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Abstract

A biotechnological aerobic process is modelled as an ordinary differential equation
which, under mild assumptions, ensures invariance of the positive orthant and bound-
edness of the concentrations. An adaptive controller is designed for this general class
of processes so that the external substrate can be regulated by the dilution rate into
a prespecified arbitrarily small neighbourhood of a constant setpoint reference. The
adaptive controller is robust, simple in its design without invoking any identification
mechanisms, and is based on output data only. It is shown that the prominent ex-
ample of a baker’s yeast fermentation belongs to this setup, and adaptive tracking is
illustrated by simulations.

Keywords: Adaptive control, input saturation, tracking, aerobic processes, yeast fer-
mentation

1 Introduction

The purpose of the paper is threefold. First, it is a contribution to the general mod-
elling of biotechnological aerobic processes including proofs which show that the intuitive
assumptions ensure mathematically what is expected from a real process. Secondly, we
introduce a simple adaptive controller with saturation which, under mild assumptions, is
proved to achieve tracking of an external substrate within a prespecified neighbourhood of
a setpoint. Thirdly, a well known example of baker’s yeast fermentation is further inves-
tigated and shown to be a special case of the proposed general model. Finally, adaptive
tracking is illustrated for this example.

* Bulgarian Academy of Sciences, Institute of Control and System Research, P.O. Box 79, 1113 Sofia,
Bulgaria, pgeorgieva@hotmail.com

t Institute of Mathematics, Technical University Ilmenau, Weimarer Strafie 25, 98693 Ilmenau, FRG,
ilchmann@mathematik.tu-ilmenau.de

it Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161, 27515 Bremerhaven, FRG,

mweirig@awi-bremerhaven.de



We consider general biotechnological aerobic processes modelled by ordinary differential

equations of the form

B(t) = Ko(z(t),0(t))

O(t) = Kop(z(t),0(t)) — D@#)O(t) + kL[O* = O(t)],

- D@)z(t) — Qz(t) + D(t)z"(t), (L.1)

where, for n € N and n > m € N, the constants and variables denote

2(t) = (w1(8), ... zn ()"
O(t)

K =[ki,... kp] € R?*™
Ko = ko1, ..., kom] € RIX™
Q = diag{q1,...,qn} € ]R%"
KLa[O* — O(t)]

T
P = (Qola"'agom)
(pj(-,-) :Rg-gl — RZU

2"(-) 1 Rog — R
() = (), 2 (1)

D() : RZU — [OaDmax]

concentrations of the n process variables at time ¢,
concentration of dissolved oxygen at time t,
stoichiometric matrix,

stoichiometric oxygen vector,

proportional gaseous outflow rates,

oxygen transfer rate O(t) with equilibrium concentra-
tion of dissolved oxygen O* and oxygen mass transfer
constant Ky, > 0,

reaction rate vector, where

are locally Lipschitz continuous functions,
j=1...,m,

piecewise continuous and bounded function of

n feed concentrations at time ¢

piecewise continuous function of dilution rate with
Dpax > 0.

Furthermore, the following structural assumptions of (1.1) are assumed.

(A1) There exists v € R2; such that y7k; < 0 for all columns

ki,...,kmy of the stoichiometric matrix K.

(A2) Forj=1,...,m we have:

;(z,0) = aj(x,0) -

[T =

icAut;UL;
for locally Lipschitz continuous functions o;(:,-) : R’g‘gl — R>o;

if ¢;(z,0) =0, then at least one of the components of (z, O) is 0;

KO@(:E: 0) = 0.

Aut; and L; are the autocatalysts and the reactants of the jth reaction, respectively; they
are defined in Section 2. Assumptions (A1)-(A2) are discussed in detail in Section 2.

(A1) ensures that (t) = K ¢(z(t),0(t)) is dissipative. This replaces the classical as-
sumption of Conservation of Mass. We do not suppose that the matrix K contains exact
stoichiometric coefficients. Our approach should encompass models which contain only
the essential reactions and essential substrates, and we also allow for uncertainty of the

stoichiometric coefficients.

The term D(t) z™(¢) in (1.1) ensures that the inflow rate is proportional to the dilution



rate. This assumption is essential for proving that all concentrations within the reactor
remain bounded.

The decomposition of the reaction rate ¢; into a specific reaction rate o; and a product of
autocatalysts Aut; and reactants L; in assumption (A2) is essential for proving that if the
process is initialized with positive concentrations, then they stay positive. The remaining
conditions are justified by the physical fact that a reaction can only take place if all its
activators are present in the reactor.

The control objective is to regulate an external substrate z;(¢), [ € {1,...,n}, towards
a prespecified neighbourhood of a given constant reference setpoint z.¢. This will be
achieved by the so called A-tracker (and variations thereof), i.e.

e(t) = fEl(t)_xrefa
D(t) = satjo,p,,,(— k() e(t) + D*),
o (1.2)
b = 5{ (le@®) =), if fe()] > A
0, if |e(t)] <A

where 7 > 1, X\, 6 > 0, Dpax > D* > 0, k(0) > 0 are design parameters, and

0, if n<0
sat[0, D] (1) 7= 4 75 if 7 € [0, Diax]
Dmaxa if n > Dmax-

These design parameters influence the transient behaviour of the closed-loop system cru-
cially. Their role is discussed in detail in Remark 3.4 and illustrated in the simulations of
the baker’s yeast process in Section 5.

The A-tracker (1.2) seems in particular suitable for biotechnological processes since despite
their non-linearity, uncertainties, disturbances, and possible unstable multiple equilibria,
this controller is only based on structural system data, i.e. (Al)-(A2). It consists of
a proportional error feedback with saturation, and the time-varying proportional gain
k(-) is determined adaptively by the error measurement only. The idea is that the gain
increases as long as the error is outside the A-strip. Once the gain is sufficiently large,
under appropriate assumptions, the error e(t) will converge towards the A-strip and the
gain k(t) is kept constant. That means the control objective is met. The upper bound of
the saturation has to meet a feasibility condition which will be made precise below.

The present paper is based on several contributions in different fields. Modelling of the
general reactor model has been established by Bastin and Dochain [1], a sufficient condition
for dissipativity of mass in terms of the stoichiometric matrix has been developed in
Ilchmann and Weirig [11], see also the contribution by Bogaerts et al. [3].

Various control objectives and several industrial implementations are reviewed in Chen
et al. [4]. The wide application of adaptive nonlinear techniques for biological reactors
lies in the fact that the models include highly nonlinear and slowly time-varying kinetic
parameters (see Bastin and Van Impe [2]). Most of the control strategies proposed in



the literature use algorithms to identify the process kinetics and/or reconstruct the non-
measured state variables (see for example Pomerleau and Perrier [15] or Ferreira and Feyo
de Azevedo [7].

The adaptive A-tracker discussed in this paper is in the spirit of Ilchmann and Ryan [10],
where it is introduced for linear systems and without any input saturations. In Ilchmann et
al. [12] adaptive A-tracking of an external substrate of a general reactor model was achieved
by using the feedrate as the input variable; it also was assumed that the dilution rate is
bounded away from zero. However, if aerobic continuous stirred tank reactors are mod-
elled by lumping together the reaction equations in (1.1) to some %(zp, 0)" = Ky(z,0),
then in this general form one cannot derive boundedness of the concentrations of the gen-
eral model. This is exactly the reason why the oxygen dynamics have to be separated
as in (1.1), and a new proof for A-tracking has to be developed. A first approach in this

direction can be found in Weirig [18].

The paper is organised as follows. In Section 2 we introduce and motivate assumptions of
the general model (1.1) so that it is sufficiently general to encompass relevant biochemical
processes, and sufficiently strict to derive mathematically properties of the process which
are intuitively expected. In Section 3 the adaptive feedback strategy to regulate an external
substrate to a prespecified neighbourhood of the setpoint reference is introduced and
proved to meet the control objective under certain assumptions. In Section 4 a well
known model for baker’s yeast fermentation is further investigated and shown that it falls
into our general setup. This example is also used to illustrate the adaptive controller by
some simulations in Section 5.

2 General modelling of bio-chemical aerobic processes

Aerobic biotechnological processes consist of a set of m reactions ¢1,..., v, involving
n + 1 concentrations xi,...,2Zy41 in the liquid phase of the reactor. Such a process is
commonly specified by the following reaction scheme for each jth reaction:

Pj
Yo CijT — Y Cij T j=1,...,m. (2.1)
iELj iERj
Here
L; C{l,...,n+1}, L; # 0

denotes the set of indices of the components z; which are the reactants of the jth reaction,
R; C{1,...,n+1}, Rj#@

is the set of indices of the components x; which are the reaction products of the jth
reaction.



The quantities of each component involved in the reaction are specified by the nonnegative
stoichiometric coefficients c;;, sometimes also called yield coefficients. The rate of con-
sumption of the reactants, which is equal to the rate of formation of the reaction products,
is called the reaction rate and denoted by ¢;. For a comprehensive list of reaction rates
see for instance the Appendix in Bastin and Dochain [1].

The reaction scheme (2.1) gives rise to describe the process as an ordinary differential
equation, see (1.1). The coefficients of the matrix K are given by +c¢;;. Models of the
form (1.1) have been used throughout the last thirty years in a more or less formal way,
and the above formalism was established in the monograph by Bastin and Dochain [1].

T i1 R i - . — - - I L 1 1™ = 1_ 1 - 1 [ A - 1T ™ n i1

Rest

Figure 1: Reaction component sets

Cat; = L;NR; catalysts, i.e. set of the indices of those com-
ponents which are involved in the jth reaction
but maintained by the reaction,

Sub; = L;\(L;NR;)#0 substrates, i.e. the set of those components that
are consumed by the jth reaction, they are as-
sumed to be empty,

Prod; C R;\(L;NRy) products, i.e. set of the indices of those compo-
nents that are produced by the jth reaction,
Aut; = R;\((L;NR;)UProd;) autocatalysts, i.e. set of the indices of those
components that are accumulated by the jth
reaction,
Rest; = {1,...,n+1}\ (LjUR;) set of the process components that are not in-

volved in the jth reaction.



Note that, for all j =1,...,m,
Aut; UProd; = R; \ (Rj NLj),
and {1,...,n 4+ 1} can be represented as the disjoint union
{1,....,n+1} = Cat; U Sub; U Aut; U Prod; U Rest;. (2.2)

The following characterizations of the catalysts, substrates and products will be useful in

the sequel:
Catj = {i eL;NR; | kij =0}

Sub; = {iE{l,...,n+1}|kij<0} (2.3)
Prod; UAut; = {iE{l,...,n+1}|kij>0}.

The reaction rate ¢; is often assumed to be proportional to the microbial specific growth
rate y1;. The most prominent growth rates are the models of Monod or Haldane. Reaction
rates ¢;, specific reaction rates «;, and specific growth rate p; are in our setup related as
follows.

(,Dj(QS,O) = O‘j(fE’O) H Ty = ,u]'(QS,O) H T;

i€Aut;UL; 1€Aut;UCat;

= oj(z,0) H x; H z; (2.4)

iESub]‘ iEAutjUCatj

A prominent reference on chemical reacting systems is Gavalas [8]. See in particular Sec-
tion 1.1, where he introduces systems which can be described by an ordinary differential
equation as the first equation in (1.1). Although Gavalas does not explicitly say so (see
Section 1.1 and also the sentence below equation (1.8.11)), the Principle of Mass Con-
servation implies the existence of a positive vector v € RZ; so that *kaj = 0, for all
j=1,...,m. In this case, and if the dilution rate, feed rate and gaseous outflow rate in
the first equation in (1.1) are zero, then

&7 () = 7T Ke(t),0() = 0,

and since all coefficients of 7 are positive, this means conservation of mass.

However, if K does not represent the ezact stoichiometric relationships between the com-
ponents, then the model does not satisfy the conservation of mass, but might still be
relevant since all “essential” reactions are obeyed. For this approach, which was taken in
Bastin and Dochain [1], the concept of ‘non-cyclic processes’ has been developed in Ilch-
mann and Weirig [11]. Cyclicity of (1.1) as defined in [11] means that the process contains
a reaction loop, i.e. there exists a subset of reactions S so that every substrate z; involved
in a reaction j € S is also an autocatalyst or a product of one of the reactions 57 € S. Most
processes in the literature are non-cyclic. In Ilchmann and Weirig [11] we give an algorithm
to decide whether a matrix K is non-cyclic or not, and in particular non-cyclic implies
(A1). Note also that if the dilution rate, feed rate and gaseous outflow rate in the first



equation in (1.1) are zero, and (A1) is satisfied, then $47 z(t) =47 K o(z(t),0(t)) < 0.
Hence the process is dissipative and (A1) generalises conservation of mass.
We are now in a position to state and prove the main result of this section. That is, under

the assumptions (A1)-(A2), all concentrations stay within an bounded invariant set for all
t>0.

Theorem 2.1 Consider the process (1.1) satisfying (A1)-(A2). Then for any initial con-
centrations z(0) € RZ,, O(0) € (0,0*], there exists a unique solution of (1.1). This
solution does not exhibit a finite escape time, is bounded, and stays within the positive
orthant. More precisely,

O@t) € (0,0*] and x(t) € {m e R |1z < max{’mi(O),*yTEin}} ViE>0, (2.5)
where

7 = (Eiln, .. ,Ei,?), and " :=sup {x;n(t)‘ t €0, oo)} for i=1,...,n.
Proof: Since the right hand side of the differential equation (1.1) is locally Lipschitz
continuous in (z,0) and piecewise continuous in ¢, it follows from the classical theory of
ordinary differential equations that for any #™(0) € RZ,, O(0) > 0 there exists a unique
solution (z(-),0(+)) : Rsg — R%; x Rsq of the initial value problem on a maximally

extended interval of existence [0, w), where w € (0, o].

We show that the zero-axes of the positive orthant R’;‘gl are repelling.

If O(tp) = 0 for some t; > 0, then by (A2) yields Kop(z,0) = 0, and thus by (1.1) it
follows that O(tg) = kr.O* > 0, whence O(:) = 0 is repelling.

To see that the axes z;(-) = 0,7 = 1,...,n, are also repelling, assumption (A2) is essential.
For a proof see Proposition 6 in Ilchmann and Weirig [11].

Note that if w were finite, then this would not be due to the fact that (z(-), O(-)) is leaving
the positive orthant through the edges, the edges are repelling. Hence a finite w yields
that some components of (z(-),O(+)) tend to infinity in finite time.

We prove boundedness of (z(-), O(:)) on [0,w).

If O(t) > O* +¢ for some t € [0,w) and € > 0, then the second equation in (1.1) yields
O(t) < —¢ k1, and hence O(:) = O* is repelling from above.

To see boundedness of z(-), suppose there exists ¢ € [0,w) such that v"[z(t) — Z™] > 0.
Then there exists € > 0 such that

Yl [z(r) =71 > 0 forall 7€ [t,t+¢),

and hence, by (A1) and (1.1),

d . t+e .
I 7T[a:(7') —z"dr < — D(1) ’)’T[QS(’T) —z"dr < 0.
T t

t+e
Tl —x =
Al +€) — ()] /

Therefore, the bounds in (2.5) hold for all ¢ € [0, w).

Finally, since w was chosen to be maximal and (z(-), O(:)) is bounded, it follows from the
standard theory of differential equations that w = oo. This completes the proof. O



Note that z(t) in (2.5) belongs to a bounded set which depends only on z(0),Z™®, and v. If
estimates of them are known and of O*, then Theorem 2.1 yields immediately a bounded
set containing any trajectory of the system for any piecewise continuous bounded D(-).
This is summarized in the following corollary.

Corollary 2.2 Consider the process (1.1) satisfying (A1)-(A2). If B C RZ; x Ryq x

RY, x RY, is a bounded set and (:E(U), O*,Ei“,*y) € E, then this set determines another
bounded set B C RZ; x R.q, such that,

(z(t),0(t)) e B forall t>0. (2.6)

B is independent of the choice of the piecewise continuous, bounded dilution rate D(:) in
(1.1). |

3 Adaptive \-setpoint control of external substrates

In this section we study the adaptive A-setpoint control of an external substrate, the
output variable to be controlled. A substrate x;(-) of the reactor model (1.1) is deemed
external if, and only if,

le U Sub; \ U (Aut; U Prod;). (3.1)
j=1 j=1

We need to assume the following assumptions on the reaction rates with B as given in (2.6).
(A3) P; > sup {o; (m,O)‘ (z,0) € B} are known for all j=1,...,m.

Assumption (A3) is crucial for estimating the saturation bound. The need of this condition
is not surprising, the faster the reaction rates, the more flexibility is needed in the input,
and since the system parameters are not estimated in our setup, at least a rough upper
bound for the reaction rates must be known. The set B in Corollary 2.2 might be well
known in applications, and an upper bound ©; can be determined.

We are now in a position to prove the main result of this section.

Theorem 3.1 Consider the process (1.1) satisfying (A1)-(A3) with B and B as given in
Corollary 2.2. Let z;(-) be an external substrate and suppose the following feasibility
condition holds

. . Zm—l ‘kl]‘|¢- + @fTrer — Al
inf m = gl — D b'e = i .
%IZIU {ml (t)} X > Tref A > 0, max > gin _ [wref _ )\]

(3.2)



Then the application of the A-tracker (1.2) to (1.1) yields, for any initial data (z(0), O(0)) €
l?, k(0) > 0, a closed-loop system with unique solution

(x()ﬂ O()7 k()) : RZO — B x RZO
defined on the whole time axis R>¢ and, moreover,

(i) tlim k(t) = ks € R>q, 1i.e. the gain adaptation converges,
—00 -

(ii) 1tlim dist (ml(t), [Tref — A, Tpet + )\]) = 0, 1i.e. the external substrate z;(¢) tends to
—00

the A-neighbourhood of the reference setpoint z.r as t — oc. O

Proof: Since the right hand side of the closed-loop system (1.1), (1.2) is locally Lipschitz
continuous in (z,0) and piecewise continuous in ¢, it follows from standard theory of
ordinary differential equations that there exists a unique solution (z(-),O(:),%k(-)) on a
maximally extended interval of existence [0,w), w € (0, oc].

By Theorem 2.1 (z(-),O(-)) is bounded, and so k(¢) as the integral of a bounded function
cannot exhibit any finite escape time. Therefore, w = oo, and applying Theorem 2.1 again
yields

(z(2),0(t),k(t)) € RZy x Ryg X Ry forall ¢>0.

Next we prove boundedness of k&(-).
In passing by note that by (3.1) and (2.3) we have k;; <0 for all j = 1,...,m, and hence
(1.1) gives

iy(t) = =) Ikle; (x(1), 0() = D(t) wi(t) = quaa(t) + D(®) 2 (). (3.3)
j=1

Now suppose that
there exists ' > 0 such that k(') > Dmax/). (3.4)
We show that there exists a finite time ¢ > ¢ such that
z1(t) € [Tret — A, Tref + A for all ¢ >t (3.5)
If 2)(t) > Zwer + A and ¢t > t', then by (3.4) it follows that —k(t)[z;(t) — zret] + D* <
—k(t)A + D* < 0, and thus D(t) = 0, so that (3.3) yields,

1(t) = =Y kusleps (2(8), O(1) — qra(t).
j=1

Since by (3.1) there exists jo such that [ € Subj, (2.3) yields k;;, < 0 and hence

1(t) < —lkijolojo (2(2), O(2)).

Now an application of LaSalle’s Invariance Principle (see e.g. the version in Knobloch and
Kappel [14] shows that z;(t) decreases into the A-strip.



If 2)(t) < Zper — A and ¢t > ¢/, then by (3.4) it follows that —k(t)[z;(t) — Zret] + D* >
E(t) X + D* > Dpax, and hence D(t) = Dpax. Now (3.3) yields

m
fil(t) > — Z |klj‘¢j - [Dmax + QZ] [fEref - >\] + Dmax E}n’
j=1

and by (3.2) it follows that there exists € > 0 such that i;(¢) > e. This proves (3.5).

Now we are in a position to prove boundedness of k(-). If (3.4) is satisfied, then by (3.5),
x)(t) reaches the interval [Tpef — A, Zrer + A in finite time, and stays within the interval
after that. By the gain adaptation (1.2) this implies k(t) = k() for all ¢ > £, whence
boundedness of k(-). If (3.2) is not satisfied, then £(-) is obviously bounded.

Claim (i) of the theorem is a simple consequence of monotonicity of ¢ — k() and bound-
edness of k(-). It remains to prove (ii).
Using the distance function

=X, nl > A

dr(-) : R = Ry, n—dy(n) = { 0 il < A

it follows from the gain adaptation in (1.2) that (ii) is equivalent to dy(e(-)) € L"(0, oo; R).
Since t +— e(t) is absolutely continuous, and 7 — dy(n) is absolutely continuous and of
bounded variation, it follows (see e.g. Hewitt and Stromberg [9]) that ¢ — d)(e(t)) is
absolutely continuous. Hence for almost all ¢ > 0 we have

t g dale(t) < let)] .

Now boundedness of ¢ — % dx(e(t)) together with dy(e(")) € L7(0,00; R) allows to apply
Barbilat’s lemma (see, e.g., Khalil [13]) to conclude that lim;_, dx(e(t)) = 0, whence (ii).
This completes the proof of the theorem. O

Remark 3.2  Note that the assumption of Theorem 3.1 that xz;(-) is an external variable
implies that k;; < 0 for all j = 1,...,m and that kj;, < 0 for some jo. An immediate
consequence of this is that a smoothened version of the “bang-bang” control law

Diax, if x1(t) < Zret
D(t) _ a l( ) ()
0, it 2(t) > Tref

should also meet the control objective. This might help to stress the consequence of the
assumption.

Finally, we also consider a non-adaptive version of (1.2) where the time-varying k(t) is
replaced by some constant &’ > 0. Although this non-adaptive strategy is restrictive since
k' needs to be sufficiently large, the result is worth knowing due to its simplicity. Further-
more, we give explicit lower bounds in terms of weak systems data, and it is ensured that
the external substrate enters and stays within the A-strip around the reference setpoint
after finite time.
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Theorem 3.3 Let D* € [0, Dyax) and suppose
k’ Z Dmax/)\ (36)

is known additionally to the assumptions in Theorem 2.1, then the non-adaptive feedback
controller

D(t) = Sab[0, Dmax] (kle(t) + D*) (3.7)

applied to (1.1) yields, for any initial data (z(0), 0(0)) € B, k(0) > 0, a closed-loop system
with unique solution
(#(-),0() k() : Rg — B x Rxg

defined on the whole time axis R>g. Moreover, there exists t > 0 such that

z1(t) € [Tret — A, Tyet + Al for all t > 1.

Proof: Since (3.6) ensures that the condition in (3.4) is satisfied, the proof is a straight-
forward simplification of the proof of Theorem 3.1. It is omitted. O

Remark 3.4 The adaptive A-tracker (1.2) and the non-adaptive feedback controller
(3.7) are simple in its design. However, they contain design parameters which should be
carefully chosen when the feedback controller is applied to a real process. Dyax depends
not only on the feasibility condition (3.2) but also on the physical limitations of the
actuator. When both conditions are compatible (i.e. the actuator limit is higher than
the bound obtained by (3.2)) one should choose D,y close to the actuator upper bound.
This makes the control input smoother. To specify A appropriately one need to know
in advance an estimate about the upper bound for the magnitude of the measurement
accuracy and noise. The power r in the gain adaptation in (1.2) determines the speed of
the adaptation. If the difference of (|e(¢)| — A) is smaller 1, then the bigger r > 1 is the
slower k(t) increases; if the difference is bigger than 1, then the bigger r is the faster k(t)
increases. Similar effects, but not in such a nonlinear way, can be achieved by varying é or
the initial gain £(0). D* is an input reference, an appropriate choice might be known from
experiments with constant feedback. The role of all these design parameters is further
illustrated in the simulations of the baker’s yeast process in Section 5.

4 Baker’s yeast fermentation process

The following kinetic model for cellular productivity of a continuous culture of Saccha-
romyces cerevisiae, more commonly known as baker’s yeast, was introduced by Sonnleitner
and Kéappeli [16], and since then it has been used by numerous authors, see [4, 6, 15], and
Sweere et al. [17], to name but a few. The dynamical model is obtained from a mass
balance of the components, and it is assumed that the reactor is well mixed, the yield
coefficients are constant, and the dynamics of the gas phase can be neglected. The yeast

11



fermentation goes through tree pathways: sugar oxidation, ethanol oxidation and sugar
fermentation with ethanol as an end product.

We do not model this as a fed-batch process, but in continuous mode operation. Thus
this process can be described in the form (1.1) as follows.

S — 0o - S 0 DS
X cc11 c 0013 (5. 0) X 0 0
di = 21 22 23 ua(S,0,E) | X — D — +
t1c €31 €32 €33 (5.0) C Kkco, C 0
FE 0 —C49 C43 A FE 0 0
Ml(Sa O)
140 = [-co1, —co2, 0] | p2(S,0,E) | O =D O + k1, [0* = O],
:u?)(Sa O)

where the state variables are
S(t) glucose (substrate) concentration in the reactor at time ¢ (the output),
X(t) yeast concentration in the reactor at time ¢,
C(t) dissolved carbon dioxide concentration in the reactor at time ¢,
E(t) ethanol concentration in the reactor at time ¢,
O(t) dissolved oxygen concentration in the reactor at time ¢,

and further variables and constants are

D(t) dilution rate considered as the input,
¢ij > 0 stoichiometric (or yield) coefficients, corresponding to the production
of one unit of biomass (i.e. yeast) in each reaction,
S glucose concentration in the feed,
kLa|O* — O(t)] gaseous oxygen transfer rate O(¢) with oxygen mass transfer constant
kLa and equilibrium concentration of dissolved oxygen O*,
kco, C(t) gaseous carbon dioxide outflow rate proportional to C(¢).

The main objective is to keep the glucose concentration, which is considered as external
substrate, close to the reference value using the dilution rate as manipulating function.
For technical reasons, the input must be bounded.

The model is based on a limited oxidation capacity, which is a function of the oxygen
concentration in the liquid phase, see Sweere et al. [17]. If the oxidation capacity is
sufficiently high to oxidize all glucose consumed, then no ethanol is produced. If in this
situation the ethanol is present in the medium as well, then co-consumption of ethanol is
possible. If not, then all glucose can be oxidized and the surplus glucose will be consumed
according to the reductive metabolism, resulting in ethanol formation.

The process of yeast growth on glucose with ethanol production is described by the fol-
lowing three metabolic reactions. All constants involved are positive.
The reaction rate of the respiratory growth on glucose respectively the specific growth rate
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is

—1gs,max S 0] if (s, max S < (c,max

c L O
11 S+Ks O+K.’ S+Ks —
@1(5707)():“1(5’0))(7 Ml(sao): ’ ‘
c—l Qc,max o] if (s, max S > Qc,max
11 a O+K.’ S+Ks = a

where gs max and ge.max are the maximal specific uptake rates of glucose and oxygen, K
and K, are the saturation parameters for glucose uptake and oxygen uptake respectively,
a=co1 cfll is the stoichiometric coefficient of the oxygen.

If the oxidation capacity is sufficiently high to oxidise both ethanol and glucose, then

their co-consumption is possible, see Sweere et al. [17]. The reaction rate of therespiratory
growth on ethanol and the specific growth rate is

He max E K, O

p2(8, X, B,0) = 1a(8, B,0) X, 12(8, F,0) = 20 o= O+8,

where fie max is the maximal specific ethanol growth rate, K; is the inhibition parame-
ter (free glucose inhibits ethanol uptake), K, is the saturation parameter for growth on
ethanol, and (3, is the saturation parameter for the free respiratory capacity available.

Finally, the reaction rate of the fermentative growth on glucose respectively the specific
growth rate is

c—l (s, max S K. if Gs,max S < Qc,max
13 S+Ks O+K.’ S+Ks — a
e3(5, X,0) = p3(5,0) X,  u3(S,0) = 1 S S
co Gs,max > _ {gc,max [0 if (s, max > Gc,max
13 S+K, a O+K. |’ S+Ks — a

The process consists of 3 reactions involving 5 components (z,0) = (S, X,C, E, O), i.e.
the concentrations in the liquid phase of the reactor. Using the notation introduced in
Section 2, we see that

Ly ={1,6}, Lo =4{4,5}, L3={1}, R ={2,3} =Ry=1{2,3}, Rs=1{2,3,4},
Cat; =0, Aut; ={2} for §j=1,2,3
Sub; = {1,5}, Suby ={4,5}, Subg= {1}, Prod; =Prody ={3}, Prods = {3,4}.

From (3.1) we see that possible external substrates are z; and z5. Since the oxygen
transfer rate is not proportional to the dilution rate which is crucial for Theorem 3.1 (see
(3.3)), we choose S(t) as external substrate and | = 1.

We are now in a position to factorise the reaction rates as in (2.4). Since Aut; UL =
{1,2,5}, setting

0;11 (Qs,max if (Qs,max S < Qc,max
0(S,0) = | OFFeSHRS StK, =" a
2 - —
Cy 11 Qc,max lf (Qs,max S > Qc,max
O+K. S-a S+Ks = a

yields
01(8,0,X) = an(5,0) [ = = aa(8,0)-S-0-X.

i€Auti ULy
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Since Auty ULy = {2,4,5}, setting

Me,max Ky 1

B) —
2($0.F) = 4 ST K, 014,

yields

02(S,0,X,E) = 03(5,0,E) [[ i = (S0,E)-0-E-X.
i€AutoULy

Finally, since Auts U L3 = {1, 2}, setting

01_31 K. (s, max if Gs,max S < gc,max
(S O) O+K. S+Ks° S+Ks — a
a3 =
’ 071 gs,max __ o] dc,max lf (s, max S > gc,max
13 \ S+ K, O+K. S-a ’ S+Ks = a

yields
03(8,0,X) = a3(5,0) J[ = = as3(5.0)-S-X.

i€AutsUL3

We check assumptions (A1)-(A3):

(A1) is immediate from the special form of K in (4.1).

(A2) follows from the above factorisations and since Ko = [—cg1, —cp2, 0].

(A3) requires that for each ¢, (zp, O) an upper bound is known. The three reactions of the
process (4.1) are autocatalytic and therefore the reaction rates are of the form ¢;(z,0) =
pi(z,0)X, j = 1,2,3. Since the growth capacity of a population of microorganisms is
strongly limited, the specific growth rates are bounded. The upper bounds are

Ml(Sa O) < 1= 01_11 @7 :UQ(Sa Ea O) < fho 1= He,max; ,ug(S, O) < H3 = 01_31 @'
Usually, the exact values of these parameters are not available but the range of their
variations is well known, see Sonnleitner and Képpeli [16]. Therefore the maximal growth
capacity of the yeast population in each reaction is known. Furthermore the upper bound
of the biomass concentration X is usually known in applications, see [4, 6]. Hence,
@ > ﬂjy are known for j = 1,2, 3.

By the above findings, the model of the baker’s yeast fermentation process is a special case
of the general model of bio-chemical aerobic processes analysed in Section 1 and 2, and
meets the assumptions required for the adaptive setpoint control introduced in Section
3. Therefore, in the following Section 5 we will illustrate how the A-tracker works when
applied to (4.1).
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5 Simulations

In this section we simulate the application of the A-tracker (1.2) to the baker’s yeast
fermentation process (4.1). The output variable to be regulated within a neighbourhood
of a constant concentration is the glucose concentration. The following kinetic data are
taken from Sonnleitner and Képpeli [16].

gs,max = 3.5 [gglucg]giimasshil]a qc,max = 0.256 [go2 ggi(l)masshfl], He,max = 0.17 [hil];
K,= 02 [ggluc/l]a K.= 0.0001[go, /1], K.= 0.1[g/l],
K; = 0.1[g/l], a= 0.4142[go, /ggluc]a Bo = 0.003 [mg/l1],

where ggluc, go2 and gpiomass denote gram glucose, gram oxygen, and gram biomass re-
spectively.

The constant yield coefficients are chosen as in Pomerleau and Perrier [15], so that the
stoichiometric matrix K and the vector Ko are

—2.04 0 -20

1 1 1
K =1,53 09 o009 Ko = [-0.83, —1.56, 0].
0 —1.39 10

Following Feyo de Azevedo et al. (1992), the other constant process parameters are set
kra = 100[h71],  O* =0.007[g/l], Sin = 10[g/1].
The initial values of the state variables are

S(0) =0.95, O(0) =0.0066, X(0)=0.1, C(0)=0.000325, E(0)=0.0001 [g/I].

The control objective is to regulate the glucose concentration S(t) into a A-neighbourhood
of the reference concentration S, = 0.05. The tolerated error arround the reference
should be below 5%, and hence we set

A = 0.0025.

According to Theorem 3.1 we need to determine an upper bound of the input saturation
Dpax. Recall that [ = 1. Hence by the zero entries of K we need to determine upper bounds
of the first and third reaction rate. Sonnleitner and Képpeli [16] allow the parameters to
vary within the following ranges

0.24 < Geymaz < 0.264, 047 < ¢! 0.5, 0.05 < c3 <0.1.

Arilpper bound for the biomass concentration, taken from Feyo de Azevedo et al. (1992),
is X =3 [g/1]. Hence the reaction rates are bounded by

01(S,0,X) < 03187,  3(S, X,0) < 0.0637.

Now it is easy to see that the fraction on the right hand side in (3.2) is 0.3842. Therefore,
we may choose Dpax = 0.385 satisfying (3.2).
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If the design parameters of the A-tracker (1.2) are A < 1 and r = § = 1, then for small
error the growth of ¢ — k() is “slow”; it is even slower if » > 1. To fasten this up, one
has to increase d. For this reason we choose § = 45, r = 1.

Adaptive \-tracker (1.2) with different offsets applied to (4.1): The simulations
show that the A-tracker is successful and what the effect of different design parameters is.
In the first run of simulations, depicted in Figure 2, we choose the offset to be D* = 0
(solid line). The gain increases rapidly until it is sufficiently large after 2 1/2 hours so
that the substrate is forced into the A-strip (dotted line) around the reference setpoint.
The simulations are performed over a period of one day, and the figures are divided into
an initial phase of 4 hours and the remaining 4-24 hours. Since S(t) remains inside the
A-strip after ¢ = 3 hours, the gain stays constant and also longer simulations have shown
k(3) = k(200) = 49.73. Note also that S(¢) as well as the control action D(t) behave
smoothly without any overshoots. Moreover, D(t) does not reach the upper saturation
bound. In a second run we change the offset to D* = 0.2 (dashed line). One may think
that this should give a better behaviour since D* = 0.2, also depicted in Figure 2, is
close to the steady state value observed in the previous simulations. Although the results
are not significantly different, the large substrate concentration at the beginning leads to
a fast decrease of the dilution rate within 1/2 hour, and from then on the behaviour is
similar to the first simulation. This different initial period has the effect that the error
is larger, leading to a slightly larger gain k(24) = k(200) = 50.42, and this larger gain
forces the substrate closer to the reference setpoint than in the first simulation. The same
effect could also be achieved by a higher initial adaptive gain k(0), but this leads to a
considerably larger terminal gain. The dashed line in Figure 3 shows the trajectories of
k(t), S(t) and D(t) when k£(0) = 25 and D* = 0. For comparison the solid line depicts the
case when k(0) = 0 and D* = 0.2.

The effect of varying r depends on (|e(t)] — A). If this difference is bigger than 1, the
gain k(t) increases rapidly when r increases and the terminal gain might become much
larger than actually needed for the control objective. If the difference is smaller than one,
the increase of k() is more moderate. This is a illustrated in Figure 3 where satisfies
(|S(t)] = A) < 1 for all ¢ and the output S(¢) enters the A-strip at about ¢ = 7 hours if
r =1 and at £ = 11.5 hours if r = 3.

The other variables - biomass, ethanol, oxygen, carbon dioxide - reach a 5% neighbour-
hood of their steady states within 17, 30, 15, 15 hours, respectively (see Figure 4).

Non-adaptive tracker (3.7) applied to (4.1): In Figure 5 we show the simulations
for the non-adaptive controller (3.7) when applied to (4.1). Again, we choose D* = 0 and
all the other data as in Figure 2. According to (3.6), the constant gain parameter is set
k' = Dmax/X = 154. This conservative bound is more than three times higher than the
terminal high-gain parameter k(oc) = 49.73 found adaptively. The undesirable effect of a
"large” gain is the higher frequency (chattering) in the dilution rate, see Figure 5. This
observation motivates the use of the adaptive gain controller in preference to the fixed
gain controller.

Adaptive A-tracker (1.2) with noise corrupting the output and applied to (4.1):
The A-tracker (1.2) can cope with noise corrupting the output measurement, provided the
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amplitude of this noise is sufficiently small in terms of the A-strip and the feasibility
condition. In this case the measured error becomes

e(t) = zi(t) — Trer + (1),

where the noise n(t) : R>g — Rx¢ is a bounded continuous function. If we set 7 :=
sup;~q |n(t)|, then it can be shown that z;(¢) tends to [Zyef — (A + 1), Zper + (A +n)] as ¢
goes to infinity. We omit the exact statement and proof of an analogous Theorem 3.1, it is
very technical. Instead, we illustrate robustness of the A-tracker with respect to stochastic
noise (normal distribution, zero mean, variance one) corrupting the output measurement.

If the model and design parameters are as in Figure 2, then the A-tracker is not able to
force the substrate into the A-strip, and hence k(¢) grows unboundedly. The reason is
that the stochastic measurement noise is too large in amplitude and too vivid. We do
not depict these simulations. However, if we allow 10% tracking error, i.e. A = 0.005,
then the simulation results are quite satisfactory, see Figure 6. Certainly, since the noise
is corrupting the measurement, the control action is directly affected and hence corre-
spondingly vivid. The A-tracker regulates, as desired, the external substrate arround the
setpoint. In this set of simulations we have also shown the effect of slowing down the gain
adaptation by decreasing § = 45 (solid line) to 6 = 33 (dashed line). § = 45 leads to a
higher £(¢), and this amplifies the noise so that the control action is more vivid as well
as temporary spikes in the glucose concentration occur. These observations hold also true
over the longer period of 48 hours, what can be readily seen in Figure 7 and 8. Compared
to the simulations without noise, the gain terminates at the same order of magnitude and
the transient behaviour of the substrate, although not quite smooth, is kept in the A-strip.
Note that D(¢) is depicted in Figures 7 and 8 over a shorter time (24-30 hours) to give
a better view on the actual input trajectory. Although the control effort is considerably
more vivid than in the noise free case, which is not surprising since the measurement noise
has a direct influence on the control, it is still realisable as a physical actuator. The other
variables, i.e. biomass, ethanol, oxygen, carbon dioxide are depicted in Figure 9.

6 Conclusions

In this paper, control of a wide class of aerobic continuous stirred tank reactors has been
achieved by a proportional error feedback controller with input saturations, where the gain
is found adaptively. It is proved that regulation of external substrates to a neighborhood
of a constant reference concentration is possible under mild conditions. We have also
worked out structural conditions of the general process model which are essential when
exploiting them mathematically. As a side result we show that proportional non-adaptive
error feedback subjected to saturation is possible for the class of systems provided the
system data satisfy a crude estimate. However, adaptive A-tracking results in a much
lower gain.

A-tracking requires only very limited information of the system data and it readily toler-
ates noise corrupting the output measurement. The only price to be paid is that setpoint
tracking is not achieved asymptotically but in a neighbourhood of the setpoint. However,
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the neighbourhood is prespecified and arbitrarily small, which suffices for practical pur-
poses.

Another advantage of the A-tracker over other approaches on control of biotechnological
processes, such as PI or PID controllers as for example in Dairaku et al. [5], or adaptive
linearising control relying on system parameters or invoking estimators for the system
parameters (see for example Chen et al. [4]), is its simplicity. However, the ”closer” one
comes to reality the more tuning of the design parameters in (1.2) is required.
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Figure 2: k(t), S(t) and D(¢) for (1.2) applied to (4.1), 6 =45, r = 1, A = 0.0025, D* = 0.2

(dashed line), D* = 0 (solid line)
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Figure 3: k(t), S(t) and D(t) for (1.2) applied to (4.1), § = 45, A = 0.0025, r = 1,

D* = 0.2, k(0) = 0 (solid line), r = 1, D* = 0, k(0) = 25 (dashed line), r = 3, D* = 0.2,
k(0) = 0 (dotted line)
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Figure 4: X (¢), E(t), O(t) and C(¢t) for (1.2) applied to (4.1), 6 =45, r = 1, A = 0.0025,
D*=0.2

1 0.07
0.8t
0.06
0.6
= Soos
0.4yt
0.04
0.2t
ob— ] 0.03
(o] 1 2 3 4 5 10 15 20
0.3 0.3
0.2t
= =
0.1+t
(o]
—0.1 —0.1
(o] 1 2 3 a4 5 10 15 20

Figure 5: S(t) and D(t) for (3.7) applied to (4.1), A = 0.0025, D* =0, and k' = 154
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Figure 6: k(t), S(t) and D(t) for (1.2) applied to (4.1) in the presence of noise, r = 1,
A = 0.005, 6 = 45 (solid line), § = 33 (dashed line)
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Figure 8: k(t), S(t) and D(24 — 30) for (1.2) applied to (4.1) in the presence of noise,
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Figure 9: X (t), E(t), O(t) and C(t) for (1.2) applied to (4.1) in the presence of noise,
r=1, A =0.005, 6 =33, ¢ = 48[h]
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