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Abstract

By continuous-discrete time affine systems, we mean continuous dynamical systems

with discrete-time output measurements. The observability of this class of systems

depends on the system inputs and on the output sampling time. In this context, we

give sufficient conditions on both output sampling time and system input, which allow

to preserve the observability of the system and consequently, guarantee the convergence

of the continuous-discrete time observer synthesized in this paper.

In order to validate the theoretical results, the performance of the proposed observer

is illustrated through an example dealing with biomass growth and bio-synthesis reac-

tions.

keywords: Affine state systems, output injection, continuous-discrete time observer.

1. Introduction

By state affine systems up to output injection we mean systems of the form:





ẋ = A(u, y)x + ϕ(u, y)

y = Cx.

(1)

The observer synthesis for these systems is widely investigated in the literature, see for

instance [? ? ? ? ]. The proposed observers are obtained by using an approach similar to

that of a Kalman filter [? ]. The main difficulty lies in the characterization of inputs for

which the observer exponentially converges. Indeed, although system (1) is observable in

the sense that it admits an input which renders it observable (universal input, see definition

below), there may exist an input which makes it unobservable. Since the convergence of the

observer is only guaranteed for inputs which make system (1) ”asymptotically” observable,
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in [? ? ? ], the authors characterized this class of inputs and gave an exponential observer.

This observer synthesis concerns continuous state affine systems with continuous time output

measurement.

However, in many practical situations the output measurements are discrete-time ones.

On the other hand, for single discrete output systems which are observable for any inputs,

the authors in [? ] showed that a continuous-discrete time extended Kalman filter converges

exponentially if the sampling time is judiciously chosen. The proposed observer is based on

a canonical form of uniformly observable systems ([? ]).

Contrary to the uniformly observable systems, the observability of system (1) depends

on the inputs applied to the system (in the sense that it admits an input which makes it

unobservable). Now, let us consider the continuous-discrete time state affine systems up to

output injection of the form:





ẋ = A(u, y)x + ϕ(u, y)

y(tk) = Cx(tk),

(2)

Even if an input u makes system (1) observable, there may exist an increasing sequence

(tk)k≥0, with lim tk = +∞ such that u makes system (2) unobservable (see the counter

example given in subsection 2.2).

This last remark implies that any observer construction necessarily depends on the input

excitation and on the sampling time of the output measurements.

In this paper we give sufficient conditions on both output sampling time and system input,

which allow to preserve the observability and permit to design an observer for state affine

systems up to output injection with discrete output.

This paper is organized as follows: In section 2, we recall some observability properties
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of state affine systems and we give an observer synthesis for continuous-discrete times affine

systems. In section 3, we extend this observer algorithm to continuous-discrete time state

affine systems up to output injection. The considered systems are assumed to be disturbed.

Finally, the performance of this observer is illustrated through a bioprocess model in order to

validate the theoretical results and to demonstrate the usefulness of the proposed estimator

in practical situations.

2. Observer design for state affine systems

2.1. Continuous time observer

Our goal here is to extend the well-known observer algorithm for continuous time state affine

systems to continuous-discrete time affine systems. Therefore, we begin by recalling some

properties concerning the observation of state affine systems. For more details, see [? ? ? ].

State affine systems considered in the following are described by:





ẋ = A(u)x + b(u)

y = Cx

x ∈ IRn, u ∈ U ⊂ IRm, y ∈ IRp, (3)

where x(t) is the unknown state, u(t) is a known input, y(t) is a known output, A and b

depend continuously on u, and C is a constant matrix.

Contrary to stationary linear systems, for nonlinear systems, the state estimation depends

on the input excitations. We say that an input u defined on some interval [t0, t0 + T ] makes

system (3) observable on [t0, t0 + T ], or u is a universal input on [t0, t0 + T ], if for every

initial state x0 6= x̄0; the associated outputs y(x0, u, t) and y(x̄0, u, t) are not identically equal

on [t0, t0 + T ].
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Now, let φu(t, t0) be the transition matrix of system (3):





d

dt
φu(t, t0) = A(u)φu(t, t0)

φ(t0, t0) = I,

where I is the (n× n) identity matrix.

For every t1, t2, t3, the following equality holds:

φu(t1, t2)φu(t2, t3) = φu(t1, t3) (4)

In particular, φu(t, s) = φ−1
u (s, t).

Let us denote by:

G(u, t0, t0 + T ) =

∫ t0+T

t0

φT (t, t0)C
T Cφ(t, t0)dt, (5)

the Grammian of observability of system (3). It is not difficult to see that G(u, t0, t0 +T ) is a

S.P.D. (symmetric positive definite) matrix if and only if u is a universal input on [t0, t0 +T ].

In [? ? ], the authors designed an observer which exponentially converges for every input

satisfying the following property:

Definition: A bounded input u : IR+ −→ IRm is called a regularly persistent input if:

∃T > 0; ∃ T0 ≥ 0; ∃α > 0;∀t ≥ T0, G(u, t, t + T ) ≥ αI (6)

or equivalently, λmin(G(u, t, t + T )) ≥ α

In [? ? ], the authors stated some topological properties of the class of such inputs and
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showed that for every regularly persistent input, the following system:





˙̂x = A(u)x̂ + b(u)− S−1CT (Cx̂− y)

Ṡ = −θS − AT (u)S − SA(u) + CT C

(7)

is an exponential observer for system (3):

∃θ0 > 0; ∀θ > θ0;∀S(0) a symmetric positive definite matrix; ∀x̂(0) ∈ IRn, we have

‖x̂(t)− x(t)‖2 ≤ µe−θt‖x̂(0)− x(0)‖2,

where µ is a positive constant.

2.2. Continuous-discrete time observer

As we have mentioned in the introduction, the time discretization of the output measurement

may lead to the loss of observability. Indeed, consider the following bilinear system:





ẋ =




0 u

−u 0


 x

y = x1(t)

(8)

Noting that every admissible control u : [t0, t0 + T ] → IR which is not identically equal

to zero, u renders system (8) observable. In particular, (8) is observable for every constant

input u 6= 0.

Now, let u0 > 0 be any constant input, and let δ =
π

u0

be any fixed sampling time constant,
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then u0 makes the following continuous-discret time system:





ẋ =




0 u

−u 0


 x

y(k.δ) = x1(k.δ), k = 0, 1, 2, . . .

(9)

unobservable.

Indeed, the outputs of (8) are:

y(t) = x1(0) cos u0t +
x2(0)

u0

sin u0t. (10)

Now, let x(0) =




0

x2(0)


, with x2(0) 6= 0, we obtain:

y(k.δ) = 0, ∀k ≥ 0

Thus, the different initial conditions,




0

0


 and




0

x2(0)


 yield the same output trajec-

tory. Hence, the input u0 renders system (9) unobservable although it makes (8) observable.

Consequently, in this section, we will give a sufficient condition on the sampling time

which permits to preserve the observability and to extend the observer stated in subsection

1 to continuous-discrete state affine systems.

Let us consider the continuous-discrete state affine system:





ẋ = A(u)x + b(u)

y(tk) = Cx(tk)

x ∈ Rn, u ∈ U ∈ Rm, y(tk) ∈ Rp (11)
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where (tk)k≥0 is an increasing sequence such that lim
k→+∞

tk = +∞ and δ = sup
k≥0

(tk+1 − tk) < +∞.

Our candidate observer takes the form:

• For t ∈ [tk, tk+1[





˙̂x = A(u)x̂ + b(u)

Ṡ = −θS − AT (u)S − SA(u)

(12)

• For t = tk+1





S(tk+1) = S−(tk+1) + δkC
T C

x̂(tk+1) = x̂−(tk+1)− ρδkS
−1(tk+1)C

T (Cx̂−(tk+1)− y(tk+1))

(13)

where S(0) is an arbitrary S.P.D. matrix, x̂(0) is also arbitrary and x̂−(tk+1) (resp. S−(tk+1))

is the limit of x(t) (resp. of S(t)) where t → tk+1, t < tk+1, δk = tk+1 − tk, δ = sup
k≥0

δk and

ρ ≥ 1 is a fixed parameter.

Theorem 2.1: Let u be a regularly persistent input for system (11), then system (12-13) is

an exponential observer for system (11). i.e. :

∃θ̃ > 0; ∃δ̃ > 0; ∀θ > θ̃; ∀δ ∈]0, δ̃]; ∀S(0) a S.P.D. matrix; ∃µ1 > 0; ∃µ2 > 0 such that:

∀t ≥ 0, ‖x̂(t)− x(t)‖2 ≤ µ1e
−µ2t‖x̂(0)− x(0)‖2

where x(t) is an unknown trajectory of (11) associated to the input u; x̂(t) is any trajectory

of system (12) associated to (u, y)

The proof of this theorem requires the following proposition:
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Proposition 2.1: Let u be a regularly persistent input, then ∃θ̃ > 0; ∃δ̃ > 0; ∀θ ≥ θ̃; ∀δ ∈

]0, δ̃]; ∀S(0) a S.P.D. matrix; ∃β1 > 0; ∃β2 > 0 such that:

∀t ≥ 0, β1I ≤ S(t) ≤ β2I (14)

In the continuation, we proceed as follows: First we give the proof of theorem 2.1. Next,

we prove proposition 2.1.

Proof: (Theorem 2.1)

Setting e(t) = x̂(t)− x(t), e−(tk) = lim
t→tk
t<tk

e(t) and S−(tk) = lim
t→tk
t<tk

S(t), we get:





ė(t) = A(t)e(t) for tk ≤ t < tk+1

e(tk+1) = e−(tk+1)− ρδkS
−1(tk+1)C

T Ce−(tk+1)

Now, consider V (t) = e(t)T S(t)e(t), and V −(tk) = lim
t→tk
t<tk

V (t)

• For t ∈ [tk, tk+1[, we have:

V̇ (t) = 2eT Sė + eT Ṡe

= 2eT SθA(u)e− eT (θS + AT (u)S + SA(u))e

= −θV (t).

By simple integration we obtain:

V (t) = e−θ(t−tk)V (tk), (15)

in particular,
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V −(tk+1) = e−θδkV (tk), (16)

• For t = tk+1, the following equalities hold,

V (tk+1) = eT (tk+1)S(tk+1)e(tk+1)

= (e−(tk+1)− δkρS−1(tk+1)CT Ce−(tk+1))T S(tk+1)(e−(tk+1)− δkρS−1(tk+1)CT Ce−(tk+1))

= V −(tk+1) + (δkρ)2(e−(tk+1))T CT CS−1(tk+1)CT Ce−(tk+1)− δk(2ρ− 1)‖Ce−(tk+1)‖2.

From proposition 2.1, we obtain:

V (tk+1) ≤ V −(tk+1)− δk((2ρ− 1)− δkρ
2‖C‖2

β1
)‖Ce−(tk+1)‖2, (17)

Now we choose δ̃ such that:

δ̃ ≤ (2ρ− 1)β1

ρ2‖C‖2
, (18)

¿From (16) we get:

V (tk+1) ≤ e−θδkV (tk). (19)

Combining (15) and (19), we deduce that ∀ t ≥ 0, V (t) ≤ e−θtV (0).

Finally, using proposition 2.1, we get:

‖e(t)‖2 ≤ µ1e
−θt‖e(0)‖2

for some constant µ1 > 0, which depends on θ, S(0).

This ends the proof of theorem 2.1.
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Remark: If u is a regularly persistent input, then a sufficient condition permitting to preserve the

observability and to guaranty the convergence of the proposed observer (12-13) is given by (18).

2

The proof of proposition 2.1 requires some technical lemmas that we well give in the following.

Let a > 0 be a fixed real number and let us consider the functional space:

Ea([a1, a2],Rl) = {ϕ : [a1, a2] → Rl which are differentiable on [a1, a2] satisfying

sup
t∈[a1,a2]

‖dϕ

dt
(t)‖ ≤ a}

Lemma 2.1: For every ε > 0; for every sequence (tk)0≤k≤N ; a1 = t0 < t1 < . . . < tN = a2,

such that sup
0≤k≤N−1

(tk+1 − tk) ≤ ε

a.(a2 − a1)
, we have:

∀ϕ ∈ Ea([a1, a2],Rl), ‖
∫ a2

a1

ϕ(t)dt−
N−1∑

k=0

(tk+1 − tk)ϕ(tk)‖ ≤ ε

Note that the sequence (tk)0≤k≤N does not depend on ϕ.

Proof: It suffices to give the proof for scalar functions.

Let ε > 0 and let us consider any sequence (tk)0≤k≤N with a1 = t0 < . . . < tN = a2 and such

that sup
0≤k≤N−1

(tk+1 − tk) ≤ ε

a.(a1 − a2)
.

Let ϕ ∈ Ea([a1, a2],R), we obtain:

|
∫ a2

a1

ϕ(t)dt−
N−1∑

k=0

(tk+1 − tk)ϕ(tk)| ≤
N−1∑

k=0

|
∫ tk+1

tk

ϕ(t)dt− (tk+1 − tk)ϕ(tk)|

Using the mean value theorem, we get:
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∫ tk+1

tk

ϕ(t)dt = (tk+1 − tk)ϕ(t̃k), for t̃k ∈ [tk, tk+1], hence:

|
∫ a2

a1

ϕ(t)dt−
N−1∑

k=0

(tk+1 − tk)ϕ(tk)| ≤
N−1∑

k=0

(tk+1 − tk)|ϕ(t̃k)− ϕ(tk)|

≤ a(a2 − a1) sup
0≤k≤N−1

(tk+1 − tk) (since ϕ ∈ Ea([a1, a2],R))

≤ ε.

2

Lemma 2.2: Let u be a bounded input on R+ and let τ > 0 be a constant, then:

∀t; ∀s, such that |t− s| < τ ; ∀M a S.P.D. matrix, we have:

λmin(M)e−λτI ≤ φT
u (t, s)Mφu(t, s) ≤ λmax(M)eλτI (20)

where λ = 2sup
t≥0

‖A(u(t))‖, λmin(M), (resp λmax(M)) stands for the smallest (resp. largest)

eigenvalue of M and I is the identity matrix.

Proof:

• Proof of the second inequality of (20):

We know that:
d

dt
[φT

u (t, s)φu(t, s)] = φT
u (t, s)[AT (u(t)) + A(u(t))]φu(t, s),

therefore,

d

dt
[φT

u (t, s)φu(t, s)] ≤ λ φT
u (t, s)φu(t, s), (21)

where λ = 2sup
s≥0

‖A(u(s))‖.

Hence, φT
u (t, s)φu(t, s) ≤ eλ|t−s|I,
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then,

∀(t, s), |t− s| ≤ τ, φu(t, s)MφT
u (t, s) ≤ λmax(M)eλ|t−s|I (22)

• Proof of the first inequality of (20):

Using a similar argument as in (22), we obtain:

φu(s, t)M
−1φT

u (s, t) ≤ λmax(M
−1)eλ|t−s|I (23)

=
eλ|t−s|

λmin(M)
I.

Hence,

φT
u (t, s)Mφu(t, s) = [φu(s, t)M

−1φT
u (s, t)]−1 (24)

≥ λmin(M)e−λ|t−s|I.

2

Now, let us give the proof of proposition 2.1

Proof: Proposition 2.1

From (12), (13), we obtain:

For t ∈ [tk, tk+1[,

S(t) = e−θ(t−tk)φT
u (tk, t)S(tk)φu(tk, t), (25)

For t = tk+1,

S(tk+1) = e−θδkφT
u (tk, tk+1)S(tk)φu(tk, tk+1) + δkC

T C, (26)

where δk = tk+1 − tk and φT
u (tk, t) = (φT

u (t, tk))
−1
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Let δ = sup
k≥0

δk < +∞.

Combining (25-26) and using lemma 2.2, the proof of inequalities (14) of proposition 2.1 can

be reduced to the proof of the following:

∃δ̃ > 0; ∃θ̃ > 0; ∀θ ≥ θ̃; ∀δ ∈]0, δ̃]; ∃β1, β2 > 0 such that,

∀k ≥ 0, β1I ≤ S(tk) ≤ β2I (27)

• Proof of the second inequality of (27):

From (25),(26), we deduce that:

S(tk+1) = e−θtk+1φT (0, tk+1)S(0)φu(0, tk+1) (28)

+
k∑

i=0

δie
−θ(tk+1−ti+1)φT (ti+1, tk+1)C

T Cφ(ti+1, tk+1)

Since u is a bounded input, from lemma 2.2, we have:

φT
u (ti, tk)Mφu(ti, tk) ≤ ‖M‖eλ(tk−ti)I, for 0 ≤ i ≤ k, where ‖M‖ denotes the L2−norm of M .

Thus,

S(tk+1) ≤
(

e−(θ−λ)tk+1‖S(0)‖+
k∑

i=0

δie
−(θ−λ)(tk+1−ti+1)‖CT C‖

)
I. (29)

Now, taking for θ̃ any constant such that θ̃ > λ, and θ ≥ θ̃; there exists a constant β2 > 0

such that:

∀k ≥ 0, S(tk) ≤ β2I,

• Proof of the first inequality of (27):
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Let u be a regularly persistent input, which means that u is a bounded input satisfying:

∫ t+T

t

φT
u (s, t)CT Cφu(s, t)ds ≥ αI, (30)

for every t ≥ T0, where T0, T, and α > 0 are constants.

Now, for every t ≥ 0, denote by ut the mapping:

ut : [0, T ] −→ R

s 7−→ ut(s) = u(t + s).

¿From the definition of φu, it is easy to verify that:

∀ t ≥ 0, ∀s ∈ [0, T ] φut(s, 0) = φu(s + t, t).

Hence, (30) is equivalent to:

∀ t ≥ T0,

∫ t+T

t

φT
u (s, t)CT Cφu(s, t)ds =

∫ T

0

φT
ut

(s, 0)CT Cφut(s, 0)ds

≥ αI (31)

Set k0 = inf{l/tl ≥ T0 +T} and for every k ≥ k0, set ν(k) = sup{l/tl+1 ≤ tk+1, tk+1− tl+1 ≥

T} and finally, set δ = supk≥0 δk. We obtain:

T ≤ tk+1 − tν(k) ≤ T + δ (32)

To prove the first inequality of (27), we examine the following two cases:
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Case 1: k ≥ k0

Expression (28) leads to:

S(tk+1) ≥
k∑

i=ν(k)

δie
−θ(tk+1−ti+1)φT

u (ti+1, tk+1)C
T Cφu(ti+1, tk+1)

≥
k−ν(k)∑

i=0

δ̃ie
−θ(t̃k+1−ν(k)−t̃i+1)φT

utν(k)
(t̃i+1, t̃k+1−ν(k))C

T Cφutν(k)
(t̃i+1, t̃k+1−ν(k))

where t̃i = ti+ν(k) − tν(k) and δ̃i = δi+ν(k).

Thus,

S(tk+1) ≥ e−θT

k−ν(k)∑
i=0

δ̃iφ
T
utν(k)

(t̃i+1, t̃k+1−ν(k))C
T Cφutν(k)

(t̃i+1, t̃k+1−ν(k)) (33)

= e−θT φT
utν(k)

(0, t̃k+1−ν(k))




k−ν(k)∑
i=0

δ̃iφ
T
uν(k)

(t̃i+1, 0)CT Cφutν(k)
(t̃i+1, 0)


 φutν(k)

(0, t̃k+1−ν(k))

From (32), we know that T ≤ t̃k+1−ν(k) ≤ T + δ, where δ = sup
k≥0

δk.

Now combining this last fact with (33) and using lemma 2.2, it follows:

S(tk+1) ≥ e−θT e−λt̃k+1−ν(k)λmin




k−ν(k)∑
i=0

δ̃iφ
T
utν(k)

(t̃i+1, 0)CT Cφutν(k)
(t̃i+1, 0)




≥ e−θT e−λ(T+δ)λmin




k−ν(k)∑
i=0

δ̃iφ
T
utν(k)

(t̃i+1, 0)CT Cφutν(k)
(t̃i+1, 0)


 (34)

where λmin stands for the smallest eigenvalue.

Consequently, to show that S(tk+1) ≥ βI, ∀k ≥ k0, for some constant β > 0, it suffices to

show that:

inf
k≥k0


λmin(

k−ν(k)∑
i=0

δ̃iφ
T
utν(k)

(t̃i+1, 0)CT Cφutν(k)
(t̃i+1, 0))


 > 0 (35)
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To prove (35), let us remark that for every k ≥ k0, the restriction of

φT
utν(k)

(s, 0)CT Cφutν(k)
(s, 0) to [0, t̃k+1] belongs to Ea([0, t̃k+1], Rn2

) (defined in lemma 2.1),

where a = λ‖CT C‖eλ(T+δ).

Indeed,

‖ d

ds
φT

utν(k)
(s, 0)CT Cφutν(k)

(s, 0)‖ = ‖φT
utν(k)

(s, 0)[AT (utν(k)
(s))CT CCT CA(utν(k)

(s))]

φutν(k)
(s, 0)‖,

and by lemma 2.2 we get:

sup
s∈[0,tk]

‖ d

ds
φT

utν(k)
(s, 0)CT Cφutν(k)

(s, 0)‖ ≤ λ‖CT C‖eλt̃k+1

≤ λ‖CT C‖eλ(T+δ) (since t̃k+1 ≤ T + δ).

Now, applying lemma 2.1 with ε =
α

2
, and α being the constant given in (31), we get:

‖
∫ t̃k+1

0

φT
utν(k)

(s, 0)CT Cφutk
(s, 0)ds−

N−1∑
i=0

(τi+1 − τi)φ
T

utν(k)
(τi, 0)CT Cφutν(k)

(τi, 0)‖ ≤ α

2
,

for every sequence (τi)0≤i≤N , 0 = τ0 < τ1 < . . . < τN = t̃k+1 such that

sup
0≤k≤N

(τi+1 − τi) ≤ ε

a.t̃k+1

=
αe−λ(T+δ)

2λ‖CT C‖t̃k+1

.

In particular, this is true for τi = t̃i+1 with sup
ν(k)≤i≤k

(ti+1 − ti) ≤ αe−λ(T+δ)

2λ‖CT C‖(T + δ)
. Thus for

δ ≤ αe−λ(T+δ)

2λ‖CT C‖(T + δ)
and k ≥ k0, (35) is satisfied.

Case 2: k ≤ k0:

Clearly, ∀k, S(tk) is a S.P.D. matrix, hence S(tk) ≥ β(k)I, where β(k) > 0 is a constant.
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Now, taking βk0 = inf
0≤k≤k0+1

β(k) it follows:

S(tk) ≥ βk0I. (36)

Finally, choosing β1 to be the smallest value of the two constants obtained from case 1 and

case 2, we have:

∀k ≥ 0, S(tk) ≥ β1I

This ends the proof of proposition 2.1 2

In the following section, we will give a generalization of the last result in the sense that

the state coefficients can depend on the output and the model takes into account the possible

presence of a perturbation.

3. State estimation for disturbed state affine systems up to output

injection

The aim here consists in extending the continuous-discrete time estimator given above, to the

class of nonlinear continuous-discrete disturbed state affine systems up to output injection

taking the form:





ẋ = A(u, y)x + b(u, y) + d(t, x)

y(tk) = Cx(tk) x ∈ IRn, u ∈ IRm, y ∈ IRp,

(37)

where d(t, x) is a bounded and unknown function.

Earlier, in [? ], the authors gave an exponential observer for the following continuous-time
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state affine systems up to output injection:





ẋ = A(u, y)x + b(u, y)

y = Cx

(38)

And they shown that if (u, y) is a regularly persistent input for the system:





ξ̇ = A(u, y)ξ

z = C.ξ,

(39)

then, system (40) forms an exponential for (38) (see [? ]).





˙̂x = A(u, y)x̂ + b(u, y)− ρS−1CT (Cx̂− y)

Ṡ = −θS − AT (u, y)S − SA(u, y) + CT C

(40)

This observer design is based on the following claim:

Claim 1: u is universal input on [0, T ] for (38) if and only if (u, y) is a universal input on

[0, T ] for system (39).

Now, instead of continuous-time measurements, we consider here the state estimation

based on discrete-time observation y(tk) = Cx(tk), where (tk)k≥0 is an increasing sequence,

with lim
k→+∞

tk = +∞ and sup
k≥0

(tk+1 − tk) < +∞.

Our proposed estimator takes the form:
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• For t ∈ [tk, tk+1[





˙̂x(t) = A(u(t), y(tk))x̂(t) + b(u(t), y(tk))

Ṡ(t) = −θS(t)− AT (u(t), y(tk))S(t)− S(t)A(u(t), (tk))

(41)

• For t = tk+1





x̂(tk+1) = x̂−(tk+1)− ρδkS
−1(tk+1)C

T (Cx̂−(tk+1)− y(tk+1))

S(tk+1) = S−(tk+1) + δkC
T C

(42)

where S(0) is a S.P.D matrix, δk = tk+1 − tk and ρ is a constant such that ρ ≥ 1.

The convergence of the above estimator is based on the following assumptions:

(H1) There exists a class of bounded inputs denoted by u ∈ U ⊂ L∞(IR+, U) and two

bounded sets K1 ⊂ K2 of IRn such that for every U and every initial state x0 ∈ K1, the

trajectory x(t) of (38) associated to x0 and u lies in K2.

(H2) For every u ∈ U and every initial state x0 ∈ K1, the associated output y is such that

(u, y) becomes a regularly persistent input of the system (39).

Now, we can state the main result of this section.

Theorem 3.1: Under hypothesis (H1) and (H2), we have:

∃θ̃ > 0; ∃δ̃ > 0; ∀δ ∈]0, δ̃]; ∀θ ≥ θ̃; ∀S(0) a S.P.D. matrix; ∃γ1 > 0; ∃γ2 > 0; ∃γ3 > 0 such

that:

∀t ≥ 0, ‖x̂(t)− x(t)‖ ≤ γ1e
−γ2t‖x̂(0)− x(0)‖+ γ3

where

δ = sup
k≥0

δk, δk = tk+1 − tk, x(0) ∈ K1 and x̂(0) ∈ IRn.
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γ3 becomes small as soon as sup
k≥0, t∈[tk,tk+1]

‖y(t)− y(tk)‖ and sup
(x,t)

‖d(t, x)‖ becomes small.

In the sequel, we will denote by ỹ the function defined by ỹ(t) = y(tk) for tk ≤ t < tk+1,

k = 0, 1 . . ..

The proof of theorem 3.1 requires the following lemma:

Lemma 3.1: Under hypothesis (H1) and (H2), there exists a δ] > 0 such that for every

δ ∈]0, δ]], (u, ỹ) becomes a regularly persistent input for system (39).

Proof:

Let u ∈ U and x(0) ∈ K1, from (H2), we know that (u, y) is a regularly persistent input:

∃T0 ≥ 0; ∃α > 0; ∃T > 0; ∀t ≥ T0,

∫ t+T

t

ψT
w(s, t)CT Cψw(s, t)ds ≥ αI, (43)

where,





d

ds
ψw(s, t) = A(w(s))ψw(s, t)

ψw(t, t) = 0

Using the notations of section 2 (see(31)), the expression (43) can be rewritten as:

∫ T

0

ψT
wt

(s, 0)CT Cψwt(s, 0)ds ≥ αI, ∀t ≥ t0 (44)

Let L∞([0, T ], IRN) denotes the space of the bounded borelian functions from [0, T ] into

IRN , which is induced with the norm ‖v‖∞ = sup
t∈[0,T ]

‖v(t)‖. It is not difficult to see that the
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Grammian map:

L∞([0, T ], IRm+p) −→ IRn2

w(·) 7−→
∫ T

0

ψT
w(·, 0)CT Cψw(·, 0),

is a continuous map.

Now, using the mean value theorem and the fact that x(t) ∈ K2, ∀t ≥ 0 (hypotheses (H1)),

we get:

‖yt(·)− ỹt(·)‖L∞([0,L],IRP
)
≤ δ‖ẏ(·)‖

L∞([0,L],IRP
)
, where (δ = sup

k≥0
δk)

= δ‖CA(u(·), y(·))x(·)‖
L∞([0,L],IRP

)

≤ γ.δ

where γ is a constant which depends on the bounded set K2 and u.

Now, combining this last inequality with (44) and the continuity of the above Grammian

map, we can find constants δ] > 0 and α] > 0, such that for every δ ∈]0, δ]] and every t ≥ T0,

we have:
∫ T

0

ψT
(ut,ỹt)(s, 0)CT Cφ(ut,ỹt)(s, 0)ds ≥ α]I.

Hence (u, ỹ) is a regularly persistent input for system (39) 2

Proof: Theorem 3.1

Set e(t) = x̂(t)− x(t) and,

∆A = A(u, ỹ)− A(u, y), ∆b = b(u, ỹ)− b(u, y),

we get:
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• For t ∈ [tk, tk+1[,





ė(t) = A(u(t), ỹ(t))e(t) + ∆Ax(t) + ∆b− d(t)

Ṡ(t) = −θS(t)− AT (u(t), ỹ(t))S(t)− S(t)A(u(t), ỹ(t))

(45)

• For t = tk+1,





e(tk+1) = e−(tk+1)− ρδkS
−1(tk+1)C

T Ce−(tk+1)

S(tk+1) = S−(tk+1) + δkC
T C

(46)

Now, considering the quadratic function V (t) = e(t)T S(t)e(t), we obtain:

• For t ∈ [tk, tk+1[,

V̇ = −θV + 2eT (t)S(t)[∆A(t)x(t) + ∆b(t)− d(t)] (47)

≤ −θV (t) + 2
√

V (t)[(∆A(t)x(t) + ∆b(t)− d(t))S(t)(∆A(t)x(t) + ∆b(t)− d(t))]1/2,

¿From lemma 3.1, we know that (u, ỹ) is a regularly persistent input.

Applying proposition 2.1 we deduce that there exist two constants β1 > 0 and β2 > 0 only

depending on δ], θ and (u, y) such that for every δ ∈]0, δ]] we have:

∀t ≥ 0, β1I ≤ S(t) ≤ β2I. (48)

Combining (47) and (48),we deduce that:

V̇ (t) ≤ −θV (t) + 2
√

β2

√
V (t)‖∆Ax(t) + ∆b− d(t)‖2,
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or equivalently,

d

dt
(
√

V (t)) ≤ −θ

2

√
V (t) +

√
β2‖∆Ax(t) + ∆b(t)− d(t)‖.

Thus,

for tk ≤ t < tk+1

√
V (t) ≤ e−

θ
2
(t−tk)

√
V (tk) +

2µ

θ

√
β2. (49)

where,

µ = sup
t≥0

‖∆A x(t) + ∆b− d(t)‖ (50)

• For t = tk+1,

As in the proof of theorem 2.1 (see (17)), the following inequality holds :

V (tk+1) ≤ V −(tk+1)− (δk(2ρ− 1)− δ2
kρ

2‖C‖2

β1

)‖Ce−(tk+1)‖2.

Thus, for δ such that δ(2ρ− 1)− δ2ρ2‖C‖2

β1

≥ 0, (i.e. δ ≤ (2ρ− 1)β1

ρ2‖C‖2
), we obtain:

√
V (tk+1) ≤

√
V −(tk+1)

=
√

e−(tk+1)S−(tk+1)e−(tk+1)

≤ e−θδk
√

V (tk) +
2µ
√

β2

θ
(51)

Thus for δ ∈]0, min(
(2ρ− 1)β1

(ρ2‖C‖2
, δ])], the inequality (49) together with (51) implies that e(t)
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is attracted by a neighbourhood of the origin which depends on the constant
2µ
√

β2

θ
, where

µ is given by (50). 2

Noticing that this neighbourhood is small if µ is small. This is the case when ‖ỹ(t)−y(t)‖L∞

and the perturbation norm ‖d(t)‖L∞ are small.

4. Application to a biological denitrification process

In this section we present an the application of the continuous-discrete observer developed

in the section above to the estimation of kinetic reactions in biological denitrification.

4.1. Model representation

This process is defined as the dissimilatory reduction, by anaerobic bacteria (Pseudomonas

denitrificans (ATCC 13867)), of one or both of the ionic nitrogen oxides: nitrate and nitrite,

to gaseous nitrogen products by using organic substrates. The bio-degradation takes place

through two principal steps:

NO−
3 −→ NO−

2 −→ N2

The dynamic model that we use takes into account the accumulation of nitrite and the

inhibition by nitrate [? ]. It is built based on the kinetics of substrates consumption and it

is given by the following system:





ẋ = (µ1 + µ2)x−Dx

ṡ1 = −y11µ1x−D(s1 − s1,in)

ṡ2 = (y12µ1 − y22µ2)x−Ds2

ṡ3 = −(y13µ1 + y23µ2)x−D(s3 − s3,in)

(52)
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where x, s1, s2 and s3, represent respectively, the cell mass, the nitrate, nitrite and acetic

acid concentrations. D is the dilution rate and si,in (i = 1, 3) is the concentration of the

substrate in the inlet stream. yij are yield coefficients and are assumed to be constants.

In previous work [? ], it is shown that under some operator conditions the specific growth

rates µi(i = 1, 2) can be modeled using the well known Monod law:





µ1 = µ1m
s1

s1 + k1

s3

s3 + k3

µ2 = µ2m
s2

s2 + k2

kI

s1 + kI

s3

s3 + k3

(53)

where µim(i = 1, 2) are the maximal specific growth rates for the cells grown, ki(i = 1, 2, 3)

are, respectively, the nitrate and nitrite half saturation constants and kI is the nitrate

inhibition constant. However, it is well-known that for complex bioprocesses, where many

components and bioreactions take place, µi(t) can have a more complex representation

and identification results are sensitive to operator conditions. This explains the interest

in representing µi(t) as a state variable which needs to be estimated.

4.2. Observer for the bioreactor model

Let us use the following notations:

µ1 = α1s3 and µ2 = α2s3

In the following, we show how we can estimate αi(t) (consequently µi) using biomass and

organic substrate concentrations as the only available discrete time measurements. To do so,

we will introduce the following reduced model:
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ẋ = (α1 + α2)xs3 −Dx

ṡ3 = −(y13α1 + y23α2)xs3 −D(s3 − s3,in)

y(tk) =




x

s3


 .

(54)

It is well known that the parameter αi(t) is not constant, it must be treated as a time

varying parameter which can depend on biomass, substrates and operator conditions (see

[? ? ? ? ]). Moreover, its dynamics is not well known since it is subject to many causes of

disturbances and even theoretical uncertainties. Consequently, system (54) can be extended

as follows: 



ẋ = (α1 + α2)xs3 −Dx

ṡ3 = −(y13α1 + y23α2)xs3 −D(s3 − s3,in)

α̇1 = α̃1

α̇2 = α̃2

˙̃α1 = ε1(t)

˙̃α2 = ε2(t)

y(tk) =




x

s3




(55)

where εi(t) are unknown and bounded functions which may depend on the states, the inputs,

noise, etc.

System (55) can be rewritten as follows:

Ẋ(t) = A(y(t), u(t))X(t) + b(y(t), u(t)) + d(t) (56)

y(tk) = CX(tk)
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where

X(t) =




x

s3

α1

α2

α̃1

α̃2




A =




0 0 xs3 xs3 0 0

0 0 −y13xs3 −y23xs3 0 0

0 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0




b(X(t), u(t)) =




−Dx

−D(s3 − s3,in)

0

0

0

0




d(t) =




ε1(t)

ε2(t)


 C =

[
1 1 0 0 0 0

]

Now applying the theoretical result of section 3, an continuous-discrete observer for system

(56) takes the form:

(i) a prediction step at t ∈ [tk, tk+1[ given by:





˙̂
X(t) = A(y(tk), u(t))X̂(t) + b(y(tk), u(t))

Ṡ(t) = −θS(t)− AT (y(tk), u(t))S(t)− S(t)A(y(tk), u(t))

(57)

(ii) a correction step at t = tk+1 given by:





X̂(tk+1) = X̂−(tk+1)− ρδS−1(tk+1)C
T

(
CX̂−(tk+1)− y(tk+1)

)

S(tk+1) = S−(tk+1) + δCT C

(58)
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where δ is the discrete sampling period and ρ ≥ 1 is a constant.

4.3. Simulation results

In order to illustrate the performances of estimators (57-58), we compared the corresponding

results with data obtained from simulation, i.e. we simulated the process model (52) by

considering kinetic expressions given by (53). The numerical values of system parameters

are given in the Table 1.

We suppose that the reactor works in continuous mode, with the dilution rate D(t) varying

between 0.1h−1 and 0.2h−1 as shown in Fig.1.

The simulations were carried out under the followings initial conditions:

x̂0 = 0.05 ŝ0
3 = 0.05 α̂0

1 = 1.5 α̂0
2 = 0.02 ˆ̃α

0

1 = 0 ˆ̃α
0

2 = 0

In order to show the effects of the initial estimation of αi, the value of α̂i is initialized with

an error of 30 compared to the initial simulated value. The sampling period is δ = 25 min

and the tuning parameter θ given in equations (58) can have different values. In our case,

θ = 1.56 and ρ = 3 give a satisfactory estimation.

The corresponding results are presented in Fig.2 and Fig.3. As can be seen from these

figures, the estimator converges after 3h.

5. Conclusion

In this paper, we gave sufficient conditions on input and sampling time which allow to

construct an exponential observer for continuous-discrete time state affine systems up to the

output injection. The problem of observer synthesis for these systems is related to the input
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excitation and the sampling time of the output measurements. We therefore gave a sufficient

condition on the sampling time, which allows to preserve some observability properties: In

particular, the asymptotic observability of continuous systems, which is induced by regularly

persistent inputs, is preserved for continuous-discrete time systems.

The obtained result is then exploited to estimate reaction rates in the biological deni-

trification process. These promising results could be used in the future using experimental

data and/or to create a control system based on nonlinear control laws that allows us to

manipulate the variables that take part in the bioreactor.

References
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Parameters Values Units

µ1m 0.18 h−1

µ2m 0.09 h−1

k1 0.05 g/l

k2 0.07 g/l

k3 0.047 g/l

kI 0.005 g/l

y11 4.7728 -

y12 3.343 -

y13 1.1 -

y22 1.214 -

y23 1.6 -

Table 1: Yields and kinetic parameters during continuous culture.
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List of Figures

Fig.1. Time evolution of the process input (the dilution rate) and the process outputs

Fig.2. kinetic reaction (α1) and its estimate (α̂1)

Fig.3. kinetic reaction (α2) and its estimate (α̂2)
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