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Abstract

A benchmark problem for restricted complexity controller design is introduced.
The objective is to design the lowest-order controller which meets the control spec-
ifications for an active suspension system. The input-output data of the plant are
provided on the benchmark site and the final controllers are evaluated using the
closed-loop data. Thirteen solutions proposed to solve the benchmark problem are
briefly presented and classified in terms of methodology and compared with respect
to their complexity and performance.
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1 Introduction

The problem of restricted-complexity controller design is theoretically very challenging
and has a great importance in practice. Many approaches for solving this problem can be
found in the literature and it is not an easy task to select one for a specific application.
Experiences have shown that benchmark problems are efficient for comparing different
approaches allowing to assess their potential and weakness.

In this paper, the control of an active suspension system is considered as a benchmark
for restricted complexity controller design. The benchmark problem contains all the steps
of a control design problem from data acquisition, identification, robust controller design
to controller evaluation and final tuning with experiments on the real system. The plant
model is of very high-order and the control specifications are in terms of the constraints on
closed-loop sensitivity functions. So, the design of a non-restricted complexity controller
is a classical control problem. However, in this benchmark, the main challenge is to design
the simplest controller which meets the control specifications.

The benchmark problem was launched on November 2001 together with a call for
papers for a Special Issue on “Design and Optimization of Restricted Complexity Con-
trollers” [14]. Several solutions to the benchmark problem were proposed by different



research groups from all over the world. The participants to the benchmark presented
their works in a workshop held at Grenoble on January 2003 [15]. In this paper, the
benchmark problem is presented and the solutions are compared in terms of different
criteria.

The paper is organized as follows: Section 2 presents the benchmark problem contain-
ing system description, identified models, control specifications and control evaluation.
The participants to the benchmark are introduced briefly in Section 3. The designs are
compared with respect to different criteria in Section 4. Finally, Section 5 gives some
concluding remarks.

2 Benchmark Problem

The active suspension system is a laboratory set-up at Laboratoire d’Automatique de
Grenoble (INPG/CNRS) and uses an active suspension manufactured by Hutchinson.
For this benchmark the problem of attenuation of disturbances in a large frequency band
according to given control specifications has been considered.

To help the participants, the organizers have provided on the web site of the Bench-
mark input-output data for model identification, as well as an identified discrete-time
high-order model of the plant and a continuous-time model [14]. The use of these models
for controller design is arbitrary, and it was clearly stated that none of them are consid-
ered to be the exact model of the plant. One can either use them or try to find another
appropriate model by data acquisition on the real system. Experiments on the platform
(data acquisition or controller testing) have been carried out by the staff of Laboratoire
d’Automatique de Grenoble either on the basis of the protocols defined in the benchmark
or using the protocols defined by the participants. One of the objectives of the benchmark
was to allow participants to collect data from the system, design the controller on the
basis of acquired data and test the controller in real time. The authors were advised to
design and tune their controllers using the models (provided or identified) because only
4 experiments on the real system were allowed for each participant.

2.1 System Description

The active suspension system set-up shown in Fig. 1 is used to test in this benchmark the
disturbance attenuation in a large frequency band. Fig. 2 shows the scheme of the active
hydro-suspension system used to reduce the machine vibrations. The principal parts of
the active suspension system are:

e an elastomere cone that encloses the main chamber filled with silicon oil (1);
e an inertia chamber enclosed with a flexible membrane (2);

e a piston (3) that is fixed on a DC motor. When the position of the piston is fixed,
the suspension system is passive;

e an orifice (4) that allows oil flow between two chambers.

The principal idea of the active suspension is to change the elasticity of the system in
order to absorb the vibrations generated by the machine that we want to isolate. For the
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Figure 2: The schematic diagram of the active suspension system
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Figure 3: Block diagram of the data acquisition system
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Figure 4: Block diagram of the active suspension system

experimental purposes the machine is replaced by a shaker which is driven by a computer
generated control signal. The output of the system is the measured voltage corresponding
to the residual force. The control input drives the position of the piston via an actuator.
The system is controlled by a PC via a data acquisition system (see Fig. 3). The sampling
frequency is a design parameter (upper limit: 1 kHz).

2.2 Identified models

The block diagram of the active suspension system is presented in Fig. 4. The transfer
function between the excitation of the shaker and the residual force is called the primary
path (C/D). The secondary path is defined as the transfer function between the control
input and the residual force (B/A). Two models for the system are identified, correspond-
ing to the primary and secondary path. Here u,(t) denotes the input of the primary path
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Figure 5: Frequency characteristic of the non-parametric model of the primary path
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Figure 6: Frequency characteristic of the non-parametric model of the secondary path

(excitation of the shaker), u(t) is the input of the secondary path (proportional to the
piston position) and y(t) is the system output (residual force). The sampling frequency
for data acquisition is chosen to be Fy = 800 Hz.

2.2.1 Non-parametric model

A non parametric model of the primary path can be identified by the spectral analysis
method. This analysis shows that the model contains a high-resonant mode at frequency
about 31,5 Hz. The magnitude of the frequency response of the primary path is given
in Fig. 5. The magnitude of the frequency response of the secondary path can also be
computed using spectral analysis (see Fig. 6).



2.2.2 Discrete-time model

Primary path model: To identify the primary path model (C/D) the shaker is excited
by a PRBS using a 10-bit shift register with a clock frequency of F/2.

Czh) = izt 4+ epuz e (1)
Dz = 1+diz '+ +dy 2" (2)

The adopted number of parameters of the polynomials C(27!) and D(z71) are ng =
8 and np = 12, respectively.

Secondary path model: To identify the secondary path model (B/A) the input u is
excited by the same PRBS with a clock frequency of F/4.

B(z™") = bzt by, (3)
A = 14+az 4 a2 ™ (4)

The adopted number of parameters of the polynomials A(z7!) and B(z7!) are ny =
14 and np = 16, respectively.

The model parameters can be downloaded from the Benchmark site [14]. Note the ex-
istence of a double differentiator in the secondary path model. These models have been
provided only as a guideline and it is not claimed that they are the exact models or the
best models which can be identified from data.

2.2.3 Continuous-time model

The continuous-time models of the plant have been obtained by conversion of discrete-time
models using the zero-order hold method.

Fig. 7 shows the magnitude of the frequency response of the secondary path models
obtained from spectral analysis, identified discrete-time model and continuous-time model.
It can be observed that the discrete-time model and non-parametric model have very close
frequency response.

2.3 Control Specifications

The non parametric model of the primary path obtained by the spectral analysis method
shows that there are several vibration modes, whereas the first mode around 31,5 Hz is
the most important. The second vibration mode around 160Hz should also be taken into
consideration when designing the controller.

Control objective: The goal is to compute a linear discrete-time controller which
minimizes the residual force around the first and second vibration modes of the primary
path model and to try to distribute the amplification of the disturbances over the higher
frequencies. In addition, the controller gain should be equal to zero at the frequency of
F,/2 (the term 1 + 27! should be incorporated in the controller).

More precisely, the control objective can be presented in terms of the constraints for
the closed-loop sensitivity functions. The structure of the closed-loop system is given in

Fig. 8, where K = R/S is the controller transfer function:
R(z™h = ro+rmz 4, 2™ (5)

S = 14+sz7 4+ 45,27 (6)
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Figure 7: Frequency characteristics of the non-parametric model (solid), discrete-time
model (dashed) and continuous-time model (dashed-dot)
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Figure 8: Block diagram of the closed-loop control system

and G = B/A is the secondary path model.
Let the output and input sensitivity functions be defined as follows:

Output sensitivity function:

1 A(z7HS(z71)

Syp(z_l) 1 e = P

Input sensitivity function:

K A(YR(z)
T 1+KG  P(z) ®)

where P(z71) = A(z71)S(z7!) + B(z7')R(z7) is the closed-loop characteristic polyno-
mial. The constraints on the output and input sensitivity functions are shown in Fig. 9
and Fig. 10, respectively.
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Figure 9: Constraints on the output sensitivity function
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Figure 10: Constraints on the input sensitivity function



2.4 Controller Evaluation

The controllers submitted by the participants have been implemented on the real system.
The same PRBS signal have been used as the disturbance for the open-loop and closed-
loop experiments and the following signals have been measured: the residual forces in
open-loop y,(t) and in closed-loop yq(t), the input of the primary path w,(t) and the
output of the controller wu(t).

The magnitude of sensitivity functions are estimated using the spectral analysis
method as follows:

Sl = G e X
Sl = 0~ 8 w

where @, (w) is the power spectral density of z. In practice, since p(t) is not measurable,
the output of the system in open-loop operation y,(t) is used, instead. In order to have
a fair comparison a Matlab program is provided in the Benchmark site to compute the
estimates of the magnitude of the sensitivity functions.

The controllers are evaluated on the basis of the computation time criterion which is
the product of the number of controller parameters and the sampling frequency. However,
as all of participants except one, use a sampling frequency of 800 Hz, a normalized criterion
is defined :

where nr and ng are the numbers of parameters of the polynomials R and 5, respectively
(note that ng = n, + 1 and ng = n,).

3 Participants

Several solutions to the benchmark problem have been proposed using different method-
ologies. In this section the solutions are briefly introduced and are classified from different
points of view. A name is given to each design which is related to the affiliation of the
corresponding author. Some of the papers are published in this Special Issue and the
others can be found in the proceedings of the workshop [15] or in the benchmark site [14].
The solutions are sorted alphabetically as follows:

BORDEAUX [10]: A frequency-domain method based on fractional differentiation is
used to compute an initial controller (Crone control). Then the parameters of the
controller are tuned to reduce the peak value of power spectral density of the closed-
loop output by a non-linear optimization algorithm. A discrete-time identified model
of the system is used in the control design as well as in the tuning step.

BRESCIA [3]: A non-iterative data-driven controller tuning method is used. In this
approach, called Virtual Reference Feedback Tuning (VRFT), the problem of shap-
ing the input and output sensitivity functions is considered as a model reference
control problem in two-norm. The controller order is fixed at the beginning and no
model of the plant is used in the design.



CERT [6]: The order of a high-order controller designed based on the H., approach is
reduced by Robust Modal Control. The dominant poles of the initial controller are
chosen as the poles of the reduced-order controller and the parameters of the con-
troller numerator are obtained by minimizing the distance between two controllers,
taking into account the closed-loop performance.

CRANFIELD [5]: The minimization of the /; norm of the transfer function between the
disturbance and the control input under the sensitivity constrained is considered.
A convex optimization approach to this problem leads to a 73th-order controller.
Then, this optimal solution is used as a guide-line to design a low-order controller
based on a non-convex parameter optimization problem. Finally, it is shown that a
second-order controller can achieve almost the same performance.

DELFT [9]: A nonlinear semi-definite programming (SDP) approach to the H,, fixed-
order synthesis problem is proposed. The Newton direction in the optimization
problem is replaced by the curved line-search interior point method. The conver-
gence of the proposed approach is also analyzed. The method is compared with two
other techniques: a posteriori reduction and the cone complementarity method.

EPFL [12]: A correlation-based data-driven controller tuning method is proposed for the
benchmark problem. The idea is to tune the parameters of a fixed-order controller
such that the controlled output be uncorrelated with the disturbance signal. The
cross-correlation between closed-loop output and the disturbance signal is minimized
iteratively using stochastic approximation.

HAMBURG [8]: A reduced-order model of the plant is computed using balanced re-
duction. Then an H,, controller with pole region constraint is designed in the
continuous-time domain and its order is reduced by zero-pole cancellation. The
bilinear transformation is used to obtain a discrete-time controller which violates
some constraints. Finally, the controller parameters are fine-tuned manually.

LAG [7]: A high-order controller based on an open-loop identified model is designed
using pole placement and sensitivity function shaping by convex optimization. Using
this controller, an identification in closed-loop is carried out in order to identify
a better design model. Then the controller is re-designed based on the closed-
loop identified model and implemented on the real system. Finally, the closed-
loop acquired data are used to estimate a reduced-order controller preserving the
desirable properties of the nominal closed-loop system.

MEX [4]: A nonlinear constrained optimization problem is considered for design of a
fixed-order controller with a given structure. The authors claim that the parameters
of the controller as well as its order are optimized using the genetic algorithm. The
performance of the controller is compared with that of an H., controller reduced
using the balanced truncation method.

SHARIF [2]: A controller order reduction technique is proposed based on the minimiza-
tion of the nuclear norm (sum of singular values) of a residue matrix related to the
controller parameters. In order to ensure the stability of the reduced closed-loop
system, some constraints on the difference between the magnitude of the full-order
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and reduced-order open-loop transfer functions are considered. The problem is for-
mulated by Linear Matrix Inequalities and solved using standard tools.

SHEFFIELD [13]: A multi-model approach to reduce controller complexity in model
predictive control is used for the benchmark problem. The basic idea is the use of
multiple reduced order independent models for one-step ahead up to n-step ahead
predictions instead of the recursion on a high-order model to derive the predictions.
As MPC is a time-domain approach and is not a natural tool for control problem
with frequency-domain specifications, the designed controller for the benchmark
problem could not satisfy the specifications.

SUPAERO [1]: An open-loop shaping design on the Nichols plot is performed directly
on the non-parametric model of the plant. A simple controller satisfying almost
all of the specifications is obtained by trial and errors using specially developed
graphical tools.

SUPELEC [11]: The non-convex problem of fixed-order H, controller design is consid-
ered. An iterative solution based on successive convex optimizations using LMIs and
gradient search is proposed to find a local optimum solution. Finally, the parameter
of the controller are tuned using the genetic algorithm.

The design methodologies may be classified as follows:

Model-based /Data-Based: The majority of the designs use an identified parametric
model of the plant for the controller design. The discrete-time model provided in the
benchmark site or a bilinear transformation of this model in continuous-time is em-
ployed by CERT, CRANFIELD, DELFT, HAMBURG, SHARIF, SHEFIELD and
SUPELEC. Some designers identify their own models from open-loop data (MEX
and BORDEAUX) or from closed-loop data (LAG). The controller of BRESCIA
is completely model-free and is based only on the plant input-output data. SU-
PAERO uses a non-parametric model of the plant obtained from spectral analysis.
The input-output data are used to tune the controller parameters in the EPFL con-
troller, while a parametric model of the plant is employed for gradient computation.
Finally, the closed-loop data are involved in the estimation of the reduced order
controller of LAG.

Direct/Indirect approaches: CERT starts with designing a high-order controller
based on the high-order model of the plant and then reduces the order of the con-
troller (direct reduction). Some other designs like HAMBURG, LAG and SHARIF
use a low-order model of the plant for the high-order controller design and reduce
also the order of the controller in the final step (combined direct and indirect re-
duction). The other approaches compute directly a fixed-order controller from data
(BRESCIA, EPFL) or model (BORDEAUX, CRANFIELD, DELFT, MEX, SU-
PAERO, SUPELEC).

Optimization criterion: CRANFIELD minimizes an [; criterion, BRESCIA, EPFL
and LAG which are basically the time-domain approaches try to minimize a two-
norm model-following criterion, while DELFT and SUPELEC minimize an H,
criterion. For high-order controller CERT, SHARIF and HAMBURG use an H,

11
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Figure 11: Calculation of the criterion - achieved sensitivity functions Syp and S‘up (dashed)
vs. constraints S, and S, (solid)

criterion, however they use different criteria for controller reduction. CERT mini-
mizes the Frobenius norm and SHARIF the nuclear norm, while HAMBURG uses
the balanced truncation technique. A heuristic criterion specially defined for the
benchmark problem is minimized by MEX using the genetic algorithm. For the
fine-tuning of the final controller BORDEAUX uses the gradient approach and SU-
PELEC the genetic algorithm. The controllers BORDEAUX and SUPAERO are

based on loop shaping in the frequency domain and do not minimize a criterion.

4 Comparative results

The comparative results of thirteen solutions to the benchmark problem are presented
in this section. The solutions are compared both using the identified model and the real
data. Initially, it was expected that the best controller is the lowest-order controller that
succeeds in fulfilling the specifications. However, though the specifications are almost met
by most of the designs, none has succeeded to fulfill them to a full extent. Therefore,
a new comparison criterion has been defined. First, the surface (hatched in Fig. 11)
where the estimates of the sensitivity functions Syp (dashed) violate the constraint S, is
calculated:

ASyy = Z (‘Syp|dB - |Syp‘dB) Af (12)
|Sypl>[Sypl
and similarly ) B
ASy= Y (ISuplas — |Suplan) Af (13)
|Sup‘>|5up‘

where Af is a fixed integration step. Then, the criterion for comparison is defined as a
sum of these two surfaces. Experiments performed on the real active suspension system
showed that the presence of the noise is significant on the output of the plant. Thus,
to reduce the influence of the noise on the values of the criterion, 5 successive real-time
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Table 1: The normalized controller complexity ), for various designs.

Participant ng ng| C,
CRANFIELD | 2 2 4
EPFL 3 2 5
SUPAERO 4 3 7
BRESCIA 7 0 7
SHEFFIELD | 4 4 8
SHARIF 5 4 9
CERT 5 4 9
MEX 6 4 10
LAG 6 5 11
HAMBURG 6 5 11
SUPELEC 5 4 |11.25
DELFT 7 5 12
BORDEAUX | 7 6 13

experiments have been performed, and the averaged value of the criterion:
- k k
J = ; (ASE, +ASE) (14)

is considered in the sequel for the comparison. The index k in Eq. 14 denotes the number
of the experiment. Whenever the comparison is performed using the identified model the
corresponding values have the superscript “m” (for example J™, AS;?, AS;7) and when
the real data are used the superscript “r” is used.

4.1 Controller complexity

The thirteen controllers range from 2nd order (C,, = 4) to 7th order (C,, = 13). Table 1
shows the normalized controller complexity C',, as well as the number of parameters of the
polynomials R and S, respectively ngr and ng, for various designs. The simplest controller
is CRANFIELD, while the most complex one is BORDEAUX. Note that the controller
BRESCIA contains only numerator polynomial. All the controllers are designed for the
sampling period of 800 Hz except SUPELEC where the sampling period is 1000Hz.

4.2 Criterion (using identified model)

The identified model used for the comparison in this section is available from the bench-
mark web site [14]. This high-order model represents approximately the behavior of the
plant in open-loop operation and has been used by the majority of the participants. [t
should be noted that some participants have not used this model in the design, so this
comparison may not be completely fair.

Almost all of the designs are close to satisfy the specifications. The minimum of the
criterion J™ = 0.35 is provided by CERT. The designs BORDEAUX and SUPELEC

provide a small values of AS/}, however there are a significant violations of the constraint
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Table 2: Criterion calculated using identified model for various designs.

Participant C. |AS)E ASP | J™

CERT 9 0.35 0 0.35
SUPAERO 7 7.09 0 7.09
DELFT 12 10.46 0 10.46
LAG 11 11.46 0 11.46
HAMBURG 11 17.81 0 17.81
MEX 10 | 20.72 0 20.72
CRANFIELD 4 24.93 0 24.93
BRESCIA 7 28.29 0 28.29
EPFL ) 37.54 0 37.54
SHARIF 9 41.29 0 41.29
BORDEAUX 13 8.34 62.75 | 71.09
SUPELEC 11.25 1 7.5 307.1 | 314.6
SHEFFIELD 8 281 2727 | 3008

on S, that increase in a large extent the value of aggregate criterion J™. Table 2 presents
the criterion calculated using identified model for different designs.

4.3 Criterion (using real data)

The controller closest to meet the specifications on the real active suspension system is
LAG with the aggregate criterion of J" = 9.4. The designs DELFT, CERT, MEX and
HAMBURG provide very close performance. Table 3 gives the criterion calculated using
real data for thirteen designs. One can notice that above mentioned controllers which
provide a small values of the criterion J" belong to the lower part of Table 1, i.e. they all
have a big complexity index C,,. In the restricted-complexity controller design it is of the
interest to make a compromise between these two categories. The value of the criterion
J" versus complexity C,, for various designs is given in Fig. 12 (note that the values of
J" for the designs SHEFFILED, SUPELEC and BORDEAUX exceed the limits shown in
the figure).

4.4 Evaluation

The different designs are evaluated as follows. In the first phase of the evaluation, among
the controllers of the same complexity the one that has the minimal value of the criterion is
chosen. The remaining controllers are: CRANFIELD, EPFL, SUPAERO, SHEFFIELD,
CERT, MEX, LAG, DELFT and BORDEAUX. Based on the idea that a more complex
controller should give better performances, in the second phase we proceed as follows:
among the choosen controllers we reject the ones which have greater value of criterion
than a lower complexity controller has. For example, controller MEX with the complexity
C, = 10 and J" = 13.92 is rejected when compared with CERT with C,, = 9 and
J" = 13.19. Therefore, the controllers with acceptable complexity and performance on
the real active suspension system are: CRANFIELD, EPFL, SUPAERO, CERT and LAG
(see Fig. 13).
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Table 3: Criterion calculated using real-data for various designs.

Participant Cn. |AS, AS J"
LAG 11 9.4 0 9.4
DELFT 12 11.25 0 11.25
CERT 9 12,7 0.49 | 13.19
MEX 10 | 13.92 0 13.92
HAMBURG 11 | 14.81 0 14.81
SUPAERO 7 16.82  4.09 | 20.91
EPFL 5 22.19 0 22.19
CRANFIELD 4 25.53 4.07 | 29.6
BRESCIA 7 31.92 0 31.92
SHARIF 9 34.21 0 34.21
BORDEAUX 13 344 100.2 | 134.6
SUPELEC 11.25 | 84.9 354.5 | 4394
SHEFFIELD 8 840.6 3260 | 4100.6

5 Conclusions

Control of an active suspension system has been considered as a benchmark for restricted
complexity controller design. The system has been presented by a set of input-out data
and the control evaluation has been performed on the closed-loop data, so the compari-
son of different solutions was independent of the plant model. Thus, direct and indirect
model-based reduction techniques as well as data-driven approaches could be fairly com-
pared. The control specifications have been satisfied more or less by a number of the
designs with the controllers range from 2nd-order up to 7th-order. In general, the meth-
ods based on H,, generated higher order controllers with respect to the methods using
direct parameter optimization. The direct use of input-output data in controller design
or reduction procedure leads to a good compromise between complexity and performance.
Finally one can remark that more than half of the participants did not exploit the data
collection possibility offered on the real system and based their design on the provided
model . One may ask if the adequate use of the real data would have improved their
results.
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