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This article gives an overview of the theoretical basis of
the norm-optimal approach to iterative learning control
followed by results that describe more recent work which
has experimentally benchmarked the performance that can
be achieved. The remainder of the article then describes its
actual application to a physical process and a very novel
application in stroke rehabilitation.
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1. Introduction

Iterative Learning Control (ILC) has been especially
developed to improve the performance of systems that
operate in a repetitive manner where the task is to fol-
low some specified trajectory in a specified finite time
interval, also known as a pass or a trial in the literature,
with high precision. The novel principle behind ILC is
to suitably use information from previous trials, often in
combination with appropriate current trial information, to
select the current trial input to sequentially improve per-
formance from trial-to-trial. In particular, the aim is to
improve performance from trial-to-trial in the sense that
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the tracking error, the difference between the output on a
trial and the specified reference trajectory, is sequentially
reduced to either zero, ideal case, or some suitably small
value.

The original work in this area is credited to [6] and since
then there have been substantial developments in both sys-
tems theoretic and application terms. For an overview
of the algorithm development side see, for example, [1]
where this reference has the added feature of a categoriza-
tion of algorithms developed up to 2004. Application areas
where ILC has been successfully applied include robotics,
automated manufacturing plants, and food processing. For
more details, including some of those where there is clear
potential for significant added benefit from fully developed
ILC, one possible source is the survey article [9].

In general, current research and development in ILC
can, as in other areas, be broadly partitioned into start-
ing from either a linear or nonlinear model of the plant
dynamics but here we restrict attention to the former where
there are still many open problems. This is especially true
at the interface between theory and applications. Given
the diverse range of algorithms, which have been devel-
oped over the years, there is a clear need to develop tools
and case studies that allow for valid comparison of com-
peting designs. This article begins by giving the basic
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ideas and results that led to the development of the norm-
optimal class of algorithms [3, 4, 5]. The development then
continues to describe experimental benchmarking using
laboratory-based facilities especially designed and con-
structed for this purpose. This is followed by more recent
results where such algorithms have been applied, using a
computationally more efficient implementation resulting
from the laboratory-based experimental benchmarking,
to free electron lasers (FELs). Following this, a novel
application of norm-optimal ILC to stroke rehabilitation is
described and the article concludes by a brief overview of
some areas of ongoing work and possible future research
directions.

2. Norm-Optimal ILC Control Theory

The mathematical definition of ILC used in this article
has the following general form, where the results in this
section are mainly from [3].

Definition 1: Consider a dynamic system with input u
and output y. Let Y and U be the output and input func-
tion spaces, respectively, and let r ∈ Y be a desired
reference trajectory for the system. An ILC algorithm is
successful if, and only if, it constructs a sequence of con-
trol inputs {uk}k≥0 which, when applied to the system
(under identical experimental conditions), produces an
output sequence {yk}k≥0 with the following properties of
convergent learning

lim
k→∞ yk = r, lim

k→∞ uk = u∞

Here convergence is interpreted in terms of the topologies
assumed in Y and U , respectively.

A major advantage of this general statement of the prob-
lem is that it allows a simultaneous description of linear
and nonlinear dynamics, continuous or discrete plant with
either time-invariant or time-varying dynamics.

Let the space of output signals Y be a real Hilbert space
and also let U be a real, and possibly distinct, Hilbert space
of input signals. The respective inner products, denoted by
〈·, ·〉, and norms ‖ · ‖2 = 〈·, ·〉 are indexed in a way that
reflects the particular space concerned, for example, ‖x‖Y
denotes the norm of x ∈ Y . The Hilbert space structure
induced by the inner product is essential in what follows
but is not restrictive, as specific choices of this struc-
ture enables the analysis of, for example, continuous or
discrete-time systems.

The dynamics of the systems considered here are
assumed to be linear and represented in operator form as

y = Gu + z0 (1)

where G : U → Y is the system input/output opera-
tor (assumed to be bounded and typically a convolution
operator) and z0 represents the effects of system initial
conditions. If r ∈ Y is the reference trajectory or desired
output, the tracking error is defined as

e = r − y = r − Gu − z0 = (r − z0) − Gu (2)

Hence, without loss of generality, it is possible to replace
r by r − z0 and consequently assume that z0 = 0.

The ILC procedure, if convergent, solves the problem
r = Gu∞ for u∞. If G is invertible, then the formal solu-
tion is just u∞ = G−1r. A basic assumption in ILC is
that direct inversion of G is not acceptable as, for exam-
ple, this would require exact knowledge of the plant and
involve derivatives of the reference trajectory. This high-
frequency gain characteristic would make the approach
sensitive to noise and other disturbances. Also inversion
of the whole plant G is unnecessary as the solution only
requires finding the pre-image of the reference trajectory
r under G.

The problem considered here is easily be seen to be
equivalent to finding the minimizing input u∞ for the
optimization problem

min
u

{‖e‖2
Y : e = r − y, y = Gu} (3)

The optimal error ||r − Gu∞||2Y is a measure of how well
the ILC procedure has solved the inversion problem. It
also represents the best the system can do in tracking the
signal r. The particular interest here is the case when the
optimal error is exactly zero, i.e. when u∞ is a solution of
r = Gu∞ and hence solves the ILC problem.

There are many iterative procedures to solve the opti-
mization problem (3) but there is a clear advantage in the
use of descent algorithms of a suitable type as considered
for learning systems by, for example, [20]. The gradient-
based ILC algorithm class generates the control input to
be used on trial k + 1 as

uk+1 = uk + εk+1G∗ek

where G∗ : Y∗ → U∗ is the adjoint operator of G and εk+1
is a step length to be chosen on each trial. This approach
suffers from the need to choose a step length and the feed-
forward structure of the control law in k that takes no
account of current trial effects, including disturbances and
plant modeling errors.

The norm-optimal ILC algorithm class has the follow-
ing two important properties.

• Automatic choice of step size.
• Potential for improved robustness through the use of

causal feedback of current trial data and feedforward of
data from previous trials.
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This is achieved by, on completion of trial k, computing the
control input on trial k +1 as the solution of the minimum
norm optimization problem

uk+1 = arg min
uk+1

{
Jk+1(uk+1) : ek+1 = r − yk+1,

yk+1 = Guk+1
}

where the performance index used is

Jk+1(uk+1) := ‖ek+1‖2
Y + ‖uk+1 − uk‖2

U (4)

The initial control u0 ∈ U can be arbitrary in theory but,
in practice, will be a good first guess at the solution of the
problem.

The solution of this ILC minimum norm optimization
problem can be interpreted as the determination of the
control input on trial k + 1 with the properties that: (i)
the tracking error is reduced in an optimal way; and (ii)
this new control input does not deviate too much from the
control input used on trial k. The relative weighting of
these two objectives can be absorbed into the definitions
of the norms in Y and U .

The benefits of this approach are immediate from the
simple interlacing result

‖ek+1‖2
Y ≤ Jk+1(uk+1) ≤ ‖ek‖2

Y , ∀k ≥ 0 (5)

which follows from optimality and the fact that the nonop-
timal choice of uk+1 = uk would lead to the relation
Jk+1(uk) = ‖ek‖2

Y . Hence we are considering a descent
algorithm as the norm of the error is monotonically non-
increasing in k. Also equality holds if, and only if, uk+1 =
uk , i.e. when the algorithm has converged and no more
input-updating takes place.

The control law on trial k + 1 is obtained by Fréchet
differentiation of (4) with respect to uk+1 to obtain the
stationary point and substitution from (1) and (2) to obtain

uk+1 = uk + G∗ek+1, ∀k ≥ 0 (6)

where G∗ denotes the adjoint of G. This equation is the
formal update relation for the class of norm-optimal ILC
algorithms.

Using e = r − Gu gives the tracking error update
relation

ek+1 = (I + GG∗)−1ek , ∀k ≥ 0

and the recursive relation for the input evolution

uk+1 = (I + G∗G)−1(uk + G∗r), ∀k ≥ 0

Norm-optimal ILC has a number of other useful prop-
erties. For example, monotonicity immediately shows that
the following limits exist

lim
k→∞ ‖ek‖2

Y = lim
k→∞ Jk(uk) =: J∞ ≥ 0

Also an inductive argument and the inequality ‖y‖ ≤
‖G‖‖u‖ yields the relations∑

k≥0

‖uk+1 − uk‖2
U < ‖e0‖2

Y − J∞ < ∞

∑
k≥0

‖ek+1 − ek‖2
Y < ‖G‖2(‖e0‖2

Y − J∞) < ∞ (7)

and hence

lim
k→∞ ‖uk+1 − uk‖2

U = 0, lim
k→∞ ‖ek+1 − ek‖2

Y = 0

(8)

The properties given in (8) show that the algorithm has
an implicit choice of step size, the first distinguishing prop-
erty of norm-optimal ILC noted above, as the incremental
input converges to zero. This asymptotic slow variation is
a prerequisite for convergence. Also the summation of the
energy costs from the first to the last trial is bounded, as
shown by (7).

The following result gives the proof of convergent learn-
ing, where R(A) is used to denote the range of an operator
A. This is proved as Theorem 1 in [3].

Theorem 1: If either r ∈ R(G) or R(G) is dense in Y ,
then the ILC tracking error sequence {ek}k converges in
norm to zero in Y , i.e. the ILC algorithm has guaranteed
convergence of learning.

The guaranteed convergence together with the mono-
tonicity of the tracking error sequence represent powerful
properties of the algorithm. To be applicable to an exam-
ple, obviously requires a causal implementation where the
presence of this property is not immediately obvious here
as the relation uk+1 = uk + G∗ek+1, although appar-
ently of a feedback form, suggests that the relationship
is not causal. For example, if G is the convolution oper-
ator in Lm

2 [0, T ], with the inner product 〈w, v〉Lm
2 [0,T ] =∫ T

0 wT (t)v(t)dt, described by the relation (Gu)(t) :=∫ t
0 K(t−τ)u(τ )dτ , then (G∗e)(t) = ∫ T

t KT (τ − t)e(τ )dτ .
This means that evaluation of G∗ek+1 requires knowledge
of future values of the tracking errors. Such data are not, of
course, available in practice. The special causality struc-
ture of ILC allows, however, the transformation of the
algorithm into a causal procedure, as detailed for one case
of particular interest below.

In mathematical terms, the trial-to-trial error always
goes to zero but this does not imply convergence of the
input sequence in U unless this space is chosen appro-
priately. As an example, suppose that both Y and U are
L2 type spaces and G arises from a linear time-invariant
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system described by a state-space model. Then if the state
initial vector x(0) does not generate an output that matches
the value of the reference vector at t = 0, the required u∞
will contain distributions such as the Dirac delta function.
Hence u∞ /∈ U and a proof that uk → u∞ in U is impos-
sible. Consequently the following results are conditional
on additional assumptions on either the input sequence
applied or the plant itself. Here we use the latter and the fol-
lowing result deals with general convergence of the input
(the proof is that for Theorem 3 in [3]).

Theorem 2: The sequence {uk}k≥0 satisfies

lim
k→∞ ||G∗(r − Guk+1)||U = 0 (9)

Also if G∗G has a bounded inverse in U the input sequence
converges in norm to

u∞ = (G∗G)−1G∗r ∈ U (10)

and if σ := 1
||G||−1

U
> 0 (where || · || denotes the induced

operator norm) the convergence is bounded by a geometric
relation of the form

||uk+1 − u∞||U ≤ 1

1 + σ 2
||uk − u∞||U (11)

This last result only holds with the boundedness assump-
tion imposed on the plant inverse by the assumption that
σ 2 > 0. The following result, whose proof is that for
Theorem 4 in [3] relaxes this assumption.

Theorem 3: If the sequence {uk}k≥0 is bounded in U , the
desired, or learned control, input u∞ ∈ U and G∗G has
range dense in U , then this sequence converges to u∞ in
the weak topology in U .

For finite-dimensional spaces, weak convergence is equiv-
alent to convergence in norm. In such cases, we have also
proved convergence in norm. This fact includes discrete-
time systems, which are the setting for applications to
physical processes.

The modified ILC law

uk+1 = αuk + G∗ek (12)

provides a link to almost singular optimal control [16].
Here α is a relaxation parameter, as used commonly in
numerical analysis to improve algorithm robustness or
a forgetting factor in adaptive control. Setting α = 1
recovers the case considered above and substituting from
e = r − Gu in the expression for ek+1 − ek gives

ek+1 = (I + GG∗)−1[αek + (1 − α)r] (13)

Theorem 1 has proved convergence when α = 1. When
α �= 1, it is possible to use results from the stability theory

of linear repetitive processes [38] to show that convergence
in this case holds if, and only if, |α| < 1 with non-zero
limit error ê∞ ∈ Y given by

ê∞ =
(

I + GG∗

1 − α

)−1

r (14)

Using the plant equation, it follows that the input
sequence also satisfies

uk+1 = (I + GG∗)−1(αuk + G∗r) (15)

The norm of the recursion operator (I + G∗G)−1α in
this case is |α|, and it follows immediately that the input
sequence converges geometrically in norm in U if, again,
|α| < 1 to the limit

û∞ = ((1 − α)I + G∗G)−1G∗r (16)

with geometric constant |α|. Note that the control input
vector in this case converges in norm if relaxation is used.
Also for convergence to a solution close to u∞, α must
be chosen to be close to, but slightly less than, unity. This
follows from the fact that û∞ and ê∞ are the solutions of
the optimization problem

min
u

[
Ĵ(u) = ||e||2Y+(1−α)||u||2U : y = Gu, e = r−y

]
(17)

It now follows that it is possible to make ||e||2Y arbitrar-
ily small with controls u ∈ U and hence the minimum
value of Ĵ tends to zero as α approaches one from
below. The following result can therefore be established
(Theorem 5 in [3]).

Theorem 4: Under the assumptions of Theorem 1, the
ILC algorithm with modified update law (12) with |α| < 1
converges in norm in U to a control input that produces a
non-zero limit error with norm that can be made arbitrarily
small by choosing α arbitrarily close to unity.

If α < 1 is close to unity then the control input weighing
in (17) is very close to zero. This is the essential link to
the almost singular or cheap control problem [13, 16].

For applications, the results given above have to be con-
verted into computational procedures. Central to this is
that the resulting algorithms are causal in the ILC sense.
The formal definition of this property is as follows.

Definition 2: An ILC algorithm is causal if, and only if,
the value of the input uk+1(t) at time t on trial k + 1 is
computed only from data that are available from this trial
in the time interval [0, t] and from previous trials over the
complete trial duration [0, T ].
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Note that this definition differs from the classical one as
data from times t̂ > t can be used, but only from pre-
vious trials. In the next section, we switch to the case
of discrete linear time-invariant plant models as prepa-
ration for the application studies, which follow in the
remainder of the article. An efficient implementation
procedure maximizing computational efficiency of the
resulting algorithm is also introduced as this has proved
to be essential in the majority of the current applica-
tions where norm-optimal ILC has been experimentally
applied.

A natural extension of norm-optimal ILC, termed pre-
dictive norm-optimal ILC, can also be derived. The
intuition that motivated this work [4] is that predictive
control contains the key to improved performance. Predic-
tive norm-optimal ILC extends the performance criterion
to take future predicted error signals into account. The
extended criterion for computing the input uk+1 on trial
k + 1 is

Jk+1(uk+1,N )

:=
N∑

i=1

λi−1
(
‖ek+i‖2

Y + ‖uk+i − uk+i−1‖2
U
)

This criterion includes the error not only of the next trial,
but of the next N trials, together with the corresponding
changes in input. The weight λ > 0 determines the impor-
tance of more distant (future) errors and incremental inputs
compared to the present ones.

The actual ILC algorithm follows uniquely from mini-
mization of the proposed cost criterion. It only remains to
compute the minimizing input. This is done by dynamic
programming. Once the input is found, a recursive for-
mulation for the evolution of the error (and input) is
computed. All interesting properties and characteristics
of the norm-optimal predictive ILC algorithm can, as in
the norm-optimal case, be obtained by examining the
properties of the operators appearing in the recursive
formulation.

3. Norm-Optimal ILC Computation

The process dynamics are assumed to be represented, after
sampling if necessary, by the discrete linear time-invariant
systems state-space model

x(t + 1) = Ax(t) + Bu(t), x(0) = x0, 0 ≤ t ≤ Ns

y(t) = Cx(t) (18)

where Ns is the number of samples, x(t) is the n × 1
state vector, y(t) is the m × 1 output vector and u(t) is

the l × 1 control input vector. Also because Ns is finite,
introduce the supervectors

y =




y(1)

y(2)
...

y(Ns)


 , u =




u(0)

u(1)
...

u(Ns − 1)


 (19)

Then, using the transition matrix solution for y(t) of (18),
we can describe the process dynamics by

y = y0 + Gu (20)

where the mNs × lNs matrix G is given by

G =




CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CANs−1B CANs−2B . . . CB


 (21)

and

y0 = [
(CA)T (CA2)T . . . (CANs)T

]T
x0

In the single-input single-output (SISO) case the Toeplitz
matrix G is invertible if, and only if, CB �= 0. This matrix
could also be of very large dimensions but this is not a
problem as it does not appear in the final calculations. If
the system has a delay, and hence CB = 0, then it can be
regularized as detailed in [5].

In the abstract setting, the spaces Y and U are taken
as �2 spaces of m × 1 and l × 1 vectors on [1, Ns] and
[0, Ns − 1], respectively. Writing the norms out as sums
gives the performance index as

Jk+1(uk+1)

= 1

2

( Ns∑
t=1

(r(t) − yk+1(t))
T Q(r(t) − yk+1(t))

+
Ns−1∑
t=0

(uk+1(t) − uk(t))
T R(uk+1(t) − uk(t))

)
(22)

where the weighting matrices Q and R are of compatible
dimensions, and symmetric positive definite. This is the
familiar linear quadratic performance criterion from lin-
ear quadratic optimal control theory which is, in effect, a
combination of the optimal tracking (tracking of r(t)) and
the disturbance accommodation problem (regarding uk(t)
as a known disturbance on trial k + 1).
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Forming the block diagonal matrices Q̂ and R̂ with Q
and R as the diagonal entries respectively, the definitions
of the inner products in Y and U are

〈y1, y2〉Y = yT
1 Q̂y2 =

Ns∑
t=1

y1(t)
T Qy2(t) (23)

〈u1, u2〉U = uT
1 R̂u2 =

Ns−1∑
t=0

u1(t)
T Ru2(t) (24)

The initial control uo ∈ U can be arbitrary in theory but,
in practice, it will be chosen to be a good first guess at the
solution of the problem.

The control input on trial k + 1 that minimizes the cost
function here is obtained from the stationary condition

∂Jk+1

∂uk+1
= −GT Qek+1 + R(uk+1 − uk) = 0 (25)

or, since R is invertible,

uk+1 = uk + R−1GT Qek+1, ∀ k ≥ 0 (26)

Here R−1GT Q is equivalent to the adjoint operator G∗
with respect to the weighted inner products (23) and (24)
(recall (6) from the analysis of the previous section) and
we can treat the former term here as an abbreviation for the
latter. Moreover, the presence of the transpose of G in (26)
implies that uk+1(t) − uk(t) depends on values of ek+l(t)
for t < t ≤ N . Consequently this control law cannot be
implemented but, as shown below, can be converted to one
that is implementable.

The first part of Theorem 2 specialized to this case
shows that the input sequence minimizes the error in a
least squares sense, even if G is singular or non-square.
Also if G is square and nonsingular, it is guaranteed that
there exists a scalar σ > 0 such that ||Gu||2U ≥ σ 2||u||2U
holds, where σ is the smallest singular value of G.

If G has inverse with norm 1
σ

then

||ek+1||Y ≤ 1

1 + σ 2
||ek||Y

This is a corollary of the second part of Theorem 2 for this
case and establishes that an exponential convergence rate
is possible for ‘regular’ plants. Note also that σ , and hence
the rate of convergence of ||uk+1 −u∞||U and ||ek||Y , can
be changed arbitrarily by varying the weighting matrices
Q and R in the cost function. This follows from

uT GT Qu ≥ σ 2uT Ru, ∀ u ∈ U

and then if R = pR0, where R0 is fixed and the scalar p

is a variable parameter, σ = σ 2
0
p where σ0 is the small-

est singular value of R0. The parameter p thus provides

complete control over the convergence rate: the smaller p
is, the faster the convergence rate of the input. For exam-
ple, to obtain a guaranteed reduction of the error of about
1
2 on each trial p should be chosen to be of the order of
magnitude of σ0.

Simulation results suggest, however, that this may be
overcautious as the smallest singular value stems from a
worst-case consideration and the convergence for typical
reference signals is (at least initially) much faster than
is guaranteed by the bound here. This control over the
convergence rate is one of the biggest advantages of this
algorithm over alternatives where there is typically neither
an exponential rate of convergence nor any possibility of
increasing the speed of convergence.

To obtain an implementable form of this algorithm, first
note that the adjoint (or transpose) for the class of plants
considered here involves the operations of time reversal
plus an appropriate change of the state-space parameters.
Hence in

uk+1 − uk = G∗ek+1 = R−1GT Qek+1 (27)

the adjoint operator G∗ becomes the well known costate
system [7]

ξk+1(t) = AT ξk+1(t + 1) + CT Qek+1(t + 1),

ξk+1(Ns) = 0

uk+1(t) = uk(t) + R−1BT ξk+1(t), Ns > t ≥ 0 (28)

This system has a terminal condition at t = Ns instead
of an initial condition, marking it (as expected) as an anti-
causal representation of the solution. It cannot therefore
be implemented in this form, but a causal implementation
can be found when assuming full state knowledge. The
optimal control is transformed by writing for the costate

ξk+l(t) = [−K(t)(I + BR−lBT K(t))−1A(xk+1(t)

− xk(t))] + ζk+1(t) (29)

and then using these last two equations and standard tech-
niques in optimal control theory [7, 2] to show that the
matrix gain K(t) is the solution of the familiar discrete
matrix Riccati equation on the interval [0, Ns − 1]

K(t) = AT K(t + 1)A + CT QC − [
AT K(t + 1)B

×
(

BT K(t + 1)B + R)
)−1

BT K(t + 1)A
]

(30)

with terminal condition K(Ns) = 0. Also the predictive or
feedforward term is generated by

ξk+1(t) = (I + K(t)BR−1BT )−1(AT ξk+1(t + 1)

+ CT Qek(t + 1))

ξk+1(Ns) = 0 (31)
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and the input update equation now is

uk+1(t) = uk(t) −
[ (

BT K(t)B + R
)−1

× BT K(t)A (xk+1(t) − xk(t))
]

+ R−1BT ξk+1(t) (32)

The norm-optimal ILC algorithm for the form of cost
function used, consists of current trial full state feedback
combined with feedforward from the previous trial output
tracking error data. This representation of the solution is
causal because (31) and (32) can be solved offline, between
trials, by reverse time simulation using available previ-
ous trial data. For a time-invariant system, as here, the
matrix K(t) for 0 ≤ t < Ns, needs to be computed only
once before the sequence of trials begins. If all entries in
the plant state vector are not directly measurable then an
observer based on the plant state-space model matrices
can be used. The state vector entries on each trial must be
stored until the next trial has been completed.

The main disadvantage limiting the practical applica-
tion of the norm-optimal ILC algorithm is the large amount
of computation which must be performed between each
sample interval. To remedy this problem, a faster version
of the algorithm can be used, which allows the majority of
calculations to be performed during the design and com-
missioning of the control law. The remaining calculations
are significantly reduced in number and consist solely of
multiplications, additions, and subtractions.

Implementation of the algorithm is as follows. The
matrix gain K(t) defined by (30) can, as noted above, be
calculated before the system operates, and hence, does
not contribute to the real-time processing load. The pre-
dictive term (31) must be calculated between each trial.
Note again that this equation has a terminal, as opposed
to an initial, condition and must therefore be computed
in descending sample order. The input update (32) must
be calculated at each sample instant. It is therefore the
input update equation which particularly contributes to
the real-time processing load and has a significant influ-
ence on the minimum sample time that can be used in an
application.

This improved implementation is derived by identify-
ing simplifications which can be made to the computation
of the original. Consider the predictive component (31);
the only variables in this equation are the tracking error
ek and the predictive term itself ξk+1, and all of the
other terms can be combined together to produce the
matrices

α(t) =
(

I + K(t)BR−1BT
)−1

, β(t) = α(t)AT (33)

γ (t) = α(t)CT Q (34)

leading to the computationally simpler predictive compo-
nent equation

ξk+1(t) = β(t)ξk+1(t + 1) + γ (t)ek(t + 1) (35)

Exactly the same concept can be applied to the input update
equation (32), resulting in the simplified input update
equation:

uk+1(t) = uk(t) − λ(t) {xk+1(t) − xk(t)} + ωξk+1(t)

(36)

where

ω = R−1BT , λ(t) = (BT K(t)B + R)−1BT K(t)A

The resulting implementation therefore requires seven
matrices (A, B, C, β, γ , λ and ω) to be supplied to the
real-time controller.

This reformulated algorithm uses significantly more
memory than the original, because the memory alloca-
tion is static rather than dynamic, but norm-optimal ILC
can recycle memory once calculations are complete. How-
ever it is worth observing that the process of recycling the
memory takes time and decreases the amount of time avail-
able for computation of the algorithm. The approach here
is preferable because it is relatively easier and cheaper to
upgrade memory than to upgrade the processor.

In terms of improvement in computation speed, due to
the reduced number of calculations, it is possible to cal-
culate exactly the time required to perform each algebraic
operation for both the basic algorithm and its reformula-
tion, then find the total time for each variant. However, the
results of this process still ultimately depend on the char-
acteristics of the controller, the operating system and the
efficiency of the program functions. In simulation compar-
isons there was a factor of three increase in available speed,
when using an identical setup for both algorithms and run-
ning them at maximum simulation rate, without specifying
the need for strict sample intervals. However, care must
be exercised when transferring this result to experimen-
tal implementation. Although some increase in speed will
be achieved by the reformulated algorithm, a quantifiable
guarantee is beyond the scope of this article.

The computations required here are summarized in
Table 1.

4. Measuring ILC performance

In norm-optimal ILC, the weighting matrices Q and R
are used to adjust the balance between trial-to-trial error
convergence speed and robustness, respectively. A critical
task therefore is to investigate just how much the values
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Table 1. Norm-optimal computation

First level (before operation):
K(t) = AT K(t + 1)A + CT QC

− [AT K(t + 1)B
(

BT K(t + 1)B + R
)−1

BT K(t + 1)A]

α(t) =
(

I + K(t)BR−1BT
)−1

β(t) = α(t)AT

γ (t) = α(t)CT Q

ω = R−1BT

λ(t) = (BT K(t)B + R)−1BT K(t)A

Second level (between trials):
ξk+1(t) = β(t)ξk+1(t + 1) + γ (t)ek(t + 1)

Third level (between sampling instants):
uk+1(t) = uk(t) − λ(t)

(
xk+1(t) − xk(t)

) + ω(t)ξk+1(t)

chosen affect algorithm performance. However, it is first
necessary to discuss exactly what ILC performance is and
how it can be measured.

It is generally recognized that there are three variables
which are of particular importance when describing the
performance of an ILC algorithm [45], these being

• convergence speed,
• minimum tracking error, and
• long-term performance.

Although the instantaneous data recorded during each
trial (such as input voltage and output error) is useful for
analyzing the learning process and its performance, it is
clearly necessary to calculate some general measure of
the tracking accuracy for each trial, and observe how this
changes as the number of trials increases. This can specif-
ically indicate minimum error, time to reach minimum
error (convergence speed) and any sign of performance
degradation. In implementation, it is possible that the
error decreases from trial-to-trial and then, after a large
number of trials have elapsed, start to grow again. This is
sometimes termed long-term instability [32, 12] but is in
fact a performance issue that is still not completely under-
stood, and for the remainder of this article is referred to as
long-term performance.

As for standard linear systems, popular measures of
tracking accuracy are in terms of a suitable error norm.
Fig. 1 shows the typical such plot for an ILC system with
long-term performance degradation, where key parame-
ters used to describe performance are also indicated. In
particular, e1 is the initial error norm value, ime is the
number of trials required to reach minimum error, emin is
the minimum error norm value and iu is the number of
trials until the error norm begins to increase. The typical
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Fig. 1. Typical error norm curve for an ILC system with long-term
performance degradation.

plot for a system without long-term performance degra-
dation is similar, except that the iu point is never reached
and the error norm does not increase as the number of tri-
als increases. Of these parameters, ime and emin are most
commonly used to describe ILC performance.

The performance index that will be adopted involves
simply integrating the area under the error norm curve for
the first N trials, where N is selected appropriately for the
system being considered. This results in the performance
index for N trials, PIN , given by

PIN =
N∑

k=1

p(e)k (37)

where p(e)k denotes the error norm on trial k.
To allow a fair comparison of algorithm performance,

test parameters such as the plant model parameters and
reference trajectory must be held constant. In the case that
the ILC algorithm does not involve parameter-dependent
current trial feedback, the value of e1 will be theoretically
parameter-invariant, and the PIN can be normalized by set-
ting e1 = 1. Because this does not hold for norm-optimal
ILC, PIN will instead be normalized using the error norm
produced in the absence of ILC current trial feedback.
Approximate upper and lower bounds on the value of
PIN are then, respectively, given by PIN (max) = Ne1
(assuming that no improvement occurs for k > 1), and
PIN (min) = e1 (assuming that the error is zero for k > 1).

5. Application to a Gantry Robot Test
Facility

The gantry robot, shown in Fig. 2, is a commercially avail-
able system found in a variety of industrial applications
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Fig. 2. The gantry robot.

whose task is to place a sequence of objects onto a moving
conveyor under synchronization. The sequence of opera-
tions is that the robot collects the object from a specified
location, moves until it is synchronized (in terms of both
position and speed) with the conveyor, places the object on
the conveyor, and then returns to the same starting location
to collect the next object and so on. This is sometimes
referred to as ‘pick and place’ and is clearly suitable for
the application of ILC.

The gantry robot can be treated as three SISO systems
(one for each axis) which can operate simultaneously to
locate the end effector anywhere within a cuboid work
envelope. The lowest axis, X , moves in the horizontal
plane, parallel to the conveyor beneath. The Y -axis is
mounted on the X-axis and moves in the horizontal plane,
but perpendicular to the conveyor. The Z-axis is the shorter
vertical axis mounted on the Y -axis. The X and Y -axes
consist of linear brushless DC motors, while the Z-axis
is a linear ball-screw stage powered by a rotary brush-
less DC motor. All motors are energized by performance
matched DC amplifiers. Axis position is measured by
means of linear or rotary optical incremental encoders as
appropriate.

To implement norm-optimal ILC, is it necessary to
obtain a model for the plant which is to be controlled. Each
axis of the gantry was modeled independently by means
of sinusoidal frequency response tests. From these data it
was possible to construct Bode plots for each axis and
hence determine approximate transfer-functions. These
were then refined, by means of a least mean squares opti-
mization technique, to minimize the difference between
the frequency response of the real plant and that of the
model. The resulting X-axis Bode plot comparing the plant
and the model is given in Fig. 3 (the remaining plots appear
in [35]). From each Bode plot an approximate transfer-
function was constructed and from that, a minimal order

state-space model. Here we only give detailed ILC design
for the X-axis where a 7-order transfer-function was used
in design, and the efficient implementation procedure [36]
was used (with all axes) to obtain the results given
below.

5.1. Test Parameters

With all axes operating simultaneously, the reference
trajectories for the axes produce a three dimensional syn-
chronizing ‘pick and place’ action, shown in Fig. 4. The
trajectories generate a work rate of 30 units per minute
which is equivalent to a trial time period of 2 seconds.
Using a sampling frequency of 1 kHz, this generates 2000
samples per trial.

A 2-second stoppage time exists between each trial,
which allows vibrations induced in the previous trial to
die away and prevents their propagation between trials.
Before each trial, the axes are homed to within ±30 µm
of a known starting location to minimize the effects of
initial state error.

The plant input voltage for the first trial is zero. There-
fore the algorithm must learn to track the reference in
its entirety. There is no assistance from any other form
of controller. In the practical implementation, the sys-
tem states are estimated by means of a full-state Kalman
estimator.

5.2. Experimental Results

As representative results from the experiments performed,
Fig. 5 shows the error norm calculated for each axis dur-
ing a 5000 trial test designed to investigate the long-term
performance, where for the X and Y -axes Q = 100 and
R = 0.01 and for the Z-axis Q = 1000 and R = 0.1.
The mean square error (mse) has been used to enable
comparison with other control methodologies that have
been implemented on the gantry robot [35, 36], and the
most important feature here is that there is no sign of an
increasing error norm, indicating that the algorithm can
achieve long-term performance compared to other algo-
rithms implemented on the same plant which resulted in
error divergence occurring after 100 or, in severe cases,
just 3 trials.

To investigate the effect of varying Q and R, a batch
of tests was performed using different combinations of
these parameters. Table 2 displays the values of Q and
R which were used to produce a total of 49 combina-
tions. Each combination was implemented for 100 trials
and the PI100 performance index described in Section 4
was calculated. Given that there are two tuning param-
eters, it is particularly suitable to plot the algorithm
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Fig. 4. Three dimensional reference trajectory.

performance on a three dimensional surface chart, as
shown in Fig. 6 for the X-axis. The performance plots
corresponding to the other two axes are very similar,
particularly the Y -axis where the low frequency gain of
the linear motor is practically identical to that of the
X-axis.

Noting that Q affects the rate of error reduction and R
limits the input change, interpreting the plots becomes a
simple task. To the right of the chart is a region of poor
tracking performance where the PI100 value is approx-
imately 100 indicating that virtually nothing is learnt
during the test. As could be expected, this corresponds
to a small value for Q and a large value for R. With
these settings, the algorithm is far too conservative. As
the ratio of Q to R increases, gradually PI100 reduces,
indicating that the performance is improving. This is rep-
resented by the slope to the right side of the chart. As
the Q/R ratio continues to increase, PI100 is reduced to
values very close to 1, indicating that the perfect trajec-
tory is learnt in almost one trial. The balance of error
reduction to input change is now approaching optimality.
Temporarily increasing Q/R has little effect on the per-
formance, until the system becomes unstable and PI100
jumps back to 100. This is represented by the channel and
then the steep slope to the left of the chart. It is important
to note that the ratio of Q to R is what determines the algo-
rithm performance rather than the absolute values of each
parameter.

The results that have been presented form part of an
extensive programme of experiments [36], which have
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Table 2. Q and R values used in experiments

Q R

0.1 0.0001
1 0.001

10 0.01
100 0.1

1000 1
10000 10

100000 100

confirmed the excellent performance of norm-optimal ILC
in terms of convergence speed, minimum error, and long-
term performance. The approach has proven well suited
to the gantry robot due to the accuracy of the linear model
of each axis, and the lack of interaction between axes.
In the next section the algorithm is applied to an actual
physical system associated with FELs. Then in the fol-
lowing section will be applied to control the movement
of human subjects, this being a challenging applica-
tion in which there exists strong nonlinear behavior,
and significant difficulty in obtaining an accurate system
model.
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6. Application to FELs

The results in this section are in the main from [28].
FELs use linear particle accelerators that increase the

energy of the electrons by interaction with electromag-
netic radio frequency (RF) fields [8]. They are operated in
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pulsed mode, for example, every second there is a pulse for
approximately 1 ms. This pulsed system has the following
properties:

• the disturbances and uncertainties only show small
changes from pulse to pulse,

• between pulses, of the order of several hundred millisec-
onds, could be used for computing optimal parameters
and driving signals for the next pulse,

• the Field Programme Gate Array (FPGA) structure of
the digital intrapulse controller allows arbitrary input
signals at a frequency of 1 MHz,

• appropriate models could be identified by standard
methods from measurement data.

Clearly the second of these properties, in particular, makes
this an application for which ILC appears to be well
suited. In this section, we describe the application of norm-
optimal ILC using the same implementation as for the
gantry robot and begin with some background leading on
to the construction of a model for design.

6.1. Basic System Structure

In numerous research areas, a light source that is able
to resolve objects on an atomic level is required, for

example, in molecular biology. Also laser light is used
for a variety of experiments because it can be better
focused compared to other light sources, is monochro-
matic, and very short pulses can be produced.

A FEL produces laser radiation with tunable wave-
length. Here we focus on a research program that is aiming
to build an FEL that can operate in the X-ray wavelength
by the year 2014 [8]. The process uses a linear particle
accelerator, which increases the energy of electrons by
interaction with electromagnetic RF fields to a desired
value. These fields are required to be very precise in ampli-
tude and phase stability. Fig. 7 shows the structure of the
Vacuum Ultraviolet FEL (FLASH) which is already work-
ing in the same establishment where this research program
is based. The linear accelerator consists of resonators for
the RF fields housed in shape cryomodules. The RF fields
inside these superconducting resonator cavities are peri-
odically supplied by an actuator system for a finite time
interval and then turned off again.

In Fig. 8 the amplitude of the desired envelope of the RF
field is shown for one RF pulse as a function of time. The
field inside the accelerator cavities has to be kept constant
once the required amplitude for the appropriate energy
gain of the electrons has been reached at the end of the
filling phase. During the flattop phase the electron beam is
injected into the accelerator. When the electron beam has

Fig. 7. An FEL with front end, accelerating structures and undulators.
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Fig. 8. One RF-pulse in superconducting cavities.
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passed, the RF field is turned off and the field amplitude
decays. The envelope of the RF field oscillation must be
kept constant in amplitude and phase during the flattop
time interval to transfer a precise amount of energy to the
electrons.

Once the system is set up to a desired operating point,
the pulse trajectory remains unchanged for a large number
of pulses. Therefore repetitive disturbances can be sup-
pressed by finding an optimal feedforward control signal
to minimize the deflection from the reference. The driving
signal is computed using norm-optimal ILC, for which a
system model must be developed.

6.2. RF System of the Linear Accelerator

The acceleration takes place in the resonators where
standing RF waves (modes) provide the energy, where
the resonance frequency is determined by the geometry,
and for the desired acceleration mode is 1.3 GHz. If the
length of the cavity changes, the resonance frequency also
changes. Due to the relatively thin walls, the resonators
become susceptible to mechanical vibrations called micro-
phonics which detune the resonance frequency. The high
power RF fields in the cavities lead to deformation of
the cavity walls and therefore also contribute to detuning.
Induced currents cause Lorentz forces acting on the metal
surroundings during the pulse sequence. Measurements
have shown that detuning can occur up to 
f ≈ 500 Hz.
Because the Lorentz force is induced every time the elec-
tric field is generated, the resulting detuning is considered
deterministic and repetitive.

Another source of disturbance is the electron beam
itself. During its passage through the accelerating struc-
ture, the charged particles gain energy from the RF field,
which leads to fluctuations in the current amount of energy
stored in the system. The following bunches of charged
particles will be influenced by these fluctuations, which
have to be minimized by the control system. It can be
assumed that the bunch arrival time will be constant from
pulse-to-pulse, thus having the properties of a repetitive
disturbance. Next we describe the general architecture and
related aspects of the digital control scheme used in this
application.

6.3. Digital Control System

The actuator system receives a precise RF signal of
1.3 GHz from the Master Oscillator (MO). This low power
sinusoidal signal can be changed by the vector modulator
in amplitude and phase. The output signal of the vector
modulator is amplified by a klystron, which is an RF
amplifier. The amplified RF waves are transferred from
the klystron to the cavities inside the cryomodules via

a waveguide transmission and distribution system. For
economical reasons, one high power klystron supplies all
8–32 cavities of an RF station, thus RF fields cannot be
influenced in each cavity individually and the system is
therefore underactuated.

The superconduction cavity simulator and controller
(SIMCON) is based on FPGA structures that enables the
implementation of fast algorithms. A block diagram rep-
resentation of a Low Level RF (LLRF) control system is
shown in Fig. 9, where the bottom part shows the digital
FPGA controller. The LLRF control system has the task
of keeping the pulsed RF fields in the superconducting
cavities of the RF station at the reference value during the
flattop phase of one RF pulse shown in Fig. 8.

After measuring the actual RF-field by pickup anten-
nas, the signals are downconverted to an intermediate
frequency of 250 kHz. The real (I) and imaginary (Q) field
components are digitalized in analog-digital-converters
(ADC) with a sampling frequency of 1 MHz. An overview
of the signals shown in Fig. 9 in terms of I and Q is given
next.

• The input signals uI, uQ are produced by actuator system
and act directly on the vector modulator.

• The output signals yI, yQ are the real and imaginary
parts respectively of the sum of the RF-field voltage
vectors of eight cavities.

• The reference signals rI, rQ are the real and imaginary
parts respectively of the vector sum of the RF-field’s
voltage vectors given by look-up tables for the specified
field gradient.

• The feedforward signals fI, fQ are among the control
signals determined by open-loop control.

• The control signals uc,I, uc,Q are the ILC controller out-
put signals, updating the previous, trial, or iteration,
input signals.

• The control error signals eI, eQ are the deviations in real
and imaginary parts respectively of the output signals
from their reference signals.

Calibration of the measurement signals is done for com-
pensation of effects resulting, for example, from different
cable lengths. The control algorithm usually uses the vec-
tor sums of all calibrated measurement signals of the
individual cavities as signals to be controlled, because of
the lack of individual action for each cavity.

To reach the desired setpoint values even in open-loop
adaptation of the feedforward signals must be sufficient
to track the reference trajectory. The disturbance sources
mainly arise from the strong effect of the Lorentz forces
which are deterministic from pulse-to-pulse. It is possible
to compensate the drift away from the operating point by
a smooth increase of the driving signal over the flattop.
Transients induced by the beam are predictable, and the
arrival time is known. An increase in the driving power
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will keep this fluctuation low. Both compensation mea-
sures have a positive effect on control scheme performance
while keeping the control error signals small. To predict
the system behavior, it is essential to have an adequate
model of the underlying system dynamics. Next we give
an outline of the identification procedure used for model
building.

6.4. System Modeling

Although additional external disturbances and a number
of nonlinearities in the actuator system are known to be
relevant for a broad range of operation setpoints, standard
identification procedures for linear time invariant models
can be used to estimate models that can be validated at spe-
cific setpoints in the manner outlined in, for example, [31].
The subspace identification method N4SID from Matlab’s
System Identification Toolbox was used to estimate the
matrices A, B, C, D of the state-space model

ẋ(t) = A x(t) + B u(t)

y(t) = C x(t) + D u(t) (38)

where u = (uI uQ)T and y = (yI yQ)T denote the system
input and output vectors respectively and x the state vec-
tor. The flattop phase of the pulse is the main interest for
control and at the same time marks the systems operation
point. Only measurements from this period are used for
system identification. Persistent excitation signals can be
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Fig. 10. Input disturbances on both channels at flattop.

injected into the accelerator system by superimposing ran-
dom signals on standard feedforward tables with defined
setpoints. A typical input sequence for the feedforward
table is shown in Fig. 10.

In the first 500 µs (filling phase), the actuator system is
operated at maximum power. The flattop phase starts from
500 µs, and during this phase the inputs are first reduced
by a factor of 0.5 to reach the setpoint and soon after the
excitation signal is added to both inputs, see Fig. 10. A
high amplitude leads to a good signal to noise ratio. In
Fig. 11 measured versus simulated signals are shown for
an identified 4th order model.
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Table 3. Available and required computation time for different
levels

1st level 2nd level 3rd level
(before (between (between
operation) trials) samples)

Needed time [s] 24.71 0.0147 0.0047
Available time [s] ∞ 0.1 0.000001

6.5. Application of Norm-Optimal ILC

The system to be controlled is driven in pulsed mode.
Moreover, the accelerating process is considered to be
repetitive and the disturbances also show this behavior.
Hence ILC is suitable for this application where ek =
[eI eQ]T and here the norm-optimal approach with cost
function of the form (22) is employed. Fast and efficient
computation is important when computing the updated
input signal. The time interval between two consecutive
RF pulses is approximately 0.1 s. Furthermore, a state
feedback control input has to be computed in each sam-
pling period of 1 µs. Using a workstation computer with
an Intel Pentium 4 processor with a clock speed of 3 GHz,
the computation time needed for the three different time
levels is given in Table 3.

The time needed between samples exceeds the time that
is available. Consequently, the third level computations
are executed in the second level for the results below. The
input signals are then computed for the whole trial at once,
instead of for every sample separately. To prevent damage

to system components when the algorithm is implemented
on the real plant, the input signals are limited as shown in
Fig. 12. The limits are set to the maximum and minimum
values of the input signals during the filling and the decay
phase.

The following weighting matrices in the norm-optimal
ILC cost function gave results which could be imple-
mented on the real plant

Q = 100 × I2×2 and R = I2×2 (39)

The state variables required for the state feedback com-
ponent in the algorithm are obtained by simulation using
the plant model. Including input and output disturbances
in the simulation, results for the flattop phase are shown
in Fig. 13, where only the signals of the first input and
output are given. The shape of the disturbances can be
computed as the deviation from the smooth trajectory of
the first trial. As the number of trials increases, the out-
put signals approach the desired setpoint (SP) trajectory.
Rejection of the input and output disturbances can also
be observed. Since the input signal reaches the given lim-
its in the beginning of the phase, the output signal only
approaches the setpoint slowly in the first 100 µs.

6.6. Experimental Results

The norm-optimal ILC scheme has been was successfully
implemented on the real plant at the DESY test facility,
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with measurements shown in Figs. 14 and 15 for the cost
function weighting matrices given in (39). The number of
trials is initially set to 10.

Fig. 14 shows an increasing and decreasing trend of
the first and the second output signal during the flattop
phase, respectively. This is the general behavior caused
by the detuning effects described previously. However,

on increasing the number of trials, both output sig-
nals approach the desired setpoint. After 10 trials, the
output signals show only small deviations from the ref-
erence trajectory. Because only the signals during the
flattop phase are controlled, the input signals of the fill-
ing and the decay phase are kept constant as illustrated in
Fig. 15.
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Fig. 14. Measured output signals with norm-optimal ILC applied.
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Fig. 15. Input signals from the norm-optimal ILC.

In order to emphasize the improvements in the field reg-
ulation gained by application of norm-optimal ILC, Fig. 16
gives a comparison to the decentralized proportional con-
troller previously used for field regulation and a MIMO
feedback controller.

Two major issues with the proportional controller arise
from the results. The first is the high overshoot at the
beginning of the flattop, resulting from the step given

in the feedforward tables. Second, the trend caused by
the detuning can be seen and is especially visible for
the phase. The MIMO feedback controller improves both
effects but by itself is not able to fully compensate
for them. Applying the norm-optimal ILC significantly
reduces the control error to a level which is required to
give an appropriate beam energy gain. The maximum
allowed rms error is visulaized in Fig. 16 by the black
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Fig. 16. Performance comparison between proportional feedback, MIMO feedback only, and the combination with norm-optimal ILC.

dashed lines. Next, the influence on the electron beam is
discussed.

It is required to have a very stable field gradient in ampli-
tude and phase during the flattop region, to guarantee a
consistent acceleration energy for the electron beam pass-
ing the module. Due to the energy consumption of the
beam, this can be treated as a disturbance. If a series of
electron bunches, known as a bunch train, with a high
repetition rate passes through the accelerator during one
pulse, a beam induced transient can be observed, because
the feedback controller is unable to provide fast enough
compensation for this effect. Consequently an undesirable
energy spread over the whole bunch train will arise.

In Fig. 17 the adaption of the RF-field amplitude dur-
ing the flattop is shown. The solid lines give the mean
values of the relative field amplitude variations 
A/A for
different numbers of trials. The dark dots show individual
measurements from the last trial considered here, i.e. num-
ber 50. The measurements were undertaken in closed-loop
operation with a decentralized proportional controller and
a gain of 40. The strong field deviation at the beginning
is caused by injection of a new electron bunch train after
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Fig. 17. Compensation for beam induced field deviations using norm-
optimal ILC.

some time without beam as described above. It can be
seen that within 50 trials the field amplitude is stabilized
around the mean value, which means the field flatness is
recovered.
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Nevertheless, stochastic fluctuations cannot be fully
compensated, which can be observed in Fig. 17 where the
actual measurement points are given as dotted values. This
is to be expected since the controller has been designed in
a deterministic setting.

In summary, the experimental results show perfor-
mance improvements are possible with norm-optimal ILC
applied, even though only tests with a small number of
trials could be executed. It has not yet been possible to
investigate the performance of the controller when an
electron beam is injected into the system, but experi-
ments including the beam loading are planned. For further
improvement of the performance, tests with an increased
number of trials will be performed to confirm long-term
performance. Moreover, implementing the control algo-
rithm in FPGA will decrease the computational time
needed so that input signals can be computed in every
sampling period. A combination of the ILC with the
existing proportional controller or the enhanced MIMO
linear time-invariant controller, which is currently being
developed [41], is expected to further increase the control
performance.

7. Application to Stroke Rehabilitation

There are 300,000 people in the UK living with moder-
ate to severe disabilities as a result of a stroke [37], of
which 85% had an initial deficiency in the upper limb [33]
and less than 50% have recovered useful upper limb func-
tion [33, 10]. These demographics reflect those across the
European Union and, due to an aging population and bet-
ter acute care, prevalence of stroke is likely to increase.
Electrical Stimulation (ES) has been shown to improve
motor control in a growing number of clinical applications
[23, 24], and the approach is supported by neurophysio-
logical [11] and motor learning research [40]. There is also
clear evidence that recovery is enhanced when stimulation
is applied coincidentally with a patient’s own voluntary
intention while performing a task [39].

The need to accurately apply ES to achieve a movement
has motivated significant interest in the development and
application of techniques that can provide a high level
of precision. A range of model-based control schemes
have been proposed, including optimal [25], H∞ [26],
and fuzzy [15] control of standing, sliding mode control
of shank movement [27], and data-driven control [34] of
the knee joint. Artificial neural networks are a popular
approach, and have been applied to both the upper [43]
and lower limbs [21] of paretic subjects.

However, these control laws have not transferred to
clinical practice, a setting in which there is very lim-
ited time available for tuning parameters, and in which a
high level of performance is required over a wide range of

participants and tasks. Only open-loop methods, or those
triggered through voluntary activity (such as the myoelec-
tric activity of the same muscle [44]) have been used in
patient trials, but cannot provide the precise control over
the applied stimulation necessary to fully exploit the asso-
ciation between the intended movement of the subject and
the application of stimulation that allows them to achieve
it. In order to maximize the potential of the treatment, it
is necessary to apply simulation that results in accurate
tracking in a small number of trials, but also exerts close
control over the level of stimulation and error attained in
order to promote the necessary sustained voluntary effort
by the subject.

In an ongoing research programme [17, 18], a worksta-
tion has been designed and constructed in order to provide
the controlled environment needed to assist patients in per-
forming reaching tasks. ILC has enabled a high level of
tracking performance to be achieved in this demanding set-
ting, and recent clinical trials of 8 week duration have been
conducted with five stroke participants. Following these,
results have indicated statistically significant improvement
in several areas, including patients’ level of unassisted
tracking and their ability to exert isometric force [22].

7.1. System Description

The task presented to the seated patient is to track reaching
trajectories using their impaired arm. So that the objective
is presented with maximum clarity, only trajectories in
a fixed horizontal plane are used and the patient’s hand
is constrained to move in this plane by a custom-built
robot. A data projector mounted above the subject shines
an image of the trajectory path, as well as a moving spot to
indicate the reference point, onto a target mounted above
the subject’s hand. In response to clinical need, ES is
applied to the triceps muscle to provide forearm exten-
sion. A patient using the workstation is shown in Fig. 18.
The stimulation comprises a sequence of bi-phasic pulses
at 40 Hz with pulsewidth, u, in the range 0–350 µ seconds
(resolution 1 µs). The subject’s arm is strapped to a five-
bar robotic arm which is actuated using two dc brushless
servomotors, and a force/torque sensor, situated between
the penultimate and final links, measures the force applied
by the subject.

A model of the combined human arm and robotic
manipulator system is shown in Fig. 19, in which the fifth
robotic link is strapped to the human arm. The robotic arm
has a base co-ordinate system with components x0, y0, and
z0. Likewise the human arm has a base co-ordinate system
with components x0′ , y0′ , and z0′ .

The stimulated human arm model can be accurately
represented by the expression

B(q)q̈ + C(q, q̇)q̇ + F(q, q̇) = τ + JT (q)h (40)
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where

q =
[
ϑu

ϑf

]T

, B(·) =
[

b1 b2
b2 b3

]
, C(·) =

[−2c1ϑ̇f −c1ϑ̇f

c1ϑ̇u c2ϑ̇f

]

F(·) =
[

Fu(ϑu, ϑ̇u)

Ff (ϑf , ϑ̇f )

]
, τ =

[
0

−Tσ(ϑf )

]
(41)

and J(·) is the Jacobian [17]. Here τ is the moment
produced by the stimulated muscle, with σ(ϑf ) =
sf cγ /

√
1 − c2

f c2
γ representing the z0′ component of a unit

vector parallel to the elbow axis. The variables ϑu and ϑf
denote the upper arm angle and forearm angles respec-
tively. The robotic arm has link lengths l1 = 0.45 m,

Fig. 18. Stroke participant using robotic workstation to perform a
tracking task.

l2 = 0.2 m and l3 = 0.66 m, and the subject interacts
with the robot by applying a force with components Fx

and Fy, in the directions of x0 and y0, respectively, at the
point P which has a z0 component of lz in this system. A
form of impedance control is used to govern the torque
demand supplied to the motors and ensure safe interaction
with the patient [14]. This produces the relationship

−h =
[

Fx

Fy

]
= KKx x̃ + KBx ẋ + KMx ẍ (42)

at P, where x̃ = x̂ − x, x̂ is the robot reference, x = k(q)

is the direct kinematics equation for the human arm, and
KKx , KBx and KMx are gain matrices.

Control laws using ES for actuation of the forearm have
been tested using unimpaired subjects who apply no vol-
untary effort, hence providing no means for control over
upper arm movement. Rather than fixing the upper arm
and restricting the reference trajectories used, the robotic
arm was instead used to provide the necessary control over
the upper arm angle. This was achieved through selection
of variables in (42) to result in the relationship

h = J−T (q)

( [
KK1 0

0 0

]
︸ ︷︷ ︸

KKx

q̃ +
[

KB1 0
0 KB2

]
︸ ︷︷ ︸

KBx

q̇

+
[

KM1 0
0 KM2

]
︸ ︷︷ ︸

KMx

q̈
)

(43)

Here x̂, KK1 , KB1 , and KM1 are used to impose a moment
about the upper arm to keep the target on the trajectory
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Fig. 19. Human and robotic arm systems.
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Fig. 20. Stimulated arm model.

path, while dynamics about the stimulated forearm are
specified by KB2 and KM2 . If the reference path is then
chosen to provide a smooth upper arm component varia-
tion with respect to that of the forearm, the joint coupling
terms in (40) may be neglected and the forearm dynam-
ics assumed independent of the upper arm. The resulting
forearm dynamics are given by

b3ϑ̈f + Ff (ϑf , ϑ̇f ) = −Tσ(ϑf ) + KB2 ϑ̇f + KM2 ϑ̈f

(44)

and a complete derivation appears in [19]. The moment,
T , developed by the stimulated triceps muscle may be
accurately modeled using

T(β, β̇, u, t) = gm(u, t) × Fm(β, β̇) (45)

where gm(u, t) is a Hammerstein structure incorporating
a static nonlinearity, fm(u), representing the isometric
recruitment curve, cascaded with a critically damped sec-
ond order system [42]. This is one of the few reported
models that may be identified using excitation inputs suit-
able for application to stroke patients, although recent
work has begun to develop alternative models for this
application [29]. Since the elbow angle is given by
β(ϑf ) = arccos(−cf cγ ), the function Fm(β, β̇) may be
written as F̂m(ϑf , ϑ̇f ). Combining (44) and (45) results in
the electrically stimulated arm system shown in Fig. 20.
To identify the necessary parameters, the subject’s arm is
first moved about the workspace to yield the geometric
relationships appearing in Fig. 19 via nonlinear optimiza-
tion. The arm is then held stationary while ES is applied
in order to identify parameters in the Hammerstein model,
gm(u, t), using deconvolution and a nonlinear optimization
procedure. Stimulation sequences and kinematic trajecto-
ries, imposed on the arm by the robot, are then applied, and
an Least Mean Squares (LMS) optimization is used to pro-
vide all those parameters appearing in (40). Full details of
the identification for both stroke and unimpaired subjects
can be found in [17].

7.2. ILC Implementation

In previous work, simple structure ILC laws have been
used to control the human arm [19], however, norm-
optimal ILC offers the possibility of superior performance
and greater control over the change in input which is of
prime importance in this setting. Two approaches involv-
ing norm-optimal ILC will therefore be examined and
experimentally verified. In the first of these the system
is linearized through the introduction of a controller to
compensate for the effect of the nonlinear terms before
the application of norm-optimal ILC. The output of this
controller, u, is the stimulation signal applied to the triceps
and it comprises (i) the inverse of the recruitment curve,
f −1
m (·), (ii) the inverse of the muscle multiplier, 1/F̂m(·),

and (iii) the inverse of the elbow joint angle effect, 1/σ(·).
Because these functions vary only slowly when the trajec-
tory is tracked [17], the control action is to cancel their
effect while neglecting the intervening muscle dynam-
ics. This approach has been supported both theoretically
and experimentally when used with simple structure ILC
laws [19], and results in the linear system approximation

G(s) = ω2
n

s2 + 2sωn + ω2
n

· 1

s((b3 + KM2)s + KB2)

(46)

A feedback controller is then implemented to act as a
pre-stabilizer and provide satisfactory tracking over the
initial trial, as shown in Fig. 21. Implementation of norm-
optimal ILC is then achieved through discretization of the
closed-loop system, and the states required in practice are
provided by a Kalman filter-based state estimator. Experi-
mental results confirming the efficacy of this approach are
given in Section 7.3.

The second approach does not attempt to compensate
for the plant nonlinearity. Newton method-based norm-
optimal ILC [30] is a nonlinear method and will be applied
directly to the system shown in Fig. 20. Here the starting
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Fig. 21. Stimulated arm model with linearizing control.

point is a discrete-time system representation, and accord-
ingly the linear activation dynamics are first represented
by the state-space model [�m, �m, Hm]. The relationship
between w1 and w2 is then given by

xm(t + 1) = �mxm(t) + �mw1(t), xm(0) = xm0

w2(t) = Hmxm(t) (47)

and similarly the arm dynamics are represented by the
state-space model [�p, �p, Hp]. Hence the relationship
between w3, ϑf , and ϑ̇f is given by

xp(t + 1) = �pxp(t) + �pw3(t), xp(0) = xp0[
ϑf (t)
ϑ̇f (t)

]
=

[
Hp1

Hp2

]
xp(t) = Hpxp(t) (48)

The stimulated arm system on trial k is now described by

xk(t + 1) = �xk(t) + �
[

d (xk(t)) fm(uk(t))
]

= f (xk(t), uk(t))

ϑf ,k(t) = H̄p1xk(t) = h (xk(t)) ,

xk(0) = x0, t ∈ [0, Ns] (49)

where x(t) = [xp(t) xm(t)]T , x0 = [xp0 xm0]T , � =
diag {�p, �m}, � = diag {�p, �m}, H̄m = [

0 Hm
]
,

H̄p1 = [
Hp1 0

]
and H̄p2 = [

Hp2 0
]
. The integer Ns is

equal to T
Ts

+ 1, where Ts is the sample time, and

d (xk) = −H̄mxkF̂m
(
H̄p1xk , H̄p2 xk

)
σ

(
H̄p1xk

)
− Ff

(
H̄p1 xk , H̄p2 xk

)
(50)

in which the explicit time dependence of xk has been omit-
ted. The next step is to replace (49) with a set of algebraic
equations in R

Ns by defining the shifted input and output
vectors as

uk = [uk(0), uk(1), . . . , uk(Ns − 1)]T

ϑ f ,k = [
ϑf ,k(1), ϑf ,k(2), . . . , ϑf ,k(Ns)

]T (51)

and the relationship between the input and output time-
series can be expressed by the algebraic functions

ϑf ,k(1) = h(xk(1)) = h(f (xk(0), uk(0))

= g1(xk(0), uk(0))

ϑf ,k(2) = h(xk(2)) = h(f (xk(1), uk(1))

= g2(xk(0), uk(0), uk(1))

...

ϑf ,k(Ns) = h(xk(Ns))

= h(f (xk(Ns − 1), uk(Ns − 1))

= gNs(xk(0), uk(0), uk(1), . . . , uk(Ns − 1))

(52)

and hence system (49) can be represented as

ϑ f ,k = g (uk) , g(·) = [
g1(·), g2(·), . . . , gNs(·)

]T

(53)

The ILC task of finding the input which drives the dynamic
system (49) to track the desired output, equates to finding
the solution that satisfies the nonlinear function (53) with

ϑ f ,k substituted by ϑ∗
f =

[
ϑ∗

f (1), ϑ∗
f (2), . . . , ϑ∗

f (Ns)
]T

.

The Newton method is selected to solve this nonlinear
equation, and is given in ILC notation as

uk+1 = uk + αk+1g′ (uk)
−1 ek (54)

where the scalar αk+1 ≥ 0 is a relaxation parameter, and
ek = ϑ∗

f − ϑ f ,k . The derivative g′ (uk) is equivalent to the
linearization of (49), on trial k at (uk , xk) which can be
represented by the time-varying system

ϑ̃ f = g′ (uk) ũ (55)
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which equates to

x̃(t + 1) = A(t)x̃(t) + B(t)ũ(t)

ϑ̃f (t) = C(t)x̃(t) (56)

with

A(t) =
(

∂f
∂x

)
uk(t),xk(t)

= � + �

[
p(t)
0

]

B(t) =
(

∂f
∂u

)
uk(t),xk(t)

= �

[
0

f ′
m(uk(t))

]

C(t) =
(

∂h
∂x

)
uk(t),xk(t)

= H̄p1 (57)

where x̃ = xk+1 −xk , ũ = uk+1 −uk , ϑ̃ f = ϑ f ,k+1 −ϑ f ,k ,
x̃(0) = xk+1(0) − xk(0) = 0 and

p(t) = −H̄mF̂mσ − H̄mxH̄p1 F̂ ′
mσ − H̄mxF̂mH̄p1σ

′

− H̄p1 F ′
f + H̄mxH̄p2 F̂∗

mσ − H̄p2 F∗
f (58)

Here ∗ denotes differentiation with respect to the second
variable, and the functional dependence has been omit-
ted. If the system (55) can be forced to track ek , then
the corresponding input is ũ = g′ (uk)

−1 ek which can
then be used in the update (54). Because this is itself an
ILC problem, the norm-optimal approach is an obvious
candidate for application to the time-varying system (56).
Proceeding accordingly, the input to (55) on trial m + 1 of
norm-optimal ILC is chosen to minimize

Jm+1 = 1
2

( Ns∑
t=1

[
ek(t) − ϑ̃f ,m+1(t)

]T
Q

[
ek(t) − ϑ̃f ,m+1(t)

]

+
Ns−1∑
t=0

[
ũm+1(t) − ũm(t)

]T
R

[
ũm+1(t) − ũm(t)

])

and M trials are performed in order to obtain the input ũ.
Its subsequent application in (54) again means the ability
of norm-optimal ILC to transparently influence the error
and stimulation levels, is able to directly translate into
control over the stimulation input. Hence the potential for
rehabilitation can be maximized.

7.3. Human Subject Results

The control laws were tested on a 60-year-old subject (and
so age-matched with stroke participants). The reference
path used comprised the extension component of ellipti-
cal reaching trajectories, as shown in Fig. 22, which were
similar to those used in the clinical trials. The reference
was followed at two constant speeds to produce 2.5- and
5-second duration movements, which were then preceded
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Fig. 22. Reference trajectory and position of subject tested.
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Fig. 23. Slow trajectory error results for linearized system.

by a 5-second stationary period to produce ‘slow’, and
‘fast’ trajectories. The goal of the two ILC approaches is
for the forearm angle to track the forearm component, ϑ∗

f ,
of these trajectories. In both cases N = 20 trials were per-
formed as this is the maximum number used in clinical
practice. Due to the time required to identify the stimu-
lated arm model, as well as the effect of muscle fatigue,
it was not possible to perform sufficient tests on the sub-
ject to generate a PI20 plot similar to Fig. 5, and gains
were instead selected heuristically. A sample frequency
of 40 Hz was used in all tests undertaken.

Focusing initially on the linearized system implementa-
tion, a proportional plus derivative (PD) controller was first
selected with values of Kp = 6, Kd = 0.5 chosen to affect
a compromise between disturbance rejection and track-
ing performance. To provide the controlled system state
vector elements, a Kalman estimator was implemented,
using output and state covariance weights of 1 and 10,
respectively.

Figs. 23 and 24 show error norm results for the slow
and fast trajectories, respectively, each using Q values of
2 and 10, with R set at unity. The root mean square (rms)
error is used to allow comparison with the simpler ILC
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Fig. 24. Fast trajectory error results for linearized system.
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Fig. 25. (a) Tracking, (b) stimulation, and (c) input uk signals using slow
trajectory with Q = 10.

laws described in [19]. The larger Q value leads to faster
convergence in each case, although increased error fluctu-
ation is apparent in the latter. Although larger error values
occur for the fast trajectory, accurate tracking is achieved
in both cases. Fig. 25 shows the tracking, stimulation, and
ILC input for the slow trajectory with Q = 10. It can
be seen from (b) that norm-optimal ILC causes the maxi-
mum level of stimulation applied to decrease as the trials
progress, and leads to its application during the initial 5
second waiting period. Fig. 25a,c illustrates the conver-
gence of the forearm angle, ϑf , and norm-optimal ILC
update, uk , respectively.

Turning to the Newton method, the norm-optimal ILC
parameters were selected as M = 30, Q = 50 000 and
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Fig. 26. Slow trajectory error results using various α.
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R = 1 in order to produce an update which tracks the
error well but does not produce an excessively large input
for the subject. Figs. 26 and 27 show error results for slow
and fast trajectories respectively, using various values of α.
In both cases α = 0.3 yields the most rapid convergence.

Fig.28a shows tracking results using the fast trajectory
with α = 0.3. The reference is seen to be closely fol-
lowed by the 5th trial, and the corresponding ILC update,
uk , (which corresponds to the stimulation pulsewidth in
this open-loop system), is shown in Fig. 28b. Because
it directly addresses system nonlinearity instead of using
approximate cancellation, the Newton-based implemen-
tation generally leads to superior tracking when applied
to more rapid trajectories, and results in a smoother
stimulation signal which is more comfortable for the
patient.

8. Conclusions and Further Work

This article has given an overview of norm-optimal ILC,
starting with the theoretical foundations together with
results from experimental benchmarking on a gantry robot
system specially designed for this task where the pick and
place operation used closely resembles task found in many
industrial applications in, for example, the food process-
ing industry . This has been followed by results from an
application area involving a real process where even the
first experimental test results show sufficient performance
to merit further development work. The final section of
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the article describes a recent application to stroke reha-
bilitation, involving ES applied to the human arm. The
high levels of performance achieved in these contrasting
applications demonstrate that the potential revealed by the
theory of this form of ILC can be translated successfully
to application domains. In doing so, norm-optimal ILC is
able to provide a high level of performance that can be
tuned in a transparent manner.

These results demonstrate that the ILC area in general
has much potential for rapid transition from the basic
theory through to applications take up. This is still a
very active areas and areas to be addressed include the
case when the signals measured are not noise free and
also robust norm-optimal ILC. There has been work in
these areas in the literature, again consult the survey arti-
cles [1, 9] as a starting point for the relevant literature but
this needs to be developed and experimentally verified.
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