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Abstract

In this paper we study the effect of model errors on the per-
formance of feedforward controllers. In accordance with the
sensitivity function for feedback control, we define the feedfor-
ward sensitivities, 	�
 (feedforward from disturbance) and 	�
�
 �
(feedforward from set-point), as measures for the reduction
in the output error obtained by the feedforward control. For
“ideal” feedforward controllers based on the inverted nominal
model, the feedforward sensitivities equal the relative model
errors, which must thus remain less than � for feedforward con-
trol to have positive (dampening) effect.

For some common model error classes we provide rules for
when the feedforward controller is effective, and we also de-
sign � -optimal feedforward controllers.

1 Introduction

There is a fundamental difference between feedforward and
feedback controllers with respect to their sensitivity to uncer-
tainty. Feedforward control is sensitive to uncertainty in gen-
eral (including steady-state), whereas feedback control is in-
sensitive to uncertainty at frequencies within the system band-
width. With no model error a feedforward controller may re-
move the effect of disturbances, but due to its dependence of
the process model, it may actually amplify the effect of a dis-
turbance if the model is wrong.

Most of the articles on feedforward control refer to industrial
applications. Some control textbooks, e.g., [3, 16, 5, 13, 9, 4,
11, 14], describe feedforward controllers and their design, and
the advantages and disadvantages compared to feedback is dis-
cussed, qualitatively. A general quantitative frequency domain
analysis of feedforward control under model uncertainty is pro-
posed by [1] (and referred in [2]). The references [6, 9, 8, 14]
give some typical numbers for the effect of model uncertainty
on the output error.

In the context of IMC (Internal Model Control), Morari
and Zafiriou [10] recommend a structure for the combined
feedback-feedforward scheme that decouples the two func-
tions. Scali and co-workers [7, 12], extend this work to de-

rive an ��� optimal combination of feedback and feedforward
controllers under the presence of uncertainty.

The aim of this article is to study feedforward control under the
presence of uncertainty and answer the following basic ques-
tions: 1) How much does the feedforward controller reduce the
control error?, 2) When is the feedforward controller amplify-
ing the effect of disturbances on the outputs?, and 3) How can
uncertainty be taken into account when the feedforward con-
troller is designed?

2 Feedforward control

A block diagram where feedforward from a disturbance and the
reference is combined with feedback, is shown in Figure 1. To
analyze the effect of a given feedforward controller, we denote
the feedback controller � and the feedforward action from the
disturbance ��
 and the reference ��
�
 � . With perfect measure-
ments we then have (see Figure 1)
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Figure 1: Block scheme for feedforward control combined with
a feedback controller. We assume ideal measurements: )+*�, �
� and )-, � � .



The closed loop response for the combination of feedforward
and feedback control is

� ���  � � ���  � � � ���  � 	 ���  ���) * ���  � ) ���  ��
+���  � ( ���  
� 	 ���  �� � � ) ���  � 
 
 � ���  � � � ���  (2)

where 	 ���  � � � ' ) ���  �����  � �� � is the feedback sensitivity
function.

“Ideal” feedforward control An “ideal” feedforward con-
troller based on inverting the nominal model (see e.g., [1, 2,
10]), removes completely the effect of the disturbance and ref-
erence changes such that � ���  
	�� . We denote the “ideal”
controller with an asterisk, and get from Equation (2)

� �
 � ) � � ) *�
 � �
 
 � � ) � � (3)

Designs of robustly optimized ( � -optimal) feedforward con-
trollers presented later in this paper, confirm that this is a good
controller as to use in some practical cases.

3 Feedforward sensitivity functions

The closed loop response for combined feedforward and feed-
back control in Equation (2) may be rewritten as follows

� � 	 � 	 
�) * ( � 	�
 
 �%� �  (4)

where we define the feedforward sensitivities as

	�
 � � � � )-� 
�) �*�� (5)

	 
�
 � � � � )-� 
�
 � (6)

These express the effect of feedforward action on the control
error. ) �* denotes the generalized inverse of ) * . Feedback
control is effective and improves performance as long as the
gain of the sensitivity function �%	���� � . Similarly feedforward
control improves the performance if

� 	�
���� � and �%	 
�
 ����� � (7)

Here, an appropriate norm dependent on the definition of per-
formance is used. It is due to these similarities that we denote
	 
 and 	 
�
 � feedforward sensitivities. With no feedforward
control 	 
 � �

, and with “ideal” feedforward control 	�
 � � .

In the literature 	 and 	�
 are also denoted control ratio and
feedforward control ratio, respectively [2]. More precisely, in
[2], the feedforward control ratio is defined for single input
single output (SISO) controllers as

	 
 � � � � 

� �
 (8)

where � 
 is the actual feedforward controller and � �
 is the
“ideal” controller for the actual process. This is identical to the
definition in Equation (5) for SISO controllers. Equation (5) is
a reformulation of Equation 8, which extends to multivariable

controllers, and in Equation 6 we have introduced the sensitiv-
ity function for feedforward from the reference.

In [2] a Nichols chart is used to determine requirements on the
gain and phase error in ��
 relative to � �
 for a given distur-
bance dampening (e.g., 0.1) in 	 
 , since the Nichols chart has
been convenient for the study of � �����  ' � given a transfer
function � �����  . With tools like Matlab, it is now easy to study
any transfer function by defining a finite number of frequencies
and calculate the gain or phase shift over this set of frequencies.
We follow this direct approach.

4 The effect of model error with feedforward
control

In this section we restrict ourselves to single-input/single-
output (SISO) processes, i.e., with one control input, � , one dis-
turbance, ( , and one output � . With a nominal process model,
� � ) � ' ) * ( , and an actual plant model � � � )!� � ' )!� * ( ,
the actual control error is:� � � � � � � � � 	 �#" 	 �
 ) � * ( � 	 �
 
 � � �%$ (9)

where
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	 expresses the ratio between the output when a feedback con-
troller is applied and when it is not (open loop). Similarly, 	+�

and 	��
�
 � express the ratio of the output when feedforward is
applied and the output when it is not. This follows by com-
paring the output error using control in Equation (9) with the
output error when no control is applied ( ��� � ):� � � � � � � � � ) � * ( � � � (13)

Note that for the case with no control ( � � � , � 
 � � ,
��
 
 � � � ), we have 	,� � � , 	��
 � � , 	,�
 
 � � � .
The actual sensitivity can be expressed in terms of the nominal
sensitivity and the relative error as following

	 � � 	 �
� '.-0/ (14)

Here 	 � � � ' )-�  � � and
/ � � � 	 are the nominal sen-

sitivity and complementary sensitivity functions, respectively,
and

-
the relative error in ) , i.e.,

- � )1�32 ) � � (see also [15,
Section 5.13]).

The “ideal” feedforward controller in Equation (3) gives with
no model error
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With model error we get the result
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Here,
- * is the relative error in )12 ) * and

-
the relative error

in ) . Thus for “ideal” controllers, 	 � �
 and 	 � �
 
 � are equal to
(except for the sign) the relative model errors in )12 ) * and ) ,
respectively, and we have that the “ideal” feedforward action
reduces the error as long as the relative modelling errors are
less than one, i.e.,

� 	 � �
 � � � - * � ������
� � ) � 2 ) � *

)12 ) * ���� � � (18)

�� 	 � �
�
 � �� � � - � � ����
� � )!�

)
����
� � (19)

If the model error (uncertainty) is sufficiently large, such that
the relative error in )12 ) * is larger than � , then we see from
Equation (16) that

� 	,� �
 � is larger than � and “ideal” feed-
forward control makes control worse. This may quite eas-
ily happen in practice. For example, if the gain in ) is in-
creased by 33% and the gain in ) * is reduced by 33%, then
	�� �
 � � �������	�� � 
 ��� 


� � � �
� �	���� �	� � � ��� � � � . In words, the
feedforward controller overcompensates for the disturbances,
such that its negative counteractive effect is twice that of the
original effect.

In Figure 2 we consider some examples of model uncertainties
for “ideal” feedforward controllers, and use Equations (18) and
(19) to determine when feedforward control should be used.

Example 1 In this example we consider feedforward control
of the process illustrated in Figure 3. A hot flow with flow
rate ����� and temperature

/ ��� passes through tank 1 and into
tank 2 where it is cooled by mixing with a cold flow with flow
rate ��� and temperature

/ � . / ��� is measured before the first
tank. The outlet temperature,

/ � , shall be kept constant despite
temperature variations in the hot flow. To obtain this the mea-
surement of

/ ��� is used by an “ideal” feedforward controller,
� 
 � " ��� * 2��! � ���
 $ 2��"! � � ' �  , to adjust ��� to compensate
for the variations.

The response to sinusoidal disturbances is shown in Figure 4.

� -design
We now consider combined gain and delay error in ) , and
define a � -optimal feedforward controller as shown in Figure 5.
We let the uncertainty weight, #%$ , be diagonal with elements

# $'& � ��� �)( (20)

# $+* � �-, � � ' �., ��.,0/�� ' �21
�"3  � � � ' � 1 �., 465-4 1 3�� ' �
�"3  � � � ' � 1 �., 7648/ 1 3�� ' � (21)

where 3 � � 2 � , 567-5 and #9$ & represents the uncertainty in ) *
(approximately zero) and #%$ * represents the uncertainty in )
corresponding to � �;: gain uncertainty and < ��= delay uncer-
tainty [15, eq. (7.27)]. The performance weight, #?> , is chosen
as a constant independent of frequency, and several values for
#@> is considered (from ��� �)( to ������� ). The � -controller is
designed with D-K iterations using � -toolbox in Matlab (with
scaling matrices of order � ). The delay difference between )
and ) * is removed from the models used for the design, and the
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Figure 2: Effect of uncertainty on 	�
 for SISO feedforward
control
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Figure 3: The process in Example 1
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Figure 4: Feedforward control of two tank process: Response
( � � / � ) to sinusoidal disturbances ( ( � / ��� � =��
	 ��� with
frequencies � , � , � and ��
���� 2 = (upper, middle and lower plot,
respectively)

nominal delay of ��� = is included manually in the feedforward
controller.
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Figure 5: Problem formulation for the design of a � -optimal
feedforward controller

The resulting
� 	�
 � is seen in Figure 6. From Figure 6(b) we

see that “detuning” ( # > ��� ) gives little improvement when
there is a delay error, except when very large detuning ( # >��
� ) is used.

With a low weight on performance relative to the uncertainty
(small # > ), the � -optimal feedforward controller approaches
no control (

� 	 
 � � ��
�� � ). Interestingly, with large weight on
performance (large #%> ) we obtain a feedforward controller
close to the ideal.

5 Conclusions

In this paper we have defined the feedforward “sensitivity func-
tions”, 	,�
 and 	��
�
 � for the disturbance and the reference, re-
spectively. For ideal feedforward controllers, � �
 � ) � � ) *
and � �
�
 � � ) � � we find that 	�� �
 is equal to the relative error
in )12 ) * , and 	,� �
 
 � is equal to the relative error in ) (except
for the signs). A simple frequency domain analysis of

� 	 
 �
and

� 	�
�
 � � shows for which frequencies feedforward control
has a positive (dampening) effect when certain uncertainties
are present (in gain, delay, dominant time constant and a com-
mon combination of gain and time constant). The results are
summarized in Figure 2.

The ideas are illustrated with a process example.
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