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Ramon Costa-Castelló and Enric Fossas

Abstract

Passivity is a well known phenomenon in several engineeringareas. Due to its interesting properties, it is used
in several areas of control engineering. Generally, this property is lost under direct discretization. In this work
a new methodology which allows to preserve continuous-timepassivity is presented. This methodology is based
on choosing a proper output, which preserves the passivity structure, while keeping the continuous-time energy
function. Analytic formulation and numerical examples, both for open and closed loop, are provided in the paper.

I. INTRODUCTION

Since the pioneer work of Willems [12] [13], dissipative systems have been a continued object of study.
The concept of dissipativy has traditionally been used to characterize the stability of a given system, and
has been applied both for analizing stability and designingstabilizing controllers. Due to its interesting
properties it is still a hot topic in current research [8] [11].

Although passivity has been defined properly both in discrete and continuous-time; it is well known that,
in general, the passivity structure is lost under discretization [6] [1], i.e. a discrete-time system describing
the behaviour of a sampled-data system is not discrete-timepassive even if the initial continuous-time
system was passive. Although it is possible to obtain discrete-time models which preserve the passivity
structure, such as the ones obtained by applying the backward difference Euler Formula or the Tustin
transform[6], they are approximations in the sense that thediscrete-time state does not exactly match the
sampled-data system states at sampling times.

Strictly speaking, the passivity loss implies that it is notpossible to guarantee the closed loop stability
when a computer is used to implement a controller, designed in continuous-time by means of the passivity
theory. Therefore, in practical applications people tend to use a very small sample time to overcome this
problem. Although this approach may be useful in some applications it may not be so when a high
performance is needed.

Recently, a different methodology to implement passivity based controllers has been proposed [9][10].
This methodology is based on a passivity observer and a passivity controller, which operate concurrently
with the discrete-time controller implementation. The passivity controller injects a variable damping when
the passivity observer detects a passivity loss. This approach has been applied with great results in high
performance haptic interfaces and teleoperation systems.

It is well known that passivity is not an intrinsic system property, due to the fact that it depends on
the selection on a proper input-output couple of variables.Traditionally, when discretizating the system,
the continuous-time output is preserved. This output does not, in general, preserve the passivity structure.
In this work the selection of a new output is proposed. This new output will assure that the discrete-
time equivalent system to the sampled-data system at sampling times will be discrete-time passive if
the continuous-time system is passive. This new output has aclear physical meaning and its analytic
expression is provided for the case of linear systems.

The paper is organized as follows, section II reviews passivity concepts for continous time LTI systems,
section III reviews passivity concepts for discrete-time LTI systems, section IV describe the traditional
procedure applied to obtain discrete systems equivalent tothe LTI sampled-data systems, in section V
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the proposed approach is described, in section VI an open loop and closed loop numerical examples are
presented in order to illustrate theoretical results, finally in section VII conclusions and future works are
presented.

II. CONTINUOUS TIME PASSIVITY

A LTI continuous-time system(A,B,C,D) can be written in a state space form as:

ẋ = Ax + Bu (1)

y = Cx + Du (2)

wherex ∈ R
n, y, u ∈ R

m. Equivalently, this system can be written in an input/output form as:

H (s) , C (sId − A)−1
B + D (3)

Definition 1 (Passivity):A system (1)-(2) is passive with storage functionV = 1
2
xT

Px if :

V̇ < yT u (4)

usuallyy andu and called power variables.
Theorem 1 (Theorem 3 in [13]):Assuming that the system (1)-(2) is a minimal realization. The matrix

inequalities

H =

[
A

T
P + PA PB − C

T

B
T
P − C −D − D

T

]
≤ 0 (5)

and
P = P

T ≥ 0 (6)

have a solution if an only if (1)-(2) is dissipative with respect to the supply ratew = yT u. Moreover, the
function V = 1

2
xT

Px defines a quadratic storage function if and only ifP satisfies these inequalities.
Remark 1:By simple algebraic manipulation it can be shown that:

V̇ = yT u +
1

2

[
xT , uT

]
H

[
x

u

]
(7)

under the condition of theorem 1,V can be used as a Lyapunov function for the system (1)-(2) and it is
passive by inspection of (7)

III. DISCRETE TIME PASSIVITY

A LTI discrete-time system(Ã, B̃, C̃, D̃) can be written in a state space form as:

x̃k+1 = Ãx̃k + B̃ũk (8)

ỹk = C̃x̃k + D̃ũk (9)

wherex̃k ∈ R
n, ỹk, ũk ∈ R

m Equivalently, this system can be written in an input/outputway as:

H̃ (z) , C̃

(
zId − Ã

)
−1

B̃ + D̃ (10)

Definition 2 (Discrete Time Passivity):A system (8)-(9) is passive with storage functionṼ = 1
2
x̃T

P̃x̃

if :
∆Ṽk , Ṽk+1 − Ṽk < ỹT

k ũk (11)
Proposition 1: Assuming that the system (8)-(9) is a minimal realization. The matrix inequalities

H̃ ,

[
Ã

T
P̃Ã − P̃ Ã

T
P̃B̃ − C̃

T

B̃
T
P̃Ã − C̃

(
D̃ + D̃

T
)
− B̃

T
P̃B̃

]
≤ 0 (12)



and
P̃ = P̃

T ≥ 0 (13)

have a solution if (8)-(9) is dissipative with respect to thesupply ratewk = yT
k uk. MoreoverṼ = 1

2
x̃T

P̃x̃

defines a quadratic storage function if and only ifP̃ satisfies these inequalities.
Remark 2:By simple algebraic manipulation it can be shown that:

∆Ṽk+1 , Ṽk+1 − Ṽk =
1

2
xT

k+1P̃xk+1 −
1

2
x̃k

T
P̃x̃k (14)

= ỹT

k
ũk +

1

2

[
x̃T

k
, ũT

k

]
H̃

[
x̃k

ũk

]
(15)

under the condition of proposition 1̃V can be used as a Lyapunov function for the system (8)-(9) and it
is passive by inspection of (15).

IV. SAMPLED DATA SYSTEM

H (s)
TsTs

u (z) y (z)

Gz (z)

zoh (s)

Fig. 1. Analyzed Sampled data system.

A LTI continuous-time system in the form (1)-(2) becomes a sampled-data system when synchronized
samplers (periodTs) are introduced at the input and the output and a zero order hold is introduced after
the input sampler (Fig. 1). For this kind of sampled-data systems it is possible to obtain a discrete-time
counterpart in the form (8)-(9) whose states (x̃k = x(k · Ts)) and outputs (̃yk = y(k · Ts)) are the same as
the sampled continuous-time system ones at sampling times.

It is well known that the sampled-data system state flows between sampling times can be written as:

x (t) = Φ (t) x̃k + Ψ (t) ũk (16)

whereΦ (t) = eAt andΨ (t) =
∫ t

0
eA(t−α)Bdα.

Proposition 2 ([3]): The relationship between the LTI continuous sampled-data system (A,B,C,D)



and its discrete-time counterpart(Ã, B̃, C̃, D̃) is defined by:1

Ã = Φ (Ts) = eATs (17)

B̃ = Ψ (Ts) =

∫ Ts

0

eA(Ts−τ)
Bdτ

= A
−1
(
Ã − Id

)
B (18)

C̃ = C (19)

D̃ = D (20)

The system(Ã, B̃, C̃, D̃) written in an input/output form gives rise to the traditional Z − transform:

Gc (z) = C̃

(
zId − Ã

)
−1

B̃ + D̃ (21)

From now onÃ,B̃, C̃ andD̃ refer to the ones defined in (17)-(20).
Unfortunately,(Ã, B̃, C̃, D̃) is not discrete-time passive [6] (only in particular cases passivity is pre-

served [1]). An intuitive prove is that passive discrete-time systems are relative degree 0 (D̃ 6= 0) [4]
while the discrete-time systems obtained by means of theZ − transform will be, in general, relative
degree 1 due to the fact that the algebraic input-output coupling is preserved (̃C = C,D̃ = D), and most
continuous-time systems fulfillD = 0.

Remark 3:Although the system(Ã, B̃, C̃, D̃) is not discrete-time passive the discrete-time energy
defined by

Ṽk ,
1

2
x̃T

k Px̃k

equals the continuous-time energy at sampling times.

V. PROPOSED METHODOLOGY

In order to preserve the passivity structure it is necessarythat the energy evolution in the sampled-data
continuous-time and the one in the discrete-time system counterpart system be equal, so the following
must be fulfilled:

Ṽk ,
1

2
x̃T

k Px̃k (22)

∆Ṽk = Ṽk+1 − Ṽk (23)

=
1

2
xT

k+1Pxk+1 −
1

2
x̃k

T
Px̃k (24)

=

∫ (k+1)·Ts

k·Ts

V̇ (t) dt (25)

As the continuous-time system is assumed to be passiveV̇ can be written in the form of (7), so:

∆Ṽk =

∫ (k+1)·Ts

k·Ts

y(t)T u(t)

+
1

2

[
x(t)T , u(t)T

]
H

[
x(t)
u(t)

]
dt (26)

This expression has two parts, one related to the continuous-time power term and another related to the
continuous dissipative term.

1Equation (18) can only be used whenA has no eigenvalues at0.



A. Dissipative Term

The dissipative term in (26) is, by the properties of passivity, always negative defined, so it can be
written: ∫ (k+1)

k·Ts

1

2

[
x(t)T , u(t)T

]
H

[
x(t)
u(t)

]
dt < 0 (27)

by applying the fact thatu(t) is constant between sampling times and thatx(t) evolution is analytically
known, the previous equation can be rewritten as:

[
xk

uk

]T
[∫ (k+1)Ts

kTs

J (τ)T
HJ (τ) dτ

] [
xk

uk

]
< 0 (28)

where

J (τ) ,

[
Φ (τ) Ψ (τ)
0 1

]
(29)

so it is possible to define the discrete-time dissipative matrix as:

H
⋆ ,

∫ (k+1)Ts

kTs

J (τ)T
HJ (τ) dτ (30)

which is negative defined by construction. So the continuous-time dissipativity implies also discrete-time
dissipativity.

B. Power Term

By assuming thatH is negative semidefinite in (26) it can be stated that :

∆Ṽk <

∫ (k+1)·Ts

k·Ts

y(t)T u(t)dt (31)

In order to obtain the discrete-time passive system one would like to write (31) in the same shape as in
(11).

In case there was not a holder in the system, the RHS term in (31)would be equal toy(k·Ts)
T u(k·Ts) =

ỹT
k ũk in which case the power term would be in the same form as in (11). So the counterpart discrete-time

system would be discrete-time passive.
Remark 4:The passivity structure is lost due to the effect of the holder, not to the effect of the sampler.
In the case of using a holder (Fig. 1), the RHS term in (31) can bewritten as

∫ (k+1)·Ts

k·Ts

y(t)T u(t)dt =

[∫ (k+1)·Ts

k·Ts

y(t)dt

]T

ũk (32)

comparing this equation with (11), it is clear that in order to force the counterpart discrete-time system
to be discrete-time passive it is necessary to choose an output of the form:

y
⋆

k ,

∫ (k+1)·Ts

k·Ts

y(t)dt (33)

so equation (31) takes the form
∆Ṽk < y

⋆

k

T
ũk (34)

which is exactly the form of (11). So with the proposed outputthe counterpart discrete-time system will
be discrete-time passive.

Remark 5: It is important to note thaty
⋆

k

Ts
corresponds to the mean value of the continuous-time system

output taken within the interval time[k · Ts, (k + 1) · Ts].



Remark 6:Proposed output could also be used to preserve sampled-datanonlinear passive systems.
In [10], a similar definition to the one proposed has been interpreted in terms of state variables variations.

As an example, in mechanical systems power variables are force and velocity, so the proposed output can
be interpreted in terms of a position variation; in a similarway, in electrical systems power variables are
voltage and current, so the proposed output can be interpreted in terms of a voltage variation.

Proposition 3: For LTI sampled-data linear systemsy
⋆

k can be computed as:

y
⋆

k = C
⋆x̃k + D

⋆ũk (35)

where

C
⋆ , C

∫ Ts

0

Φ (τ) dτ (36)

D
⋆ , C

∫ Ts

0

Ψ (τ) dτ + TsD (37)

Proof:

y
⋆

k =

∫ (k+1)Ts

kTs

y(τ)dτ

=

∫ (k+1)Ts

kTs

[Cx (τ) + Dũk] dτ

= C

∫ (k+1)Ts

kTs

x(τ)T dτ + TsDũk

= C

∫ Ts

0

[Φ (τ) x̃k + Ψ (τ) ũk] dτ + TsDũk

=

[
C

∫ Ts

0

Φ (τ) dτ

]
x̃k

+

[
C

∫ Ts

0

Ψ (τ) dτ + TsD

]
ũk

applying (36) and (37) completes the proof.
Proposition 4: For those systems without a pole on the origin, the value ofC

⋆ and D
⋆ can be

computed as:

C
⋆ = C · A−1

(
Ã − Id

)
(38)

D
⋆ = CA

−2
(
Ã − Id − ATs

)
B + TsD (39)

Proof:

C
⋆ = C

∫ Ts

0

Φ (τ) dτ = C

∫ Ts

0

eAτdτ

= C

∫ Ts

0

∞∑

i=0

A
iti

i!
dτ = C

∞∑

i=0

[
A

iti+1

(i + 1)!

]Ts

0

= CA
−1

∞∑

i=0

A
i+1Ts

i+1

(i + 1)!

= CA
−1

(
∞∑

i=0

A
iTs

i

(i)!
− Id

)

= CA
−1
(
eATs − Id

)
= CA

−1
(
Ã − Id

)



ẋ = Ax + Bu

TsTs

u (z)
x

D⋆

C⋆
y⋆ (z)

G⋆ (z)

zoh (s)

Fig. 2. Proposed Sampled data system.

D
⋆ = C

∫ Ts

0

Ψ (τ) dτ + TsD

= C

∫ Ts

0

∫ Ts

0

eA(Ts−τ)
Bdτdτ + TsD

= C

∫ Ts

0

∫ Ts

0

∞∑

i=0

A
i (Ts − τ)i

i!
dτdτB + TsD

= C

∞∑

i=0

∫ Ts

0

∫ Ts

0

A
i (Ts − τ)i

i!
dτdτB + TsD

= C

∞∑

i=0

A
iTs

i+2

(i + 2)(i + 1)!
B + TsD

= CA
−2

∞∑

i=0

A
i+2Ts

i+2

(i + 2)!
B + TsD

= CA
−2

(
−Id − ATs +

∞∑

i=0

A
iTs

i

(i)!

)
B + TsD

= CA
−2
(
Ã − Id − ATs

)
B + TsD

This concludes the proof.

C. Proposed System

Theorem 2:The discrete-time system (Ã, B̃,C⋆,D⋆) which can be written in a state space form as:

x̃k+1 = Ãx̃k + B̃ũk (40)

ỹ
⋆

k = C
⋆x̃k + D

⋆ũk (41)

and in an input/output form as

G⋆ = C
⋆

(
zId − Ã

)
−1

B̃
⋆ + D

⋆ (42)



is discrete-time passive with respect to the supply rate(ỹ⋆

k )T ũk and has a storage function which equals
the sampled-data continuous-time energy function at sampling times:

Ṽk =
1

2
x̃T

k Px̃k (43)

Proof: From what has been stated in section V-A and V-B it can be written that:

∆Ṽk = (ỹ⋆

k )T ũk +

[
xk

uk

]T

H
⋆

[
xk

uk

]
(44)

< (ỹ⋆

k )T ũk (45)

In certain applications it is interesting to useey⋆

k

Ts
as an output instead of using directlyỹ⋆. This allows

to have values at the output with similar range to the ones obtained in the continuous-time case.
Corollary 1: The discrete-time system (Ã, B̃, 1

Ts
C

⋆, 1
Ts

D
⋆): is discrete-time passive with respect to

the supply rate1
Ts

(ỹ⋆

k )T ũk and the storage function :

Ṽk =
1

2Ts

x̃T
k Px̃k (46)

VI. N UMERICAL EXAMPLE

A. An open loop case
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Fig. 3. Open loop example : Nyquist Plot.
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Given a continuous-time system described by the transfer function:

G(s) =
s

s2 + s + 1
(47)

three discrete-time systems representing the discrete-time counterpart of the sampled-data continuous-
time system will be compared. All of them are obtained using the same sampling time (Ts = 1). The
discretization techniques which will be applied are:

• Tustin transform. Applying the Tustin transform to (47), itis obtained:

Gb(z) = T {G(s)} =
0.28571(z − 1)(z + 1)

z2 − 0.8571z + 0.4286
(48)

• Z − transform. Applying theZ − transform to (47), it is obtained:

Gz(z) = Z {G(s)} =
0.53351(z − 1)

z2 − 0.7859z + 0.3679
(49)

• Proposed approach. Writing the system (42) related to (47), it is obtained:

G(z) =
0.3403(z − 1)(z + 0.7102)

z2 − 0.7859z + 0.3679
(50)



It is possible to observe that (48) and (50) are relative degree 0 while (49) is relative degree 1, so it can
not be discrete-time passive. As expected, traditional discretization does not preserve passivity.

In linear systems passivity is directly related to real positiveness, which has been clearly stated in both
continuous [7] and discrete-time [5]. So this measure will be used to analyze the passivity of the discrete-
time system compared with the continuous-time passivity. In Fig. 3 it is possible to see the Nyquist plot
of all studied transfer functions. As it can be seen, the continuous-time system is positive real defined,
so passive. It can be seen that systems obtained by the proposed approach and the Tustin transform are
also positive real, while the system obtained by theZ− transform has lost this property. As the bilinear
transform is a conformal transformation, the frequency response keeps unchanged (so no information
about the sampling is introduced, the Continuous Nyquist plot will be preserved independently ofTs).

Fig. 4 shows the step response of all presented systems. It isimportant to note that the only discrete-
time system which matches the continuous-time response at sampling times is the one obtained by means
of theZ − transform.

To conclude this example, it is important to remember that the proposed approach is an exact dis-
cretization in the sense that at sampling times the discrete-time state equals the sampled-data system state
while the Tustin transform is an approximation and does not fulfill this property. Additionally the time
output time response obtained in the Tustin transform does not have a clear physical meaning, while in
the proposed approach it has.

B. A closed loop case

To be implemented in discrete time

y1

y2

e1

e2

u1

u2

H1

H2
+

+

+
−

Fig. 5. Closed Loop connection.

Passivity based controllers are based on the fact that two passive systems connected in feedback (Fig. 5)
preserve passivity, so stability. In Fig. 5H1 plays the role of the plant to be controlled whileH2 plays the
role of the controller. Usually this controller will be implemented in discrete-time, so in order to preserve
passivity the proposed methodology will be applied to discretize both the plant and the controller.

As an example, a Buck converter (Fig. 7) used to implement an ACcurrent source will be used.
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Fig. 6. Closed Loop discrete-time equivalent.

Traditionally this kind of devices is modeled by means of a set of averaged equations:

L
di

dt
= −rLi − vo + u · vi (51)

C
dvo

dt
= i −

vo

rC

(52)

whereL stands for the inductance,C stands for the capacitance,rL and rc are parasitic resistances,i is
the output current,vi is the input voltage which is assumed constant and known,vo is the output voltage,
andu is the control action. It is not difficult to check that the relation betweenv , u · vi and i is passive
with respect to the energy stored in the capacitor and the inductor.

As the goal of the controller is to to follow a certain currentreference with the shapee2 = Iref sin (ωt),
according with the internal model principle [2], a resonator system is used as a controller:

Gc(s) =
ω2s

s2 + ω2
(53)

this controller has infinite gain at frequencyω rad
s

so signals in this frequency will be tracked without
error. It is not difficult to check that the controller is alsopassive. A consequence of combining the plant
and this controller in feedback is that the closed loop will be stable and perfectly track the reference.

To illustrate the problem the following parameters have been fixed L = 6 · 10−4H, C = 10−4F ,
rL = 0.01Ω and rC = 104Ω. In addition, the reference signal will be defined byIref = 10A and
ω = 100π rad

s
. A usual sample time for this kind of system isTs = 5 · 10−4s. In order to improve clarity,

the definition presented in corollary 1 will be used. The plant with the proposed output can be written as
a discrete-time transfer function in the following form :

G⋆(z) =
153.7z2 − 0.4955z − 153.2

z2 + 0.9028z + 0.9917
(54)

From the practical point of view, it is more relevant how to compute the new output from measurable
variables, in this case this can be done in the following way:

y
⋆

k = c1 · i (k · Ts) + c2 · vo (k · Ts) + d · u (k · Ts) (55)



Fig. 7. Buck Converter Schematic.

where,c1 = 0.4349, c2 = −0.2899 and d = 153.6558. In this particular application,y⋆

k corresponds to
the mean value ofi in the interval time defined by[k · Ts, (k + 1) · Ts], additionally it is not difficult to
verify that Ts

C
y

⋆

k represents the voltage variation in the capacitor in the same time interval.
The same procedure has to be applied to the continuous-time controller, so a discrete-time controller

is obtained:

G⋆
c (z) =

24.62z2 − 24.62

z2 − 1.975z + 1
(56)

it can be checked that both (56) and (54) are discrete-time passive, so their feedback connection will also
be discrete-time passive and stable.

It is important to remark that changing the controller output does not imply more complexity, due to
the fact that it is not related to physical variables.

In Fig. 8 the system time response is presented for both the continuous-time and discrete-time system,
as it can be seen the results are similar in the continuous-time and the discrete-time approach.

VII. C ONCLUSIONS

In this work a new approach to preserve continuous-time passivity in LTI sampled-data systems has been
presented. This approach is based on the selection of an appropriate output for the discrete-time equivalent
system. This new output has a clear physical meaning, and canbe computed as a linear combination of
state variables and input variables in a closed form.

The procedure to apply the proposed technique to open and closed loop examples has been presented
by means of a couple of examples. Additionally, the proposedtransformation may be used in the analysis
of systems containing static nonlinearities (ie. extending the hyperstability theory).

From a practical point of view the most important drawback ofthe proposed approach is the need to
measure the complete state, while in traditional discretizations only one measure is needed. To overcome
this problem the use of state observers will be analyzed.
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Although the need to measure the state may seem a hard problem, it is important to remember that in
several applications like power converters or mechanical devices it is very common to measure the full
state (ie. the current and the voltage in power converters orthe position and the velocity in mechanical
systems). In this kind of applications the proposed technique could be applied without any difficulty.

The extension of the proposed methodology to nonlinear passive systems is currently under study.
Although the proposed output definition applies to generic systems, from the practical point of view most
the important problem is finding a method to analytically compute the output from the state variables and
the inputs.
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