









∧

yiR
T
λ
yj

xiRλxj ∧
∧

i

(xi |= f(yi))
∗



→ ⊥





Then let us swap them with the second-order quantifiers:

∀x1 . . . ∀xn∀P
k1
i1
. . . ∀P kmim









∧

yiR
T
λ
yj

xiRλxj ∧
∧

i

(xi |= f(yi))
∗



→ ⊥



 .

Now we apply the equivalenceA ∧B → C ≡ A→ (B → C), yielding

∀x1 . . . ∀xn∀P
k1
i1
. . . ∀P kmim





∧

yiR
T
λ
yj

xiRλxj →

(

∧

i

(xi |= f(yi))
∗ → ⊥

)



 .

Let us move the second-order universal quantifiers to the consequent:

∀x1 . . .∀xn





∧

yiRT yj

xiRxj → ∀P k1i1 . . . ∀P kmim

((

∧

i

(xi |= f(yi))
∗

)

→ ⊥

)





Now let us recall thatf(yi) = fNEG(yi) ∪ fREG(yi). Let us move the formulas
of fNEG(yi) from the antecedent to the consequent of the inner implication:

∀x1 . . . ∀xn





∧

yiRT yj

xiRxj → ∀P k1i1 . . .∀P kmim









∧

i

∧

ψ∈fREG(yi)

(xi |= ψ)∗



→
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∨

i

∨

ψ∈fNEG(yi)

¬(xi |= ψ)∗)







 .

According to Lemma 10, there is the smallest valuation verifying the antecedent

∧

i

∧

ψ∈fREG(yi)

(xi |= ψ)∗.

The negation of a negative formula is positive. So we can eliminate the second-order
quantifiers by substituting the minimal valuation and obtain the formula (3). �

5. Generalized Kracht Formulas

Now we will extend Kracht’s theorem to generalized Sahlqvist formulas. To this
end we need an extension of our first-order language. The onlycontribution of this
work is the usage ofK. All other definitions from this section (restricted quantifi-
cation, inherently universality) are taken from (Blackburn et al., 2002) and originate
from Kracht.

We abbreviate the first-order formula∀y(xRλy → α(y)) to (∀y ⊲λ x)α(y). Like-
wise∃y(xRjy ∧ α(y)) is abbreviated to(∃y ⊲λ x)α(x). We shall use only formulas,
in which variables do not occur both as free and bound, and in which two distinct
occurrences of quantifiers do not bind the same variable; we call such formulasclean.

LetK be the class of all safe expressions from Section 3. We add new(k+ 1)-ary
predicatesxl ∈ E(x1, . . . , xk) for any expressionE ∈ K. Depending on the context,
they can also be considered as abbreviations for the corresponding first-order formulas
with free variablesx, x1, . . . , xk.

More precisely, for anyL-expressionE (not necessary safe) we define a first-order
formula(xl ∈ E)# by the recursion on the length ofE:

(xl ∈ xi)
# := (xl = xi);

(xl ∈ ⊤)# := (xl = xl);

(xl ∈ ⊥)# := ¬(xl = xl);

(xl ∈ E1 ∩ E2)
# := (xl ∈ E1)

# ∧ (xl ∈ E2)
#;

(xl ∈ E1 ∪ E2)
# := (xl ∈ E1)

# ∨ (xl ∈ E2)
#;

(xl ∈ R−1
λ (E))# := ∃y(xlRλy ∧ (y ∈ E)#);

(xl ∈ R�
λ (E))# := ∀y(xlRλy → (y ∈ E)#);

(xl ∈ Rλ(E))# := ∃y(yRλxl ∧ (y ∈ E)#).

This translation obviously corresponds to the standard set-theoretic semantics.
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DEFINITION 29. — (cf (Blackburnet al., 2002), p. 172) We call a formularestrict-
edly positiveif it is built up from formulasy ∈ E(x1, . . . , xk), using∧, ∨ and re-
stricted quantifiers.

We say that a variablex in a clean formulaα is inherently universalif eitherx is
free, orx is bound by a restricted universal quantifier which is not in the scope of an
existential quantifier.

A formulaα in the extended first-order language is called ageneralized Kracht
formula with free variablesif α is clean, restrictedly positive and in every subformula
of the formy ∈ E(v1, . . . , vk) (E ∈ K), the variablesv1, . . . , vk are inherently
universal. A formulaα is called ageneralized Kracht formulaif it is a generalized
Kracht formula with free variables and it contains exactly one free variable.

The definition of ordinary Kracht formulas is obtained from this definition by re-
placingK with {Rλ1

. . . Rλn
(xj)} ∪ {R−1

λ1
. . . R−1

λn
(xj)}.

Now we are ready to state the main theorem.

THEOREM 30. — A first-order formulaφ is a first-order correspondent of a gener-
alized Sahlqvist formula iffφ is a generalized Kracht formula.

Note, that every ordinary Kracht formula can be rewritten asa generalized Kracht
formula. Namely, instead ofxRλ1

. . . Rλk
y, wherex is inherently universal, we write

y ∈ Rλk
. . . Rλ1

(x) (obviously,Rλk
. . . Rλ1

(x) is a safe expression). Instead of
yRλk

. . . Rλ1
x, wherex is inherently universal, we write

(∃z1 ⊲λ1
y)(∃z2 ⊲λ2

z1) . . . (∃zk ⊲λk
zk−1)(zk ∈ x).

EXAMPLE 31. — Consider the formula

D2 = p ∧�(♦p → �q) → ♦��q

from (Gorankoet al., 2006). Its first-order correspondent is a generalized Kracht
formula

FO(D2) = ∃y ⊲ x
(

∀z′ ⊲ y∀z ⊲ z′z ∈ R(R(x) ∩R−1(x))
)

,

or, in a more standard form,

FO(D2) = ∃y
(

xRy ∧ ∀z
(

yR2z → z ∈ R(R(x) ∩R−1(x))
))

.

In (Gorankoet al., 2006) the authors show that it is not equivalent to any standard
Sahlqvist formula.

Consider the formula

ns = p ∧�1(♦1p→ �3r) → ♦2(♦2p ∧ ♦3r).
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Then

FO(ns) = ∃y ⊲1 x
(

y ∈ R−1
1 (x) ∧ ∃v ⊲3 y

(

v ∈ R3(R2(x) ∩R
−1
2 (x))

))

.

This generalized Kracht formula is equivalent to

∃y∃z∃v(xR1y ∧ yR1x ∧ xR2z ∧ zR2x ∧ yR3v ∧ zR3v).

The formulacub1 is a theorem ofK3 (Shehtman, 1978), see also (Gabbayet al.,
2003), p. 397

cub1 = [♦1(�2p12 ∧�3p13) ∧ ♦2(�1p21 ∧�3p23) ∧ ♦3(�1p31 ∧�2p32)∧
�1�2(p12 ∧ p21→�3q3)∧�1�3(p13 ∧ p31→�2q2)∧�2�3(p23 ∧ p32→�1q1) ]

→ ♦1♦2♦3(q1 ∧ q2 ∧ q3).

Its first-order correspondent is a generalized Kracht formula

∀x1 ⊲1 x∀x2 ⊲2 x∀x3 ⊲3 x∃y
′ ⊲1 x∃y

′′ ⊲2 y
′∃y ⊲3 y

′′

(y ∈ R3(R2(x1) ∩R1(x2)) ∧ y ∈ R2(R3(x1) ∩R1(x3))∧

∧y ∈ R1(R2(x3) ∩R3(x2))).

This formula is equivalent to (1). �

Examples of generalized Kracht formulas applied to many-dimensional modal log-
ics can be found in (Kurucz, 2000), (Kurucz, 2008) and (Kikot, n.d.).

The rest of the paper will be devoted to the proof of this theorem.

6. Quasi-safe expressions

DEFINITION 32. —AnL-expression is calledquasi-safeif it is a positive combina-
tion of safe expressions.

The expression⊤, ⊥,R−1(⊤) are here considered as quasi-safe but not safe.

If we extend our first-order language with atomic formulasx ∈ E whereE is a
quasi-safe expression, we obtain a quantifier elimination in the scope of the existential
quantifier.

LEMMA 33. — Letψ be a generalized Kracht formula with free variables, such that
all atomic formulas ofφ are of the formy ∈ E where all variables occuring inE are
free. Thenψ is equivalent to a quantifier free formulaψ′ in the extended language (cf.
(Blackburnet al., 2002), p. 175).

PROOF. — We apply the induction on the number of quantifiers inψ.

Consider the caseψ = ∃y ⊲λ xφ. By the induction hypothesis,φ is a quantifier
free formula. Hence we can assume that it is of the formφ = K1 ∨ . . . ∨Kn, where
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Ki are conjunctions of atomic formulas. But thenψ ≡ ∃y ⊲λ xK1 ∨ . . .∨∃y ⊲λ xKn.
Then, since allEi do not containy, we can transform each of the disjuncts as follows

∃y ⊲λ x(α1 ∈ E1 ∧ . . . ∧ αm ∈ Em) ≡
∧

αi 6=y

αi ∈ Ei ∧ x ∈ R−1
λ

(

⋂

αi=y

Ei

)

,

and obtain a quantifier free equivalent ofψ.

Similarly, letψ = ∀y ⊲λ xφ. By the induction hypothesis,φ is quantifier free, so it
can be presented in the formφ = D1 ∧ . . .∧Dn, whereDi are disjunctions of atomic
formulas. But thenψ is equivalent to∀y ⊲λ xD1 ∧ . . . ∧ ∀y ⊲λ xDn. Then each of
conjucts can be transformed as follows

∀y ⊲λ x(α1 ∈ E1 ∨ . . . ∨ αm ∈ Em) ≡
∨

αi 6=y

αi ∈ Ei ∨ x ∈ R�
λ

(

⋃

αi=y

Ei

)

.

�

COROLLARY 34. — Letψ be a generalized Kracht formula, beginning with an exis-
tential quantifier. Thenψ is equivalent to a quantifier free formulaψ′ in the language
with quasi-safe atoms.

7. Proof of the theorem.

‘Only if’. If φ is a simple generalized Sahlqvist implication, then the statement
follows from (3). It is sufficient to note that

∀x1 . . . ∀xn





∧

yiR
T
λ
yj

xiRλxj → C





is equivalent to
∀x1 ⊲λ xp(1) . . .∀xn ⊲λ xp(n)C,

whereyp(i) is the unique predecessor ofyi in T . The variablesx1, . . . , xn are in-
herently universal, the disjunctionC is built from atomic formulas using∨,∧ and
restricted quantifiers, and every atomic formula is of the form v ∈ E(xi1 , . . . , xik),
since we substitute the disjunctions of such formulas for all P ki in the standard trans-
lation of positive formulas.

The general case follows from Lemma 3.53 of (Blackburnet al., 2002) stating
that

– if φ andα(x) are locally correspondents, so are�λφ and∀y ⊲λ xα(y),
– if φ locally corresponds toα(x) andψ locally corresponds toβ(x) thenφ ∧ ψ

locally corresponds toα(x) ∧ β(x),
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– if φ locally corresponds toα, ψ locally corresponds toβ(x) andφ andψ do not
have propositional letters in common, thenφ ∨ ψ locally corresponds toα(x) ∨ β(x),

and it remains to note that the class of generalized Kracht formulas is closed under
disjunction, conjuntion and necessitation.

To prove ‘if’, we need to generalize the notion of modal definability to first-order
formulas with many free variables (cf. (Kracht, 1999), p. 193).

We say that a first-order formulaφ(x1, . . . , xn) is definable if there is a sequence
of modal formulasφ1, . . . , φn such that for any frameF = (W, (Rλ : λ ∈ Λ)) for
any pointsx01, . . . , x

0
n ∈W

F |= Φ(x1, . . . , xn)[x
0
1, . . . x

0
n] ⇐⇒

for any valuationθ there existsi
such thatF, x0i , θ |= φi.

Here the left hand|= means the truth inF considered as a classical first-order
structure.

For example, a formulax1Rx2 is definable by the sequence♦¬p, p. Clearly, that
if φ has a single variable, then this definition coinsides with the standard modal defin-
ability.

Now we show that the formula(xl ∈ E)# is definable for all quasi-safeE.

To this end, consider the following translationT from quasi-safe expressions to
modal language. LetE be a quasi-safe expression. LetE be the set of all safe subex-
pressions occuring inE.

Now we defineET by the induction on the length ofE:

if E is safe thenET = pE ;

if E = E1 ∩ E2 thenET = ET1 ∧ ET2 ;

if E = E1 ∪ E2 thenET = ET1 ∨ ET2 ;

if E = R−1
λ E1 thenET = ♦λE

T
1 ;

if E = R�
λE1 thenET = �λE

T
1 .

LEMMA 35. — LetE be quasi-safe and letE be the set of all safe subexpressions
occuring inE. LetfE be the function from Corollary 19 for the setE . Then(xl ∈ E)#

is definable by the sequenceφ̄ = φ1, φ2, . . . , φm, such that

φi =

{
∨

φ∈fE(xi)
¬φ, i 6= l;

∨

φ∈fE(xi)
¬φ ∨ ET , i = l.

PROOF. — Suppose that we have a frameF = (W, (Rλ : λ)), and the variablesxi
are identified with points ofW . Then we can evaluateE and regard it as a subset of
W .
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Let us call a valuationθ admissibleif for all i xi, θ |= fE(xi).

Consider the following statements:

(1) xl ∈ E

(2) xl, θmin |= ET , whereθmin is the valuation from Lemma 10.

(3) for all admissible valuationsθ, xl |= ET .

Then due to the form ofφi, the statement of the lemma can be rephrased as(1) ⇐⇒
(3). But Lemma 10 ensures that(2) ⇐⇒ (3).

Let us prove(1) ⇐⇒ (2) by induction on the length of a quasi-safeE.

The base. SupposeE is safe. In this caseET = pE and

θmin(pE) = KF pE
fE = E.

The first equality holds by Lemma 10 and the second one by Corollary 19, and the
statement is clear.

The induction step trivially follows from the interpretation of∨,∧,♦i, and�i in
Kripke semantics.

In fact, letE = E1 ∩E2, that isET = ET1 ∧ ET2 .

xl ∈ E1 ∩ E2 ⇐⇒ xl ∈ E1 andxl ∈ E2 ⇐⇒

⇐⇒ θmin, xl |= ET1 andθmin, xl |= ET2 ⇐⇒ θmin, xl |= ET1 ∧ ET2 .

The case of the disjunction is similar.

LetE = R−1
λ (E1). Then

xl ∈ R−1
λ (E1) ⇐⇒ ∃y(xlRλy ∧ (y ∈ E1)) ⇐⇒

⇐⇒ ∃y(xlRλy andθmin, y |= ET1 ) ⇐⇒ θmin, xl |= ♦λE
T
1 .

LetE = R�
λ (E1). Then

xl ∈ R�
λ (E1) ⇐⇒ ∀y(xlRλy → (y ∈ E1)) ⇐⇒

⇐⇒ ∀y(xlRλy → θmin, y |= ET1 ) ⇐⇒ θmin, xl |= �λE
T
1 .

�

We also need a dual version of Theorem 5.6.4 from (Kracht, 1999):

THEOREM 36 (KRACHT, 1999). — If α(x0) is obtained from definable formulas
using conjunction, disjunction and restricted universal quantification, thenα(x0) is
definable.

Now we are ready to prove the main theorem.
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LEMMA 37. — Let α(x0) be a first-order formula with the only free variablex0.
Then the following statements are equivalent:

(1)α(x0) is a first-order correspondent of a generalized Sahlqvist formula;

(2)α(x0) is a generalized Kracht formula;

(3) α(x0) is obtained from formulas of the formxl ∈ E, whereE is quasi-safe,
using conjuction, disjunction and restricted universal quantification.

PROOF. —

(1) → (2) was proved at the beginning of Section 7, in the ’only if’ part.

(2) → (3). Given a generalized Kracht formulaφ, we apply the quantifier elimi-
nation from Corollary 34 to its maximal subformulas beginning with existential quan-
tifiers. Then we obtain a formula satisfying (3).

(3) → (1). Apply Lemma 35 and Theorem 36 toα(x0). �

It is clear that Lemma 37 implies Theorem 30

8. Discussion

1. The papers (Gorankoet al., 2000), (Gorankoet al., 2006) deal mainly with
‘inductive’ formulas, that are, in brief, generalized Sahlqvist formulas in polyadic
modal languages. The theory of inductive formulas is in somesense more elegant,
than the theory of generalized Sahlqvist formulas. So it would be interesting to extend
Kracht’s theorem to inductive formulas in polyadic modal languages. D. Vakarelov
made a conjecture that their characterization may be nicer.

2. Note that there is a certain asymmetry betweenR andR−1 in the definition of
safe expressions. In temporal language this asymmetry disappears, and, as Gorando
and Vakarelov show in (Gorankoet al., 2006), every generalized Sahlqvist formula is
semantically equivalent to the standard Sahlqvist one.

3. Traditionally the correspondence between Sahlqvist andKracht formulas and
their generalization is considered from the viewpoint of definability. We have several
answers to the natural question “what first-order formulas are modally definable?” For
example there is a sufficient syntactic condition given by the class of Kracht formu-
las and their generalization, and there is also a semanticalcharacterization given by
Goldblatt-Thomason theorem (Goldblattet al., 1974). But we can also ask when the
modal logic of an elementary class is finitely axiomatizable. Kracht formulas and
their generalization give a sufficient syntactic conditionin this case too, but we do
not have a semantical characterization. It would be interesting to look for other ele-
mentary classes with finitely axiomatizable modal logics. For example, it is known
(Balbiani et al., 2006) that the modal logic of the elementary class of the formula
∃y(xRy ∧R(y) ⊂ {y}) is finitely axiomatizable.
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