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1. Introduction

The concepts of passivity and dissipativity have
received considerable attention in the last decades.
Dissipative systems present highly desirable stability
properties, which may simplify analysis and controller
design. A dissipative system is a system which cannot
store all the supplied energy, i.e., it dissipates energy.
A dissipative system is characterized by the existence
of a storage function and a supply function.

The first ideas of passivity emerged in the field of
circuit theory, from the phenomenon of dissipation
of energy across resistors see, e.g., Zames [34]. The
formal definitions were introduced by Willems [32] in
the early 1970s in terms of the storage and supply rate
functions. A different research line was initiated by
Wu and Desoer [33], cast in terms of the system
input—output properties from a general operator
theory viewpoint. A significant advance was made by
Popov [24], who established passivity as an important
feedback property using the concepts of hyperstability
and absolute stability. The extension of dissipativity
results to nonlinear systems which are affine in the
control input was given by Hill and Moylan [6,7,18].

The most important formalization of the
characteristics of a passive system is the Kalman-
Yakubovich—-Popov (KYP) property or the KYP
lemma. Although originally the KYP lemma estab-
lished the connection between passivity conditions
(i.e., a set of properties that any passive system fulfils)
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and positive real transfer functions (see e.g., Khalil
[10]}, the denomination of KYP property has been
adopted to address the set of necessary and sufficient
conditions that a passive system satisfies, irrespec-
tively of its linear or nonlinear character. In the
sequel, we use the KYP denomination in this sense.

As dissipative and passive systems have very inter-
esting properties, a natural motivation is to trans-
form a system which is not dissipative or passive
into a dissipative or passive one. The action of ren-
dering a system dissipative (respectively, passive) by
means of a static state feedback is known as feedback
dissipativity (respectively, feedback passivity or passi-
vation). Systems which can be rendered dissipative
(respectively, passive) are regarded as feedback dis-
sipative (respectively, feedback passive} systems. The
problem of feedback passivity was first posed and
solved by Kokotovi¢ and Sussmann [11] introducing
the concept of feedback positive systems, The study
of feedback passive systems is given by the work of
Byrnes et al. [1], where necessary and sufficient con-
ditions for passivation of nonlinear affine-in-control
continuous-time systems are established in terms of
the system’s relative degree and zero dynamics. These
results were later extended by Santosuosso [25] to
systems having an affine feedthrough term between
the input and the output. An alternative approach to
the one presented by Byrnes for solving the passiva-
tion problem is presented by Sira-Ramirez [30].
Interesting surveys of passivity and passivation
properties and their implications in dynamical systems
and in connection to the stabilization problem are
given in Sepulchre et af, [28), van der Schaft [26],
Ortega et al. [22] and Fradkov and Pogromsky [4].

All the aforementioned passivity-related results are
cast in the context of affine-in-control continuous-
time systems. The non-affine continuous-time case is
examined in Lin [14,17], where necessary conditions
for a non-affine nonlinear continuous system to be
passive are given. Furthermore, passivity properties
are used in order to achieve asymptotic stabilization,
The use of passivity for the stabilization of non-affine
systems is also addressed in Shiriaev [29] by means of
the P-detectability concept, a generalization of zero-
state detectability [1]. Moreover, the problem of pas-
sivation is solved by means of the speed-gradient
algorithm [4). Another recent approach which moti-
vates this work is the one given by Sira-Ramirez and
Navarro-Lopez [31].

Concerning the extension of dissipativity and
passivity for the nonlinear discrete-time case, several
approaches can be distinguished. The initial
results were given by Wu and Desoer [33) in terms of
input—output properties, connecting passivity with

E. M. Navarro-Lope: et al.

feedback stabilization. Most of the available results
referring to passivity in the discrete-time domain are
given by Byrnes and Lin [2,3,15,16] and can be con-
sidered as the extension of the philosophy underlying
Byrnes ¢t af. [1]. They give necessary and sufficient
conditions for an affine-in-control discrete-time non-
linear system to be lossless and feedback lossless via
a static state feedback. A characterization of affine
discrete-time passive systems is also presented [2].
Necessary conditions for a system to be passive are
proposed in a different line in Lin and Byrnes [3],
which are generalized for the non-affine case [14].
Connections between passivity and stabilization are
given in Lin and Byrnes [3,13,15,16]. Sengér and
Goknar's [5,27] provide a KYP Lemma for
dissipativity and losslessness for discrete-time affine-
in-control nonlinear systems. They use the definition
of gradient-like functions and adapt the necessary and
sufficient conditions for dissipativity proposed in Hill
and Moylan [6]. Another approach to passivity in the
discrete-time case is represented by the work of
Monaco and Normand-Cyrot [19]. They obtain the
KYP conditions for general non-affine discrete non-
linear systems which can be expanded by exponential
Lie series.

For the discrete-time case many dissipativity-
related problems remain unsolved. The main problem
being the establishment of conditions for a discrete-
time system to be rendered dissipative or passive via
state feedback. The only results referring to feedback
dissipativity in nonlinear discrete-time systems are the
ones related to making an affine-in-control system
lossless by means of static state feedback using the
properties of the relative degree and zero dynamics of
the system [3].

The purpose of this paper is twofold. First, we will
give some properties for dissipative and passive non-
linear discrete-time systems and an implicit solution
for feedback dissipativity and passivation problems.
Second, these results will be used to tackle the stabi-
lization problem. The stabilization procedure will
be an extension of the Energy Shaping plus Damping
Injection (ESDI} methodology existing for the
continuous-time nonlinear case (see [23,30]).

The paper is organized as follows. Section 2 deals
with several topics. First, the basic definitions about
dissipative systems and feedback dissipative systems
for the discrete-time case are revisited. Second,
necessary conditions for the characterization of a
class of dissipative systems, in addition to necessary
and sufficient conditions for the characterization of
Quadratic Storage Supply lossless systems are derived
for the non-affine case different to the ones presented
in the literature. Third, sufficient conditions under
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which a class of non-affine discrete-time control sys-
tems can be rendered dissipative are posed. Finally,
stability properties of a class of dissipative and feed-
back dissipative systems are examined. Section 3
presents the extension of the ESDI design method to
nonlinear discrete-time systems. Section 4 presents the
application of the ESDI to a discrete-time model for
the DC-to-DC buck converter. Conclusions and sug-
gestions for further research are presented in the last
section.

2. Dissipativity and Passivity of General
Discrete-Time Nonlinear Systems

2.1. Generalities

Let nonlinear single-input single-output discrete-time
systems of the form

x(k + 1) = f{x(k), u(k)),
XeX CH, e CA, (N

yk) = h(x(k).u(k)), ye¥ CR, (2)

where 1 ¥ x % - ¥ and h: & x % — % are smooth
maps. ke Z,:=1{0,1,2,...}. All considerations
will be restricted to an open set of & x % containing
(%, i), having X as an isolated fixed point of f{x, ),
with # a constant, ie., f{%,#) = X. We consider a
positive definite 4~ function V: % — # associated
with the system (1)-(2) and addressed as the storage
Junction. Function V is considered to have a strict
local minimum in X, i.e., there exists an open neigh-
bourhood & of x such that V(%) < V(x),VvxeZ. A
second %> function is also considered, called the
supply  function, denoted by s(y,u), with
51 ¥ x Y - R

Definition 2.1. The supply function s(y,#) is said to

satisfy the zero-input-output (ZI1O) property if
s(0,) =0, Yue, 3)
s(r.0) =0, Yve®.

Definition 2.2, A €' function ¢: & x % — #, such
that ¢(-, 4) is positive (respectively, strictly positive)
for each v € %, with (%, &) a strict local minimum of ¢
is regarded as a dissipation rate (resp., strict dissipa-
tion rate) function in the sense proposed in Hill and
Moylan [7}.

The dissipativity definition in the discrete-time
nonlinear setting given in Byrnes and Lin [3] will be
rewritten in the following way.

Definition 2,3. The system (1)—(2) with storage func-
tion V(x) and supply function s(y,) is said to be
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(V, s)-dissipative (resp., strictly (V, s)-dissipative) if
there exists a dissipation rate (resp., strict dissipation
rate) function ¢ such that

V(f(x,u)y— Vix}= s(h{x,u),u) — ¢(x,u),
Yix,u) €& x % (4)

Definition 2.4. The system (1)-(2) is said to be
V-passive if it is (V) s)-dissipative with respect to
the supply rate s(y, )= yu. The system is said to be
(V. s)-lossless if ¢{x,u) = 0,¥(x,u) € ¥ x U.

(V, s)-dissipativity and V-passivity have immediate
consequences referring to the stability of the system
when no control is applied and the stability of the zero
dynamics, as it will be illustrated in Theorem 2.6.
Lyapunov’s Stability Theorem for discrete-time sys-
tems is presented, since it will be used in the sequel.

Theorem 2.5. (LaSalle [12] Lyapunov’s Stability
Theorem). Consider a discrete-time system of the
form x{k + 1})=Afx(k)). Let ¥ be a fixed point of
the system. The system dynamics will be restricted to
a neighbourhood S of ¥ € #*, f: §— §. Suppose that
there exists a continuous, positive definite function
V:S—o#%, with V(x)=0. If Vix(k+1)-
Vix{k)) <0,¥x € S, then X is a stable equilibrium
(if V{x{(k+ 1)) — V{x(k)) <0, then % is asymptoti-
cally stable). :

Theorem 2.6. For (V,s)-dissipative systems with
positive definite storage functions and supply func-
tions satisfying the ZIO property, the fixed point, x,
of the zero-input dynamics x(k+ 1)=Aflx(k),0) is
Lyapunov stable (resp.. asymptotically stable if the
system is strictly (V,s)-dissipative). Similarly, if
the output y of this class of dissipative systems is held
to be zero in an indefinite fashion by means of an
appropriate control input, then the zero dynamics is
Lyapunov stable (resp., asymptotically stable if the
system is strictly (V, s)-dissipative).

Proof. These statements can be proved restricting (4)
for u=0 in the first case and for y=0 in the second
one, and considering conditions (3) in addition to
Lyapunov’s Stability Theorem 2.5. O

2.2. Towards the Characterization of General
Discrete-Time Dissipative Systems

The properties that a system has to meet in order to be
dissipative or passive are usually known as the KYP
conditions. The KYP conditions were originally esta-
blished in the discrete-time domain by Hitz and
Anderson [8] for the linear case as the Positive Discrete
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Real Lemma. In the literature, the KYP conditions
have not been established in a general way for dis-
sipative or passive nonlinear discrete-time systems of
the form (1)-(2). There exist necessary and sufficient
conditions for characterizing passive nonlinear
discrete-time systems of the affine form x(k+ )=
(k) + g(xkDu(k), pik) = hix(k)) -+ J(x(kDu(k), pre-
sumed the stored energy function V satisfies V(f{x) +
g(x)u} is quadratic in u [2). Necessary conditions for
systems of the form (1)-(2) to be passive are stated in
Lin [14]. Moreover, the necessary and sufficient con-
ditions for dissipativity in the discrete-time setting
appearing in Goknar and Sengér [5] are proposed for
affine-in-control system structures as well.

We remark that, in the literature, the KYP
denomination is usually used for the set of properties
for dissipative or passive systems characterization,
even if they are only necessary conditions. In this
sense, we propose the following conditions, which are
fulfilled by any nonlinear discrete-time dissipative
system of the form (1)—(2). The corresponding result
for passive systems is obtained taking s = yu.

Proposition 2.7. Let a discrete-time system of the
form (1}—(2) be (¥, s)-dissipative, then

V(f(x,0)) - V(x) < s(h(x,0),0) ()
E?u Vifix,u)) = g-i;s(h(x, w1, u2) e

+ agys(y, ) ‘%h(x, )

- = . ©)

with ¢ a dissipation rate function.

Proof. Inequality (5) follows from (4), taking #=0.
Equality (6) is obtained by taking partial derivatives
with respect to « in Eq. (4). |

Remark 2.8. The necessary conditions for passive
systems of the form (1)-(2) given in Lin [14] are dif-
ferent from the ones given in (5) and (6). In Lin’s
work, the passivity inequality is used and no dissipa-
tion rate function ¢ is introduced.

Conditions (5) and (6) may be rewritten for the
losslessness case in the following way.,

Proposition 2.9. Let a discrete-time system of the form
(1)—(2) be (V, s)-lossless, then

V{f(x.0)} - ¥(x) = s(h(x.0),0) (7)
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a 3]
Ew V(flx,u)) = %s(h(.\, ). t7) =
g J
+ ES(_'I-,H)E}I(,\', u) (8}

If functions V(fix.u)) and s(h(x,u), v) are quadratic
in u, then equalities (7)—(8) yield necessary and suffi-
cient as Theorem 2,11 shows. Therefore, our char-
acterization is restricted to a class of lossless systems.

Definition 2.10. A system of the form (1}- (2) is said to
be QSS (Quadratic Storage Supply)-lossless if it is
(¥, 5)-lossless with a storage function ¥ and a supply
function s such that V(f(x,u)) and s(h(x,u),u) are
quadratic in u,

Theorem 2.11. Let V be a storage function and s be a
supply function such that ¥(f(x,u)) and s(h(x,u),u)
are quadratic in &. Then, a system of the form (1)-(2)
is Q5S-lossless with ¥ and s, if and only if

V(£ (x,0)) — V{x} = s(h(x,0),0) (9)
V(z) ofixu)| B
0z =150} Ou u=0 - bES(h(x‘ u), u) w=0
(10)
(af [x, u)) O] Afix,u)
Ou ey 077 ==f{x.0} Ou [,
N V(z} PAx, u}
oz z=fix ) ou? =0

2
= %s(h(x, ), u)

(1)

w=(}

Praof. The proof follows the one of Theorem 2.6 in
Byrnes and Lin [3].

(Necessity): If the system (1)-(2) is QSS-lossless
with supply function s( v, #), and a storage function V,
then

V{f(x,u)) = Vix) = s(h(x,u),u),
V{x,u) € X x U (12)

Condition (9} is obtained substituting #=0 in (12).
Conditions (10) and (11) follow from the first-order
derivative and the second-order derivative of (12} with
respect to u and taking =0,

(Sufficiency): Since ¥ is a %7 function and V{(f(x, u))
is quadratic in w, the second-order Taylor’s expansion
formula of V{f{x,1)) at u=0 can be considered, and
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using (9)-(11}, one yields to
V(f(x.u)} = V(x) + s(h(x,0),0)
+ %s(h(x, u), u)

=0
u  (13)

3 2
2H *a? X, ). u o

By claiming that s(y, u} is quadratic in u, the second-
order Taylor expansion at ¥ =0 of s(k(x, u}, ) can be
used in {13) and equality (12) is obtained. |

Remark 2.12. Conditions (5)-(6), (7) (8), and
(-(11) are valid for multiple-input multiple-
output systems of the form (1)—(2) with %, % open
subsets of #".

Necessary and sufficient conditions existing in the
literature for lossless multi-input  multi-output
discrete-time systems of the form x(k + 1) = flx(k)) +
glx(kNulkc), y(k) = h(x(k)) + Jx(kDulk) are strictly
contained in Theorem 2.11. For example, conditions
appearing in Byrnes and Lin [3] are obtained taking
s(y,#)=»"u. In order to obtain losslessness conditions
presented in Sengér [27}, the left-hand side of
equality (9) would be F{ f{x) — x) and in (10) and (11),
z= f{x)— x should be considered with V= BT(x) +
x"C(x)x, where B and C are matrices of appropriate
dimensions, and s(y,u)=3"Qy+2v" Su+u" Ru,
where @, R, S are constant matrices of appropriate
dimensions, and (, R are symmetric.

2.3. Feedback Dissipativity and Feedback Passivity

Let o : & x % — % be a ' function. A nonlinear
static state feedback control law is denoted by the
expression ¥ = a(x,v). The system x(k + 1) = flx(k),
a(x(k).v(k))) is referred by the feedback transformed
system, which may be also denoted by x(k + 1) =
Jix(k), v(k)). In addition, A{x, v) denotes the function
Alx, alx, v)).

Definition 2.13. A feedback control law v = a(x,v) is
locally regular if for all (x,v) € & x %, it follows that
dajdv # 0.

Definition 2.14. Consider the system (1)-(2) and two
scalar functions F{x) and s(y, v) as a storage function
and a supply function, respectively. The system is said
to be feedback dissipative (resp., feedback stricly dis-
sipative) with the functions ¥ and s if there exists a
regular static state feedback control law of the form
u=olx,v), with v as the new input, such that the
feedback transformed system is (V,s)-dissipative
(resp., strictly (¥, s)-dissipative).

The following theorem states sufficient conditions
under which feedback dissipativity is possible,
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Theorem 2.15. Consider the system (1)-(2) and two
scalar functions V(x) and s( v, v} as a storage function
and a supply function, respectively. Let ¢(x.u) be
a given dissipation rate function. Let {xg. ug, v} €
& =4 x ¥ x ¥, with .o/ an open set. Suppose that
the following two conditions are satisfied:

1. 3(xp. 4o. o} such that equality (4) holds for
s(y,v), Le.,

V{flxo, uo}} — V{xo)
= s(h{xo, ). o) — @¢{x0, o) (14}

2 { % (V{f(x.u)) — s(h(x,u), v).

+ ¢(x, u)]} (15)

(V. Hp. Vo] #0,

Then, there exists a unique static state feedback con-
trol law of the form u=a(x,v) defined in a neigh-
bourhood of (xq. vp) and valued in a neigbourhood of
uy such that the feedback transformed system
x(k + 1) = flx(k), v(k)), y(k) = h(x(k), v(k)) is (¥, 5)-
dissipative.

Proof. Let & x 4 x % an open set. Consider the fol-
lowing ' function F: & x % x % — # defined by

Flx,v,u) = V(fix,u)) - V(x)
— [s{h(x, 1), v) — o(x, u)) (16)

From condition (14), we have that F(x, vo, ug) =0.
Condition (15) states that 9F/Ju is non-singular at
(xg, vg. tip). Then, by the implicit function theorem there
exist open neighbourhoods 4 C & of x4, %, C % of v,
and %, C % of ugand a unique map G : ¥ x %, — ¥,
such that

Flx,v,G(x,v)) =0, ¥Y(x,v)€X x %.

Thus, the implicit function theorem provides suffi-
cient conditions which guarantee the existence of a
local feedback control law «=G{x,v) for the non-
linear equation (4) to be satisfied with s(y, v); in other
words, the existence of a control which renders
system (1)-(2) (V, s)-dissipative with s(y, v), and v as
the new input is guaranteed. O

Definition 2.16. A system of the form (1)-(2) is said to
be feedback passive if it is feedback dissipative with
Sy, v) =y

Remark 2.17. Note that from Thecorem 2.15 condi-
tions for feedback dissipativity or passivation are the
same as those for rendering a system (V, s)-lossless via
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static state feedback,
Yix,u) e ¥ x .

considering  ¢(x, ) =0,

2.4. Dissipativity, Passivity and Stability

All the results relating stability are given for a class of
dissipative systems with supply function s satisfying
the Z1O property (3).

A nonlinear regular static state feedback controi
law of the form w=a(x,v), which achieves either
(V,s)-dissipativity or strict (V,s)-dissipativity by
means of static state feedback, induces an implicit
damping injection which makes the system locally
stable (resp., locally asymptotically stable if strict
(V, s)-dissipativity is achieved) for certain particular
values of the transformed control input.

Theorem 2.18. Consider the system (1)-(2), and two
scalar functions P{(x) and s(y, v) as a storage function
and a supply function satisfying the ZIO property,
respectively. Suppose X an isolated fixed point for
Ax, i), with & a constant. Let ¢(x, ) be a dissipation
rate (resp., strict dissipation rate) function. Suppose
there exists a feedback control law, = a(x, v}, defined
in an open neighbourhood # =4 x% with
A cu which achieves (V. s)-dissipativity
(resp., strict (V,s)-dissipativity}) of the feedback
transformed system. Consider x = % the unique x for
which V(x)=0 and #(x, a(x,0)) =0. Let ¥ invariant
with respect to x(k+1)= SUx(k), a(x(k),0)) and
(%,i) € #. Then, for all x € &, the control law
u=a(x,0) locally stabilizes (resp., locally asymptoti-
cally stabilizes) the system to .

Proof. Since wuw=o(x,v) achieves strict (V,s)-
dissipativity in an open neighbourhood ¥ = & x ¥ ¢
& x% (the argument is the same for (V,s)-
dissipativity), relation (4) can be considered with
i = alx, v} and s(y, v), then

V(f{x,alx,v))) ~ V(x)
= s(h(x, ax, v)).v) — ¢(x, afx, ), Y{x,v} € #°
(17)
In particular, for v=0 and considering (3), (17)
yields to,

V{f(x,a(x,0))} - Vix)
= S(h(x, O!(-xs 0))90) -
= w:f;(x. a{x, 0)) <0,

$(x, afx, 0)}
Vxed (18)

Taking into account (18) and the fact that x = ¥ is
the unique x for which V(%) = 0 and ¢(%, a(%,0)) = 0,
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the result of the theorem follows from fundamental
Lyapunov’s Stability Theorem 2.5. O

Proposition 2.19. Consider the system (1)—(2) and two
scalar functions ¥(x) and s(». v) as a storage function
and a supply function satisfying the ZIO property,
respectively. Suppose ¥ an isolated fixed point for

S(x,#). Let ¢(x,u) be a dissipation rate (resp., strict

dissipation rate) function. Let V(£)=0 and
$(x,#) = 0. The system (1)-(2) is locally stabilizable
(resp., asymptotically stabilizable) to ¥ by the control
u=a(x,0) with a{x,v) a control law which renders
the system (V,s)-dissipative (resp., strictly (V,s)-
dissipative) if there exist (xp,u0) € ¥ x % and #
a neighbourhood of (xy, up) containing (%, &) for which
the following relations are valid

L V(flxo,u0)} — V(x0} = —¢‘(x0-ﬂ0)s (19)
81/(:) 8
2,
a:, 4_’:‘.")6 ﬂ )+ ¢(Y,H)#0
Y(x,u) € #, (20)
3. % invariant with respect to x(k+1)=

Six(k), adx(k), 0)).

Proof. The result follows from Theorem 2.15 with
v=10 and Theorem 2.18. 0

3. The Energy Shaping Plus Damping
Injection Method

In this section, the passivity-based stabilization
methodology of the Energy Shaping and Damping
Injection (ESDI) is extended to the nonlinear discrete-
time case. The ESDI method consists in modifying
the closed-loop system stored energy and in adding
the required dissipation. In the literature, the ESDI
idea has been applied in two different ways; the main
difference between them is related to the way the
energy shaping is performed. The approach of
Ortega er al. [23] shapes the stored energy of the
system for the desired equilibrium to be the mini-
mum of the new energy function for the closed-loop
system, On the other hand, in the classic passivity-
based control approach Ortega and Spong [21),
the definition of the controller is derived from a copy
of the system with additional damping; here, the
energy shaping is represented by the energy associated
to an error dynamics, the definition of which is
based on the proposal of an auxiliary dynamics,
see e.g., [30,31).

We will adapt the ESDI approach proposed in Sira-
Ramirez and Navarro-Lépez [31] to the discrete-time
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a detectability-type condition. Our proposal is more
practical oriented.

4. Example: a Discretized Model for the
Buck Converter

In this section, the ESDI control scheme is appiied to
a discrete-time model for the DC-to-DC buck con-
verter. Although the model is linear, it is appropriate
to illustrate the proposed dissipativity-based control
methodology. It is an example for which the energy
concepts introduced have a physical interpretation.

The following system is a discrete-time mode] of
4 normalized averaged DC-to-DC buck converter [9],
a well known physical system employed in power
electronics,

(o) =G )e)
+a(k)(7:2f?++lb),

@€ 0,1] (27)

where x| is a current, x; a voltage, ~ the normalized
load and a, b, ¢ constants related to physical
parameters,

For the normalized variables the stored system
energy takes the following form:

Eo =103 +13). (28)

We aim to stabilize the output voltage x» to a
constant value ¥; € (0, 1]. The energy associated to
the system (28} is considered as the storage function V,
and s(y,v)=yv=1x,v as the supply function. Let u,
ve[0,1], xy €[0,4p], x: €10, p], with p>> 1. First of all,
a function ¢ must be proposed. This function wili be
chosen in order to collect the positive terms appearing
in V(x(k + 1)). Consequently, a possibility for ¢ is the
following one,

o{x, i) = ,u{xf(a2 + 5% + X3 (B? + )
+ @ (—a+ 1) + P+ )
+(=c+ 1)2]}, (29)

where 4 is a4 constant such that x € (0,0.137817). The
constant y represents the damping injection to the
system; the smaller p is, the slower the convergence to
the fixed point is. The stabilization of the system
strongly depends on the form of ¢. The ESDI
control scheme is applied and four main steps can be

E. M. Navarro-Lape: el al.

distinguished it it, namely:
Step 1 Computation of the control afe, 0) from
Vifle.ale.0))} — Vie) = —¢le,a(e,0)),  (30)

which results in a second-order equation of the form
a,0° + botx + ¢, =0, where

to =+ W) (—a+ )+ 5 +1)
+{=c+ 1)) + ~{be — ab),
bo = [y(—a + 1) + b](ae; — bea)
+ [=9b = ¢ + 1](be| + cea),
b0 =+ )i + 1) + (B +
+ (be — ab)eje; — 1 (3 + €),

with e=(ej, e =(x(— &2 -6, E=(£, 6"
Passivation conditions (14} and (13), are transformed
for stabilization purposes in conditions (19)-(20)
which are met for this example if,

aaraz + b{ra T+ Ca = 0; 200(}1 + bﬂ’ # 0' (31)

for some (e,a). If conditions (31} are satisfied,
« exists. This a can be obtained from the explicit
solution of (30), then, it is necessary to assure that
bl —4a,e, > 0, which will be achieved by means of
the value of 12 €(0,0.137817).

Step 2 Computation of the stabilizing control
" from the proposed auxiliary dynamics,

Sk +1) = axi (k) ~ bxa(k) + [y(—a + 1) + blatk)

~ file(k), ate(k), ). (32)
Lk + 1) = bxy(k)+ex2(k)+(—vb — ¢ + Dilk)
—fale(k}, ale(k), 0)), (33)

with f=(£;,/>)7. We want to sta_bilize £, to 4 constant
value x; € (0, 1] then &(k) =& = %2, Vk, and & is
obtained from (33),

F2— (bx) + ex2) + f2(e, afe, 0))

W= (=vb—-c+1) ’ (34)

Step 3 Computation of the auxiliary dynamics
(32) using &*.

Step 4 Computation of the system state. Control
i* is applied to (27).

The previous control design has been applied to (27)
with the following parameters obtained from a real
physical system: & =0.9406416964, b =0,3254699438,
¢=0.8255706942, v=0.3535533906 and a sampling
period of T'=0.3535533906. The fixed point of system
(27) is %; = yu, X2 = &i. Considering % = 0.2, with
x0=(0.01,0.05)", £,,=0.01 as initial conditions for x
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Fig. 2. Normalized current x,, normalized voltage v, stabilizing control u* and passifying controls for a;(e, 0) and aa(e, D).

and &, respectively, and u=0.135, the system
response presented in Fig. 2 is obtained. The system
converges to its fixed point, There are two possible
solutions for a(e, 0):

"_bﬂ + bi - 40,_.(.'0
(4] (9, 0) = >a

—b, — /b2~ dascq
e, 0) = 5 ;

the responses obtained from each of them are slightly
different. The difference between considering o (e, 0)
or as(e, 0) can be seen in the type of transient response
for the obtained output voltage x,. Using the latter, a
first-order type system response for the voltage with-
out overshooting is obtained. Both responses have the
same settling time. The states x,, x3, the stabilizing
control #*, and the passifying controls a;(e,0) and
aeale, 0) are depicted in Fig. 2.

5. Conclusions

In this article, the notions of dissipativity, passivity,
feedback dissipativity and passivation for general
single-input single-output nonlinear discrete-time
systems have been analyzed, Necessary conditions for
the characterization of a ¢lass of dissipative nonlinear
discrete-time systems have been given. Necessary and
sufficient conditions fulfilled by a class of lossless
systems regarded as (SS-lossless systems have been
also derived.

Sufficient conditions under which a class of non-
affine discrete-time control systems are feedback

dissipative have been given. The feedback dissipativity
and passivation problems have been solved in a non-
general manner since they are based on the estab-
lishment of the input » which satisfies the dissipativity
fundamental inequality; it is, therefore, necessary to
associate a priori functions ¥ and ¢ to the system, i.e.,
a storage function and a dissipation rate function with
respect to which the feedback transformed system will
be (V, s)-dissipative. At any rate, it can be considered
as an application-oriented feedback dissipativity
method, since, when dealing with physical systems, we
are interested in defining our storage function as the
energy of the system, and proposing a desired dis-
sipation. This fact is shown in the buck example. The
main problem of this procedure is that {inding an
explicit solution of # for all ¥ can be difficult or
impossible in some systems; in these cases, an iterative
feedback dissipativity algorithm can be proposed [20].

As for the stabilization purpose, stability properties
of dissipative and feedback dissipative systems have
been analyzed and the ESDI controller design meth-
odology has been extended to general nonlinear sys-
tems in the discrete-time domain. This control scheme
has been illustrated by means of the stabilization of
the voltage in a proposed discrete-time model for the
buck converter.
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