
ar
X

iv
:1

40
4.

31
31

v4
 [

cs
.D

B
]

22
 J

ul
 2

01
4

The Possibility Problem for Probabilistic XML
(Extended Version)

Antoine Amarilli

Télécom ParisTech; Institut Mines-Télécom; CNRS LTCI

Abstract. We consider thepossibility problemof determining if a document is
a possible world of a probabilistic document, in the settingof probabilistic XML.
This basic question is a special case of query answering or tree automata evalua-
tion, but it has specific practical uses, such as checking whether an user-provided
probabilistic document outcome is possible or sufficientlylikely.
In this paper, we study the complexity of the possibility problem for probabilis-
tic XML models of varying expressiveness. We show that the decision problem is
often tractable in the absence of long-distance dependencies, but that its computa-
tion variant is intractable on unordered documents. We alsointroduce anexplicit
matchesvariant to generalize practical situations where node labels are unambigu-
ous; this ensures tractability of the possibility problem,even under long-distance
dependencies, provided event conjunctions are disallowed. Our results entirely
classify the tractability boundary over all considered problem variants.

1 Introduction

Probabilistic representations are a way to represent incomplete knowledge through a
concise description of a large set of possible worlds annotated with their probability.
Such models can then be used, e.g., to run a query efficiently over all possible worlds
and determine the overall probability that the query holds.Probabilistic representations
have been successfully used both for the relational model [20] and for XML docu-
ments [16].

Many problems, such as query answering [15], have been studied over such rep-
resentations; however, to our knowledge, thepossibility problem(POSS) has not been
specifically studied: given a probabilistic documentD and a deterministic documentW,
decide ifW is a possible world ofD, and optionally compute its probability according
to D. This can be asked both of relational and XML probabilistic representations, but
we focus on XML documents because they pose many challenges:they are hierarchi-
cal so some probabilistic choices appear dependent1; documents may be ordered; bag
semantics must be used to count multiple sibling nodes with the same label. In addi-
tion, in the XML setting, the POSSproblem is a natural question that arises in practical
scenarios.

As a first example, when using probabilistic XML to representa setD of possible
versions [6] of an XML document, one may want to determine if aversionW, obtained
from a user or from an external source, is one of the known possible versions repre-
sented as a probabilistic XML documentD. For instance, assume that a probabilistic

1 In fact, we will see that our hardness results always hold even for shallow documents.

1

http://arxiv.org/abs/1404.3131v4

XML version control system asks a user to resolve a conflict [5], whose uncertain set of
possible outcomes is represented byD. When the user provides a candidate mergeW,
the system must then check if the documentW is indeed a possible way to solve the
conflict. This may be hard to determine, becauseD may, in general, have many ways to
generateW, through a possibly intractable number of different valuations of its uncer-
tainty events.

As a second practical example, assume that a user is studyingan uncertain doc-
umentD that provides a representation of possible versions of an XML tree, using
probabilistic XML to represent possible conflicting choices and their probability. The
user notices that choosing a certain combination of decisions yields a certain determin-
istic documentW, and asks whether the same document could have been obtainedby
making different choices. Indeed, maybeW is considered improbable underD follow-
ing this particular valuation, but is likely overall because the same document can be
obtained through many different ways. What is the probability, over all valuations, of
the user’s chosen outcomeW according toD?

On the face of it, POSSseems related to query evaluation: we wish to evaluate onD
a queryqW which is, informally, “is the input document exactlyW”? However, there are
three reasons why query evaluation cannot give good complexity bounds for POSS. First,
becauseqW depends on the possibly largeW, we are not performing query answering
for afixedquery, so we can only use the unfavorablecombined complexitybounds where
both the input documentD and the queryqW are part of the input. Second, because we
want to obtainexactly W, the match ofqW should never map two query variables to
the same node ofD, so the query language must allow inequalities on node identifiers.
Third, once again because we require an exact match, we need to assert theabsenceof
the nodes which are not inW, so we need negation in the language. To our knowledge,
then, the only upper bound for POSSfrom query answering is the combined complexity
bound for the (expressive)monadic second-order logic over treeswhose evaluation on
deterministic (not even probabilistic) XML trees is already PSPACE-hard [18].

A second related approach is that of tree automata on probabilistic XML documents.
Indeed, we can encode the possible worldW to a deterministic tree automatonAW and
compute the probability thatAW accepts the probabilistic documentD. The decision and
computation variants of POSSunder local uncertainty models are thus special cases of
the “relevancy” and “p-acceptance” problems of [9]. However, their work only consid-
ersorderedtrees, and an unorderedW cannot easily be translated to their deterministic
tree automata, because of possible label ambiguity: we cannot impose an arbitrary order
on D andW, as this also chooses how nodes must be disambiguated. In fact, we will
show that POSSis hard in some settings that are tractable for ordered documents.

This paper specifically focuses on the POSSproblem to study the precise complex-
ity of its different formulations. Our probabilistic XML representation is thePrXML

model of [16], noting that some results are known for the POSS problem (called the
“membership problem”) in the incomparable and substantially different “open-world”
incomplete XML model of [8] (whose documents have an infiniteset of possible worlds,
instead of a possibly exponential but finite set as inPrXML).

We start by defining the required preliminaries in Section 2 and the different vari-
ants of POSS in Section 3, establishing its overall NP-completeness andreviewing the

2

results of [9]. We then study local uncertainty models in Section 4 and show that the
absence of order impacts tractability, with a different picture for the decision and com-
putation variants of POSS. Last, in Section 5, we show that POSScan be made tractable
under long-distance event correlations, by disallowing event conjunctions and impos-
ing an “explicit matches” condition which generalizes, e.g., unique node labels. We
then conclude in Section 6.

This paper is the complete version (including proofs) of work initially submitted as
an extended abstract (without proofs) at the AMW 2014 workshop [3] and subsequently
submitted (with proofs) at the BDA 2014 conference (no formal proceedings). This
version integrates the feedback from both rounds of reviews.

2 Preliminaries

We start by formally defining XML documents and probability distributions over them:

Definition 1. An unordered XML documentis an unordered tree whose nodes carry a
label from a setΛ of labels.OrderedXML documents are defined in the same way but
with ordered trees, that is, there is a total order over the children of every node.

A probability distributionis a functionP mapping every XML document x from a
finite setsupp(P) to a rational numberP(x), its probabilityaccording toP , with the
condition that∑D∈supp(P)P(D) = 1. For any x/∈ supp(P) we writeP(x) = 0.

As it is unwieldy to manipulate explicit probability distributions over large sets of
documents, we use the language of probabilistic XML [16] to write extended XML
documents (with so-calledprobabilistic nodes) and give them a semantics which is
a (possibly exponentially larger) probability distribution over XML documents. Intu-
itively, probabilistic XML documents are XML documents with specificprobabilistic
nodes describing possible choices in the document; their semantics is the set of XML
documents that can be obtained under those choices.

Definition 2. A PrXML probabilistic XML documentD is an XML document over
Λ ⊔{det, ind,mux,cie,fie}. The nodes of D with labels fromΛ are calledregularnodes,
by opposition toprobabilisticnodes. The probabilistic labels respectively stand for:
determininistic, independent, mutually exclusive, conjunction of independent events,
formula of independent events. For any subsetL ⊆ {det, ind,mux,cie,fie}, we call
PrXML

L the language of probabilistic XML documents containing only nodes with
labels inΛ ⊔L.

We require that the root of aPrXML document D is a regular node, that every edge
from amux or ind node to a child node is labeled with some rational number2 0< x< 1
(the sum of the labels of the children of everymux node being≤ 1), and that every edge
from acie (resp.fie) node to a child node is labeled with a conjunction (resp. a Boolean
formula) of eventsfrom a set E of events (and their negations), with D providinga
mappingπ : E → [0,1] attributing a rational probability to every event.

2 The non-standard constraintx< 1 means thatind does not subsumedet (see Thm. 3 and 4 for
examples where this distinction matters).

3

Event Probability

e 0.9

conferences

ind

conference

cie

location

mux

det

country

ES

city

Cartagena

det

country

CO

city

Cartagena de Indias

0.9 0.1

e
name

AMW

conference

cie

location

country

FR

city

Grenoble-Autrans

e
name

BDA

0.8 0.7

Fig. 1: ExamplePrXML
mux,ind,det,cie document; the provided table is the mappingπ that

attributes probabilities to probabilistic events

The semantics of aPrXML documentD is the probability distribution over XML
documents defined by the following sampling process (see [16] for more details):

Definition 3. A deterministic XML document W is obtained from aPrXML document
D as follows. First, choose a valuationν : E → {t, f} of the events from E, with prob-
ability ∏e s.t.ν(e)=tπ(e)×∏e s.t.ν(e)=f(1−π(e)). Evaluatecie andfie nodes by keeping
only the child edges whose Boolean formula is true underν. Evaluateind nodes by
choosing to keep or delete every child edge according to the probability indicated on
its edge label. Evaluatemux nodes by removing all of their children edges, except one
chosen according to its probability (possibly keep none if the probabilities sum up to
less than1). Finally, evaluatedet nodes by replacing them by the collection of their
children.

All probabilistic choices are performed independently, sothe overall probability
of an outcome is the product of the probabilities at each step. Whenever an edge is
removed, all of the descendant nodes and edges are removed. The probability of a docu-
ment W according to D, written D(W), is the total probability of all outcomes3 leading
to W.

We say thatmux, ind anddet arelocal in the sense that they describe a probabilistic
choice thattakes placeat this point of the document, independently from other choices
(except for the fact that discarding a subtree makes irrelevant all local probabilistic

3 Note that in general there may be multiple outcomes that leadto the same documentW.

4

Problem Complexity

POSS⊤ fie NP (Prop. 1)
#POSS⊤ fie FP#P (Prop. 1)
#POSS< mux, ind,det PTIME (Thm. 1)
#POSS 6< ind or mux #P-hard (Thm. 2)
POSS⊤ ind or mux PTIME (Thm. 3)
POSS 6< 2 of mux, ind,det NP-hard (Thm. 4)

#EPOSS⊤ mux, ind,det PTIME (Thm. 5)
EPOSS⊥ cie NP-hard (Thm. 6)

POSS⊥ mie NP-hard (Thm. 7)
#EPOSS⊤ mie PTIME (Thm. 8)

Table 1: Summary of results

⊤

⊥

6<<

#EPOSS

EPOSS

#POSS

POSS

mux, ind,det

mux,det

cie

mie

fie

ind,det

mux

/0

mux, ind

ind

Fig. 2: Variants and PTIME reductions

choices in that subtree. By contrast, we say thatcie andfie are long-distancein the
sense that a valuation is chosenglobally for the probabilistic events and thecie andfie
nodes are then evaluated according to that choice: this may inducecorrelationsbetween
arbitrary portions of the document, because the same event can be reused multiple times
at different positions in the document.

Example 1.Consider the example probabilistic XML documentD in Figure 1. Its possi-
ble worlds are obtained as follows. First, draw a valuation for the (only) evente, which
may bef (with probability 0.1) or t (with probability 0.9). Then, decide whether to
keep or discard the first “conference” subtree, with probability 0.8, and decide whether
to keep or discard the second such subtree, with probability0.7. Remove thecie nodes
and keep or discard their children depending on whether the chosen valuation fore is t
or f respectively. Decide whether to keep the first or second child of themux node, and
replace the correspondingdet node by its children. All probabilistic choices are made
independently.

Observe how the choice onmux is irrelevant if the corresponding subtree was dis-
carded by the parentind node or by thecie node, and notice the use ofdet nodes to
switch between sets of nodes using amux node. Note that the use ofcie nodes intro-
duces acorrelationin the sense that the first “location” node is present if and only if the
second is also present.

Of course, the expressiveness and compactness ofPrXML frameworks depend on
which probabilistic nodes are allowed: we say thatPrXML

C is more generalthanPrXML
D

if there is a polynomial time algorithm to rewrite anyPrXML
D document to aPrXML

C

document representing the same probability distribution.Fig. 2 (adapted from [14]) rep-
resents this hierarchy on thePrXML classes that we consider.

3 Problem and general bounds

We now define the POSSproblem formally, in its decision and computation variants.

Definition 4. Given a classPrXML
C , thepossibility problemfor unordereddocuments

POSSC6< is to determine, given as input an unorderedPrXML
C document D and an un-

ordered XML document W, whether W is a possible world of D, namely, D(W)> 0.

5

Thepossibility problemfor ordereddocumentsPOSSC< is the same problem except
that both D and W are ordered. For o∈ {6<,<}, the#POSSCo problem is to compute
the probability D(W) of W according to D. Observe that#POSSCo is a computation
problemrather than a decision problem, namely, it computes an output value based
on the provided input (here, a probability value) instead ofmerely deciding whether to
accept or reject.

For brevity, we write POSSC⊥ and POSSC⊤ when describing lower or upper complexity
bounds that apply to both POSSC< and POSSC6<.

We start by giving straightforward bounds on the most general problem variants:

Proposition 1. POSSfie⊤ is in NP and#POSSfie⊤ is in FP#P.

Proof. We first show the NP-membership of POSSfie⊤ .
Let us first consider POSSfie< . Consider the input(D,W). Guess a valuation of the

probabilistic events ofD. The size of the guess is linear in|D|. Now, check that the
guess is suitable, namely, that the deterministic documentD′ obtained fromD under
this valuation is exactlyW: as bothD′ andW are totally ordered trees, this can be
checked straightforwardly in linear time from a simultaneous traversal ofD′ andW.
Hence, POSSfie< is in NP.

Let us now consider POSSfie6< . The proof idea is the same, except that checking that
D′ andW are equal is not as obvious, because those trees are not ordered; however, this
check can be performed in PTIME by a dynamic bottom-up algorithm similar to that of
the proof of Thm. 3, so that the result still holds.

We now show the FP#P-membership of #POSSfie⊤ .
We first preprocess all the event probabilities in the probabilistic documentD so that

all numbers are represented with the same denominator. Thiscan be done in polynomial
time by a least common multiple computation and product operations. We then read off
the common denominator,d. We can computedk in polynomial time, wherek is the
number of events.

We then use Lemma 5.2 of [1] to argue that it is possible, in #P,to compute the
unnormalized probability ofW, that is, the probability ofW in D without dividing bydk.
To do so, the generating PTIME Turing machineT enumerates all possible valuations,
and the functiong returns 0 if the outcome does not yield the desired documentW
(which can be decided in PTIME by the above proof for the decision problem), and
otherwise returns the unnormalized probability of the outcome, that is, the product of
the numerators of the involved probabilities. (The denominator, which would bedk, is
ignored for now.) Hence, by application of this lemma, #POSSfie⊤ is in FP#P, because
all that remains is to divide the result of this #P computation by dk to obtain the final
probability. ⊓⊔

Proposition 2. POSScie⊥ is NP-complete, even when D has height3.

Proof. From Prop. 1 it suffices to show hardness. We show a reduction from the NP-
hard Boolean satisfiability problem to justify that POSScie⊥ is NP-hard.

Consider a formulaF formed of a conjunction of disjunctive clauses(Ci)1≤i≤n, with
clauseCi containing the literals(l ij)1≤ j≤ni , each literal being a positive or negative oc-
currence of some variable from a finite set of variablesV = {x1, . . . ,xm}.

6

Consider a set ofm Boolean eventsE with a mappingφ associatingxi ∈V to ei ∈
E (and¬xi to ¬ei) for all 1 ≤ i ≤ m. ConsiderW the document with only one root
labeled⊤, and thePrXML

cie documentD, with eventsE (and probability 1/2 for each
outcome), with one root labeled⊤ and onecie child with n children labeled⊥, the edge
of the i-th child being labeled withC′

i = ¬φ(l i1)∧ ·· · ∧¬φ(l ini
). Given the shape ofW,

clearly the algorithm’s choice to considerD andW as either ordered or unordered trees
is irrelevant, so that this works as a reduction either to POSScie6< or to POSScie< .

Now,W is a possible world ofD if and only if there is a valuation of the events of
E such that

∧
i ¬C′

i holds, or, equivalently by De Morgan’s law, such that
∧

i
∨

j φ(l ij)
holds, hence(D,W) is a positive instance of POSScie⊥ if and only if F is satisfiable.
Hence, POSScie6< is NP-hard. ⊓⊔

Local models on ordered documents are known to be tractable using tree automata:

Theorem 1 ([9]). #POSS
mux,ind,det
< can be solved in polynomial time.

Proof. We prove the theorem using the results of [9]. An alternative, stand-alone proof
is given in Appendix A.

The inputPrXML
mux,ind,det documentD can be rewritten to an equivalentPrXML

exp

document in polynomial time [2], which is a pTT document as defined by [9] (note that
we make no use of the possibility of having uncertainty aboutorder).

Furthermore, we can encode the deterministic documentW to a deterministic tree
automatonAW with deterministic finite-state automata describing the regular languages
of the transition function. Informally, the various statesof the automaton will corre-
spond to the various subtrees ofW, except that subtrees occurring multiple times need
to be identified. Formally, we define an equivalence relation∼ on the nodes ofW with
v∼ w if the subtrees rooted atv andw are isomorphic (i.e., they are the same tree, tak-
ing order into account. LetCW be the set of classes of this relation, andφ be a mapping
from the nodes ofW to their class inCW. We can use a dynamic bottom-up algorithm
similar to that of the proof of Thm. 3 to compute the∼ relation in polynomial time, as
well asCW and the mappingφ . Now, the alphabet of the automatonAW is the set of node
labelsΛ , its set of states isCW, its accepting state isφ(r) wherer is the root ofW, and
its transition function maps(c, l) ∈CW ×Λ to the empty language (ifl is not the label
of the nodes inc, noting that their labels must coincide) or (otherwise) to the language
consisting of the single wordc1 · · ·cn wheren is the number of children of all nodesv
of W in the classc and, for alli, ci is the class of thei-th child (note thatn and theci

do not depend on the choice of representativev). ComputingAW, with the languages of
the transition function being represented by a deterministic finite-state automaton, can
be done in polynomial time, and clearly by inductionAW accepts a treeT if and only if
T is isomorphic toW.

The problem #POSS
mux,ind,det
< then amounts to computing the total probability of the

possible worlds ofD that are accepted byAW, which can be computed in polynomial
time by Theorem 2 of [9]. ⊓⊔

7

4 Local models

We now complete the picture for the local modelPrXML
mux,ind,det on unordered doc-

uments. The results of [9] cannot be applied to this setting,as the ambiguity of node
labels imply that we cannot impose an arbitrary order on document nodes; indeed, a re-
duction from perfect matching counting on bipartite graphsshows that the computation
variant is hard even on the most inexpressive classes:

Theorem 2. #POSSind6< and#POSSmux
6< are #P-hard, even when D has height4.

Proof. We first focus on the case ofPrXML
ind. We show a reduction from the problem

of counting the number of perfect matchings of a bipartite graph4, which is #P-hard [21].
Let G= (V,W,E) be a bipartite graph. We assume without loss of generality that |V|=
|W| (asG certainly cannot have perfect matchings otherwise), and let n= |V|= |W|.

Now, considerW with root labeled⊤, n children labeled⊥, each of them with one
child with labels respectivelyl1, . . . , ln. Consider the uncertain documentD with root
labeled⊤, n children labeled⊥, the i-th of them (for all i) having, for everyj such
that there is an edge inE from nodei of V to nodej of W, an ind child with one child
labeledl j with edge label 1/2.

We claim thatD(W) is exactly the number of perfect matchings of the bipartite
graphG, divided byF = 2|E|.

To see why this is true, notice that each edge ofE corresponds to anind node ofD.
Hence, for any subsetM ⊆ E, let us consider the valuationνM where theind nodes
for edges inM keep their child node, and theind nodes for edges not inM discard
their child node. This mapping between subsets ofE and valuations is clearly one-to-
one, and all those valuations have probability 1/F (because each of the|E| events has
probability 1/2 and all of them are independent).

It only remains to see that the valuationνM yieldsW if and only if M is a perfect
matching, but this is easy to see: ifM is a perfect matching, each node labeled⊥ keeps
exactly one child, and one node labeledl i is kept for each node, so thatνM yieldsW;
conversely, ifM is not a perfect matching, either there is a node labeled⊥ with zero
or> 1 children, or there is somel i kept zero or> 1 times, so thatνM does not yieldW.
Hence, this completes the reduction, and shows that #POSSind6< is #P-hard.

For the case ofPrXML
mux, observe that the previous proof can be immediately

adapted by replacingind nodes withmux nodes, as everyind node has exactly one
child. ⊓⊔

By contrast, the decision variant is tractable forPrXML
ind andPrXML

mux, using a
dynamic algorithm. However, allowing bothind andmux, or allowingdet nodes, leads
to intractability (by reductions from set cover and Booleansatisfiability).

Theorem 3. POSSind⊤ andPOSSmux
⊤ can be decided in PTIME.

4 Recall that aperfect matchingin a bipartite graph is a subset of its edges such that each vertex
of the graph (in either part) is adjacent to exactly one edge of the subset.

8

Proof. For ordered documents, the result follows from Theorem 1, sowe only prove
the claim that POSSind6< and POSSmux

6< can be decided in PTIME.

We show a stronger result, namely: the POSS
mux,ind
6< problem can be decided in

PTIME under the assumption that noind node is a child of amux node. Note that
under this assumption, subtrees ofD rooted at nodes that are notind nodes only have
possible worlds that are (possibly empty) subtrees (by contrast, ind nodes may have
possible worlds that are forests). We say that a node ofD is non-ind if it is a regular
node or amux node.

We will present a dynamic algorithm to decide POSS
mux,ind
6< in PTIME under this

assumption. We first compute bottom-up, for every non-ind noden of D, a Boolean
valuee(n) indicating whether the subtree ofD rooted atn has an empty possible world.
If n is a regular node, we definee(n) = f. If n is amux node, we definee(n) = t if the
probabilities ofn sum up to< 1, or if one childn′ of n is such thate(n′) = t. It is clear
that this computation can be performed in polynomial time.

The algorithm will now compute bottom-up, for every pair(n,n′) of a non-ind
noden in D and a noden′ in W, a Boolean valuec(n,n′) indicating whether or not
the subtree ofW rooted atn′ is a possible world of the subtree ofD rooted atn.

If n is a regular leaf, we definec(n,n′) = t if n′ is a leaf with the same label asn, and
c(n,n′) = f otherwise. Note that we can assume without loss of generality that all ofD’s
leaves are regular nodes, as leaves that are probabilistic nodes can simply be removed.

If n is amux node, we definec(n,n′) = t if one of the childrenx of n is such that
c(x,n′) is t, otherwisec(n,n′) = f. Observe that this is correct because the children ofn
are eithermux nodes or regular nodes (they cannot beind nodes), so the possible worlds
of n are exactly the possible worlds of its children (possibly inaddition to the empty
subtree), and those possible worlds must be subtrees and notforests.

If n is an internal regular node ofD, to definec(n,n′), we first check ifn andn′ have
the same label. If they do not, we definec(n,n′) = f; otherwise we continue.

ConsiderD the set of the topmost non-ind descendants ofn. We say that a nodex
of D is optional if there is anind node on the path fromn to x, or if e(x) = t. In other
words, a nodex is optional if there is a valuation (ofind nodes) that discards it, or if there
is a valuation of the subtree rooted atx which achieves an empty possible world for this
subtree. This implies that, because the probabilistic choices are local and independent,
we have a way to keep or delete every optional node ofD independently of each other.
Call D′ the set of the children ofn′ in W.

Now if |D| < |D′| we definec(n,n′) = f (because in no possible world cann have
sufficiently many children to matchn′ – remember that the possible worlds of the sub-
trees ofD rooted at non-ind nodes must be (possibly empty) subtrees but cannot be
forests). Otherwise, add|D|− |D′| dummy nodesto D′ so that|D′|= |D|. Build a bipar-
tite graphGn,n′ = (D,D′,E) with edgesE defined as follows: an edge betweenx ∈ D
and non-dummyx′ ∈ D′ if and only if c(x,x′) is 1, and an edge betweenx and dummy
x′ if and only if x was optional. (Intuitively: dummy nodes ofD′ represent the choice of
deleting a node ofD.)

We now claim that we should definec(n,n′) = t if and only if Gn,n′ has a perfect
matching. To see why, observe first thatc(n,n′) should bet if and only if the subtree
of W rooted atn′ is a possible world of the subtree ofD rooted atn, which, becausen is

9

a regular node and the labels ofn andn′, amounts to saying thatD′ is a possible world
of D. Observe now that for any subsetSof E such that each vertex ofD has exactly one
incident edge,Sdescribes a possible world ofD: each node ofD can achieve the node
of D′ to which it is thus matched (or, for dummy nodes, the empty subtree), because
choices on the nodes ofD (and their descendants, or at their parent edge in the case
of deletions using anind node) are independent between nodes ofD. Now, a perfect
matching describes a possible world ofD achieving exactlyD′ (with no repetitions),
and conversely ifD′ is a possible world ofD it must be achieved by certain nodes ofD
realizing the nodes ofD′ (each node ofD′ being realized exactly once), and the others
being deleted (each one being matched to one of the dummy nodes) soGn,n′ must have
a perfect matching.

Now, the existence of a perfect matching for the bipartite graphGn,n′ can be decided
in PTIME (using, e.g., the Hopcroft-Karp algorithm), so we can decide how to define
c(n,n′) in PTIME (with a fixed polynomial not dependent onn or n′).

Hence, we can decide in PTIME whetherW is a possible world ofD, by checking
if c(r, r ′) is t, with r andr ′ the roots ofD andW (remember thatr is assumed not to be a
probabilistic node). This dynamic algorithm considers a quadratic number of pairs, and
performs a polynomial-time computation (with a fixed polynomial) for each of them,
so its overall running time is polynomial. ⊓⊔

Theorem 4. POSS
ind,det
6< , POSS

mux,det
6< and POSS

mux,ind
6< are NP-complete, even when

D has height4.

Proof. From Prop. 1 it suffices to show hardness. Let us first considerPOSS
ind,det
6< . We

show a reduction from the NP-hard [13] exact cover problem.
Consider an exact cover instanceS= {S1, . . . ,Sn}, whereSi = {si

1, . . . ,s
i
ni
} for all i.

Write X =
⋃

S= {v1, . . . ,vm}. The exact cover problem is to decide whether there exists
a subsetS′ of Ssuch that every element ofX occurs in exactly one of the sets ofS′.

Consider the documentD with root labeled⊤ andn ind children, with thei-th child
having, for alli, only one child (with edge probability 1/2), which is adet node, and
which hasni child nodes labeledsi

1, . . . ,s
i
ni

. The documentW has root labeled⊤ and
|X| child nodes labeledv1, . . . ,vm.

W is a possible world if and only if there is some subset of thedet nodes whose
union yields exactlyW (without duplicates), so that the reduction shows hardness.

To show hardness of POSS
mux,det
6< , observe that the previous proof can be adapted

directly by replacingind nodes bymux nodes, as everyind node has exactly one child.

Let us last consider POSS
mux,ind
6< . For this problem, we show a reduction from Boolean

satisfiability. We use the same notations for the input instance as in the proof of Prop. 2.
We additionally introducen node labelsl1, . . . , ln, with labell i corresponding to clauseCi .

Consider the documentD whose root is labeled⊤ and hasmmux child nodes, each
of them having twoind children with edge probability 1/2, the probabilities of all edges
of the ind nodes being also 1/2. For all i, the first ind child of the i-th mux node has
one child labeledl j for every clauseCj wherexi occurs; the second one has one child
labeledl j for every clauseCj where¬xi occurs. The documentW has root labeled⊤
andn children, thei-th one having labell i .

10

We claim thatW is a possible world ofD if and only if F =
∧

Ci is satisfiable. To see
why, we consider a one-to-one mapping which associates, to any valuationν of F , the
outcomes of themux nodes obtained by selecting the first child (resp. the secondchild)
of the i-th mux node if ν(xi) = t (resp.ν(xi) = f): by construction, the labels of the
remainingind nodes are those of the clauses which are true under valuationν (possibly
occurring multiple times). Hence, if there is a valuationν satisfyingF, then, selecting
the outcomes of themux nodes in this fashion, we can ensure that the remaining regular
nodes are thel1, . . . , ln, so thatW is a possible world ofD as we can choose a valuation
of the ind nodes that keeps exactly one occurrence of each label.

Conversely, ifW is a possible world ofD, the outcome of themux nodes in any out-
come ofD realizingW gives a valuationν under whichF is satisfied. Indeed, consider
such an outcome and valuationν, and, for any clauseCj of F , let us show thatCj is
satisfied byν. BecauseW is achieved, some noden labeledl j must have been kept, and
it must be the descendant of amux noden′ (say thei-th). Either it is a child ofn′’s first
child n′1, or of n′’s second childn′2. In the first case, this means thatν(xi) = t because
n′1 was retained, andn being a child ofn′1 means thatxi occurs positively inCj , so that
Cj is true underν. The second case is analogous. ⊓⊔

5 Explicit matches

We now attempt to understand how the overall hardness of POSS is caused by the diffi-
culty of finding how the possible worldW can bematchedto D.

Definition 5. A candidate matchof W in D is an injective mapping f from the nodes
of W to the regular nodes of D such that, if r is the root of W thenf (r) is the root of D,
and if n is a child of n′ in W then there is a descending path from f(n) to f(n′) going
only through probabilistic nodes.

Intuitively, candidate matches are possible ways to generate W from D, ignoring
probabilistic annotations, assuming we can keep exactly the regular nodes ofD that are
in the image off . There are exponentially many candidate matches in general, so it is
natural to ask whether POSSis tractable if all matches are explicitly provided as input:

Definition 6. Given a classPrXML
C and o∈ {⊥, 6<,<,⊤}, the POSS problem with

explicit matches EPOSSCo is the same as thePOSSCo problem except that the set of the
candidate matches of W in D is provided as input (in addition to D and W).

We study the explicit matches variant as a natural generalization of situations where
the ways to match the possible worldW to the documentD are not too numerous and
can be computed efficiently. For instance, if we assume that node labels inW are unique,
so that there is no ambiguity about how to matchW to D, then we are within the scope of
the explicit matches variant, as the (unique) candidate match can be computed in poly-
nomial time. The same applies to the situation where we only assume that no two sibling
nodes carry the same label, or to more general settings wherethe possible matches can
be identified easily. Requiring the possible matches to be provided as input is just a way
to formalize that we are not accounting for the complexity oflocating those matches.

11

We first note that explicit matches ensure tractability of all local dependency models,
by reduction to deterministic tree automata [9], this time also for unordered documents.
Intuitively, we can consider all candidate matches separately and compute the probabil-
ity of each one, in which case no label ambiguity remains so any order can be imposed:

Theorem 5. #EPOSS
mux,ind,det
⊤ can be solved in polynomial time.

Proof. We prove the theorem using the results of [9]. An alternative, stand-alone proof
is given in Appendix B.

We say that a candidate matchf is realized if we are inthepossible world where
the regular nodes ofD that are kept are exactly those of the image off . Hence, we
can compute the probability ofW by summing the probability of every candidate match
being realized (because these events are mutually exclusive).

Now, to compute the probability of a candidate matchf , replace the labels of nodes
of W by unique labels (yieldingW′) and replace the labels of every noden of D in the
image of f by the label off−1(n) in W′, to obtain a probabilistic documentD′. The
probability of f being realized isD′(W′). Importantly, if D andW are unordered, we
can makeD′ andW′ ordered by choosing any order on sibling nodes inD′, and apply
the same order (followingf−1) to sibling nodes inW; this works because the way to
matchW to D is fully specified byf so there is no matching ambiguity when imposing
this order.

This concludes the proof, becauseD′ andW′ are computable in polynomial time and
D′(W′) can be computed by a deterministic tree automaton as in the proof of Theorem 1.

⊓⊔

For long-distance dependencies, however, it is easily seenthat POSS is still hard
with conjunction of events, even if explicit matches are provided:

Theorem 6. EPOSScie⊥ is NP-complete, even when D has height3.

Proof. From the proof of Prop. 2, noticing that there is only one (trivial) match ofW
in D for the instances considered in the reduction. ⊓⊔

This being said, it turns out that the hardness is really caused by eventconjunctions.
To see this, we introduce thePrXML

mie class, which allows onlyindividualevents:

Definition 7. ThePrXML
mie class featuresmultivalued independent eventstaking their

values from a finite set V (beyondt andf, with probabilities summing to1), and proba-
bilistic mie nodes whose child edges are annotated by asingleevent e and a value x∈V.
A mie node cannot be the child of amie node. When evaluating D under a valuationν,
child edges ofmie nodes labeled(e,x) should be kept if and only ifν(e) = x.

Note thatmie hierarchies are forbidden (because they can straightforwardly encode
conjunctions), so thatPrXML

mie does not captureind hierarchies. However, as we in-
troduced it with multivalued (not just Boolean) events, it capturesPrXML

mux:

Proposition 3. We can rewritePrXML
mux to PrXML

mie andPrXML
mie to PrXML

cie

in PTIME.

12

Proof. To rewritePrXML
mux toPrXML

mie, first rewrite the inputPrXML
mux document

to aPrXML
mux document with nomux hierarchies (nomux node is a child of amux

node); this can be done in polynomial time ([2], Lemma 5.1). Next, introduce one event
permux node and one outcome for this event per child of themux, with one additional
outcome (to make the probabilities sum to 1) if the original probabilities of themux

child edges summed to< 1. Replace eachmux node by amie node, where every child
edge of themie node is labeled by the event introduced for thismux node and the
value introduced for the outcome where this child edge is kept. The absence ofmux

hierarchies ensures that the requirement on the absence ofmie hierarchies is respected.
To rewritePrXML

mie to PrXML
cie, we claim that every multivalued evente with k

outcomes can be replaced by a setSe of O(k) Boolean events such that each outcome
e= xi can be represented by a conjunction ofO(log2k) events ofSe, those conjunctions
having the same probability as their original outcome and forming a partition of all
outcomes of events inSe. Assuming that this claim holds, thePrXML

mie document
can be rewritten in polynomial time toPrXML

cie by performing this encoding for all
multivalued events, and replacing everymie node by acie node and replacing each child
edge labeled(e,xi) by a child edge labeled with the corresponding conjunction.

Now, to see why the claim is true, given a multivalued evente, observe that we
can build a binary decision treeTe of the outcomes ofe. Hence, we can introduce one
Boolean event per internal node ofTe, and choose its probability according to that of its
two child edges inTe (the probability of an edgea in Te being the total probability of the
outcomes reachable from the target ofa, normalized by that of the outcomes reachable
from the origin ofa). Hence, we associate to each outcomexi of e the conjunction of
Boolean choices leading toxi in Te: it has the right probability by construction, and, for
every valuation of the Boolean events, exactly one conjunction is true (the one corre-
sponding to the leaf ofTe selected by following those choices). Now, asTe is a binary
tree with k leaves (the number of outcomes ofe), it hasO(k) internal nodes and its
height isO(log2k), which proves the claim and completes the proof.

Observe thatPrXML
mie doesnotcapturePrXML

mux,det; a proof of this fact is given
in Appendix C. ⊓⊔

In thePrXML
mie class, the POSS problem is still NP-hard, by reduction to exact

cover; however, with explicit matches, the #POSSproblem is tractable, both in the or-
dered and unordered setting, despite the long-distance dependencies. Intuitively, the
candidate matches are mutually exclusive, and each match’sprobability can be com-
puted as that of a conjunction of equalities and inequalities on the events at the frontier.

Theorem 7. POSSmie
⊥ is NP-complete, even when D has height3 and events are Boolean.

Proof. From Prop. 1 it suffices to show hardness. We show a reduction from exact
cover, as in the proof of Theorem 4, with the same notation forthe exact cover instance
(and, intuitively, using forD andW the straightforward encoding toPrXML

mie of the
instances used in this last proof to show hardness of POSS

mux,det
⊥ and POSS

ind,det
⊥).

Consider a set ofn Boolean eventsE = {e1, . . . ,en} (with values in{t, f} and prob-
abilities 1/2. Consider the documentW with one root labeled⊤ and m children la-
beledl1, . . . , lm. Consider thePrXML

mie documentD with one root labeled⊤ and one
mie child with, for 1≤ j ≤ n, ni child edges labeled(ei , t) leading to children labeled

13

si
1, . . . ,s

i
ni

. Order in the inputD the child nodes of the root inW from l1 to lm, and the
child nodes of the root inD from those labeledl1 to those labeledlm, the order between
those carrying the same labels being arbitrary, so that we are showing a reduction either
to POSSmie

6< or to POSSmie
< .

Now, W is a possible world ofD if and only if there is a valuation of the events
of E such that, for every 1≤ j ≤ m, there is exactly one node labeledl j that is retained.
This amounts to choosing a subsetS′ of Ssuch that every item ofX occurs exactly once
in

⋃
S′: the setS′ corresponds to the set of events ofE that are evaluated tot. Hence,

(D,W) is a positive instance of POSSmie
6< if and only if F is satisfiable, so that POSSmie

⊥
is NP-hard. ⊓⊔

Theorem 8. #EPOSSmie
⊤ can be solved in polynomial time.

Proof. Observe first that, as in the proof of Theorem 5, the probability thatW is realized
is that of either of the candidate matches being realized, those events being mutually
exclusive. We assume that, ifW andD are ordered, we have checked (in PTIME) that
candidate matches respect the order (for a candidate matchf , if v andv′ are sibling
nodes inW such thatv comes beforev′, then f (v) comes beforef (v′) in the document
order ofD), and removed those which do not.

Now, consider a candidate matchf . We must compute the probabilitypf that f is
realised, namely, that we are in the possible world where theonly regular nodes that
are kept inD are those of the imageI of f ; we abuse notation so that we considermie

nodes ofD to be inI if one of their children is inI . We will write this probabilitypf

as that of a conjunction of events: the events that all nodes in I are kept, and the events
that all nodes not inI are discarded.

The event of all nodes inI being kept can be written as the conjunctionc+ of all
ei = xi for every edge(ei ,xi) between amie node inI and a child node also inI . Indeed,
to keepI , all the conditions on edges leading to a node ofI must be respected.

The event of all nodes not inI being discarded can be written as a conjunctionc−
of the same kind, in the following fashion. Consider every topmost noden not in I .
If n’s parentn′ is a regular node, then the overall probability of the matchf is p = 0,
because if we keepn′ then we must keepn; in this case, we can forget aboutf altogether.
Otherwise, we add toc− the atomei 6= xi , where(ei ,xi) is the label of the edge fromn′

to n.
We now have either eliminatedf or obtained (in polynomial time) the conjunction

c= c+∧c− which is necessary and sufficient for the match to hold, the atoms ofc being
of the formei = xi or ei 6= xi , where theei ’s are events and thexi ’s are outcomes. Now,
we can compute in polynomial time the probabilitypf of c. Indeed, regroup the atoms
by the probabilistic event occurring in them. For each probabilistic evente, we consider
the (possibly empty) subset of outcomes satisfying the atoms fore, and compute its total
probability pe

f . As the choices are independent between events, the overallprobability
pf of c is the product of thepe

f over all eventse. ⊓⊔

6 Conclusion

We have characterized the complexity of the counting and decision variants of POSS

for unordered or ordered XML documents, and variousPrXML classes. With explicit

14

matches, #POSS is tractable unless event conjunctions are allowed. Without explicit
matches, POSS is hard unless dependencies are local; in this case, if the documents are
ordered, #POSS is tractable, otherwise #POSS is hard and POSS is tractable only with
ind or mux nodes (and hard if both types, ordet nodes, are allowed). Our results are
summarized in Table 1 on page 5.

We note that, using our results and via translations betweenthe probabilistic rela-
tional and XML models [4], we can derive some bounds on the complexity of POSSfor
relational databases. In terms of tractability for the (unordered) relational model, we can
deduce the tractability of the decision formulation of POSS for the tuple-independent
model [17,10] and the block-independent-disjoint model [7,19], and the tractability of
both the decision and counting variants on pc-tables [11,12] under the assumption that
explicit matches are provided and that tuples are annotatedby a single equality con-
straint on a multivalued event, in the spirit ofmie. We remark, however, that such re-
sults are not hard to prove directly in the relational model.In terms of intractability, we
observe that the translation from XML to relational models in [4] requires the introduc-
tion of explicit node IDs for all nodes of the document, so that this does not translate to
a reduction for the POSSproblem: intuitively, the translation ofW to a relational table
would have to specify the exact node IDs to be matched. We leave as future work a
more complete investigation of POSS in the relational context, or the study of possible
alternative translations that provide more reductions forPOSS from one setting to the
other.

Additional directions for future work would be to study moreprecisely the effect
of det nodes andind hierarchies, for instance by attempting to extend thePrXML

mie

class to capture them, or try to understand whether there is aconnection between the
algorithms of [9] and the proof of Thm. 3. It would also be interesting to determine
under which conditions (beyond unique labels) can candidate matches be enumerated
in polynomial time, so that the POSSproblem reduces to the explicit matches variant.
Last but not least, another natural problem setting is to allow the order on sibling nodes
of D to be partly specified. This question is already covered in [9], but only when all of
the possible orderings are explicitly enumerated: investigating the tractability of POSS

for more compact representations, such as partial orders, is an intriguing problem.

Acknowledgements.The author thanks Pierre Senellart for careful proofreading, use-
ful suggestions, and insightful feedback, the anonymous referees of AMW 2014 and
BDA 2014 for their valuable comments, and M. Lamine Ba and Tang Ruiming for help-
ful early discussion. This work has been partly funded by theFrench government under
the X-Data project and by the French ANR under the NormAtis project.

References

1. S. Abiteboul, T.-H. H. Chan, E. Kharlamov, W. Nutt, and P. Senellart. Capturing continuous
data and answering aggregate queries in probabilistic XML.ACM Transactions on Database
Systems, 36(4), 2011.

2. S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart. Onthe expressiveness of probabilistic
XML models. VLDB Journal, 18(5):1041–1064, 2009.

3. A. Amarilli. The possibility problem for probabilistic XML. In Proc. AMW, 2014.

15

4. A. Amarilli and P. Senellart. On the connections between relational and XML probabilistic
data models. InProc. BNCOD, pages 121–134, Oxford, United Kingdom, 2013.

5. M. L. Ba, T. Abdessalem, and P. Senellart. Merging uncertain multi-version XML documents.
Proc. DChanges, 2013.

6. M. L. Ba, T. Abdessalem, and P. Senellart. Uncertain version control in open collaborative
editing of tree-structured documents. InProc. DocEng, pages 27–36, 2013.

7. D. Barbará, H. Garcia-Molina, and D. Porter. The management of probabilistic data.IEEE
Transactions on Knowledge and Data Engineering, 4(5), 1992.

8. P. Barceló, L. Libkin, A. Poggi, and C. Sirangelo. XML withincomplete information.JACM,
58(1):4, 2010.

9. S. Cohen, B. Kimelfeld, and Y. Sagiv. Running tree automata on probabilistic XML. InProc.
PODS, pages 227–236. ACM, 2009.

10. N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.VLDB
Journal, 16(4), 2007.

11. T. J. Green and V. Tannen. Models for incomplete and probabilistic information. InProc.
EDBT Workshops, IIDB, Mar. 2006.

12. J. Huang, L. Antova, C. Koch, and D. Olteanu. MayBMS: a probabilistic database manage-
ment system. InSIGMOD, 2009.

13. R. M. Karp.Reducibility among combinatorial problems. Springer, 1972.
14. E. Kharlamov, W. Nutt, and P. Senellart. Updating probabilistic XML. In Proc. Updates in

XML, Lausanne, Switzerland, 2010.
15. B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query evaluation over probabilistic XML.

VLDB Journal, 18(5):1117–1140, 2009.
16. B. Kimelfeld and P. Senellart. Probabilistic XML: Models and complexity. In Z. Ma and

L. Yan, editors,Advances in Probabilistic Databases for Uncertain Information Manage-
ment, pages 39–66. Springer-Verlag, 2013.

17. L. V. S. Lakshmanan, N. Leone, R. B. Ross, and V. S. Subrahmanian. ProbView: A flexible
probabilistic database system.TODS, 22(3), 1997.

18. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
19. C. Ré and D. Suciu. Materialized views in probabilistic databases: for information exchange

and query optimization. InVLDB, 2007.
20. D. Suciu, D. Olteanu, C. Ré, and C. Koch.Probabilistic Databases. Morgan & Claypool,

2011.
21. L. G. Valiant. The complexity of computing the permanent. Theoretical computer science,

8(2):189–201, 1979.

A Stand-alone proof of Theorem 1

We prove the claim by representing ordered trees as words (essentially following a SAX
traversal). First, encodeW to a wordeW by such a traversal, internal nodes with labela
being encoded asalCar whereC is the sequence of the encodings of the children of the
node (following their order), and leaves with labela being encoded asal ar .

We now convertD to a weighted non-deterministic automatonAD (on words) with
ε-transitions; importantly, this automaton is acyclic. We proceed in the following way.
Encode a regular noden with labela as the following structure: the initial stateqi , the
encoding of the children(ci) of n in order (the final state of each one being connected to
the initial state of the next one by anε-transition of weight 1), the final stateqf , and an
edge labeledal with probability 1 fromqi to the initial state of the encoding ofc1 (if it

16

exists, otherwise to some intermediate stateq) and an edge labeledar with probability 1
from the final state of the encoding of the last child (if it exists, otherwise fromq) to qf .

Encode thedet nodes in the same way except that the two last edges are labeled byε
(instead ofal andar). Encode anind noden like a regular node except that edges leading
to the initial state of the encoding of a child ofnare given a probabilityp (the probability
of this child) and we add an additional edge with labelε and probability 1− p to the
same initial state to the final state of the encoding of that child (corresponding to the
choice of not retaining this child). Encode amux node as an initial stateqi , an initial
stateqf , the encoding of each child in parallel,ε-transitions with probability 1 from
the final state of the encoding of the children toqf , andε-transitions with adequate
probabilities fromqi to the initial state of the encoding of each child (or toqf , to make
the probabilities sum to 1).

There is a clear correspondence between runs ofAD and possible worlds ofD, so
that what we have to compute is the probability of the encoding eW of W according
to AD.

Now, becauseAD is acyclic, it is easy to compute this probability in polynomial
time. Indeed, we can compute dynamically for each stateq of AD and every suffixs of
eW the probability thats is produced by a run fromq to the final state ofAD.

The base case is that, at the final state, we produce the empty suffix with probabil-
ity 1 and any non-empty suffix with probability 0.

Now, when considering a non-final stateq and suffixs, because by construction the
sum of all outgoing transitions ofq is 1, the probabilityp(q,s) of producings from q
is computed by summing, for every outgoing transitiona starting at stateq (with target
stateqi), the probability of the transitiona multiplied by the following quantity: either,
if a is anε-transition, the valuep(qi ,s) (which was already computed) or, ifa has label
x, either 0 if|s|= 0 or the first letter ofs is notx, or otherwise the valuep(qi ,s′) (which
was already computed) wheres′ is the suffix of length|s|−1 of eW.

B Stand-alone proof of Theorem 5

As in the other proof of this result, it suffices to consider a single candidate match, as
the overall probability can be obtained by summing that of each match, and the decision
problem can be solved by considering matches separately. IfD andW are ordered, we
can assume that matches which do not satisfy the order constraints have been discarded.
For simplicity we relax the restriction that the probability of edges is always< 1, so
that we can encodedet nodes asind nodes and consider onlyind andmux nodes.

Let us first prove that EPOSS
mux,ind,det
⊤ can be solved in polynomial time.

Consider a candidate matchf . Because all probabilistic choices are independent,
it is clear that all nodes ofD in the imageI of f can be kept if and only if there is
no mux noden such thatn′ andn′′ are inI andn′, n′′ are descendants of two distinct
children ofn. Indeed, this condition is clearly necessary, and, except for this, all choices
are independent withinI so they can all be made to succeed5 so that the nodes ofI are
retained.

5 Remember that there are no edges with probability 0.

17

So, assuming that this condition holds (it can be checked in polynomial time), the
question is only to see whether the nodes not inI can be discarded. To check this, we
define recursively on all nodesn of D, in a bottom-up fashion, the Boolean valuee(n)
indicating if n can be “empty”, that is, if there is a possible world rooted atn that is
empty.

If n is a regular node then we definee(n) = f.
If n is an ind node, we definee(n) = t if and only if e(n) is t for all the children

of n with edge probability 1 (remember that we relaxed the condition on probabilities
being<1 because we encodeddet nodes asind nodes). In particular, ifn has no children
with edge probability 1, we definee(n) = t.

If n is amux node, we definee(n) = t if and only if the probabilities ofn sum up
to< 1, or there exists a child ofn such thate(n) is t.

Now, we can usee to express the fact that it should be possible to discard all regular
nodes ofD except those inI . To do so, by a slight abuse of terms, we say that a prob-
abilistic node is inI if it has a regular descendant that is inI . Now, we claim that the
match can yieldW if and only if, for every topmost noden not in I , eithere(n) is true,
or the parent ofn (which by definition is inI) is amux node or is anind noden′ such
that the edge fromn′ to n is labeled with a probability< 1. To see why this claim holds,
observe that, if this condition is respected, all nodes not in I can be discarded (either
becausee(n) is t so we can choose an empty subtree as the possible world rootedat
them, or by deciding to discard them at the level of their parent – formux nodes, in fact,
we have no choice but to discard them). Conversely, if this condition does not hold for a
noden′ of D, thenn′ must be kept, and the possible world chosen for the subtree rooted
at n′ will have to be non-empty becausee(n′) is f.

This condition can be tested in polynomial time. Hence, EPOSS
mux,ind,det
⊤ can be

solved in polynomial time by checking if one of the matches isacceptable in this sense.

Let us now prove that #EPOSS
mux,ind,det
⊤ can be solved in polynomial time. We as-

sume that candidate matches are filtered (in polynomial time) according to the process
described above, so as to only keep the matches with probability > 0.

Now, the probability that the matchf is realized can be computed as the probability
of keeping its imageI (including probabilistic nodes like in the previous proof), times
the probability of discarding the other nodes: indeed, asI is a rooted subtree, we must
first decide outcomes of nodes and edges in this subtree so that I is kept, and then
outcomes such that the rest is discarded.

It is easily seen that the probabilityp+ thatI is kept is the product of all probabilities
that annotate the edges that are between nodes inI : all ind edges of the match must
be kept (and those draws are performed independently), and the rightmux edges must
always have been chosen (remember that amux noden is in I only if it has a descendant
in I , and by the condition that the match probability is> 0 all descendants ofn are
descendants of the same child ofn).

Now, we must compute the probabilityp− that the nodes not inI are discarded.
To do so, we definee(·), as in the previous proof, but as a probability rather than a
Boolean value:e(n) is the probability of the empty subtree among the possible worlds
for the subtrees rooted ate(n) (note that this probability does not depend on the choices
performed elsewhere in the tree). Once again, we computee(·) bottom-up.

18

For a regular noden, we definee(n) = 0.
For amux noden, we definee(n) = (∑i pie(ni))+ (1−∑i pi) where theni are the

children ofn and thepi the corresponding edge labels. Intuitively, the probability of the
mux to be empty is that of its children being empty, weighted by their probability, plus
the probability that we select no children (when the probabilities sum to< 1).

For anind noden, we definee(n) = ∏i((1− pi)+ pie(ni)) with the same notation.
Intuitively, the probability of theind to be empty is that of each child subtree being
missing or empty, which occurs either when the corresponding is removed, or when
it is kept but the subtree is empty (summing those two cases are they are mutually
exclusive).

Now, all nodes not inI are discarded if and only if, for each topmost noden not in
I , eithern is dropped (its parent edge is removed) or the possible worldrooted atn is
empty. This is a conjunction of events, and they are independent once conditioned by
the fact that the nodes inI are kept (so the outcomes of allmux nodes inI have already
been decided), so we can compute the overall probability off asp+p−, with p− being
the product of the probabilitypn, for all topmost nodesn not in I , thatn is dropped or
the subtree rooted atn is empty. Considern′ the parent ofn: the probabilitypn is e(n)
if n′ is a regular node (asn cannot be dropped then), is 1 ifn′ is amux node (asn′ is in
I , it has a descendantn′′ in I , which cannot be a descendant ofn asn is not in I , so that
when deciding to keepn′′ we have already decided thatn would be dropped), and it is
pe(n)+ (1− p) if n′ is anind node and the probability of the edge fromn′ to n is p.

Hence, the overall probability,p+p−, can be computed in polynomial time, which
concludes the proof.

C PrXML
mie does not capturePrXML

mux,det

In this section, we show thatPrXML
mie is notmore general thanPrXML

mux,det, namely,
there is no PTIME encoding fromPrXML

mux,det documents toPrXML
mie documents.

Consider thePrXML
mux,det documentDn with root labeled⊤ and onemux child

that has two children (with edge probabilities 1/2): one regular child with labelc, and
one det child. The det node hasn mux children: for all i, the i-th of them has edge
probabilities 1/2 and two regular children with labelsai and bi . We show that any
encoding ofDn to aPrXML

mie documentD′
n (having the same possible worlds asDn)

must have size exponential inn.
The documentD′

n must have root labeled⊤, and the root clearly cannot have any
regular children; so it must havemie children, and without loss of generality it has only
one of them. Now, asmie hierarchies are not permitted, all children of thismie node
are regular nodes; clearly they cannot have any regular children, and without loss of
generality they have no (useless)mie children. So the only thing to define is the label
and edge labels of the children of this uniquemie node. Without loss of generality we
assume that we remove edges labeled with(e,v) wheree= v has probability 0. Clearly
the node labels can be assumed to be eitherc or ai or bi for somei.

As all possible worlds ofD′
n must contain at most one node labeledc, we claim that

the parent edge of all child nodes with labelc must be labeled with the same evente.
Indeed, if there are two nodes with labelc and with edge labels(e1,v1) and (e2,v2)

19

with e1 6= e2, becausee1 ande2 are independent and (we assumed) the eventse1 = v1

ande2 = v2 have probability> 0, any valuation wheree1 = v1 ande2 = v2 yields a
possible world with twoc children, a contradiction. Hence all child nodes with labelc
are labeled with the same evente. Note that, as some possible world ofD′

n must contain
a node labeledc, there has to be at least one childnc with labelc.

Now, no possible world ofD′
n contains both a child labeledai or bi (for any i) and

a child labeledc, so we claim that the parent edge of all child nodes with labelai or bi

(for any i) must be labeled with this same evente. Indeed, assume that one such node
is labeled with some condition(e′,x) with e′ 6= e; calling (e,v) the edge label ofnc, any
valuation wheree′ = x ande= v yields a possible world with ac node and anai node
or abi node for somei, a contradiction. Hence, in fact, all child nodes of themie node
are labeled with the same evente.

Now, asDn has 2n+1 possible worlds,emust haveΩ(2n) different possible values.
Hence,D′

n is of size exponential inn. This concludes the proof.

20

	The Possibility Problem for Probabilistic XML(Extended Version)

