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For a class of nonlinear systems with switching input, a
controller is designed which achieves tracking to a desired
state. The stability of the open- and closed-loop system
is studied under the assumption of a common Lyapunov
function. The results are motivated by and applied to an
experimentally validated model of a bulk storage room for
food products. It is shown that for this model a controller
with excellent robustness and performance properties can
be designed.
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1. Introduction

Many systems are described by a non-linear model of
the type

dx

dt
(t) = A(u(t))x(t) + B(u(t)), t ≥ 0. (1)

where x denotes the state, and u denotes the control. A and
B are matrix- and vector-valued functions, respectively. As
an example of such a system one may think of a bi-linear
system, i.e., a system in which the control is multiplied
by (one of) the state variables. Motivated by our applica-
tion to the storage of food, we assume that the control u
can only take two values. Hence depending on the value
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of u, the system (1) becomes an (affine) linear system, and
by changing u we change the system dynamics. In other
words, we switch between two (affine) linear systems. The
control objective is to find a switching sequence such that
x(t) converges to a small interval around the desired state
xopt. As we switch between two systems, perfect track-
ing will not be possible in general. To satisfy our control
objective, we first split the time axis into intervals of the
length τf , where τf is chosen such that if x(0) = xopt,
then x(t) lies within a small interval around xopt for all
t ∈ [0, τf ] and for both values of the input. Next, in every
discrete time interval, we switch from u1 to u2 to steer
the state to xopt. Hence, we switch at most once in each
discrete time interval, in contrast to for example [4, 6, 15].

We characterize the set of reachable states, S, which
forms a one-dimensional curve in the state space. Under
the assumption that the system has a common Lyapunov
function, we show that a switching sequence can be found
such that the state converges to xopt. In switching control
literature, the assumption of a common Lyapunov function
is considered to be a strong assumption, see e.g. [7]. For
our class of systems this assumption is very natural. As
can be seen from (1) we have one system operating with
different sets of physical parameters. Because this study is
motivated by a physical system, energy can be chosen as
a natural Lyapunov function. Changing u will only imply
that the rate of the energy decay becomes differently, but
it will still decay. For our application of storage of food,
the total heat serves as a common Lyapunov function.
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Climate control is essential in post-harvest food stor-
age. For maintaining optimal product quality, the most
important controlled variables are temperature, humid-
ity, CO2 concentration, and ethylene concentration inside
the storage room. The most common control inputs are
ventilation, cooling, heating, and (de)humidification. The
storage room can be ventilated in two ways: ventilation
with outside air, or via recirculation. Forced ventilation
is realized by fans. Cooling and heating is effectuated by
outside air ventilation or by a heat exchanger. The corre-
sponding mathematical models have complex dynamics
due to the airflow in combination with heat and moisture
exchange. Some control inputs are of a discrete nature.
Forced air ventilation, for example, is usually realized by
a fan that is switched on and off, which motivates our study
on models as in (1). Typical (model-based) control strate-
gies that have been developed for food storage applications
are model predictive control (MPC) and fuzzy control.
In [5] and [14], MPC algorithms were used for the tem-
perature and humidity control of a bulk storage room with
outside air ventilation. In [1, 2, 9] fuzzy controllers have
been designed and tested on either a mathematical model
or on experimental data. In [10] a fuzzy controller was
developed for fruit storage, using neural networks. Fur-
ther, in [8] a PI controller was designed for CO2 and O2
concentrations, and was tested experimentally. In [3] a
sensor-based control law for a bulk storage room that was
ventilated with outside air was proposed. In general, the
advantages of MPC are that the control algorithm is based
on a mathematical model and objective function with or
without constraints, and that the applicability extends to
rather complicated models. A major drawback is that con-
troller dynamics have to be solved by demanding on-line
numerical computations. Fuzzy and sensor-based con-
trollers are practically easy implementable, but have little
mathematical background, and hence controller perfor-
mance is hard to guarantee. Another design approach is
by switching adaptive control. Stabilizing adaptive con-
trollers are designed in [15, 4] for a large class of nonlinear
multi-input multi-output systems and for a larger class of
multi-input single-output systems in [6], with less restric-
tive assumptions. In these studies, and in contrast to this
article, the control input is switched between two func-
tions that depend continuously on the system states. The
objective of our article is to demonstrate the analysis and
synthesis of a switching controller on fixed intervals and to
show its performance, in simulation, on an experimentally
validated model of the climate in a food storage room.

2. Stability Analysis and Control

As mentioned above, we assume the following for the
system (1). The continuous time axis [0, ∞) is divided

into discrete time intervals with length τf , and the input u
can take two values u1 and u2. The control problem is to
determine the duration of both inputs. We assume, without
loss of generality, that at the start of each time interval
u = u1. In the time-interval [nτf , (n + 1)τf ] the input is
switched from u1 to u2 at time nτf + τn, with 0 ≤ τn ≤ τf .
This gives the following piecewise linear system

dx

dt
(t) = A(u1)x(t) + B(u1), t ∈ [nτf , nτf + τn), (2)

dx

dt
(t) = A(u2)x(t) + B(u2), t ∈ [nτf + τn, (n + 1)τf )

(3)

with x(nτf + τ−
n ) = x(nτf + τ+

n ), and x(nτ−
f ) = x(nτ+

f ).
From now on, the notation A(u1) = A1, B1 = B(u1),
etc. is used, i.e., the subscript denotes the relation with
the input. The goal is to design a controller that steers x
to the desired state xopt by adjusting the switching time
in each time interval, i.e., by choosing the sequence τn.
Although we want to steer x(t) to xopt, it is easy to see
that our switching system will never have a steady state.
Therefore, we will steer x(nτf ) to the desired state. As the
original aim is to steer x(t) to xopt, we assume that τf is
chosen such that x(t) differs only a little bit from x(nτf )

for t ∈ [nτf , (n + 1)τf ]. We remark that this assumption
plays no role in our analysis. However, in applications it
plays a role in the choice of τf . Given the systems (2)
and (3) with their time constants, the calculation of the τf
can be done off-line. Furthermore, the error between x(t)
and x(nτf ) can be set off-line.

Throughout this article, we assume that A1 and A2
have their eigenvalues in the open left-half plane, i.e.,
σ(A1), σ(A2) ⊂ C

−. Furthermore, we assume that there
is a common (quadratic) Lyapunov function, i.e., there
exists a P > 0 such that

AT
1 P + PA1 < 0 and AT

2 P + PA2 < 0. (4)

For this P define the Lyapunov function V(x) = xT Px.
Then, from the Lyapunov inequalities (4) we have for all
t > 0 and x0 �= 0 that

V(eA1tx0) < V(x0) and V(eA2tx0) < V(x0). (5)

First, we obtain the “discrete” steady states of (2) and (3).
That is, we characterize those states for which with a con-
stant switching sequence, τn, we have that x(nτf ) = x0
for all n ∈ N. Because if x(τf ) = x(0), then with τ2 = τ1
we have that x(2τf ) = x(τf ) = x(0). This we can repeat
for n = 3, 4, etc., and hence we can solve this problem by
only looking at the first time interval.

Lemma 2.1: Consider the system (2)–(3), and assume
that (4) holds. Given the state xopt, there exists a switching



Switching Control for a Class of Non-linear Systems 3

time τ0 := τ ∈ [0, τf ] such that x(0) = x(τf ) = xopt if
and only if xopt and τ satisfy

xopt =
[
I − eA2(τf −τ)eA1τ

]−1 [
eA2(τf −τ) (6)

× (eA1τ − I)A−1
1 B1 + (eA2(τf −τ) − I)A−1

2 B2

]
.

Proof: It is easy to see that x(τ ) is given by

x(τ ) = eA1τ xopt −
[
I − eA1τ

]
A−1

1 B1, and

x(τf ) = eA2(τf −τ)x(τ ) −
[
I − eA2(τf −τ)

]
A−1

2 B2.

If x(τf ) equals xopt, then

xopt = eA2(τf −τ)eA1τ xopt − eA2(τf −τ)
[
I − eA1τ

]
A−1

1 B1

−
[
I − eA2(τf −τ)

]
A−1

2 B2. (7)

Hence, we obtain equation (6), provided one is not
an eigenvalue of eA2(τf −τ)eA1τ . If z �= 0 is such that
z = eA2(τf −τ)eA1τ z, then we also have that V(z) =
V(eA2(τf −τ)eA1τ z). However, from (5), we find

V(eA2(τf −τ)eA1τ z) < V(eA1τ z) < V(z).

Hence, we obtain a contradiction. So one is not
an eigenvalue of the matrix eA2(τf −τ)eA1τ , and thus
I − eA2(τf −τ)eA1τ is invertible. We conclude from (7) that
(6) holds.

If the assumption of a joint Lyapunov function does not
hold, then it is not hard to construct an example in which
I − eA2(τf −τ)eA1τ is not invertible, and so (6) becomes
meaningless.

The set of all steady states is denoted by S, i.e.,

S = {xopt ∈ R
n | there exists a τ ∈ [0, τf ] s.t. (6) holds}.

(8)

From (6) and (8) we see that S is the range of the compact
interval [0, τf ] under a continuous function, and so S is
a compact subset of the state space. In Fig. 1, we show
the set S for A1 = [ −1 0

0 −2

]
, B1 = [

0
0

]
, A2 = [ −2 −3

3 −0.1

]
,

B2 = [
4−1

]
, and τf = 1.

In order to show that the state at discrete time instances
nτf converges to a “ball” around S, we introduce the
system dynamics at the discrete times nτf . This (time-
varying) discrete-time system is given by, see also (7)

x((n + 1)τf ) = eA2(τf −τn)eA1τn x(nτf )

− eA2(τf −τn) ×
[
I − eA1τn

]
A−1

1 B1

−
[
I − eA2(τf −τn)

]
A−1

2 B2. (9)
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Fig. 1. The set S in R
2.

We write this as

x((n + 1)τf ) = A(τn)x(nτf ) + B(τn). (10)

with

A(τ ) = eA2(τf −τ)eA1τ ,

B(τ ) = eA2(τf −τ)
[
I − eA1τ

]
A−1

1 B1

−
[
I − eA2(τf −τ)

]
A−1

2 B2.

Note that Lemma 2.1 gives the equilibrium points of the
system (10).

Lemma 2.2: Let P be the solution of (4). Then there exists
a positive δ < 1 such that for all τ ∈ [0, τf ] there holds

A(τ )T PA(τ ) − δP ≤ 0. (11)

Proof: For τ ∈ [0, τf ], we have that, see (5) and (10)

xT A(τ )T PA(τ )x = V(A(τ )x) = V(eA2(τf −τ)eA1τ x)

≤ V(eA1τ x) ≤ V(x) = xT Px,

where at least one of the inequalities must be strict. Com-
bining this with the compactness of [0, τf ] and of the unit
ball in our state space, we have that there exists an ε > 0
such that

max
τ∈[0,τf ],‖x‖=1

[
xT A(τ )T PA(τ )x − xT Px

]
= −ε.

This implies that (independent of τ )

A(τ )T PA(τ ) − P ≤ −εI . (12)

Now we choose a δ < 1 such that (1 − δ)P ≤ εI .
Substituting this in (12) gives (11).
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Now we define a “ball” around S. Let ‖x‖P be
defined as

‖x‖P =
√

xT Px = √
V(x). (13)

Because P is strictly positive, this defines a norm. With
respect to this norm we define the ball around S. Let
r ≥ 0, then

D(r) = {
x ∈ R

n | min
xopt∈S

‖x − xopt‖P ≤ r
}
. (14)

Hence, we have that D(0) = S. Because S is compact, we
have that supx,y∈S ‖x − y‖P = maxx,y∈S ‖x − y‖P < ∞.

Theorem 2.3: Let α = maxx,y∈S ‖x − y‖P, and let ρ =√
δα

1−√
δ
. For any r > ρ, for any initial condition and for any

switching sequence {τn, n ∈ N}, the solution of (10) will
lie within D(r) after finitely many steps. Furthermore, the
set D(ρ) is an invariant set.

For any switching sequence {τn, n ∈ N} and any initial
condition the solution of (2)–(3) is bounded. If τn is kept
constant to τ , then x(nτf ) converges to the state xopt given
in (6).

Proof: Let x0 be an initial condition, and assume that

min
y∈S

‖x0 − y‖P = r0. (15)

Let τ1 be the first switching time. By the definition of S,
we know that there exists an element in S such that (6)
holds for τ = τ1. We denote this element of S by xopt,τ1 .
By definition we have that A(τ1)xopt,τ1 + B(τ1) = xopt,τ1 .
So for x(τf ) we have that, see (10),

x(τf ) − xopt,τ1 = A(τ1)(x0 − xopt,τ1).

Using (11) and (13) we find that

‖x(τf ) − xopt,τ1‖2
P ≤ δ‖x0 − xopt,τ1‖2

P. (16)

Let y0 be an element of S such that (15) is attained, i.e.,
Then we have that

‖x0 − xopt,τ1‖P ≤ ‖x0 − y0‖P + ‖y0 − xopt,τ1‖P ≤ r0 + α.

(17)

Hence we see that

r1 := min
y∈S

‖x(τf ) − y‖P ≤ ‖x(τf ) − xopt,τ1‖P

≤ √
δ‖x0 − xopt,τ1‖P ≤ √

δ[r0 + α]. (18)

If r0 > ρ, then r1 < r0. We can repeat the above and
as long as rn > ρ we have that rn+1 < rn. Hence in

finitely many steps rn gets below any number which is
larger than ρ. This proves the first assertion.

From the above proof we also see that if x(0) ∈ D(ρ)

then x(τf ) ∈ D(ρ). So we have the invariance of this set.
The state x restricted to the time interval [nτf , (n+1)τf ],

can be seen as the solution of the system

ẋ(t) = A1x(t) + B1, t ∈ [0, τn)

ẋ(t) = A2x(t) + B2 t ∈ [τn, tf ]
with initial condition x(nτf ). Because x(nτf ) is uniformly
bounded, the time interval is compact, and as the inputs
are bounded, we conclude that x(t) is bounded. The last
assertion follows easily from the uniform stability of A(τ ),
see (12).

Using this theorem, we see that it is not difficult to steer
the state to the desired state, xopt. We can simply choose
τn be constant and equal to the τ corresponding to xopt,
see (6). However, one may want to speed up the conver-
gence, and/or to make it more robust against (unmodeled)
disturbances. Because Theorem 2.3 tells us that we will
get close to S whatever τn is, it seems natural to linearize
(10) around x = xopt and τ = τopt, where τopt is the τ

corresponding to xopt, see (6).
When we linearize (10) around this equilibrium point,

we obtain the system

xvar(n + 1) = Adxvar(n) + Bdτvar(n), (19)

where the subscript ‘var’ denotes the variation from the
equilibrium state. Hence x(nτf ) = xopt + xvar(n). The
matrices are given by

Ad = A(τopt)

Bd = −A2xopt − B2 + A(τopt)A1xopt

− eA2(τf −τopt)eA1τopt B1. (20)

Now many design methods are open. In the following
session, we design a PI-like controller for the time-
sequence.

3. Application to Food Storage

In this section, the controller design and the stability anal-
ysis from the previous section are applied to a model of a
bulk storage room for harvested food products. For more
details we refer the reader to [11, 12, 13]. The storage room
model is schematically drawn in Fig. 2. Air is circulated by
a fan, and the air is cooled down by a heat exchanger right
below the fan. The air enters the bulk at the bottom, and
consequently the products at the top will be the warmest.
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Φ(t) 

Tc (t)

shaft
bulk

Tp (t)

Fig. 2. Schematic representation of a bulk storage room.

Table 1. Numerical key parameter values

A1 −2 · 10−5 1/s A2 −2 · 10−8 1/s

B1 6.6 · 10−3 K/s B2 8.1 · 10−6 K/s

Ad 1.0 − 3 · 10−4 Bd −1.2 · 10−4 K/s
τf 600 s τopt 12.2 s

Tp,opt 280 K

The nominal model describing the product temperature in
the top of the bulk is

dTp

dt
(t) = A(�(t))Tp(t) + B(�(t), Tc(t)), (21)

with Tp(t) the product temperature at the top of the bulk.
For the expressions of A and B we refer to [13, 11]. Note
that (21) is a scalar system. We assume that the tempera-
ture of the cooling device is constant. The most important
physical parameters that correspond to a storage room with
a bulk of potatoes are the temperature of the cooling device
Tc = 275 K , the fluxes generated by the fan in on and off
position �1 = 1 m3/s, and �2 = 0.001 m3/s, the height
4 m, the floor area 5 m2, and the shaft volume 10 m3. The
rest of the parameter values is listed in [13, 11]. In Table 1
the numerical values of the key parameters in this arti-
cle are given. We used Ak = A(�k), Bk = B(�k , Tc),
k = 1, 2.

For scalar systems the result obtained in the previous
section can be sharpened, see [11] for the proofs.

Theorem 3.1: For the scalar system there holds

1. The set S is given by [−A−1
1 B1, −A−1

2 B2].
2. For any γ > 0, the solution of (10) will lie within

[−A−1
1 B1 − γ , −A−1

2 B2 + γ ] after finitely many time-
steps.

3. The set S is invariant.

The controller input is the product temperature at the top
of the bulk, Tp(t). The optimal switching time corresponds

to Tp(t) = Tp,opt. Realistic disturbances in the air temper-
ature are caused by open doors, heat leakage through the
walls, etc. For mathematical simplicity, we assume that
the disturbances in air temperature occur in the vicinity of
the heat exchanger, and that they therefore act on the sys-
tem as the temperature of the cooling element Tc, see (21).
We assume that disturbances in Tc have the same qualita-
tive influence on Tp as disturbances in τ , and so we regard
it as disturbances in τ . To cancel this disturbance and to
achieve good tracking, we choose the PI-based controller,
see [11] for more details,

ζ(n + 1) = − (Ad − 1)2

Bd
Tp,var(n) + ζ(n) (22)

τvar(n) = Ad − 1

Bd
Tp,var(n) + ζ(n). (23)

with Tp,var(n) = Tp(n) − Tp,opt. Because the switching
time must lie between 0 and τf , we will apply τn = τopt +
τvar(n) provided this lies between these bounds. When this
does not hold, we apply the following rules,

If τvar(n) + τopt > τf , then τ(n) = τf

If τvar(n) + τopt < 0, then τ(n) = 0.

Now we study the stability of the closed-loop system. This
is done for the linearized and for the original system. For
more details we refer to chapter 4 of [11]. Using (10), (22)
and (23), the closed-loop system can be written as

Tp,var(n + 1) = AdTp,var(n)

+ [
Bd + ε(Tp,var(n), τvar(n))

]
τvar(n)

(24)

τvar(n + 1)

=
[

Ad + Ad − 1

Bd
× ε(Tp,var(n), τvar(n))

]
τvar(n).

(25)

where ε contains linear and higher order terms of Tp,var(n)

and τvar(n). Hence, for the linearized system this term
is zero. Because |Ad | < 1, it is easy to see that the
linearized closed-loop system is stable. We will now inves-
tigate whether the same holds for the system (24) and (25).
For this the following lemma is useful. The proof is easy,
as we have a scalar differential equation.

Lemma 3.2: Consider equation (25). Let


 = {(Tp,var, τvar) | Tp,var + Tp,opt

∈ [−A−1
1 B1, −A−1

2 B2] and τvar + τopt ∈ [0, τf ]}.
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Fig. 3. Tp (upper) and τ (lower) of the linearized controlled system (dashed line), and the nominal controlled system (dotted line). Left:
τf = 10 minutes, and right: τf = 10 hours.

If

sup
(Tvar ,τvar)∈


∣∣∣∣Ad + Ad − 1

Bd
ε(Tp,var, τvar)

∣∣∣∣ < 1, (26)

then (25) is asymptotically stable.

Note that the stability of (25) implies also the stability
of (24), and so our closed-loop system is stable when (26)
holds.

Ignoring the higher order terms in ε, and using the
parameters of Table 1, we found

ε(Tp,var, τvar) = −2.4 ·10−5 Tp,var +1.4 ·10−9τvar. (27)

We have that Ad = 1 − 3 · 10−4, and Bd = 6.5 · 10−3,
so the stability criterion of Lemma 3.2 |Ad + Ad−1

Bd
ε| < 1

becomes |1 − 3 · 10−4 + 4.6 · 10−2ε| < 1, which is ful-
filled if |ε| < 64.6. We have that 0 < τvar < τf = 600,
and that Tp will converge to the range (−A−1

1 B1 − γ ,
−A−1

2 B2 + γ ) for any γ , see Theorem 3.1. As for our
case (−A−1

1 B1, −A−1
2 B2) = (275.1, 398.2), we have that

|Tp,var| < 123.1 for any choice of Tp,opt. Altogether,
Tp,var and τvar cannot grow large enough to violate con-
dition (26), and hence the system is asymptotically stable
according to Lemma 3.2.

The interval length τf is chosen in a rather conservative
way, and therefore we do the same analysis for a very large
interval length, namely τf = 10 hours. This results in

ε(Tp,var, τvar) = −2.3 ·10−5 Tp,var +1.4 ·10−9τvar. (28)

For this new τf we have that Ad = 1 − 1.8 · 10−2,
and Bd = 6.4 · 10−3, so the stability criterion (26)

becomes |1 − 1.8 · 10−2 + 2.8ε| < 1, which is fulfilled
if |ε| < 6.4 · 10−3. Clearly, the margin becomes much
smaller. However, the bounds on τvar (i.e., −τopt ≤ τvar ≤
τf − τopt) prohibit the second term of ε to grow large, and
we have ε ≈ −2.3 ·10−5 Tp,var. The system is stable when
|Tp,var| < 278 K , which in practice will always be the
case. Hence, we conclude that the system is asymptotically
stable.

Now we analyze the loss of performance due to the
linearization. This is done by connecting controller (22)
and (23) to the linearized system (19) and to the nomi-
nal system (21). The differences in Tp(t) and τ(t) should
give an indication whether any essential dynamics are
discarded. Further, a heavy input disturbance d will be
added, such that the system dynamics become clearly vis-
ible. The initial product temperature was set uniform at
285 K , while the optimal product temperature is 280 K .
The input disturbance is d = a sin(ωt), with a = 10 s,
and ω = 3 · 10−6 Hz.

The dynamics of τ and Tp are shown in Fig. 3a. For
both controlled systems the dynamics of Tp and τ are
more or less the same, indicating that the linearization
error between (21) and (19) does not discard any essential
dynamics. Even when initially the product temperature
differs considerably from the linearization point of 280 K ,
the differences are small. Furthermore, the controller
seems to perform quite well under these large input distur-
bances. For various frequencies of d similar results were
obtained. Fig. 3b shows the results for the large interval
of τf = 10 hours. The amplitude of the disturbance is
scaled with τf . The results are very similar, which indi-
cates that the size of τf has no considerable influence on
the performance robustness of the controller. For differ-
ent amplitudes and frequencies, the linearization was also
found to be very accurate.
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4. Conclusions

In this article, we have shown that switching between two
stable systems with a common Lyapunov function gives
independently of the switching times a stable system. That
is, the solutions all converge to a compact invariant set.
The steady states are elements of this invariant set, and
so a controller design based on the linearization around a
steady state is likely to work.

As an example, a controller was designed and con-
nected to a temperature model of a bulk storage room.
For controller design, the original (or nominal) model
was linearized. It was shown that the stability cannot be
jeopardized by the linearization error. Numerical simula-
tions show that under large input disturbances the nominal
and the approximated system have similar dynamics in Tp

and τ . This also holds for different disturbance amplitudes
and frequencies, indicating that the linearization does not
discard any essential dynamics. Hence, a controller with
excellent properties can be designed for the experimentally
validated bulk storage room model.
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