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ABSTRACT. The paper discusses properties oDaTALOG ~-like query language 4QL, originally
outlined by Matuszyfhski and Szatas [MS11]. 4QL allows aneige rules with negation in heads
and bodies of rules. It is based on a simple and intuitive seits and provides uniform tools for
“lightweight” versions of known forms of nonmonotonic reagég. Negated literals in heads of rules
may naturally lead to inconsistencies. On the other handksr@o not have to attach meaning to
some literals. Therefore 4QL is founded on a four-valuedssgits, employing the logic introduced
in [MSV08, VMS09] with truth values: ‘true’, ‘false’, ‘inawistent’ and ‘unknown’. In addition, 4QL
is tractable w.r.t. data complexity and captuf@3imMe queries. Even thougBATALOG ™~ is known as
a concept for the last 30 years, to our best knowledge noiegiapproach enjoys these properties.
In the current paper we:

— investigate properties of well-supported models of 4QL

— prove the correctness of the algorithm for computing wafiported models

— show that 4QL haP TiME data complexity and capturd3TIME.
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1. Introduction and Preliminaries

This is a companion paper to our conference paper [MS11$ rotivated by the prob-
lem of handling explicit negative knowledge in a rule langea This means that negation
can appear in bodies and heads of rules, as doneial®»G ™ (see, e.g., [AHV96]). How-
ever, in contrast to the traditional query languages basedommonotonic logics initially
derived from the Closed World Assumption [Rei78, AD98] (CYW&e focus our attention
on explicit negative knowledge. In [MS11] we outlined a nidightweight approach to this
problem, separating the issues of incomplete/incongigm@mwledge and honmonotonicity.
To make separation between monotonic-nonmonotonic clesfirst follow the Open World
Assumption (OWA) in the presence of the explicit negatiod &ter provide simple con-
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structs allowing one to structure knowledge bases in tha formodules and to query such
modules. As shown in [MS11], these constructs provide arahtvay to express CWA and
“lightweight” versions of other known forms of nonmonotoméasoning.

These methodological assumptions led tosa& oG ™ -like query language, 4QL, foun-
ded on a four-valued semantics. The semantics employs ¢jie iltroduced in [MSV08,
VMSO09] with truth values: ‘true’, false’, ‘inconsistentind ‘unknown’, further denoted by
t, f, i andu, respectively.

For the four-valued query language 4QL proposed in [MS11]deBined a semantics
based on the notion of well-supported models and we propasedgorithm for computing
such models. The language:

— allows one to use rules with unrestricted negation (in beeaud bodies)
— has a simple and intuitive semantics
— allows for “lightweight” versions of known forms of nonmatonic reasoning.

Due to page limits, [MS11] does not contain important préipsrof well-supported models,
nor proofs of theorems and complexity analysis. In the eunpaper we therefore:

— investigate properties of well-supported models of 4QL
— prove the correctness of the algorithm for computing wafpported models
— show that 4QL has RWiE data complexity and captures RIE.

Even though BTALOG ™™ is known as a concept for 30 years, to our best knowledge no
existing approach enjoys these properties.

In Section 2 we discuss related work. Next, in Section 3, veigie syntax and semantics
of 4QL via the notion of well-supported models and continru&éction 4 with properties of
well-supported models. Section 5 is devoted to an algorfttmcomputing well-supported
models and a proof of its correctness. In Section 6 we extasit QL by very simple
constructs which allow us to show in Section 7 that the exédntQL captures PME on
ordered databases. Finally, Section 8 concludes the paper.

2. Related Work

While DATALOG ™ has attracted much attention (see, e.g., [AHV96] and rat&®therein),
a tractable and at the same time intuitive semantics farADOG ~ is not reported in the lit-
erature. The problem is often addressed by takiagADOG with negation or extended logic
programs [GL91] as the starting point for paraconsistetgresions, see e.g. [ADP05, dAP07,
Ari02, DP98, SI95}:

Let us now discuss approaches [ADPO5, Ari02, dAP07, FitQ8ttvare closest to ours.

The paper [ADPO05] provides a framework for paraconsistegicl programming gener-
alizing some previous work of its authors to an arbitrary ptete bilattice of truth-values,
where belief and doubt are explicitly represented. In @sttto our approach, where default

1. There is arich literature on paraconsistent logics (e&g, [BCGO07] and references therein, in par-
ticular [CMMO7]).



negation is not used, the focus of this work is semanticelgirgtion of explicit and default
negation.

The paper [Ari02] proposes a framework for dealing with togiograms with two kinds
of negation: an explicit negation and a negation-by-failuiVe use a single negation, with-
out referring to provability, as the negation-as-failuamed. We find this an advantage of
our approach. Also our implication is different. As [AriO@pncentrates on logic programs,
database related topics are not considered there. Inylartivo complexity results concern-
ing finite domains are provided.

Another approach, P-Datalog [dAPO7], provides a parastersilanguage for knowledge
base integration based on a four-valued logic with the tanttering which coincides with
our truth ordering. However, there are several importdfgidinces. First, our language only
allows explicit negation (in the head and in the bodies ofthes) while P-Datalog programs
only allow negation by default in the rule bodies and use the CWA. Information integration
done in P-Datalog uses the truth ordering, while we provideoae general constructs for
achieving this goal (extended literals, defined in SectiprFtally, the rules are interpreted
by substantially different implications.

A four-valued semantics for logic programs with negatiors\aéso proposed by Fitting
(see e.g. [Fit02]). The major difference is that Fittinggsrantics is based on the Belnap’s
logic. This contrasts with our approach since we use a @iffetruth ordering. Second,
the semantics of Fitting allows one to derive conclusiongffalse premises, which we do
not allow. Unlike in our framework, a rule of a Fitting prognas satisfied if and only if
truth values assigned to the head and to the body are equtlahd not least, the language
considered by Fitting does not admit negation in rule heads.

A major difficulty in defining 4QL was handling of disjunctiam rule bodies. This paper
presents a solution to this problem. A preliminary idea obarfvalued rule language not
admitting disjunction in rule bodies appeared in our prasieork [VMS09].

Also in the field of the Semantic Web there have been propasalessing the problem of
inconsistent data by defining paraconsistent extensioBestription Logics underlying the
Semantic Web Ontology Language OWL2, see, e.g., [MS96,/S@%08, MH09, Mail0]
(where the issue of nonmonotonicity is not addressed) orbyiging rule languages based
on defeasible reasoning [Nut94].

3. Syntax and semantics of 4QL
3.1. Syntax of 4QL

For a negative literad the notation—¢ denotes its positive counterpart. We treat proposi-
tions as zero-argument relation symbols.

In the sequel, for simplicity, we consider ground rules aantgl assume that for each head
¢ there is only one rule having the form:

14 :_(blla-- -7b1i1) \Y (bgl,.. .,b2i2) V...V (bmla- .. abmim)- (1)



The rationale for this syntax is as follows. In two-valueditoconjunction of the classical
implications of the formu — ¢ andb — £ is logically equivalent to the implicatiomVv b — ¢.
Thus, multiple DATALOG rules with the same rule heads express the disjunction débad
these rules. In logic programming this is sometimes usesd@axplicit disjunction in rule
bodies. In our four-valued logic the equivalence does ntit (see Remark 4). Therefore, in
order to have disjunction in the rule body we have to expitessalicitly therein.

In 4QL one can consider admission of multiple rules with thens rule heads, inter-
preted as four-valued conjunction of such rules. Howevguitive understanding of such
four-valued rules is rather difficult. Intuitively we codsir a rule with head as a separate
information source concernirfg We prefer to leave to the user how information from differ-
ent sources is to be combined rather than to impose fouedalanjunction as the only way
of combination. Therefore at the basic level of 4QL we do rmhé multiple rules with the
same head. In the sequel we extend 4QL with a flexible meamaioisfusing information
from different sources.

The empty body of a rule is denoted By We sometimes refer tfactsas to rules of the
form ¢ - .
DEFINITION 1. — Letp be a rule of the fornfl). Then:

— rule(l) def

0
— head(p) = ¢
- bOdy(Q) d—t (blla---ablil)v(b211---1b2i2)v---\/(bmla---7bmim)
— forl <7 Sm,ﬁj(g) défbjl,...,bjij.

2 |l

f

e |l

Writing rule(l), we always assume that the respective rule wih its head indeed exists.

REMARK 2. — In the paper we present the case of ground rules only. kHenvypical rules
with variables are allowed, too. We assume that whenevee tha variable appearing in the
body of a rule but not in its head then it is assumed to be aexisiey quantified in its body.
For example,

p(x,y) :_Q(xa Y, Z)

is understood asp{z, y) :— 3z[q(z,y, 2)]". The existential quantifier is then understood as
the disjunctiony(z,y,a1) V...V q(x,y,ar), whereaq, . .., aj, are all constants appearing in
the database. O

3.2. The Underlying Logic

Addressing the semantics oADALOG ™™ we have made certain methodological choices.
First of all, we decided to start with a fully monotonic quéapguage. Therefore, rather than
starting with CWA, as most approaches do, we have acceptedl. QWs, in turn, naturally
introducear as a truth value. For example, having just one pule ¢ we do not forcep and
q to bef, so have to assign them the valueNext, since we allow negated literals in heads
of rules, certain conclusions may contradict each otheis also gives rise to a non-classical
truth value. Could this value b€ If one does not want to distinguish between the lack of



information and inconsistency, such an identification dald the job (see, e.g., [dACMO02,
CMdAO00, DESS06, DMSO06, Fit02, Fit85, NS10]). However, wedfih more natural and
informative to distinguish betweanandi. We then adopt the four-valued logic introduced
in [MSV08] as the semantical foundation. The truth tableslie@ connectives are shown in
Table 1.

Table 1. Truth tables forA, vV, — and—.

Al u it VIF ou it = |f u i t | -
frf f f f flf w i t flt t t ¢ flt
ulf u u u ujlu u i ¢t u |t t t t ulu
i f u & i I S T T A ¢ i |f f t f i
t|f u i t t|t t t t t | f f t t t|f

Notice that our logic is different from the commonly usedrf@alued Belnap’s logic [Bel77].
In Belnap’s logic two orderings on truth values are congdeknown agknowledge ordering
andtruth ordering As shown, e.g., in [Dub08] as well as in our previous work [S08,
NS10], Belnap’s truth ordering is problematic in areas weion and we introduced instead
a different truth ordering < u < i < t, which was also independently proposed in [dAPO7].
The truth tables for conjunction and disjunction/ are respectively defined as minimum and
maximum w.r.t. our truth ordering.

REMARK 3. — To motivate our truth ordering, where in particulak i, first note that
contains an evidence that a given propositionss in this respect it is “closer” to truth than

u. On the other hand, one can argue thetflects some evidence that the corresponding
assertion is not true, while does not. Observe however, that in the monotonic layer we
do not want to derive conclusions from unknown premiseg;essuch derivations lead to
nonmonotonicity. In contrary, we want to derive conclusiérom inconsistent premises to
“correct” heads of rules. To illustrate this point consitler following rule:

reduce_temperature :—high_temperature.

If, in a given interpretationhigh_temperature is u then one does not want to be forced to
derive any conclusions whether to reduce temperature punt#ss nonmonotonic reasoning
is used (which is addressed in Section 6).

Consider now a situation, when at some paiitth_temperature ist. Then we also want
to conclude thateduce_temperature is t. If the situation changes artdgh_temperature
becomes, e.g., by deriving new facts then the previous conclusiortoathe truth of
reduce_temperature is no longer justified and is to be adjusted.to

The above case indicates thatehaves like (so can be considered as a designated value),
while u does not. This motivates our choice asita i. O

The implication— is a four-valued extension of the classical implication. iM/fits ar-
guments range over the four logical values the truth valugefimplication ist or f. The
implication is used to interpret clauses of 4QL. Whenevertibdy of a clause has the value
f or u, the truth value of the clause is defined totbdntuitively, this reflects our intention



not to draw conclusions from false or unknown informatiomaniely, a clause with unknown
or false body is always satisfied, so one does not have to ejiddtead. From inconsistent
body we want to conclude that the head is also inconsistdmis,Tfor the predecessor with
valuei the implication ist if the successor i§ andf otherwise. The implication isif the
predecessor takes vala@and the successor i0ri. The latter case is needed to handle the
situation when both head and its negation are to be derivéldeobasis of true assumptions.

REMARK 4. — Note that the classical equivalence

(=N —=ql=[pVr)—d,

allowing one to consider several rules as a single one, datdsotd in the four-valued setting
we deal with. For exampléi — t) A (t — t) ist, while (i V t) — tisf.

Observe also that that the negation defined in Table 1 is atht teversingi(> u but not
=i < —u). Our definition of- reflects the intuition that when we have no information as to
the truth or falsity ofp then we still have no such information aboewi. This usually is not

ef

questioned in the three-valued case withiputhere—u ey Similarly, having inconsistent
p, we still have inconsistentp. In order to have a truth reversing negation, we would have

to accept thati 4y and-u %' i. We do not find this intuitive. Rather than being driven by
a priori assumptions as to properties of negations and srder choice reflects our intuitions.
O

DEFINITION 5. — By aninterpretationve mean any set of ground literals. Ttneth value
of a literal ¢ in interpretationZ, denoted byZ (¢), is the value defined as follows:

t ifﬁeIand(%)g{I
def | i ifleTand(—l) e
IO =9y ifﬁgZIand(%)gZI

f if¢gZand(—¥) €.

The definition of interpretation is extended for formuladtdtom literals usingv, A, — and
— according to Table 1.

Observe that in our approach we deal with direct contraahisti but also with more gen-
eral notion of inconsistency. Namely, as discussed in [CM02

“the contradictoriness of a given theory/logic was to bentdied with the fact
that it derives at least some pairs of formulas of the fariamd— A, while incon-
sistency was usually talked about as a model-theoretiogotpo be guaranteed
so that our theories can make sense and talk about ‘realnexstuctures’|...]".

Inconsistencies may appear in our approach not only dugei@lé contradicting each
other. Heads of rules may be assigned the valg applications of rules with inconsis-
tent bodies. In the rest of the paper we then prefer to talluabmwre general concept of
inconsistencies rather than limited only to contradicgion

3.3. Declarative Semantics of 4QL

The declarative semantics of 4QL is defined in terms of Herdbraodels. In more tra-
ditional approaches Herbrand models are intensively stutsee, e.g., [CGT89]). Our ap-



proach is based on well-supported models. Since for anyfgBDb rules there is a unique
such model (see Theorem 15), it provides truth values fdoathulas. Note that interpreta-
tions we deal with may contain negative literals. Therefeecassume thatierbrand bases
consist of all (positive and negative) ground literals.

DEFINITION 6. — A set of literalsZ is amodel of a set of rule§, denoted byZ |= S, iff
for each rulep € S we have thaf (body(o) — head(o)) = t, where it is assumed that the
empty body takes the valu@ any interpretation.

It should be noticed that the Herbrand base is a model of anyfsales. However, our
intuition is that the knowledge represented by a set of rsifesild be based on the explicit
knowledge represented by facts. Minimal models, if existymot fulfill this requirement, as
shown in the following example.

EXAMPLE 7. — LetS be the following set of rules:
wait :— overloaded V rest_time . (2
rest_time ‘—wait . 3)
—overloaded :—rest_time . (4)
overloaded . (5)
Observe that:

— by (5),overloaded € T
— now, by (2),wait € 7 thus, by (3)est_time €
— therefore, by (4); overloaded € T.

Thus in every model o, overloaded has the valué

A minimal model ofS' is Z,,,;, = {overloaded, —overloaded, wait, rest_time} but the
only fact of S (i.e.,overloaded) has in this model valuieso there are no facts supporting the
truth of wait andrest_time in this model. The intuitively correct model féfis

T = {overloaded, —overloaded, wait, ~wait, rest_time, —rest_time}.

Namely,wait obtains the valuéto satisfy (2). Then, to satisfy (3)est_time obtains the
valuei. O

The following definitions reflect our intuitions. Note thaellvsupportedness closest to
ours is that of [Fag94]. However, [Fag94] concerns the atassvo-valued setting.

DEFINITION 8. — LetZ be an interpretation anek be a strict partial order oriZ. Given
a set of rulesS, we say that a modé! of S supports a rule € S w.r.t. < provided that:
body(p) = 0 or there isj3;(o) such thatZ(3; (o)) = t
and for all literals: € 5;(p) we have that < head(p).



DEFINITION 9. — A modelZ of a set of rulesS is well-supportegrovided that there exists
a strict partial order< onZ such that for every literaf € Z,
—ifZ(¢) = t thenZ supportsrule(f) W.rt. <. (6)
—if Z(¢) = i then (at least) one of the following conditions hold:
—7 supportsrule(£) w.r.t. < (7)
—there is arulep € {rule(?), rule(—£)} with Z(body (o)) = i
for which there is5; (o) with Z(5, (o)) = i such that (8)

for all literals + € 8;(0), ¢ < head(o).

REMARK 10. — In the conditions (7)—(8) one could also expect a clatmecerning

Z(—¢) = i. On the other handZ(¢) = i implies that alsaZ(—¢) = i so the respective
condition forZ(—¢) = i is already included in Definition 9. For example, the intetption

{rest, —rest, overloaded, ~overloaded} is a well-supported model for the set of rules:

—rest .—overloaded. ©))
rest. (10)
overloaded. (11)
—overloaded. (12)

as well as for the set consisting of the fact

—rest.

together with rules (10), (11), (12). O

EXAMPLE 11 (EXAMPLE 7 CONTINUED). — The minimal model
Tinin = {overloaded, ~overloaded, wait, rest_time}

of the set of rules considered in Example 7 is not well-suggbrNamelyZ,,;,, (wait) = t.
According to Definition 9, there should be an ordesuch thatZ,,;, supports rule (2). By
Definition 8,

rest_time < wait. (13)
SinceZ, ., (rest_time) = t, a similar reasoning show that we should have
wait < rest_time,

which together with (13) cannot hold, sinegis required to be a strict partial order. [

4. Properties of Well-supported Models

The following lemma explains the status of heads of rulepstipd by a given interpre-
tation.



LEMMA 12. — Let S be a set of rules and be a model of5. If Z supports aruley € S
w.r.t. a strict partial order< thenZ(head(o)) € {t,i}.

PROOF— Assume thaf supports € S w.r.t. <. By Definition 8,body(o) = 0 or there is
B;(0) such thaiZ(5;(e)) = t and for all literals. € 3;(p) we have that < head(p).

In the first caséody (o) = 0, so[¢ :— .] € S. By Definition 6, the empty bod§ is t in
any interpretation, so the rule is satisfiedZionly whenZ (head(o)) € {t,i}.

In the second case therefs(p) such thatZ(5,(g)) = t. Similarly to the previous case
we have thap is satisfied irZ only whenZ(head(o)) € {t,i}. [ ]

The next two lemmas (13 and 14) are used in the proof of Thedrerdlaiming the
uniqueness of well-supported models.

LEMMA 13. — Let M; and M, be well-supported models for a set of formukasThen,
for every literal?, we have thai\, (¢) = timpliesM(¢) € {t,i}.

PROOF— Since M is a well-supported model, there exists a strict partiabored on M,
satisfying conditions of Definition 9. Thus, for every lig¢¢ € My, whenevetM, (¢) = t,
there is a rule € S with head(p) = ¢ such thatM; supports w.r.t. <.

We prove the lemma by induction et

— body(p) = 0 implies that the rulé? :— .] isin S. The empty body isin any interpreta-
tion, so the rule is satisfied iVl only whenM4(¢) € {t,i}, thus the implication is trivially
true

— thereisg; (o) such thatM (8; (o)) = t and for all literals occurring ing; (o) we have
that: < head(p). SincepB;(p) is a conjunction of literalsM; (3;(0)) = t implies that for
all 2 in 8(0), M1(2) = t. By inductive assumption, for allin 5;(¢0), M2(2) € {t,i}, so
alsoMs(B;(0)) € {t,i}. Of course M, has to satisfy rule, so for its head we have that
Mo (0) € {t,i}. |

LEMMA 14. — Let M and M5 be well-supported models for a set of formukasThen,
for every literal¢, we have thai\, (¢) = i impliesMs(¢) € {t,i}.

PROOF— Since M is a well-supported model, there exists a strict partiabord on M,
satisfying conditions of Definition 9. We proceed by indootbn<.

For every literall € My, if M;(¢) =ithen:

— there is a rule with head(o) = ¢ such thatM supports w.r.t. <; or
— there is a rulep € S with head(p) € {¢,—¢} such that there i$;(o) satisfying
M1 (B;j(e)) = iand forall literals. in 3;(0), » < head(o).

In the first case we have thatl; supports w.r.t. <. If body(e) = () then the rulg/ :— ]
isin S, soMs(¢) € {t,i}. Consider the case when theresig o) such thatM(3;(0)) =t
and for all literals: € 3;(o) we have thatM(:) = t and: < head(o). Then, by inductive
assumption, we obtain that for such literal$,(:) € {t,i}. In consequenceM2(5;(0)) €
{t,i}. Sincel = head(p), we have thatM,(¢) € {t,i}.

It remains to consider the case when there is a gute S with head(p) € {¢, ¢} for
which there is3;(o) satisfying M;(8;(0)) = i and for all literals: in 3;(o),
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1 < head(p). For all such literalspM; (z) € {t, i} and at least one of them takes the valué
M (1) =t then by Lemma 13M4 (1) € {t,i}. If M;(:) =i then by the inductive assumption
Mo (2) e{t,i}. ThusMq(B;(0)) €{t,i}, SOoMa(f) e {t,i}. [ ]

THEOREM 15. — For any setS of rules there is the unique well-supported modelSor

PrROOF— The fact that for every set of rules there is a well-supgbredel follows from
Theorem 28. So here it suffices to prove that, given a set ek19il there may not be two
different well-supported models f&f. Suppose the contrary, i.e., there arg # M5 which
are well-supported models 6f This means that there is a literal, sguch that it is in one
of the models and is not in the other. Without loss of gengrale can assume théte M,
and? ¢ M.

Since { € M, we have thatM;(¢) € {t,i}. By Lemmas 13 and 14,
My (L) € {t,i}, sol € M, and a contradiction is reached. [ |

5. Computing the Unique Well-Supported Model

Let us now present an algorithm for computing the unique “sefiported model for
a given set of rules.

DEFINITION 16. — LetS be a set of rules.

— ByL(S) we denote the set of relation symbols appearin§.in

— By aduplicateof a relation symbol € £(.S) we understand a fresh relation symbol,
for simplicity denoted by'.

— By/£'(S) we understand the set dfiplicatef relation symbols of (S), i.e.,L'(S) =
{t'| e L(S)}.

— By Pos(S) we understand thBATALOG program obtained fron$' by replacing each
negative literal-¢ of S by its duplicate/’.

The algorithm is shown in Figure 1. The following examplashrates its execution.

ExamPLE 17. — To illustrate the algorithm given in Figure 1, considet of rules dis-
cussed in Example 7 together with rules:

good_mood :—rested V success . a7
—rested '——rest_time. (18)
rested . (29)
success . (20)

Phase 1 give$; = {overloaded, ~overloaded}.

Phase 2 gives the following set of rulgs



— Input: a set of rulesS
— Output: the unique well-supported modgf for S.

1) Phase 1f{nding basic inconsistencigs
a) compute the least Herbrand modglof Pos(S)
b) letzd < {0, ~0| 0,0 € IS}
2) Phase 2f{nding potentially true literals
a) letS” = {o| 0 € S andZ{ (head(o)) # i}
b) setZs to be the least Herbrand model Bps(S’)
with literals ¢/ substituted by-¢
3) Phase 3réasoning with inconsistengy
a) define the following transformatich® on interpretations:

®9(7) L1y {¢,—¢|thereisarulgl =B, V...V B,]€S (14)

suchthatk € {1,...,m}[Z(Bx) =] (15)
and-3n € {1,...,m}[(Z5 —I)(B,) = t]}. (16)

The transformatio®® is monotonic (see Lemma 21).
Denote byZ$ the fixpoint of®° obtained by iterating® onZ?, i.e.,

75 = J(@%)(z)

€W

b) setZ® =77 U T5.

Figure 1. The method of computing the well-supported model for thefsetdessS.

wait :— overloaded V rest_time .
rest_time —wait .

good_mood :—rested V success .
—rested \——rest_time .

rested .

SUCCESS .

The resulting ety is {success, rested, good_mood}.
Phase 3 gives the following iterations ®f:

{overloaded, ~overloaded}

{overloaded, ~overloaded, wait, ~wait}

{overloaded, —overloaded, wait, ~wait, rest_time, —rest_time}

{overloaded, —overloaded, wait, ~wait, rest_time, —rest_time,
rested, —rested} — fixpoint.
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HenceI§ = {overloaded, ~overloaded, wait, ~wait, rest_time, —rest_time,
rested, —rested}.

Finally, Z° = {success, good_mood, overloaded, ~overloaded, wait, ~wait,
rest_time, —rest_time, rested, ~rested},
which is the desired result. Namely, as discussed in Exaifiple

overloaded, —overloaded, wait, ~wait, rest_time, —~rest_time € T.

By (20), success € Z so, by (17),good_mood € Z. Finally, to satisfy (18), both
rest, —rest € I. 0

In the following lemmas and theorem we assume ghistan arbitrary (finite) set of rules
and use notation as in the algorithm shown in Figure 1.

LEMMA 18. — If £ € Z7 then the value of isi in every model of.
PrRoOF— Follows directly from the fact tha; is the least Herbrand model fétos(S). B
LEMMA 19. — If for a well-supported modeM of S we haveM (¢) = t then/ € Z5.

PrRoOOF— According to Definition 9, ifM is a well-supported model then there is a strict
partial order< such thatM (¢) = t implies that there is a rule

[0:=b1V...Vby,] €S

andl < <msuchthab, = b;1,...,b;,,Z(b;) =tandforl < j <4, we have thab;; < /.
This order shows a “computation” 6f forcing/ to be inZ5, being the least Herbrand model
for Pos(S’) (with literals ¢’ substituted by-¢). [ |

LEMMA 20. — For any literal /, we have thaf’y (¢) # i.

PROOF— Suppose thaly (¢) = i. Then, by the construction &’ in Phase 2(a) of the
algorithm shown in Figure 177 (¢) = i. In such a case, again by the constructior56f
the rule making inconsistent is removed, so no rule witln its head appears ifi’. Thus
I5(¢) # i and a contradiction is reached. [ |

LEMMA 21. — The transformatio®® is monotonic w.r.t. set inclusioq, i.e.,

T C J implies®®(Z) C ®5(7).

PROOF— SupposeZ C J and®(Z) ¢ ®5(J). Then there is a literal such that! €
®5(Z) and/ ¢ ®°(J). Observe that ¢ Z, for otherwise/ € 7, so also? € ®(7). Since
€ ®%(T)andl ¢ Z, thereis arulgl :—b; V...V b,,] € S such that:

ke {1,...,m}[I(by) =1i] (21)

-3ne{l,...,m}[(Z5 —T)(b,) =t]. (22)
By (21) and the assumption thatC 7, we have

Jk e {1,...,m}T(bx) =1i]. (23)
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Suppose thain € {1,...,m}[(Z5 — J)(b,) = t]. By the assumptioff C 7 we have that
75— J CI5 —I,50(Zy — J)(b,) = timplies that(Z5' — Z)(b,,) € {t,i}. However, by
Lemma 20, for any literaf, we have thafs (¢) # i, so(Z5 — Z)(b,) # i and we conclude
that(Zy — Z)(b,) = t, which contradicts (22). Therefore,

—In e {1,....m}[(Z5 —T)(b,) =t]. (24)
By the definition of®* and properties (23), (24) we have tiat-/ € ®%(7), which contra-
dicts the assumption thatz ®°(7), i.e., thatd® (Z) ¢ (7). [ |
By the construction of5, we have the following obvious proposition.
PROPOSITION22. — For any/ € 75 we haveZs (¢) = i.

LEMMA 23. —The interpretatiorZ® of S is a model fors.

PROOF— Suppos€&” is not a model. Then there is a rite—b, \V ...V b,,] € S such that
either

(i) Z5(by V...V by,) =tandZ(¢) € {u,f}, or
(i) Z9(by V...V b,,) =iandZ®(¥) € {u,f,t}.
Case (i) cannot hold since in Phase 2, the algorithm wouldmaso ¢ in Z5 andZs C Z°(¢).
Case (ii) assumes th@tf (b, V ...V b,,) = i so the considered rule does not participate
in Phase 2 of the algorithm. It is the only rule witlin the head. Therefore, the rule cannot

be assigned, so by Definition 6 and semantics of implication given in Eal the rule is
assigned.

Thus both cases, (i) and (ii), lead to contradiction. |

In the rest of this section we prove that the interpretatioiined by our method are
well-supported models.

DEFINITION 24. — Let S be a set of rules. We define a fam{l§ | j € w} of disjoint
subsets of the Herbrand base$fs follows:

— L§ is the set of facts ity (25)
— L, isthe set of all literal¢ such thatrule(¢) has a body component
Br(rule(()) consisting exclusively of literals ip ] L. (26)
k<i

Note thatrule(¢) considered in the above definition may have several body coegs
B (rule(?)) satisfying (26).

To show thatZ constructed by our algorithm is well-supported we need iatgtartial
order on literals of a given sét satisfying conditions of Definition 9. The required order,
denoted by<°, is defined below.
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DEFINITION 25. — The order<° is defined as the transitive closure of the following rela-
tion <5 :
¢ <5 (iff ¢ € L7, for somei > 0 and¢’ occurs in some,, (rule(())
consisting exclusively of literals ity | L. (27)
k<i

EXAMPLE 26. — Consider the Herbrand base of the set of rules in Exampl&Ve get
L5 = {overloaded}, L7 = {wait}, L§ = {rest_time}, L§ = {-overloaded} and the
defined strict order isverloaded~°wait<Srest_time<>—overloaded. Note that:

— in the case of the minimal modébverloaded, —overloaded, wait, rest_time} the
above order does not satisfy condition (6) of Definition Esiin the rule (2) there should be
a body component which obtains the vatuend consisting of literals smaller w.r&° than
wait. The only candidate isest_time butrest_time #Swait

—in the case of the intuitively correct model considered ixarfbple 7,
{overloaded, —overloaded, wait, ~wait, rest_time, —rest_time}, the above order
satisfies conditions of Definition 9 and the model is well{suped. 0

PROPOSITION27. — The relation<® (see Definition 25) is a strict partial order.

PROOF— As the setsLJS(I) are disjoint, it follows by (27) that the relatior® is irreflexive
and asymmetric. Consequently, its transitive closutés a strict partial order. |

We can now formulate and prove the main result.

THEOREM28. — For any set of rulesS, its modelZ* constructed by algorithm given in
Figure 1 is well-supported.

PROOF— By Proposition 27,<° is a strict partial order. We shall show that it satisfies
conditions of Definition 9 with< replaced by<* .

We have two cases:

The case whe®(¢) = t.

Note thatZ®(¢) = t only when? € Ty — Zy. SinceZs is the least Herbrand model for
Pos(S") with literals ¢’ substituted by-¢, the rulerule(¢) has a body component evaluated
to t, with all literals smaller w.r.t.<° than¢, which has not been changed by iteratign
Phase 3. This shows condition (6) of Definition 9.

The case whefi®(¢) = i.

If Z5(¢) = ithenl € IY or b € 5 — I7.

Consider first the case wheénc Z7. The interpretation of € Z7 is obtained from the
least Herbrand model dPos(S). Therefore/ and—¢:

(a) both satisfy condition (7) (when they both have beenvedrusing rules with body
components evaluated tjj or

(b) both satisfy condition (8) (when they both have beenveeriusing rules with body
components evaluated i or
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(c) one of them satisfies condition (7) and the other satisbeslition (8).
In the case (a) we have th@asatisfies (7). In cases (b) and (€jatisfies (8).

It remains to consider the case where Z§ — Z7, i.e., when/ has been added @
by iterating® in Phase 3. This happens when the body-@le(¢) (or rule(—¢)) became
evaluated teé. There are two cases:

— ¢ € Z5: a body component;(rule(¢)) (or 3;(rule(=¢))) has beert and all literals
in that component have been smaller w.et? than?. This 3;(rule(€)) (or B;(rule(—f)))
satisfies the condition (7) of Definition 9; or

— ¢ ¢ T5: a body componens;(rule(f)) (or B;(rule(—¢£))) has beer and all literals
in that component have been smaller w.et? than?. This 3;(rule(f)) (or B;(rule(—¢)))
satisfies the condition (8) of Definition 9. |

REMARK 29. — Observe that Theorem 28 provides avwd method for verifying whether
a given model is well-supported sinee’ can be constructed in deterministic polynomial
time. Definition 9 does not provide a direct RIEE method due to existential quantification
over<~. O

6. Layered Architecture

In this section we introduce and discuss external literfitaveng us to express non-
monotonic rules. The idea is similar to stratification b firoblem is not with negation
but with external literals. In this section we use well-kmotechniques related to stratified
DATALOG ™. All necessary definitions and theorems related to stratifios can be found,
e.g., in [AHV96]. External literals have also been constdien [VMSO09].

The architecture discussed in this section is equivalghgtanodular architecture of [MS11].
However, it simplifies the proof of Lemma 37 and also provigsitions related to well-
known stratified programs.

Let M, R be disjoint sets. In what follows we assume that all relatipmbols are of the
form M.R, whereM € M andR € R. Intuitively, members oM are names of “modules”
or “services” and members & are classical relation symbols.

DEeFINITION 30. —Anexternal literais an expression of one of the forms:
M.R,-M.R,M.RINT,-M.RINT,
where:

— M € M is called thereference modulef the external literal;

— T C{t,f,i,u} (if T = (0 thent IN T isf).
We write/ = v to stand for¢ IN {v}. For an extended literad, by module(¢) we denote its
reference module.
The literal-M.R IN T'is to be read as(*-M.R) IN T"” rather than “-(M.R IN T')".

DEFINITION 31. —By anextended ruleve understand a rule of the form(1), where rela-
tion symbols are replaced by external literals assuming thad( ) is of the formM. R or
-M.R.
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The following example shows a possible use of externabliter

ExamMPLE 32. — The following rules locally clos&c, whereloc(X,Y,T') means that ob-
ject X has locatiort” at timepoint7:

K.loe(X,Y,T):— L.nextTime(T,S5), — T is the timepoint next t&
L.house(X), — X isahouse
L.loc(X,Y,S), — location of X attimeS isY

L.chLoc(X,S) IN {u,f}. — location change ok isu orf.

Intuitively, the above rule states that houses do not chémgjelocation no matter whether
M'’s database contains information as to the change of latatimot. O

DEFINITION 33. —A set of rules S is well-layered iff there is a mapping
ks : M — w such that for every rule € S,

— if Zis a literal of the formM. R or =M. R appearing inbody(o),
ks(module(head(p))) > rkg(module(f))

— if Zis aliteral of the formM.R IN T', ~M.R IN T appearing inbody(o),
ks(module(head(p))) > ks(module(()).

By an immediate adaptation of the algorithm for checkingtgtability of a set of rules
of DATALOG ™ (see, e.g., [AHV96]), we have the following proposition.

PrROPOSITION34. — Checking whether a set of rulésis well-layered takes time polyno-
mial in the size of.

We now have the following definition.

DEFINITION 35. —An extended 4QL prograris any finite well-layered set of extended
rules.

7. Complexity Issues
7.1. Expressing Stratified Datalog

Let P be a stratified BTALOG ™~ program. Let{1,2,...,n} be all strata ofP. First, we
replace all rules with the same heéds a single rule whose body is the disjunction of all
bodies of rules with heaél This replacement is correct, since here we deal with thelstal
two-valued semantics for stratifiedADALOG ™ programs.

For each stratum= 1, ..., n of P we take distinct symbol/;, N; € M and replace the
stratum by:

— rules obtained from rules appearingiith stratum of P by replacing each relation
symbol R by:
- M;.Rif Ris defined in stratum
- N;.Rif Ris defined in straturg with j < i
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— for each relatioriz defined in stratuni we add the following rules, closing the relation
R as the Closed World Assumption CWA does:

N;.R:—M; R =t.
-N;.R:—M;.R N {f, ll}.

The result ofp appearing in-th stratum ofP is given byN; (p).

Observe that the resulting set of rules is an extended 4Qdrano which can never lead
to inconsistency.

ExXAMPLE 36. — Consider a stratified program, consisting of thredatshown in the first
column of Table 2. Using the method described above we ofitaiaquivalent 4QL program
shown in the second column of Table 2, where:

— Ny.r provides the value of
— Ns.s, No.q provide values respectively ferandg

— Ns.p provides the value gf. U
Table 2. A stratified program and its 4QL representation.
N3.p:—Mz.p=t. — CWA(p)
—N3.p = Ms.p IN {f,u}. —CWA(p)
Ms3.p:—=Ns.qV Ny.r. —layer 3
. Ns.q :—Ms.q =t. — CWA(q)
b ovaums “Noq = Mya W {f.u). ~CWAlg)
- Ny.s :—Ms.s = t. — CWA(s)
g —SAUM 20 ==\ N MypIN {f,u}.  — CWA(s)
s:—q. —stratum 2 .
Ms.q :— Ny.r. —layer 2
" — stratum 1 Ms.s :— Ms.q. —layer 2
Ny =My.r=t. — CWA(r)
=Ny = My IN {f,u}. —CWA(r)
My.r. —layer 1

Due to the above construction we have the following lemma.

LEMMA 37. — Every stratifiedDATALOG ™ program can be expressed by an extended 4QL
program.

7.2. Complexity of Layered 4QL

First observe that Algorithm provided in Figure 1 involvéarglard DA\TALOG compu-
tations in Phase 1 and Phase 2 and a fixpoint computation isePhaSuch computations
have PTME complexity (see, e.g., [AHV96]). Moreover, extended 4Qlbgnams can be
constructed layer by layer, starting from the lowest layéterefore we have the following
theorem.

THEOREM 38. —4QL with modules haBTIME data complexity.
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Since stratified BTALOG captures PTME on ordered structures (see, e.g., Theorem 15.4.8
in [AHV96]), by Lemma 37 we have that extended 4QL capturesvigTqueries.

THEOREM 39. — Extended 4QL capturd3TIME queries on ordered structures.

8. Conclusions

In the paper we have investigated the query language 4Qinatigoutlined in [MS11].
We defined a semantics based on the notion of well-supportetthand we proposed an
algorithm for computing well-supported models. The largpis simple yet powerful.

We focussed on logical foundations and complexity of 4Qlovprg the correctness of
the algorithm for computing well-supported models and shgwhat 4QL has PIME data
complexity and captures RPWIE.

In summary,

— 4QL provides a very flexible mechanism for dealing with thekl of knowledge and
resolving possible inconsistencies in an application ddpat manner

— 4QL is powerful enough to express large classes of nonmaiwtules known from
the literature (see [MS11])

— 4QL can be used as a rule language for Semantic Web andasbgiplications.

There are still interesting questions concerning 4QL. Afram implementing and ap-
plying 4QL, there are still many theoretical issues. Pesttap most important are:

— provide a top-down method for query answering running iteigheinistic polynomial
time

— extend the method to the case of infinite domains

— provide optimization techniques improving the perforcanf query answering, not
necessarily by computing the whole well-supported model

— provide techniques for computing the well-supported nhafter a database update, on
the basis of the model computed before the update.
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