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Abstract

Passivity is a well known phenomenon in several engineeaaiags. Due to its interesting properties, it is used
in several areas of control engineering. Generally, thigerty is lost under direct discretization. In this work
a new methodology which allows to preserve continuous-foassivity is presented. This methodology is based
on choosing a proper output, which preserves the passitrititsre, while keeping the continuous-time energy
function. Analytic formulation and numerical examplesttbéor open and closed loop, are provided in the paper.

[. INTRODUCTION

Since the pioneer work of Willems [12] [13], dissipative ®ras have been a continued object of study.
The concept of dissipativy has traditionally been used tratterize the stability of a given system, and
has been applied both for analizing stability and desigrsitadpilizing controllers. Due to its interesting
properties it is still a hot topic in current research [8]][11

Although passivity has been defined properly both in digcaetd continuous-time; it is well known that,
in general, the passivity structure is lost under discagitin [6] [1], i.e. a discrete-time system describing
the behaviour of a sampled-data system is not discrete{passive even if the initial continuous-time
system was passive. Although it is possible to obtain disetime models which preserve the passivity
structure, such as the ones obtained by applying the badkdifference Euler Formula or the Tustin
transform[6], they are approximations in the sense thatliberete-time state does not exactly match the
sampled-data system states at sampling times.

Strictly speaking, the passivity loss implies that it is possible to guarantee the closed loop stability
when a computer is used to implement a controller, desigmedmtinuous-time by means of the passivity
theory. Therefore, in practical applications people temdde a very small sample time to overcome this
problem. Although this approach may be useful in some agijtios it may not be so when a high
performance is needed.

Recently, a different methodology to implement passivitgdazhcontrollers has been proposed [9][10].
This methodology is based on a passivity observer and avggssontroller, which operate concurrently
with the discrete-time controller implementation. Thegwasy controller injects a variable damping when
the passivity observer detects a passivity loss. This agbrdvas been applied with great results in high
performance haptic interfaces and teleoperation systems.

It is well known that passivity is not an intrinsic system peoty, due to the fact that it depends on
the selection on a proper input-output couple of variableaditionally, when discretizating the system,
the continuous-time output is preserved. This output dagsim general, preserve the passivity structure.
In this work the selection of a new output is proposed. Thi& eitput will assure that the discrete-
time equivalent system to the sampled-data system at sagnpines will be discrete-time passive if
the continuous-time system is passive. This new output helear physical meaning and its analytic
expression is provided for the case of linear systems.

The paper is organized as follows, section Il reviews pagsioncepts for continous time LTI systems,
section Il reviews passivity concepts for discrete-timl kEystems, section IV describe the traditional
procedure applied to obtain discrete systems equivalethed Tl sampled-data systems, in section V
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the proposed approach is described, in section VI an opgndad closed loop numerical examples are
presented in order to illustrate theoretical results, ffynia section VIl conclusions and future works are
presented.

1. CONTINUOUS TIME PASSIVITY
A LTI continuous-time systentA, B, C, D) can be written in a state space form as:

i = Az+Bu 1)
y = Cz+Du (2)

wherez € R”, y,u € R™. Equivalently, this system can be written in an input/otitfoum as:
H(s)2C(sl;—A) 'B+D (3)

Definition 1 (Passivity):A system (1)-(2) is passive with storage functitn= ;2" Pz if :
V <yTu 4)

usuallyy andu and called power variables.

Theorem 1 (Theorem 3 in [13])Assuming that the system (1)-(2) is a minimal realizatione Thatrix
inequalities
ATP +PA PB-CT

H=lpgrp_ ¢ _p_p7

<0 (5)
and
P=P' >0 (6)

have a solution if an only if (1)-(2) is dissipative with resp to the supply rater = y”«. Moreover, the
function V = ;2" Pz defines a quadratic storage function if and onlyPifsatisfies these inequalities.
Remark 1:By simple algebraic manipulation it can be shown that:

V:yTu%—%[xT,uT]H[i} (7)

under the condition of theorem Y, can be used as a Lyapunov function for the system (1)-(2) taisd i
passive by inspection of (7)

1. DISCRETE TIME PASSIVITY
A LTI discrete-time systen@&,ﬁ, 6,]5) can be written in a state space form as:
Tpy1 = Afk +]§ﬂk (8)
yr = Cxp+ Duy 9)
wherez;, € R", yi, up € R™ Equivalently, this system can be written in an input/outpaly as:
~ ~ ~\ —1 ~
H@yéCQM—A> B+D (10)
Definition 2 (Discrete Time Passivity)A system (8)-(9) is passive with storage functioh= %%Tf’i“
if
AVy £ Vipy = Vi < Gy (11)
Proposition 1: Assuming that the system (8)-(9) is a minimal realizatione Tmatrix inequalities
ATPA-P ATPB-C”
B'PA-C (D+D)-B'PB

H 2 <0 (12)




and o
P=P">0 (13)

have a solution if (8)-(9) is dissipative with respect to tumply ratew;, = y! u;. MoreoverV = %ETP

defines a quadratic storage function if and onl\Pifsatisfies these inequalities.
Remark 2:By simple algebraic manipulation it can be shown that:

SN

~ ~ ~ 1, = 1 _pe
AVk+1 £ Vk+1 — Vk = 5$£+1ka+1 — il'kTPLL'k (14)
g~  lp | X
T T ~T k
= ykuk+2[lk,uk}H{ﬂk} (15)

under the condition of proposition I can be used as a Lyapunov function for the system (8)-(9) &and i
is passive by inspection of (15).

IV. SAMPLED DATA SYSTEM

UL/—> zoh (s)

Y

=
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Fig. 1. Analyzed Sampled data system.

A LTI continuous-time system in the form (1)-(2) becomes mgked-data system when synchronized
samplers (periody) are introduced at the input and the output and a zero orddrisontroduced after
the input sampler (Fig. 1). For this kind of sampled-dataesys it is possible to obtain a discrete-time
counterpart in the form (8)-(9) whose stateg € x(k - T;)) and outputsy, = y(k - 7)) are the same as
the sampled continuous-time system ones at sampling times.

It is well known that the sampled-data system state flows éetwsampling times can be written as:

2 (1) = ®(8) T + V(1) Uy (16)

where® () = At and ¥ (t) = [; A=) Bda.
Proposition 2 ([3]): The relationship between the LTI continuous sampled-dgséem (A, B, C, D)



and its discrete-time counterpe(i&,ﬁ, (~3,]5) is defined by*

A = O(T,) =erl 17)
Ts

B = U (T, = / AT Bdr
0

— A (J&—Id)B (18)
C = C (19)
D =D (20)

The system A, B, C, D) written in an input/output form gives rise to the traditibr — trans form:

G.(2) = C <zId . A) “B4D 1)

From now onA B, C andD refer to the ones defined in (17)-(20).

Unfortunately, (A B C D) is not discrete-time passive [6] (only in particular casasswity is pre-
served [1]). An intuitive prove is that passive discretadisystems are relative degree]l) ¢ 0) [4]
while the discrete-time systems obtained by means ofAhe transform will be, in general, relative
degree 1 due to the fact that the algebraic input-output loays preservedC = C,D = D), and most
continuous-time systems fulfiD =0.

Remark 3:Although the system{A,B,C,D) is not discrete-time passive the discrete-time energy
defined by

equals the continuous-time energy at sampling times.

V. PROPOSED METHODOLOGY

In order to preserve the passivity structure it is necessatthe energy evolution in the sampled-data
continuous-time and the one in the discrete-time systenmtegpart system be equal, so the following
must be fulfilled:

~ 1
Vi = éﬁpxk (22)
AV = Vi —Vi (23)
1 1 pe -
§$£+1P£L'k+1 — §$kTP$k (24)
(k4+1)-Ts
_ / U (t) dt (25)
kTs
As the continuous-time system is assumed to be padsigan be written in the form of (7), so:
_ (k+1)-Ts
AT = [ T
k-Ts
1 T T (1)
+3 [z(),u@®)” |H { u(®) dt (26)

This expression has two parts, one related to the contintimespower term and another related to the
continuous dissipative term.

'Equation (18) can only be used whanhas no eigenvalues &t



A. Dissipative Term
The dissipative term in (26) is, by the properties of pasgialways negative defined, so it can be
written:

(k+1)
[ st [ 50 <o o

by applying the fact that(¢) is constant between sampling times and th@b evolution is analytically
known, the previous equation can be rewritten as:

T (k4+1)Ts i
Tk T Tk
{ w ] [/kTg J () HI (1) dT_ [ w ] <0 (28)
where -
J(r) & [ 2 ) (29)

so it is possible to define the discrete-time dissipativerimais:

(k+1)Ts

H* £ / J(r)"HI (1) dr (30)
kT

which is negative defined by construction. So the contindons dissipativity implies also discrete-time

dissipativity.

B. Power Term
By assuming thaH is negative semidefinite in (26) it can be stated that :

B (k+1)-Ts
AV, < / y(t) u(t)dt (31)
kTs
In order to obtain the discrete-time passive system one dvitke to write (31) in the same shape as in
(11).
In case there was not a holder in the system, the RHS term i@/ be equal tay(k-Ty) " u(k-T,) =
v} u, in which case the power term would be in the same form as in @dthe counterpart discrete-time
system would be discrete-time passive.
Remark 4: The passivity structure is lost due to the effect of the hgldet to the effect of the sampler.
In the case of using a holder (Fig. 1), the RHS term in (31) cawtigen as

(k+1)T, (k-+1)-Ts r
/ y()Tu(t)dt = [ / y(t)dt] uy, (32)
k k

Ty T,

comparing this equation with (11), it is clear that in orderférce the counterpart discrete-time system
to be discrete-time passive it is necessary to choose amtoofghe form:

(k+1)-T,
méé y(t)dt (33)

T
so equation (31) takes the form .

AVy <y (34)
which is exactly the form of (11). So with the proposed outing counterpart discrete-time system will
be discrete-time passive.

*
Remark 5:It is important to note thai‘j% corresponds to the mean value of the continuous-time system
output taken within the interval timg: - 7, (k + 1) - Ty].



Remark 6: Proposed output could also be used to preserve samplediolaliaear passive systems.

In [10], a similar definition to the one proposed has beerrméted in terms of state variables variations.
As an example, in mechanical systems power variables atce ford velocity, so the proposed output can
be interpreted in terms of a position variation; in a simikay, in electrical systems power variables are
voltage and current, so the proposed output can be interpretterms of a voltage variation.

Proposition 3: For LTI sampled-data linear systerygr can be computed as:

yX = C*7), + D*7, (35)
where

Ts
c* £ C / d (1)dr (36)

OTS
D* 2 C/ U (1)dr +T;D (37)

0

Proof:

Ts
(k+1)T,

= / [Cx (1) + Duyg d
KT,

(k+1)T:
= C / z(7)'dr + T, Dy,
k

Ts
e / [® (7) 3y + U (7) ] dr + T.Diiy
0

- [C/OTSd)(T)dT}%
—l—[C/OTS\II(T)dT—l—TSD} o

applying (36) and (37) completes the proof. [ |
Proposition 4: For those systems without a pole on the origin, the valueC3f and D* can be
computed as:

C* — C.-A"! (A _ Id> (38)
D* — CA™? (A - ATS> B+ T.D (39)

Proof:

Ts Ts
c* = C/ (I)(T)dT:C/ eATdr
0 0
T Al © [ Aipitl Ts
o [(S Aoy [
il ; (i+1)],

Az+1T i+1
= CA~
Z (1+ 1)
CA

>

» AT
(i (i Id)
(A

= CA ' (e ;S—Id) —cA™ (A-1)
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Fig. 2. Proposed Sampled data system.
Ts
D* = C/ U (1)dr + T,D
OTS Ts
= C / AT Bdrdr + T,D
0 0
T. Ty ©© i )
s s A’l T _
- C / / ZMMTBJFTSD
o Jo = !
0 Ts Ts AZ Ts _ {
- c) / / #deTBJrTSD
i=0 /0 /0 v
AT,
= C — B+ T.D
; (14+2)(i+ 1)!
O Ait2 2
= CA™? — —~ _B+T,D
; Gt o
AT
= CA?|-I,— AT, —— |B+17,D
(an G o
— CA (A—Id—ATS)B+TSD
This concludes the proof. [ |

C. Proposed System
Theorem 2:The discrete-time systemﬁ@ ]§, C*,D¥*) which can be written in a state space form as:

Tre1 = ATy + B (40)
7 = C*I, + D*W (41)

and in an input/output form as

~\ —1
G* = C* (zId _ A) B* + D* (42)



is discrete-time passive with respect to the supply @@Tﬂk and has a storage function which equals
the sampled-data continuous-time energy function at sampimes:

Vi = 57 P (43)
Proof: From what has been stated in section V-A and V-B it can be ewithat:
T
AV = @)+ { i: } H* [ z: } (44)
< ()" (45)
[ ]

In certain applications it is interesting to u%&e as an output instead of using direci§f. This allows
to have values at the output with similar range to the onesiodd in the continuous-time case.

Corollary 1: The discrete-time systemMB T SD*) is discrete-time passive with respect to
the supply rate;—s(jj,f)T”dk and the storage function ;
~ 1 _
Vi = 2Tsaf,§ Pz (46)

VI. NUMERICAL EXAMPLE
A. An open loop case

Nyquist Diagram
T

0.8

06 Z-transform
0.4 \

0.2

Continuous Time

Imaginary Axis
o
T
+

Tustin—-transform

Real Axis

Fig. 3. Open loop example : Nyquist Plot.



Step Response

0.6 T T T T T
Continuous Time
% ; ; : : O  Z-transform
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output

_02 | | | | |
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Fig. 4. Open loop example : Step Response.
Given a continuous-time system described by the transfestifon:
S
G(s) = —— a7

three discrete-time systems representing the discrae-tiounterpart of the sampled-data continuous-

time system will be compared. All of them are obtained using same sampling timel( = 1). The
discretization techniques which will be applied are:

« Tustin transform. Applying the Tustin transform to (47)jstobtained:

Go(2) = T{G(s)} = 0.28571(z — 1)(z + 1)

— (48)
22 —0.8571z + 0.4286
o Z —transform. Applying the Z — transform to (47), it is obtained:
0.53351(z — 1)
P = Z =
Ga(2) = 2{G0)} = 7078592 103679 (49)

« Proposed approach. Writing the system (42) related to (#1,abtained:

0.3403(z — 1)(z + 0.7102)
G(z) = 50
(2) = =5 07859- £ 0.3679 (50)




It is possible to observe that (48) and (50) are relative @@ while (49) is relative degree 1, so it can
not be discrete-time passive. As expected, traditionalrdization does not preserve passivity.

In linear systems passivity is directly related to real pesness, which has been clearly stated in both
continuous [7] and discrete-time [5]. So this measure wallused to analyze the passivity of the discrete-
time system compared with the continuous-time passiuityFify. 3 it is possible to see the Nyquist plot
of all studied transfer functions. As it can be seen, theinanus-time system is positive real defined,
SO passive. It can be seen that systems obtained by the poppproach and the Tustin transform are
also positive real, while the system obtained by #he transform has lost this property. As the bilinear
transform is a conformal transformation, the frequencypoese keeps unchanged (so no information
about the sampling is introduced, the Continuous Nyquist pwith be preserved independently @t).

Fig. 4 shows the step response of all presented systemsintpmtant to note that the only discrete-
time system which matches the continuous-time responsangtlsg times is the one obtained by means
of the Z — transform.

To conclude this example, it is important to remember that phoposed approach is an exact dis-
cretization in the sense that at sampling times the dis¢iie state equals the sampled-data system state
while the Tustin transform is an approximation and does ndillfthis property. Additionally the time
output time response obtained in the Tustin transform de¢dhave a clear physical meaning, while in
the proposed approach it has.

B. A closed loop case

€1 (51 H U1 >
—_— 1
+
A
S e !
I
I
l Ty |
: Y2 U2 + €2 1
| Ho S R I
! l
' I
' I
' I
L e e e e e e e e e e e e e e e e e e e e e e e -

To be implemented in discrete time

Fig. 5. Closed Loop connection.

Passivity based controllers are based on the fact that tesiygasystems connected in feedback (Fig. 5)
preserve passivity, so stability. In Fig.7s;, plays the role of the plant to be controlled whitg plays the
role of the controller. Usually this controller will be imghented in discrete-time, so in order to preserve
passivity the proposed methodology will be applied to disze both the plant and the controller.

As an example, a Buck converter (Fig. 7) used to implement ancA&ent source will be used.
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Fig. 6. Closed Loop discrete-time equivalent.

Traditionally this kind of devices is modeled by means of acfeaveraged equations:

di ,
LE = —rpi— U, +u-v; (51)

dv v
c—=2 = i—-= 52
dt ! To ( )

where L. stands for the inductancé€; stands for the capacitance, andr. are parasitic resistancesis
the output currenty; is the input voltage which is assumed constant and knewis the output voltage,
andw is the control action. It is not difficult to check that thea®bn betweern £ « - v; andi is passive
with respect to the energy stored in the capacitor and thechod

As the goal of the controller is to to follow a certain curreeference with the shapg = I, s sin (wt),
according with the internal model principle [2], a resomaggstem is used as a controller:

w?s
52 + W?

Gels) = (53)
this controller has infinite gain at frequencﬁ’ so signals in this frequency will be tracked without
error. It is not difficult to check that the controller is alpassive. A consequence of combining the plant
and this controller in feedback is that the closed loop wdldtable and perfectly track the reference.
To illustrate the problem the following parameters havenbéiged L = 6 - 107*H, C = 1074F,

rp = 0.01Q and rc = 10%€Q. In addition, the reference signal will be defined mgf = 10A and

w = 1007rmd A usual sample time for this kind of system7s = 5 - 10~s. In order to improve clarity,
the definition presented in corollary 1 will be used. The plaith the proposed output can be written as
a discrete-time transfer function in the following form :

153.72% — 0.49552z — 153.2
22 +0.9028z + 0.9917
From the practical point of view, it is more relevant how tampute the new output from measurable

variables, in this case this can be done in the following way:

yl‘:zcl‘i(k'Ts)+C2'UO(k'TS)+d'u(k'T8) (55)

G*(2) = (54)
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Fig. 7. Buck Converter Schematic.

where,c; = 0.4349, ¢o = —0.2899 andd = 153.6558. In this particular applicationy,’: corresponds to
the mean value of in the interval time defined bik - 7%, (k + 1) - T;], additionally it is not difficult to
verify that %yk* represents the voltage variation in the capacitor in theesame interval.

The same procedure has to be applied to the continuous-timieotier, so a discrete-time controller

is obtained:
B 24.622% — 24.62

22 —1975z+ 1

it can be checked that both (56) and (54) are discrete-timssiy® so their feedback connection will also
be discrete-time passive and stable.

It is important to remark that changing the controller ottgaes not imply more complexity, due to
the fact that it is not related to physical variables.

In Fig. 8 the system time response is presented for both théncmus-time and discrete-time system,
as it can be seen the results are similar in the continuous-#ind the discrete-time approach.

GX(2) (56)

VIlI. CONCLUSIONS

In this work a new approach to preserve continuous-timeiyaass) LTI sampled-data systems has been
presented. This approach is based on the selection of an@pie output for the discrete-time equivalent
system. This new output has a clear physical meaning, andeaomputed as a linear combination of
state variables and input variables in a closed form.

The procedure to apply the proposed technique to open asédloop examples has been presented
by means of a couple of examples. Additionally, the propdsaasformation may be used in the analysis
of systems containing static nonlinearities (ie. extegdime hyperstability theory).

From a practical point of view the most important drawbackhedf proposed approach is the need to
measure the complete state, while in traditional discaébns only one measure is needed. To overcome
this problem the use of state observers will be analyzed.
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Fig. 8. Closed Loop Time Response.

Although the need to measure the state may seem a hard prablisnmportant to remember that in
several applications like power converters or mechaniealogs it is very common to measure the full
state (ie. the current and the voltage in power convertertheposition and the velocity in mechanical
systems). In this kind of applications the proposed tealmmicould be applied without any difficulty.

The extension of the proposed methodology to nonlineariygsystems is currently under study.
Although the proposed output definition applies to geneygtesms, from the practical point of view most
the important problem is finding a method to analytically pote the output from the state variables and
the inputs.
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