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Modelling and adaptive 
ontrol ofaerobi
 
ontinuous stirred tank rea
torsP. Georgieva�, A. Il
hmanny, M.-F. WeirigzFebruary 2001Abstra
tA biote
hnologi
al aerobi
 pro
ess is modelled as an ordinary di�erential equationwhi
h, under mild assumptions, ensures invarian
e of the positive orthant and bound-edness of the 
on
entrations. An adaptive 
ontroller is designed for this general 
lassof pro
esses so that the external substrate 
an be regulated by the dilution rate intoa prespe
i�ed arbitrarily small neighbourhood of a 
onstant setpoint referen
e. Theadaptive 
ontroller is robust, simple in its design without invoking any identi�
ationme
hanisms, and is based on output data only. It is shown that the prominent ex-ample of a baker's yeast fermentation belongs to this setup, and adaptive tra
king isillustrated by simulations.Keywords: Adaptive 
ontrol, input saturation, tra
king, aerobi
 pro
esses, yeast fer-mentation
1 Introdu
tionThe purpose of the paper is threefold. First, it is a 
ontribution to the general mod-elling of biote
hnologi
al aerobi
 pro
esses in
luding proofs whi
h show that the intuitiveassumptions ensure mathemati
ally what is expe
ted from a real pro
ess. Se
ondly, weintrodu
e a simple adaptive 
ontroller with saturation whi
h, under mild assumptions, isproved to a
hieve tra
king of an external substrate within a prespe
i�ed neighbourhood ofa setpoint. Thirdly, a well known example of baker's yeast fermentation is further inves-tigated and shown to be a spe
ial 
ase of the proposed general model. Finally, adaptivetra
king is illustrated for this example.� Bulgarian A
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We 
onsider general biote
hnologi
al aerobi
 pro
esses modelled by ordinary di�erentialequations of the form_x(t) = K '�x(t); O(t)� � D(t)x(t) � Qx(t) + D(t)xin(t);_O(t) = KO '�x(t); O(t)� � D(t)O(t) + �La[O� �O(t)℄; (1.1)where, for n 2 N and n > m 2 N, the 
onstants and variables denotex(t) = �x1(t); : : : ; xn(t)�T 
on
entrations of the n pro
ess variables at time t,O(t) 
on
entration of dissolved oxygen at time t,K = [k1; : : : ; km℄ 2 Rn�m stoi
hiometri
 matrix,KO = [kO1; : : : ; kOm℄ 2 R1�m stoi
hiometri
 oxygen ve
tor,Q = diagfq1; : : : ; qng 2 Rn�n�0 proportional gaseous out
ow rates,�La[O� �O(t)℄ oxygen transfer rate O(t) with equilibrium 
on
entra-tion of dissolved oxygen O� and oxygen mass transfer
onstant �La > 0,' = �'1; : : : ; 'm�T rea
tion rate ve
tor, where'j(�; �) : Rn+1�0 ! R�0 are lo
ally Lips
hitz 
ontinuous fun
tions,j = 1; : : : ;m,xin(�) : R�0 ! Rn�0 pie
ewise 
ontinuous and bounded fun
tion ofxin(t) = �xin1 (t); : : : ; xinn (t)�T n feed 
on
entrations at time tD(�) : R�0 ! [0;Dmax℄ pie
ewise 
ontinuous fun
tion of dilution rate withDmax > 0.Furthermore, the following stru
tural assumptions of (1.1) are assumed.(A1) There exists 
 2 Rn>0 su
h that 
Tkj � 0 for all 
olumnsk1; : : : ; km of the stoi
hiometri
 matrix K.(A2) For j = 1; : : : ;m we have:'j(x;O) = �j(x;O) � Qi2Autj[Lj xifor lo
ally Lips
hitz 
ontinuous fun
tions �j(�; �) : Rn+1�0 ! R�0 ;if 'j(x;O) = 0, then at least one of the 
omponents of (x;O) is 0;KO'(x; 0) = 0.Autj and Lj are the auto
atalysts and the rea
tants of the jth rea
tion, respe
tively; theyare de�ned in Se
tion 2. Assumptions (A1)-(A2) are dis
ussed in detail in Se
tion 2.(A1) ensures that _x(t) = K '�x(t); O(t)� is dissipative. This repla
es the 
lassi
al as-sumption of Conservation of Mass. We do not suppose that the matrix K 
ontains exa
tstoi
hiometri
 
oeÆ
ients. Our approa
h should en
ompass models whi
h 
ontain onlythe essential rea
tions and essential substrates, and we also allow for un
ertainty of thestoi
hiometri
 
oeÆ
ients.The term D(t)xin(t) in (1.1) ensures that the in
ow rate is proportional to the dilution2



rate. This assumption is essential for proving that all 
on
entrations within the rea
torremain bounded.The de
omposition of the rea
tion rate 'j into a spe
i�
 rea
tion rate �j and a produ
t ofauto
atalysts Autj and rea
tants Lj in assumption (A2) is essential for proving that if thepro
ess is initialized with positive 
on
entrations, then they stay positive. The remaining
onditions are justi�ed by the physi
al fa
t that a rea
tion 
an only take pla
e if all itsa
tivators are present in the rea
tor.The 
ontrol obje
tive is to regulate an external substrate xl(t), l 2 f1; : : : ; ng, towardsa prespe
i�ed neighbourhood of a given 
onstant referen
e setpoint xref . This will bea
hieved by the so 
alled �-tra
ker (and variations thereof), i.e.e(t) = xl(t)� xref ;D(t) = sat[0;Dmax℄�� k(t) e(t) +D��;_k(t) = Æ ( (je(t)j � �)r; if je(t)j > �0; if je(t)j � � (1.2)
where r � 1, �; Æ > 0, Dmax > D� � 0, k(0) � 0 are design parameters, andsat[0;Dmax℄(�) := 8<: 0; if � < 0�; if � 2 [0;Dmax℄Dmax; if � > Dmax:These design parameters in
uen
e the transient behaviour of the 
losed-loop system 
ru-
ially. Their role is dis
ussed in detail in Remark 3.4 and illustrated in the simulations ofthe baker's yeast pro
ess in Se
tion 5.The �-tra
ker (1.2) seems in parti
ular suitable for biote
hnologi
al pro
esses sin
e despitetheir non-linearity, un
ertainties, disturban
es, and possible unstable multiple equilibria,this 
ontroller is only based on stru
tural system data, i.e. (A1)-(A2). It 
onsists ofa proportional error feedba
k with saturation, and the time-varying proportional gaink(�) is determined adaptively by the error measurement only. The idea is that the gainin
reases as long as the error is outside the �-strip. On
e the gain is suÆ
iently large,under appropriate assumptions, the error e(t) will 
onverge towards the �-strip and thegain k(t) is kept 
onstant. That means the 
ontrol obje
tive is met. The upper bound ofthe saturation has to meet a feasibility 
ondition whi
h will be made pre
ise below.The present paper is based on several 
ontributions in di�erent �elds. Modelling of thegeneral rea
tor model has been established by Bastin and Do
hain [1℄, a suÆ
ient 
onditionfor dissipativity of mass in terms of the stoi
hiometri
 matrix has been developed inIl
hmann and Weirig [11℄, see also the 
ontribution by Bogaerts et al. [3℄.Various 
ontrol obje
tives and several industrial implementations are reviewed in Chenet al. [4℄. The wide appli
ation of adaptive nonlinear te
hniques for biologi
al rea
torslies in the fa
t that the models in
lude highly nonlinear and slowly time-varying kineti
parameters (see Bastin and Van Impe [2℄). Most of the 
ontrol strategies proposed in3



the literature use algorithms to identify the pro
ess kineti
s and/or re
onstru
t the non-measured state variables (see for example Pomerleau and Perrier [15℄ or Ferreira and Feyode Azevedo [7℄.The adaptive �-tra
ker dis
ussed in this paper is in the spirit of Il
hmann and Ryan [10℄,where it is introdu
ed for linear systems and without any input saturations. In Il
hmann etal. [12℄ adaptive �-tra
king of an external substrate of a general rea
tor model was a
hievedby using the feedrate as the input variable; it also was assumed that the dilution rate isbounded away from zero. However, if aerobi
 
ontinuous stirred tank rea
tors are mod-elled by lumping together the rea
tion equations in (1.1) to some ddt(x;O)T = ~K'(x;O),then in this general form one 
annot derive boundedness of the 
on
entrations of the gen-eral model. This is exa
tly the reason why the oxygen dynami
s have to be separatedas in (1.1), and a new proof for �-tra
king has to be developed. A �rst approa
h in thisdire
tion 
an be found in Weirig [18℄.The paper is organised as follows. In Se
tion 2 we introdu
e and motivate assumptions ofthe general model (1.1) so that it is suÆ
iently general to en
ompass relevant bio
hemi
alpro
esses, and suÆ
iently stri
t to derive mathemati
ally properties of the pro
ess whi
hare intuitively expe
ted. In Se
tion 3 the adaptive feedba
k strategy to regulate an externalsubstrate to a prespe
i�ed neighbourhood of the setpoint referen
e is introdu
ed andproved to meet the 
ontrol obje
tive under 
ertain assumptions. In Se
tion 4 a wellknown model for baker's yeast fermentation is further investigated and shown that it fallsinto our general setup. This example is also used to illustrate the adaptive 
ontroller bysome simulations in Se
tion 5.
2 General modelling of bio-
hemi
al aerobi
 pro
essesAerobi
 biote
hnologi
al pro
esses 
onsist of a set of m rea
tions '1; : : : ; 'm involvingn + 1 
on
entrations x1; : : : ; xn+1 in the liquid phase of the rea
tor. Su
h a pro
ess is
ommonly spe
i�ed by the following rea
tion s
heme for ea
h jth rea
tion:'jPi2Lj 
ij xi �! Pi2Rj 
ij xi; j = 1; : : : ;m: (2.1)Here Lj � f1; : : : ; n+ 1g; Lj 6= ;denotes the set of indi
es of the 
omponents xi whi
h are the rea
tants of the jth rea
tion,Rj � f1; : : : ; n+ 1g; Rj 6= ;is the set of indi
es of the 
omponents xi whi
h are the rea
tion produ
ts of the jthrea
tion. 4



The quantities of ea
h 
omponent involved in the rea
tion are spe
i�ed by the nonnegativestoi
hiometri
 
oeÆ
ients 
ij , sometimes also 
alled yield 
oeÆ
ients. The rate of 
on-sumption of the rea
tants, whi
h is equal to the rate of formation of the rea
tion produ
ts,is 
alled the rea
tion rate and denoted by 'j . For a 
omprehensive list of rea
tion ratessee for instan
e the Appendix in Bastin and Do
hain [1℄.The rea
tion s
heme (2.1) gives rise to des
ribe the pro
ess as an ordinary di�erentialequation, see (1.1). The 
oeÆ
ients of the matrix K are given by �
ij . Models of theform (1.1) have been used throughout the last thirty years in a more or less formal way,and the above formalism was established in the monograph by Bastin and Do
hain [1℄.In the present paper, we are more spe
i�
 and divide the substrates of Lj and Rj furtheras follows (see also Figure 1 for illustration):
jRest

jAut

jSub jCat
jProdjL

jR

Figure 1: Rea
tion 
omponent setsCatj = Lj \Rj 
atalysts, i.e. set of the indi
es of those 
om-ponents whi
h are involved in the jth rea
tionbut maintained by the rea
tion,Subj = Lj n (Lj \Rj) 6= ; substrates, i.e. the set of those 
omponents thatare 
onsumed by the jth rea
tion, they are as-sumed to be empty,Prodj � Rj n (Lj \Rj) produ
ts, i.e. set of the indi
es of those 
ompo-nents that are produ
ed by the jth rea
tion,Autj = Rj n ((Lj \Rj) [ Prodj) auto
atalysts, i.e. set of the indi
es of those
omponents that are a

umulated by the jthrea
tion,Restj = f1; : : : ; n+ 1g n (Lj [Rj) set of the pro
ess 
omponents that are not in-volved in the jth rea
tion.5



Note that, for all j = 1; : : : ;m,Autj [ Prodj = Rj n (Rj \ Lj);and f1; : : : ; n+ 1g 
an be represented as the disjoint unionf1; : : : ; n+ 1g = Catj _[ Subj _[ Autj _[ Prodj _[ Restj: (2.2)The following 
hara
terizations of the 
atalysts, substrates and produ
ts will be useful inthe sequel: Catj = fi 2 Lj \Rj j kij = 0gSubj = fi 2 f1; : : : ; n+ 1g j kij < 0gProdj [Autj = fi 2 f1; : : : ; n+ 1g j kij > 0g : 9>>=>>; (2.3)The rea
tion rate 'j is often assumed to be proportional to the mi
robial spe
i�
 growthrate �j . The most prominent growth rates are the models of Monod or Haldane. Rea
tionrates 'j , spe
i�
 rea
tion rates �j, and spe
i�
 growth rate �j are in our setup related asfollows.'j(x;O) = �j(x;O) Yi2Autj[Lj xi = �j(x;O) Yi2Autj[Catj xi= �j(x;O) Yi2Subj xi Yi2Autj[Catj xi (2.4)A prominent referen
e on 
hemi
al rea
ting systems is Gavalas [8℄. See in parti
ular Se
-tion 1.1, where he introdu
es systems whi
h 
an be des
ribed by an ordinary di�erentialequation as the �rst equation in (1.1). Although Gavalas does not expli
itly say so (seeSe
tion 1.1 and also the senten
e below equation (1.8.11)), the Prin
iple of Mass Con-servation implies the existen
e of a positive ve
tor 
 2 Rn>0 so that 
Tkj = 0, for allj = 1; : : : ;m. In this 
ase, and if the dilution rate, feed rate and gaseous out
ow rate inthe �rst equation in (1.1) are zero, thenddt
T x(t) = 
T K '(x(t); O(t)) = 0;and sin
e all 
oeÆ
ients of 
 are positive, this means 
onservation of mass.However, if K does not represent the exa
t stoi
hiometri
 relationships between the 
om-ponents, then the model does not satisfy the 
onservation of mass, but might still berelevant sin
e all \essential" rea
tions are obeyed. For this approa
h, whi
h was taken inBastin and Do
hain [1℄, the 
on
ept of `non-
y
li
 pro
esses' has been developed in Il
h-mann and Weirig [11℄. Cy
li
ity of (1.1) as de�ned in [11℄ means that the pro
ess 
ontainsa rea
tion loop, i.e. there exists a subset of rea
tions S so that every substrate xi involvedin a rea
tion j 2 S is also an auto
atalyst or a produ
t of one of the rea
tions j 2 S. Mostpro
esses in the literature are non-
y
li
. In Il
hmann and Weirig [11℄ we give an algorithmto de
ide whether a matrix K is non-
y
li
 or not, and in parti
ular non-
y
li
 implies(A1). Note also that if the dilution rate, feed rate and gaseous out
ow rate in the �rst6



equation in (1.1) are zero, and (A1) is satis�ed, then ddt
T x(t) = 
T K '(x(t); O(t)) � 0.Hen
e the pro
ess is dissipative and (A1) generalises 
onservation of mass.We are now in a position to state and prove the main result of this se
tion. That is, underthe assumptions (A1)-(A2), all 
on
entrations stay within an bounded invariant set for allt � 0.Theorem 2.1 Consider the pro
ess (1.1) satisfying (A1)-(A2). Then for any initial 
on-
entrations x(0) 2 Rn>0 , O(0) 2 (0; O�℄, there exists a unique solution of (1.1). Thissolution does not exhibit a �nite es
ape time, is bounded, and stays within the positiveorthant. More pre
isely,O(t) 2 (0; O�℄ and x(t) 2 nx 2 Rn>0 �� 
Tx � maxf
Tx(0); 
T xingo 8 t � 0; (2.5)wherexin := �xin1 ; : : : ; xinn �; and xini := sup�xini (t)�� t 2 [0;1)	 for i = 1; : : : ; n:Proof: Sin
e the right hand side of the di�erential equation (1.1) is lo
ally Lips
hitz
ontinuous in (x;O) and pie
ewise 
ontinuous in t, it follows from the 
lassi
al theory ofordinary di�erential equations that for any xin(0) 2 Rn>0 , O(0) > 0 there exists a uniquesolution �x(�); O(�)� : R�0 �! Rn�0 � R�0 of the initial value problem on a maximallyextended interval of existen
e [0; !), where ! 2 (0;1℄.We show that the zero-axes of the positive orthant Rn+1>0 are repelling.If O(t0) = 0 for some t0 > 0, then by (A2) yields KO'(x; 0) = 0, and thus by (1.1) itfollows that _O(t0) = �LaO� > 0, when
e O(�) � 0 is repelling.To see that the axes xi(�) � 0, i = 1; : : : ; n, are also repelling, assumption (A2) is essential.For a proof see Proposition 6 in Il
hmann and Weirig [11℄.Note that if ! were �nite, then this would not be due to the fa
t that (x(�); O(�)) is leavingthe positive orthant through the edges, the edges are repelling. Hen
e a �nite ! yieldsthat some 
omponents of (x(�); O(�)) tend to in�nity in �nite time.We prove boundedness of �x(�); O(�)� on [0; !).If O(t) > O� + " for some t 2 [0; !) and " > 0, then the se
ond equation in (1.1) yields_O(t) < �" �La, and hen
e O(�) � O� is repelling from above.To see boundedness of x(�), suppose there exists t 2 [0; !) su
h that 
T [x(t) � xin℄ > 0.Then there exists " > 0 su
h that
T [x(�) � xin℄ > 0 for all � 2 [t; t+ ");and hen
e, by (A1) and (1.1),
T [x(t+ ")� x(t)℄ = Z t+"t dd� 
T [x(�)� xin℄ d� � �Z t+"t D(�) 
T [x(�)� xin℄ d� � 0:Therefore, the bounds in (2.5) hold for all t 2 [0; !).Finally, sin
e ! was 
hosen to be maximal and �x(�); O(�)� is bounded, it follows from thestandard theory of di�erential equations that ! =1. This 
ompletes the proof. 27



Note that x(t) in (2.5) belongs to a bounded set whi
h depends only on x(0); xin, and 
. Ifestimates of them are known and of O�, then Theorem 2.1 yields immediately a boundedset 
ontaining any traje
tory of the system for any pie
ewise 
ontinuous bounded D(�).This is summarized in the following 
orollary.Corollary 2.2 Consider the pro
ess (1.1) satisfying (A1)-(A2). If bB � Rn>0 � R>0 �Rn>0 � Rn>0 is a bounded set and �x(0); O�; xin; 
� 2 bB, then this set determines anotherbounded set B � Rn>0 � R>0 , su
h that,�x(t); O(t)� 2 B for all t � 0: (2.6)B is independent of the 
hoi
e of the pie
ewise 
ontinuous, bounded dilution rate D(�) in(1.1). 2
3 Adaptive �-setpoint 
ontrol of external substratesIn this se
tion we study the adaptive �-setpoint 
ontrol of an external substrate, theoutput variable to be 
ontrolled. A substrate xl(�) of the rea
tor model (1.1) is deemedexternal if, and only if, l 2 m[j=1Subj n m[j=1 �Autj [ Prodj�: (3.1)We need to assume the following assumptions on the rea
tion rates with B as given in (2.6).(A3) 'j � sup�'j�x;O���� �x;O� 2 B	 are known for all j = 1; : : : ;m.Assumption (A3) is 
ru
ial for estimating the saturation bound. The need of this 
onditionis not surprising, the faster the rea
tion rates, the more 
exibility is needed in the input,and sin
e the system parameters are not estimated in our setup, at least a rough upperbound for the rea
tion rates must be known. The set B in Corollary 2.2 might be wellknown in appli
ations, and an upper bound 'j 
an be determined.We are now in a position to prove the main result of this se
tion.Theorem 3.1 Consider the pro
ess (1.1) satisfying (A1)-(A3) with bB and B as given inCorollary 2.2. Let xl(�) be an external substrate and suppose the following feasibility
ondition holdsinft�0�xinl (t)	 := xinl > xref � � > 0; Dmax > Pmj=1 jklj j'j + ql[xref � �℄xinl � [xref � �℄ : (3.2)8



Then the appli
ation of the �-tra
ker (1.2) to (1.1) yields, for any initial data �x(0); O(0)� 2bB, k(0) � 0, a 
losed-loop system with unique solution�x(�); O(�); k(�)� : R�0 �! B � R�0de�ned on the whole time axis R�0 and, moreover,(i) limt!1 k(t) = k1 2 R�0 , i.e. the gain adaptation 
onverges,(ii) limt!1dist�xl(t); [xref � �; xref + �℄� = 0, i.e. the external substrate xl(t) tends tothe �-neighbourhood of the referen
e setpoint xref as t!1. 2Proof: Sin
e the right hand side of the 
losed-loop system (1.1), (1.2) is lo
ally Lips
hitz
ontinuous in (x;O) and pie
ewise 
ontinuous in t, it follows from standard theory ofordinary di�erential equations that there exists a unique solution (x(�); O(�); k(�)) on amaximally extended interval of existen
e [0; !), ! 2 (0;1℄.By Theorem 2.1 (x(�); O(�)) is bounded, and so k(t) as the integral of a bounded fun
tion
annot exhibit any �nite es
ape time. Therefore, ! =1, and applying Theorem 2.1 againyields �x(t); O(t); k(t)� 2 Rn>0 � R>0 � R�0 for all t � 0:Next we prove boundedness of k(�).In passing by note that by (3.1) and (2.3) we have klj � 0 for all j = 1; : : : ;m, and hen
e(1.1) gives _xl(t) = � mXj=1 jklj j'j�x(t); O(t)��D(t)xl(t)� ql xl(t) +D(t)xinl (t): (3.3)Now suppose that there exists t0 � 0 su
h that k(t0) > Dmax=�. (3.4)We show that there exists a �nite time t̂ � t0 su
h thatxl(t) 2 [xref � �; xref + �℄ for all t � t̂: (3.5)If xl(t) � xref + � and t � t0, then by (3.4) it follows that �k(t)[xl(t) � xref ℄ + D� ��k(t)�+D� < 0, and thus D(t) = 0, so that (3.3) yields,_xl(t) = � mXj=1 jklj j'j�x(t); O(t)� � ql xl(t):Sin
e by (3.1) there exists j0 su
h that l 2 Subj0 , (2.3) yields klj0 < 0 and hen
e_xl(t) � �jklj0 j'j0�x(t); O(t)�:Now an appli
ation of LaSalle's Invarian
e Prin
iple (see e.g. the version in Knoblo
h andKappel [14℄ shows that xl(t) de
reases into the �-strip.9



If xl(t) � xref � � and t � t0, then by (3.4) it follows that �k(t)[xl(t) � xref ℄ + D� �k(t)�+D� > Dmax, and hen
e D(t) = Dmax. Now (3.3) yields_xl(t) � � mXj=1 jklj j'j � [Dmax + ql℄ [xref � �℄ +Dmax xinl ;and by (3.2) it follows that there exists " > 0 su
h that _xl(t) � ". This proves (3.5).Now we are in a position to prove boundedness of k(�). If (3.4) is satis�ed, then by (3.5),xl(t) rea
hes the interval [xref � �; xref + �℄ in �nite time, and stays within the intervalafter that. By the gain adaptation (1.2) this implies k(t) = k(t̂) for all t � t̂, when
eboundedness of k(�). If (3.2) is not satis�ed, then k(�) is obviously bounded.Claim (i) of the theorem is a simple 
onsequen
e of monotoni
ity of t 7! k(t) and bound-edness of k(�). It remains to prove (ii).Using the distan
e fun
tiond�(�) : R ! R�0 ; � 7! d�(�) := ( j�j � �; j�j � �0; j�j < �;it follows from the gain adaptation in (1.2) that (ii) is equivalent to d�(e(�)) 2 Lr(0;1;R).Sin
e t 7! e(t) is absolutely 
ontinuous, and � 7! d�(�) is absolutely 
ontinuous and ofbounded variation, it follows (see e.g. Hewitt and Stromberg [9℄) that t 7! d�(e(t)) isabsolutely 
ontinuous. Hen
e for almost all t � 0 we havet 7! ddt d�(e(t)) � j _e(t)j :Now boundedness of t 7! ddt d�(e(t)) together with d��e(�)� 2 Lr(0;1;R) allows to applyBarb�alat's lemma (see, e.g., Khalil [13℄) to 
on
lude that limt!1 d�(e(t)) = 0, when
e (ii).This 
ompletes the proof of the theorem. 2Remark 3.2 Note that the assumption of Theorem 3.1 that xl(�) is an external variableimplies that klj � 0 for all j = 1; : : : ;m and that klj0 < 0 for some j0. An immediate
onsequen
e of this is that a smoothened version of the \bang-bang" 
ontrol lawD(t) = ( Dmax; if xl(t) � xref0; if xl(t) > xrefshould also meet the 
ontrol obje
tive. This might help to stress the 
onsequen
e of theassumption.Finally, we also 
onsider a non-adaptive version of (1.2) where the time-varying k(t) isrepla
ed by some 
onstant k0 > 0. Although this non-adaptive strategy is restri
tive sin
ek0 needs to be suÆ
iently large, the result is worth knowing due to its simpli
ity. Further-more, we give expli
it lower bounds in terms of weak systems data, and it is ensured thatthe external substrate enters and stays within the �-strip around the referen
e setpointafter �nite time. 10



Theorem 3.3 Let D� 2 [0;Dmax) and supposek0 � Dmax=� (3.6)is known additionally to the assumptions in Theorem 2.1, then the non-adaptive feedba
k
ontroller D(t) = sat[0;Dmax℄�k0 e(t) + D�� (3.7)applied to (1.1) yields, for any initial data �x(0); O(0)� 2 bB, k(0) � 0, a 
losed-loop systemwith unique solution �x(�); O(�); k(�)� : R�0 �! B � R�0de�ned on the whole time axis R�0 . Moreover, there exists t̂ � 0 su
h thatxl(t) 2 [xref � �; xref + �℄ for all t � t̂:Proof: Sin
e (3.6) ensures that the 
ondition in (3.4) is satis�ed, the proof is a straight-forward simpli�
ation of the proof of Theorem 3.1. It is omitted. 2Remark 3.4 The adaptive �-tra
ker (1.2) and the non-adaptive feedba
k 
ontroller(3.7) are simple in its design. However, they 
ontain design parameters whi
h should be
arefully 
hosen when the feedba
k 
ontroller is applied to a real pro
ess. Dmax dependsnot only on the feasibility 
ondition (3.2) but also on the physi
al limitations of thea
tuator. When both 
onditions are 
ompatible (i.e. the a
tuator limit is higher thanthe bound obtained by (3.2)) one should 
hoose Dmax 
lose to the a
tuator upper bound.This makes the 
ontrol input smoother. To spe
ify � appropriately one need to knowin advan
e an estimate about the upper bound for the magnitude of the measurementa

ura
y and noise. The power r in the gain adaptation in (1.2) determines the speed ofthe adaptation. If the di�eren
e of (je(t)j � �) is smaller 1, then the bigger r � 1 is theslower k(t) in
reases; if the di�eren
e is bigger than 1, then the bigger r is the faster k(t)in
reases. Similar e�e
ts, but not in su
h a nonlinear way, 
an be a
hieved by varying Æ orthe initial gain k(0). D� is an input referen
e, an appropriate 
hoi
e might be known fromexperiments with 
onstant feedba
k. The role of all these design parameters is furtherillustrated in the simulations of the baker's yeast pro
ess in Se
tion 5.4 Baker's yeast fermentation pro
essThe following kineti
 model for 
ellular produ
tivity of a 
ontinuous 
ulture of Sa

ha-romy
es 
erevisiae, more 
ommonly known as baker's yeast, was introdu
ed by Sonnleitnerand K�appeli [16℄, and sin
e then it has been used by numerous authors, see [4, 6, 15℄, andSweere et al. [17℄, to name but a few. The dynami
al model is obtained from a massbalan
e of the 
omponents, and it is assumed that the rea
tor is well mixed, the yield
oeÆ
ients are 
onstant, and the dynami
s of the gas phase 
an be negle
ted. The yeast11



fermentation goes through tree pathways: sugar oxidation, ethanol oxidation and sugarfermentation with ethanol as an end produ
t.We do not model this as a fed-bat
h pro
ess, but in 
ontinuous mode operation. Thusthis pro
ess 
an be des
ribed in the form (1.1) as follows.ddt 0BB�SXCE1CCA = 2664�
11 0 �
13
21 
22 
23
31 
32 
330 �
42 
43 37750� �1(S;O)�2(S;O;E)�3(S;O) 1AX �D0BB�SXCE1CCA�0BB� 00�CO2 C0 1CCA+0BB�DSin000 1CCA(4.1)ddtO = ��
01; �
02; 0�0� �1(S;O)�2(S;O;E)�3(S;O) 1AO �DO + �La [O� �O℄;
where the state variables areS(t) glu
ose (substrate) 
on
entration in the rea
tor at time t (the output),X(t) yeast 
on
entration in the rea
tor at time t,C(t) dissolved 
arbon dioxide 
on
entration in the rea
tor at time t,E(t) ethanol 
on
entration in the rea
tor at time t,O(t) dissolved oxygen 
on
entration in the rea
tor at time t,and further variables and 
onstants areD(t) dilution rate 
onsidered as the input,
ij > 0 stoi
hiometri
 (or yield) 
oeÆ
ients, 
orresponding to the produ
tionof one unit of biomass (i.e. yeast) in ea
h rea
tion,Sin glu
ose 
on
entration in the feed,�La[O� �O(t)℄ gaseous oxygen transfer rate O(t) with oxygen mass transfer 
onstant�La and equilibrium 
on
entration of dissolved oxygen O�,�CO2 C(t) gaseous 
arbon dioxide out
ow rate proportional to C(t).The main obje
tive is to keep the glu
ose 
on
entration, whi
h is 
onsidered as externalsubstrate, 
lose to the referen
e value using the dilution rate as manipulating fun
tion.For te
hni
al reasons, the input must be bounded.The model is based on a limited oxidation 
apa
ity, whi
h is a fun
tion of the oxygen
on
entration in the liquid phase, see Sweere et al. [17℄. If the oxidation 
apa
ity issuÆ
iently high to oxidize all glu
ose 
onsumed, then no ethanol is produ
ed. If in thissituation the ethanol is present in the medium as well, then 
o-
onsumption of ethanol ispossible. If not, then all glu
ose 
an be oxidized and the surplus glu
ose will be 
onsumeda

ording to the redu
tive metabolism, resulting in ethanol formation.The pro
ess of yeast growth on glu
ose with ethanol produ
tion is des
ribed by the fol-lowing three metaboli
 rea
tions. All 
onstants involved are positive.The rea
tion rate of the respiratory growth on glu
ose respe
tively the spe
i�
 growth rate12



is '1(S;O;X) = �1(S;O)X; �1(S;O) = 8<: 
�111 qs;max SS+Ks OO+K
 ; if qs;max SS+Ks � q
;maxa
�111 q
;maxa OO+K
 ; if qs;max SS+Ks � q
;maxa ;where qs;max and q
;max are the maximal spe
i�
 uptake rates of glu
ose and oxygen, Ksand K
 are the saturation parameters for glu
ose uptake and oxygen uptake respe
tively,a = 
01 
�111 is the stoi
hiometri
 
oeÆ
ient of the oxygen.If the oxidation 
apa
ity is suÆ
iently high to oxidise both ethanol and glu
ose, thentheir 
o-
onsumption is possible, see Sweere et al. [17℄. The rea
tion rate of therespiratorygrowth on ethanol and the spe
i�
 growth rate is'2(S;X;E;O) = �2(S;E;O)X; �2(S;E;O) = �e;maxEKe +E KiS +Ki OO + �o ;where �e;max is the maximal spe
i�
 ethanol growth rate, Ki is the inhibition parame-ter (free glu
ose inhibits ethanol uptake), Ke is the saturation parameter for growth onethanol, and �o is the saturation parameter for the free respiratory 
apa
ity available.Finally, the rea
tion rate of the fermentative growth on glu
ose respe
tively the spe
i�
growth rate is'3(S;X;O) = �3(S;O)X; �3(S;O) = 8<: 
�113 qs;max SS+Ks K
O+K
 ; if qs;max SS+Ks � q
;maxa
�113 h qs;max SS+Ks � q
;maxa OO+K
 i ; if qs;max SS+Ks � q
;maxa :The pro
ess 
onsists of 3 rea
tions involving 5 
omponents (x;O) = (S;X;C;E;O), i.e.the 
on
entrations in the liquid phase of the rea
tor. Using the notation introdu
ed inSe
tion 2, we see thatL1 = f1; 5g; L2 = f4; 5g; L3 = f1g; R1 = f2; 3g = R2 = f2; 3g; R3 = f2; 3; 4g;Catj = ;; Autj = f2g for j = 1; 2; 3Sub1 = f1; 5g; Sub2 = f4; 5g; Sub3 = f1g; Prod1 = Prod2 = f3g; Prod3 = f3; 4g:From (3.1) we see that possible external substrates are x1 and x5. Sin
e the oxygentransfer rate is not proportional to the dilution rate whi
h is 
ru
ial for Theorem 3.1 (see(3.3)), we 
hoose S(t) as external substrate and l = 1.We are now in a position to fa
torise the rea
tion rates as in (2.4). Sin
e Aut1 [ L1 =f1; 2; 5g, setting �1(S;O) = 8<: 
�111O+K
 qs;maxS+Ks ; if qs;max SS+Ks � q
;maxa
�111O+K
 q
;maxS�a ; if qs;max SS+Ks � q
;maxayields '1(S;O;X) = �1(S;O) Yi2Aut1[L1 xi = �1(S;O) � S � O �X:13



Sin
e Aut2 [ L2 = f2; 4; 5g, setting�2(S;O;E) = �e;maxKe +E KIS +KI 1O + �oyields '2(S;O;X;E) = �2(S;O;E) Yi2Aut2[L2 xi = �2(S;O;E) � O �E �X:Finally, sin
e Aut3 [ L3 = f1; 2g, setting�3(S;O) = 8<: 
�113 K
O+K
 qs;maxS+Ks ; if qs;max SS+Ks � q
;maxa
�113 � qs;maxS+Ks � OO+K
 q
;maxS�a �; if qs;max SS+Ks � q
;maxayields '3(S;O;X) = �3(S;O) Yi2Aut3[L3 xi = �3(S;O) � S �X:We 
he
k assumptions (A1)-(A3):(A1) is immediate from the spe
ial form of K in (4.1).(A2) follows from the above fa
torisations and sin
e KO = [�
01; �
02; 0℄.(A3) requires that for ea
h 'j�x;O� an upper bound is known. The three rea
tions of thepro
ess (4.1) are auto
atalyti
 and therefore the rea
tion rates are of the form 'j(x;O) =�j(x;O)X, j = 1; 2; 3. Sin
e the growth 
apa
ity of a population of mi
roorganisms isstrongly limited, the spe
i�
 growth rates are bounded. The upper bounds are�1(S;O) � ��1 := 
�111 q
;maxa ; �2(S;E;O) � ��2 := �e;max; �3(S;O) � ��3 := 
�113 q
;maxa :Usually, the exa
t values of these parameters are not available but the range of theirvariations is well known, see Sonnleitner and K�appeli [16℄. Therefore the maximal growth
apa
ity of the yeast population in ea
h rea
tion is known. Furthermore the upper boundof the biomass 
on
entration X is usually known in appli
ations, see [4, 6℄. Hen
e,�'j � ��jX are known for j = 1; 2; 3.By the above �ndings, the model of the baker's yeast fermentation pro
ess is a spe
ial 
aseof the general model of bio-
hemi
al aerobi
 pro
esses analysed in Se
tion 1 and 2, andmeets the assumptions required for the adaptive setpoint 
ontrol introdu
ed in Se
tion3. Therefore, in the following Se
tion 5 we will illustrate how the �-tra
ker works whenapplied to (4.1).
14



5 SimulationsIn this se
tion we simulate the appli
ation of the �-tra
ker (1.2) to the baker's yeastfermentation pro
ess (4.1). The output variable to be regulated within a neighbourhoodof a 
onstant 
on
entration is the glu
ose 
on
entration. The following kineti
 data aretaken from Sonnleitner and K�appeli [16℄.qs;max = 3:5 [gglu
g�1biomassh�1℄; q
;max = 0:256 [gO2g�1biomassh�1℄; �e;max = 0:17 [h�1℄;Ks = 0:2 [gglu
=l℄; K
 = 0:0001 [gO2=l℄; Ke = 0:1 [g=l℄;Ki = 0:1 [g=l℄; a = 0:4142 [gO2=gglu
℄; �o = 0:003 [mg=l℄;where gglu
, gO2 and gbiomass denote gram glu
ose, gram oxygen, and gram biomass re-spe
tively.The 
onstant yield 
oeÆ
ients are 
hosen as in Pomerleau and Perrier [15℄, so that thestoi
hiometri
 matrix K and the ve
tor KO areK = 2664�2:04 0 �201 1 11:23 0:9 9:090 �1:39 10 3775 ; KO = ��0:83; �1:56; 0� :Following Feyo de Azevedo et al. (1992), the other 
onstant pro
ess parameters are set�La = 100 [h�1℄; O� = 0:007 [g=l℄; Sin = 10 [g=l℄:The initial values of the state variables areS(0) = 0:95; O(0) = 0:0066; X(0) = 0:1; C(0) = 0:000325; E(0) = 0:0001 [g=l℄:The 
ontrol obje
tive is to regulate the glu
ose 
on
entration S(t) into a �-neighbourhoodof the referen
e 
on
entration Sref = 0:05. The tolerated error arround the referen
eshould be below 5%, and hen
e we set � = 0:0025:A

ording to Theorem 3.1 we need to determine an upper bound of the input saturationDmax. Re
all that l = 1. Hen
e by the zero entries ofK we need to determine upper boundsof the �rst and third rea
tion rate. Sonnleitner and K�appeli [16℄ allow the parameters tovary within the following ranges0:24 � q
;max � 0:264; 0:47 � 
�111 � 0:5; 0:05 � 
�113 � 0:1:An upper bound for the biomass 
on
entration, taken from Feyo de Azevedo et al. (1992),is X = 3 [g/l℄. Hen
e the rea
tion rates are bounded by'1(S;O;X) � 0:3187; '3(S;X;O) � 0:0637:Now it is easy to see that the fra
tion on the right hand side in (3.2) is 0.3842. Therefore,we may 
hoose Dmax = 0:385 satisfying (3.2).15



If the design parameters of the �-tra
ker (1.2) are � � 1 and r = Æ = 1, then for smallerror the growth of t 7! k(t) is \slow"; it is even slower if r > 1. To fasten this up, onehas to in
rease Æ. For this reason we 
hoose Æ = 45, r = 1.Adaptive �-tra
ker (1.2) with di�erent o�sets applied to (4.1): The simulationsshow that the �-tra
ker is su

essful and what the e�e
t of di�erent design parameters is.In the �rst run of simulations, depi
ted in Figure 2, we 
hoose the o�set to be D� = 0(solid line). The gain in
reases rapidly until it is suÆ
iently large after 2 1/2 hours sothat the substrate is for
ed into the �-strip (dotted line) around the referen
e setpoint.The simulations are performed over a period of one day, and the �gures are divided intoan initial phase of 4 hours and the remaining 4-24 hours. Sin
e S(t) remains inside the�-strip after t = 3 hours, the gain stays 
onstant and also longer simulations have shownk(3) = k(200) = 49:73. Note also that S(t) as well as the 
ontrol a
tion D(t) behavesmoothly without any overshoots. Moreover, D(t) does not rea
h the upper saturationbound. In a se
ond run we 
hange the o�set to D� = 0:2 (dashed line). One may thinkthat this should give a better behaviour sin
e D� = 0:2, also depi
ted in Figure 2, is
lose to the steady state value observed in the previous simulations. Although the resultsare not signi�
antly di�erent, the large substrate 
on
entration at the beginning leads toa fast de
rease of the dilution rate within 1/2 hour, and from then on the behaviour issimilar to the �rst simulation. This di�erent initial period has the e�e
t that the erroris larger, leading to a slightly larger gain k(24) = k(200) = 50:42, and this larger gainfor
es the substrate 
loser to the referen
e setpoint than in the �rst simulation. The samee�e
t 
ould also be a
hieved by a higher initial adaptive gain k(0), but this leads to a
onsiderably larger terminal gain. The dashed line in Figure 3 shows the traje
tories ofk(t), S(t) and D(t) when k(0) = 25 and D� = 0. For 
omparison the solid line depi
ts the
ase when k(0) = 0 and D� = 0:2.The e�e
t of varying r depends on (je(t)j � �). If this di�eren
e is bigger than 1, thegain k(t) in
reases rapidly when r in
reases and the terminal gain might be
ome mu
hlarger than a
tually needed for the 
ontrol obje
tive. If the di�eren
e is smaller than one,the in
rease of k(t) is more moderate. This is a illustrated in Figure 3 where satis�es(jS(t)j � �) < 1 for all t and the output S(t) enters the �-strip at about t = 7 hours ifr = 1 and at t = 11:5 hours if r = 3.The other variables - biomass, ethanol, oxygen, 
arbon dioxide - rea
h a 5% neighbour-hood of their steady states within 17, 30, 15, 15 hours, respe
tively (see Figure 4).Non-adaptive tra
ker (3.7) applied to (4.1): In Figure 5 we show the simulationsfor the non-adaptive 
ontroller (3.7) when applied to (4.1). Again, we 
hoose D� = 0 andall the other data as in Figure 2. A

ording to (3.6), the 
onstant gain parameter is setk0 = Dmax=� = 154. This 
onservative bound is more than three times higher than theterminal high-gain parameter k(1) = 49:73 found adaptively. The undesirable e�e
t of a"large" gain is the higher frequen
y (
hattering) in the dilution rate, see Figure 5. Thisobservation motivates the use of the adaptive gain 
ontroller in preferen
e to the �xedgain 
ontroller.Adaptive �-tra
ker (1.2) with noise 
orrupting the output and applied to (4.1):The �-tra
ker (1.2) 
an 
ope with noise 
orrupting the output measurement, provided the16



amplitude of this noise is suÆ
iently small in terms of the �-strip and the feasibility
ondition. In this 
ase the measured error be
omese(t) = xl(t)� xref + n(t);where the noise n(t) : R�0 ! R�0 is a bounded 
ontinuous fun
tion. If we set �n :=supt�0 jn(t)j, then it 
an be shown that xl(t) tends to [xref � (�+ �n); xref + (� + �n)℄ as tgoes to in�nity. We omit the exa
t statement and proof of an analogous Theorem 3.1, it isvery te
hni
al. Instead, we illustrate robustness of the �-tra
ker with respe
t to sto
hasti
noise (normal distribution, zero mean, varian
e one) 
orrupting the output measurement.If the model and design parameters are as in Figure 2, then the �-tra
ker is not able tofor
e the substrate into the �-strip, and hen
e k(t) grows unboundedly. The reason isthat the sto
hasti
 measurement noise is too large in amplitude and too vivid. We donot depi
t these simulations. However, if we allow 10% tra
king error, i.e. � = 0:005,then the simulation results are quite satisfa
tory, see Figure 6. Certainly, sin
e the noiseis 
orrupting the measurement, the 
ontrol a
tion is dire
tly a�e
ted and hen
e 
orre-spondingly vivid. The �-tra
ker regulates, as desired, the external substrate arround thesetpoint. In this set of simulations we have also shown the e�e
t of slowing down the gainadaptation by de
reasing Æ = 45 (solid line) to Æ = 33 (dashed line). Æ = 45 leads to ahigher k(t), and this ampli�es the noise so that the 
ontrol a
tion is more vivid as wellas temporary spikes in the glu
ose 
on
entration o

ur. These observations hold also trueover the longer period of 48 hours, what 
an be readily seen in Figure 7 and 8. Comparedto the simulations without noise, the gain terminates at the same order of magnitude andthe transient behaviour of the substrate, although not quite smooth, is kept in the �-strip.Note that D(t) is depi
ted in Figures 7 and 8 over a shorter time (24-30 hours) to givea better view on the a
tual input traje
tory. Although the 
ontrol e�ort is 
onsiderablymore vivid than in the noise free 
ase, whi
h is not surprising sin
e the measurement noisehas a dire
t in
uen
e on the 
ontrol, it is still realisable as a physi
al a
tuator. The othervariables, i.e. biomass, ethanol, oxygen, 
arbon dioxide are depi
ted in Figure 9.6 Con
lusionsIn this paper, 
ontrol of a wide 
lass of aerobi
 
ontinuous stirred tank rea
tors has beena
hieved by a proportional error feedba
k 
ontroller with input saturations, where the gainis found adaptively. It is proved that regulation of external substrates to a neighborhoodof a 
onstant referen
e 
on
entration is possible under mild 
onditions. We have alsoworked out stru
tural 
onditions of the general pro
ess model whi
h are essential whenexploiting them mathemati
ally. As a side result we show that proportional non-adaptiveerror feedba
k subje
ted to saturation is possible for the 
lass of systems provided thesystem data satisfy a 
rude estimate. However, adaptive �-tra
king results in a mu
hlower gain.�-tra
king requires only very limited information of the system data and it readily toler-ates noise 
orrupting the output measurement. The only pri
e to be paid is that setpointtra
king is not a
hieved asymptoti
ally but in a neighbourhood of the setpoint. However,17



the neighbourhood is prespe
i�ed and arbitrarily small, whi
h suÆ
es for pra
ti
al pur-poses.Another advantage of the �-tra
ker over other approa
hes on 
ontrol of biote
hnologi
alpro
esses, su
h as PI or PID 
ontrollers as for example in Dairaku et al. [5℄, or adaptivelinearising 
ontrol relying on system parameters or invoking estimators for the systemparameters (see for example Chen et al. [4℄), is its simpli
ity. However, the "
loser" one
omes to reality the more tuning of the design parameters in (1.2) is required.A
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Figure 2: k(t), S(t) and D(t) for (1.2) applied to (4.1), Æ = 45, r = 1, � = 0:0025, D� = 0:2(dashed line), D� = 0 (solid line)
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Figure 3: k(t), S(t) and D(t) for (1.2) applied to (4.1), Æ = 45, � = 0:0025, r = 1,D� = 0:2, k(0) = 0 (solid line), r = 1, D� = 0, k(0) = 25 (dashed line), r = 3, D� = 0:2,k(0) = 0 (dotted line) 21
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Figure 4: X(t), E(t), O(t) and C(t) for (1.2) applied to (4.1), Æ = 45, r = 1, � = 0:0025,D� = 0:2
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Figure 5: S(t) and D(t) for (3.7) applied to (4.1), � = 0:0025, D� = 0, and k0 = 154
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Figure 6: k(t), S(t) and D(t) for (1.2) applied to (4.1) in the presen
e of noise, r = 1,� = 0:005, Æ = 45 (solid line), Æ = 33 (dashed line)
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Figure 7: k(t), S(t) and D(24 � 30) for (1.2) applied to (4.1) in the presen
e of noise,r = 1, � = 0:005, Æ = 45; t = 48[h℄
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Figure 8: k(t), S(t) and D(24 � 30) for (1.2) applied to (4.1) in the presen
e of noise,r = 1, � = 0:005, Æ = 33; t = 48[h℄
25



0 10 20 30 40
0

0.5

1

1.5

2

2.5

3
X(t)

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3
E(t)

0 10 20 30 40
0

2

4

6

8
x 10

−3 O(t)

0 10 20 30 40
0

1

2

3

4

5
x 10

−4 C(t)

Figure 9: X(t), E(t), O(t) and C(t) for (1.2) applied to (4.1) in the presen
e of noise,r = 1, � = 0:005, Æ = 33; t = 48[h℄
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