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A mathematical model describing fluid flow and
concentration dynamics of microorganisms inside a
UV photoreactor is developed. Using physical argu-
ments and techniques from system theory, we approx-
imate this model by a first-order linear one. For this
reduced model, we design a controller. The controller is
tested on the original model as well as on the reduced
model by numerical simulation. This showed only small
differences in dynamics, which indicates that for the
original model a classic controller with excellent
properties can be designed.
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1. Introduction

For the disinfection of fluids, UV-treatment becomes
increasingly popular. This method replaces more
conventional options. For example, in drinking water
treatment, chlorination is still the most used disin-
fection method. However, as the residuals are toxic to
aquatic life [21], and some by-products of chlorination
have been proven to be mutagenic, the UV disinfec-
tion method has been stimulated as an alternative
[1, 20]. In [3]–[23], design and modelling of a photo-
reactor for disinfecting drinking water is proposed. In
[12]–[24], experimental results are presented that link
the UV dosage to the inactivation of microorganisms

in wastewater treatment in agriculture and horticul-
ture. Air disinfection by UV is investigated in [7] and
[14]. In [16], the required UV dosage for apple cider
pasteurization is examined, and in [5] the possibility of
UV treatment of process water in the food and bev-
erage industries is discussed.

In order to improve the operation of UV disinfec-
tion, dynamic control needs to be incorporated.
However, surprisingly little literature is available on
control design for UV disinfection. Only one
approach is known to the authors. In [10], a basic
model was developed, and a controller was designed.
The fluid mechanics was modelled by a plug flow, and
the attenuation of the microorganisms due to the UV
irradiation was modelled as a first order reaction. For
effective control design, it is desirable to have a low
order linear model that contains the essential system
dynamics. This allows for standard linear control,
which is very well documented and gives generally
good performance, see for example [2,11]. However,
models describing a UV reactor are generally not of
this type. Disinfection is a complex process with often
higher order reaction kinetics [4]. Moreover, a detailed
description of the fluid flow through the reactor is in
general described by the full Navier–Stokes equations
[8]. Altogether, a full reactor model leads to a non-
linear model, and hence it is not possible to design a
controller in the traditional sense, employing standard
techniques.

In this paper, a first order linear model-based con-
troller is designed for a nonlinear partial differential
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equation model of a reactor, using various approx-
imation techniques. In section 2, we start with
describing the full transport model for the fluid and
microorganism concentration, under the influence of
UV irradiation. The reaction kinetics are described in
a basic way, following [10]. Subsequently, we adopt
the assumption of laminar flow and invoke basic
symmetry properties of the solution. This yields a
simplified model of which the fluid-mechanics part
can be solved analytically. By specifying the model to
conditions relevant to disinfection of Escherichia coli
0157:H7 bacteria in cider [6], we obtain the reference
‘nominal’ model. In section 3 the nonlinear nominal
model is linearized around its reference state. This
linear p.d.e. model is further approximated by using a
Padé approximation for its transfer function, and
using balancing [25]. The resulting reduced model is of
first order. In section 4 a feedback controller is
designed for this model. The controller is tested by a
simulation study and found to perform equally well on
the reduced model as on the nominal model. This
indicates that under the reduction steps, the essential
dynamics of the nominal model is maintained. Hence,
for the rather complex original model it is shown that
a classic controller with excellent properties can be
designed. All modeling and reduction steps are care-
fully examined. This approach therefore gives a clear
image of the conditions under which this type of
controller would perform well.

2. Basic Modelling of the Disinfection

Plant

In this section, we first sketch the general physical
model. Then, we proceed to analyze laminar flow in
the reactor and subsequently consider the dynamics of
the active microorganism concentration in case dif-
fusive transport can be neglected. Finally, the para-
meter values for the nominal model are chosen,
corresponding to the particular case of UV-disinfection
in a cider plant.

2.1. Physical Model

We propose a general model that describes the
fluid flow and the reaction kinetics in a cylindrical
reactor. This model is composed of the Navier–Stokes
equations for an incompressible fluid, to describe con-
servation of mass and momentum, and a convection-
diffusion-reaction equation which quantifies the
concentration of active microorganisms in the reactor.
Fig. 1 shows the reactor with a UV lamp in the center

along the longitudinal direction. Here, R2 is the outer
radius, R1 the radius of the lamp, and LR2 the length
of the reactor. It is convenient to work with dimen-
sionless quantities and for that purpose all variables
are scaled. As reference length-scale, we adoptR2. The
reference velocity is denoted by u0 for which we select
the mass-average velocity, i.e., u0A ¼ Q, where the
area A ¼ �ðR2

2 � R2
1Þ, and Q is the volume-flux of

fluid through the reactor in m3s�1. These reference
scales also define a time-scale R2=u0. To finalize the
scaling of the fluid flow part, we adopt the kinematic
viscosity v to quantify the so-called viscous fluxes in
the Navier–Stokes equations [9].

To scale the convection-diffusion-reaction equation
for the active microorganism concentration C, we
adopt the same time- and length-scales, and use the
average concentration at the inlet of the reactor,C0, as
reference scale for the concentration. Furthermore, D
denotes the microorganisms diffusion coefficient.
Finally, we consider the first-order reaction mechan-
ism as proposed in [10], using results from [3,17], and
[18]. This is described by the disinfection reaction rate,
which is governed by the intensity, taken as the UV
intensity at the surface of the lamp at R1, the micro-
organism susceptibility factor, the monochromatic
absorbance, and the geometric factor � ¼ R1=R2. The
intensity I�ðW=m2Þ is scaled as I ¼ I�=I�, using the
time average value of the lamp intensity as reference
scale. This yields a normalized disinfection reaction
rate K that is given by

K ¼ I

r
expð�Eðr� �ÞÞ ¼ IfðrÞ: ð1Þ

Here, r denotes the scaled radial coordinate.
Written out in full, the scaled model equations for

the fluid flow in cylindrical coordinates are given by
(see [9] pp. 59–60) the continuity equation:
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@

@r
ðrvrÞ þ 1
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@v�
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þ @vz
@z

¼ 0 ð2Þ

and by the conservation of momentum:

Fig. 1. Schematic overview of a UV reactor.
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Here, Re ¼ u0R2=� is the Reynolds number, which
quantifies the ratio of the convective forces over the
viscous forces in the flow. We use cylindrical coordi-
nates ðr; �; zÞ (cf. Fig. 1) with velocity components
ðvr; v�; vzÞ and dimensionless pressure p. The convec-
tion-diffusion-reaction equation for the active micro-
organism concentration can be written as:
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Here, Pe ¼ u0R2=D is the Peclet number, which mea-
sures the relative importance of the convective
mass transfer over the diffusive mass transfer. The
Damköhler number Da¼ "I��R2=u0 indicates the
chemical reaction rate relative to the convective mass
transfer rate. It is assumed that the susceptibility
factor "ðm2=JÞ and the scaled monochromatic absor-
bance E (dimensionless) are constant.

The description of the fluid flow and concentration
dynamics given in (2)–(4) does not allow further
analytical treatment in its general form. Therefore, we
proceed with analyzing the velocity and concentration
profiles under simplifying assumptions. Most impor-
tantly, these limit the applicability of the model to
laminar flow conditions, as apply, e.g., to UV treat-
ment in cider plants [6]. Further, suitable boundary
conditions are chosen, together with the controlled
and measured variables.

2.2. Laminar Velocity Field Model

The laminar flow assumption and the assumption that
the reactor is very long imply that the fluid motion is
in the z direction only, i.e., v� ¼ vr ¼ 0. This requires
that the Reynolds number is sufficiently small and the
flow has become fully developed before the reactor
inlet. In other words, there are no entry effects, and as
a consequence the velocity profile depends on r and t,
and not on z nor on �. As a result we have
v ¼ ð0; 0; vzðr; tÞÞ, which satisfies (2) and also implies

that
@2vz
@�2

¼ @2vz
@z2

¼ 0. Therefore, the Navier–Stokes

system (2) contains only one non-trivial equation.
Only the longitudinal momentum equation needs to
be retained, yielding

@vz
@t

¼ � @p

@z
þ 1

Re
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@vz
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� �� �
: ð5Þ

Taking the derivative of this equation with respect to
z, and using the fact that vz does not depend on z,
yields that @p=@z is independent of z. As the pressure
does not depend on r or �, the pressure derivative
depends on t only. We set

� @p

@z
ðtÞ ¼ �ðtÞ: ð6Þ

Further, we assume no-slip boundary conditions at
the walls, which is the most common choice for
incompressible fluid flow,

vzð�Þ ¼ vzð1Þ ¼ 0: ð7Þ

This completes the laminar fluid-mechanics descrip-
tion of the reactor flow.

2.3. Convection-Diffusion-Reaction Equation

As the velocity field, the UV-radiation field, the initial
condition, and the geometry are assumed to be inde-
pendent of �, the concentration of active micro-
organisms will also not depend on �. Hence, (3)
becomes
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To complete the formulation for C, we introduce
boundary conditions in the z and r-direction. First,
we assume that the concentration at the inlet is
well-mixed, making it a function of t, but not of r.
Moreover, we assume that there is no concentration
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gradient in z at the inlet. This corresponds with the
absence of UV radiation for. Thus

Cð0; r; tÞ ¼ C0ðtÞ for � < r < 1;

@C

@z
ð0; r; tÞ ¼ 0 for z � 0:

ð9Þ

At the walls the velocity is zero. As mass cannot pass
through the wall the logical boundary conditions for
r ¼ � and r ¼ 1 are

@C

@r
ðz; r; tÞ ¼ 0 at r ¼ � and r ¼ 1: ð10Þ

As the velocity is zero at the wall, the concentration is
zero at the walls as well. This completes the formu-
lation for the dynamics of the microorganism con-
centration. Recapitulating, the model describing the
flow and concentration inside the reactor is
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where vz is a function of r and t, and C a function of z,
r and t. In practical UV-treatment, control is exerted
with IðtÞ, the intensity of the lamp, see (1). The aver-
age concentration at the outflow is a natural mon-
itoring parameter that needs to be controlled. Here,
we define the average concentration in terms of the
total outflow of microorganisms relative to the aver-
age velocity of the liquid. As in [19] it is defined by

CðL; tÞ ¼
R 1

� CðL; r; tÞvzðrÞrdrR 1

� vzðrÞrdr
: ð12Þ

The control will be aimed at reducing CðL; tÞ below a
pre-set acceptance level, by adjusting the input I. We
turn to this in the next section.

2.4. Analytical solutions for special cases

To get some insight into the disinfection process, the
laminar flow and corresponding concentration pro-

files are analyzed next. For a reactor with a constant
flow rate, i.e., @vz=@t ¼ 0 and � constant, the solution
of the differential equation for the velocity in (8) is
given by

vzðrÞ ¼ � �Re

4
r2 þ 1� �2

lnð�Þ lnðrÞ � 1

� �
: ð13Þ

This shows a characteristic quadratic profile, remin-
iscent of the Poiseuille profile, with logarithmic cor-
rections arising from the UV lamp along the center of
the cylinder.

Using this velocity profile, we analyze the concen-
tration of active microorganisms next. As mentioned
above, we restrict to cases inwhich diffusive transport is
negligible compared to convection and UV irradiation,
or equivalently, Pe � 1 and Pe � Da. For the par-
ticular case ofUVdisinfection in a cider plant, this is the
case [6], and this motivates neglecting mass diffusion.
By doing so, the third equation in (8) becomes

@C

@t
ðz; r; tÞ ¼ �vzðrÞ@C

@z
ðz; r; tÞ �DaKðr; tÞCðz; r; tÞ

Cð0; r; tÞ ¼ C0ðtÞ;
ð14Þ

which is a standard convection-reaction process. Note
that with vzðrÞ from (13) the boundary conditions in
(11) are satisfied. In view of the control design that
focuses on the output concentration C at z ¼ L we
may readily derive

CðL; r; tÞ ¼ C0 t� L

vzðrÞ
� �

exp �Da

Z t

t� L
vzðrÞ

Kðr; �Þd�
0@ 1A:

ð15Þ

This expresses the instantaneous solution CðL; r; tÞ in
terms of the inflow-value at a previous time t� t�ðrÞ
where the residence time t� ¼ L=vzðrÞ. In addition, the
accumulated effect of the UV irradiation at distance r,
acquired during a time-interval t� is expressed by
the exponential. To simplify the analysis, assume that
C0 and K do not depend on t. Expression (15) then
becomes

CðL; rÞ ¼ C0 exp �DaKðrÞL
vzðrÞ

� �
; ð16Þ

This is plotted on a logarithmic scale for different values
of � in Fig. 2. The physical parameters are the same
as in the nominal model that will be introduced in sec-
tion 2.5. We observe that close to the boundaries r ¼ �
and r ¼ 1 the concentration drops strongly – this is
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associated with the very long residence time of
microorganisms that enter the reactor close to a wall.
Conversely, only the ’inner’ region of the reactor
contributes significantly to the outflow of still active
microorganisms. Hence, especially for quite large
values (� > 1=3), the contribution of CðL; rÞ to CðLÞ
is significant only in a small part of the reactor.
Expressions (9) and (12) illustrate that CðLÞ is influ-
enced strongly by the smallest residence time L=vz.
A realistic value is � > 1=3, see for example [17]
where � ¼ 0:4 is used.

2.5. The nominal model

Using the results of the previous sections, we obtain a
model for an apple cider plant. The dimensionless
constants for this plant are

Pe ¼ 3:5 105;Da ¼ 5:8;Re ¼ 1:3 103; and � ¼ 0:5;

ð17Þ
and they are determined by using parameter values
specific for apple cider, [6]. In [19] all the physical
constants are listed. From section 2.1 we have
Da¼ "I��R2=u0, where I� is the average lamp intens-
ity. The lamp intensity is determined such that it
gives a ’5 log reduction’ of the inlet concentration
of the Escherichia coli 0157:H7 bacteria, i.e.,
CðLÞ ¼ 10�5C0. Furthermore, we assume that the
flow rate through the reactor is constant. By section
2.4 this implies that vz is given by (10). Combining (1),
(13) and (14), we obtain the following nominal model

vzðrÞ ¼ ��Re

4
r2 þ 1� �2

lnð�Þ lnðrÞ � 1

� �
@Cðz; r; tÞ

@t
¼ �vzðrÞ@Cðz; r; tÞ

@z
�Da IðtÞfðrÞCðz; r; tÞ

Cð0; r; tÞ ¼ C0ðtÞ:
ð18Þ

In this model, we regard I(t) as the control input, and
C0ðtÞ as the disturbance. The measurement CðL; tÞ is
given by (12).

3. Model Reduction for the Nominal

Model

In the nominal model we see that our control input
IðtÞ gets multiplied with the state Cðz; r; tÞ, and so it is
a non-linear model. Furthermore, it is a distributed
parameter model. Using linearization and reduction
via balancing [25], we will obtain a first order linear
model for which the control design is easy.

Since the nominal model is given in the scaled
variables, we have as reference values Cref

0 ¼ 1,
Iref ¼ 1. For these reference values, the solution of (18)
gives the reference concentration profile

Crefðz; rÞ ¼ Cref
0 exp �Da fðrÞz

vzðrÞ
� �

¼ exp �Da fðrÞz
vzðrÞ

� �
:

ð19Þ

Defining IðtÞ ¼ Iref þ IvarðtÞ, C0ðtÞ ¼ Cref
0 þ Cvar

0 , and
Cðz; r; tÞ ¼ Crefðz; rÞ þ Cvarðz; r; tÞ, and linearizing (18)
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Fig. 2. Concentration profile of CðL; rÞ for different values of �. The relevant parameter values are listed in equation (17).
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around the reference concentration, gives the follow-
ing p.d.e. for Cvar

@Cvarðz; r; tÞ
@t

¼ �vzðrÞ@C
varðz; r; tÞ
@z

�Da IvarðtÞfðrÞCrefðz; rÞ
�Da fðrÞCvarðz; r; tÞ

Cvarð0; r; tÞ ¼ Cvar
0 ðtÞ:

ð20Þ

We use this to obtain the transfer functions from input
and disturbances to the state. Let denote the Laplace
transform of the variable x. Then after Laplace
transformation with respect to time, equation (14)
becomes

s bCvarðz; r; sÞ ¼ �vzðrÞ@
bCvarðz; r; sÞ

@z

�Da bI varðsÞfðrÞCrefðz; rÞ
�Da fðrÞ bCvarðz; r; sÞbCvarð0; r; sÞ ¼ bCvar

0 ðsÞ:

ð21Þ

The output depends on the concentration at z ¼ L; see
(12), and we find after inserting (19)

bCvarðL; r; sÞ ¼ Da fðrÞ
s

exp �sþDa fðrÞ
vzðrÞ L

� ��
� exp �Da fðrÞL

vzðrÞ
� �� bI varðsÞ

þ exp �sþDa fðrÞ
vzðrÞ L

� � bCvar

0 ðsÞ

¼ ~G1ðr; sÞ bI varðsÞ þ ~G2ðr; sÞ bCvar

0 ðsÞ:
ð22Þ

The transfer function ~G1ðr; sÞ is a non-rational func-
tion in s. Hence it is not straightforward to find a
balanced realization of it. Therefore, we approximate
~G1ðr; sÞ by a rational function. For fixed r we use the
first order Padé approximation, i.e.,

~G1ðr; sÞ �
~G1ðr; 0Þ2

�@ ~G1ðr; 0Þ
@s

sþ ~G1ðr; 0Þ

¼ �2Da fðrÞCrefðL; rÞ
sþ 2vzðrÞ

L

:

ð23Þ

The transfer function ~G1 that connects IvarðtÞ to
CvarðL; tÞ is obtained by taking the mean concentra-
tion, see (12)

~G1ðsÞ ¼
Z 1

�

Da fðrÞCrefðL; rÞ
sþ 2vzðrÞ

L

vzðrÞrdr

0B@
1CA,

Z 1

�

vzðrÞrdr
� �

:

ð24Þ
A state space realization of this is given by the para-
metrized o.d.e.

dxðr; tÞ
dt

¼ aðrÞxðr; tÞ þ bðrÞIvarðtÞ

CvarðL; tÞ ¼ 1

vr

Z 1

�

xðr; tÞvzðrÞrdr;
ð25Þ

where

aðrÞ ¼ �2
vzðrÞ
L

; bðrÞ ¼ �2Da fðrÞCrefðL; rÞ

and vr ¼
Z 1

�

vzðrÞrdr:
ð26Þ

As the state x at time t is a function of r, this is an
infinite-dimensional system. Next, we approximate
this by a finite-dimensional one. Therefore we dis-
cretize xðr; tÞ with respect to r. We introduce the
uniform grid for r; rj ¼ �þ j�r. The new state vector
is xðtÞ ¼ ½xðr1; tÞ . . . xðrn; tÞ�T, and the model becomes

dx

dt
ðtÞ ¼ AxðtÞ þ BIvarðtÞ

CvarðL; tÞ ¼ CxðtÞ
ð27Þ

with

A ¼ diag½aðr1Þ; . . . ; aðrnÞ�
B ¼ ½bðr1Þ; . . . ; bðrnÞ�T

C ¼ 1

vr

vðr1Þr1
2

; vðr2Þr2; . . . ; vðrn�1Þrn�1;
vðrnÞrn

2

� �
:

Matrix C is obtained by trapezoidal integration. For
this model we calculate the Hankel singular rvalues,
see Fig. 3 When the first singular value dominates the
others, the model may be truncated down to one state
[25]. Since the first state is much larger than the second
by a factor 103, we may truncate (27) down to the first
order differential equation

dCvarðL; tÞ
dt

¼ AredCvarðL; tÞ þ BredI
varðtÞ: ð28Þ
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Using the constants of our nominal model, steps (18)–
(28) lead to Ared ¼ �1:2, Bred ¼ �7:3 10�3.

To see whether all approximations have not
discarded any essential dynamics, the Bode plot of
(28) is compared to that of system ~G1ðsÞ in (22)
with output (12), see Figure 4. It is clear that (28) is
a crude approximation of (22) with output (12) for
large !. More importantly, it captures the first
order dynamics of the model, characterized by the
static gain and the time constant. Hence, we use
(28) as our model for controller design. Using (22),
(12), and (28) we have the following model in the
s-domain

CvarðL; sÞ ¼ Bred

s� Ared

bIvarðsÞ þ 1

vr

Z 1

�

~G2ðr; sÞvzðrÞrdr bCvar

0 ðsÞ

:¼ G1ðsÞ bIvarðsÞ þ ~G2ðsÞ bCvar

0 ðsÞ:
ð29Þ

The amplitude Bode plot of ~G2ðsÞ is flat. The
approximation by a pure time delay

~G2ðsÞ � G2ðsÞ ¼ c expð��sÞ; ð30Þ

with c ¼ ~G2ð0Þ, and � ¼ �1

c

d ~G2

ds
ð0Þ is a very accurate

approximation, see [19] for details.
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Fig. 3. The Hankel singular values of the laminar flow model without diffusion.
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4. Controller Design

For the approximate model in the s-domain (see (29)
and (30) )

CvarðL; sÞ ¼ G1ðsÞ bI varðsÞ þ G2ðsÞ bC var
0 ðsÞ ð31Þ

we design a controller. This controller will be tested on
our nominal model (18) with output equation (12).

Since no dynamic properties of Cvar
0 ðtÞ are known,

and since G2ðsÞ is a pure time delay, we regard the term

G2ðsÞ bC var
0 ðsÞ as delayed white noise. This is a general

noise model. Since the dynamics of Ivar toCvar is of first
order, we design a simple PI controller. We choose

KðsÞ ¼ Ared

Bred

Ared � s

s
: ð32Þ

This controller has the property that the crossover
frequency of the complementary sensitivity function

equals that of G1ðsÞ. Fig. 5 shows the control loop
schematically. For more details on the design, we refer
to [19].

Fig. 5. Schematic representation of the controlled model.
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Fig. 6. The dynamics of the average concentration CðL; tÞ and the reduced model (28), and the nominal model (18). Left: A ¼ 0:5
and F ¼ 0:8. Right: A ¼ 0:9 and F ¼ 2.
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4.1. Simulations

Simulation studies are conducted to see whether the
reduced model (28) is a sufficiently accurate approx-
imation of the nominal model (18). This is done by
connecting the controller to both models. The con-
trolled systems are solved numerically by a forward
Euler method in time, and an upwind scheme in space,
see [19] for details. To visualize the difference in
output dynamics clearly, C0ðtÞ is disturbed by
A sinðFtÞ, with a significant amplitude of A ¼ 0:5 and
a frequency of F ¼ 0:8. We assume that this is a large
and fast disturbance for a cider plant. For this fre-
quency, the error in gain in Figure 4 is relatively large.
The left hand plot in Figure 6(a) shows the concen-
tration CðL; tÞ for the reduced model (28) and the
nominal model (18). Initially, the difference between
the two models is large. This is caused by the transient
behavior of the nominal model. The small initial
concentration near the inlet is decreased further by the
lamp, resulting in a smaller and smaller CðLÞ. After
the transient dynamics has gone, the outputs of the
nominal and the reduced model match very well.
Further increase of A and F leads to larger errors. To
illustrate this, the amplitude and the frequency of the
input disturbance are increased to 0.9 and 2 respect-
ively. The dynamics is shown in Fig. 6b. The higher
amplitude causes a larger approximation error in (14),
and the high frequency causes a larger phase error in
Fig. 4.

5. Conclusions

A basic model was developed, describing the fluid and
concentrations dynamics inside an annular disinfec-
tion plant. As was shown by the analysis of the Hankel
singular values, and the Bode plots, that the essential
dynamics of an apple cider plant can be approximated
accurately by a first order model. Consequently, a
simple classical model-based controller with excellent
properties can be designed. This was further con-
firmed by a simulation study with significant dis-
turbances.

Up to the balancing, the formulas are analytical and
contain all the physical properties of the nominal
model. This allows a clear analysis, like in Section 2.4.
For more complex models, for example with an
irregular geometry, or without discarding mass dif-
fusion as was done here, the reduction steps as well as
the model simulations can become numerically more
involved, since an analytical linearization may not be
possible. These practical drawbacks leave the door
open for alternative design methods, such as nonlinear

control. The next fundamental steps would be to
validate the basic model experimentally, and to check
the controller performance in a real-life situation.
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