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ABSTRACT. In this paper, we investigate the relationship between two decidable interval-based
temporal description logics that have been proposed in the literature, T L-ALCF and ALCF (A).
Although many aspects of these two logics are quite similar, the two logics suggest two rather
different paradigms for representing temporal conceptual knowledge. In this paper, we exhibit
a reduction from T L-ALCF concepts to ALCF(A) concepts that serves two purposes: first,
it nicely illustrates the relationship between the two knowledge representation paradigms; and
second, it provides a tight PSPACE upper bound for T L-ALCF concept satisfiabiliy, whose
complexity was previously unknown.
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1. Introduction

Description Logics (DLs) are a family of logic-based formalisms for representing
and reasoning on conceptual knowledge, which have over the the last 20 years been
successfully applied to a large number of application problems [BAA 03b]. Important
characteristics of description logics are high expressivity together with sound, com-
plete and terminating reasoning algorithms. Although expressive DLs typically have
a rather high theoretical complexity (often EXPTIME-complete), highly optimized
reasoners, such as FaCT [HOR 00], RACER [HAA 01], and DLP [PAT 99], have been
developed and exhibit a quite impressive performance on real applications [BAA 03b].

1. The first author has been partially supported by the EU projects Sewasie, KnowledgeWeb,
and Interop.
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Temporal extensions of logic formalisms are relevant to capture the evolving beha-
vior of dynamic domains, and they have been extensively considered in both artificial
intelligence and theoretical computer science. In particular, temporal logical form-
alisms have been studied and applied in areas such as specification and verification
of computer programs [PNU 86, EME 90], temporal information systems [GAB 94,
CHO 98, CHO 03], planning and natural language [ALL 91, ALL 94, BEN 95].

Since the incorporation of temporal aspects also plays an important role in
many application areas of description logics such as reasoning about temporal data-
base schemas [ART 99b, ART 02, ART 03] and reasoning about actions and plans
[ART 98, ART 99a], in the last years an increasing interest in temporal description
logic (TDL) could be observed—see [ART 01, BAA 03a] for a survey. When con-
structing a temporal description logic, one of the most important decisions to be made
is whether time points or time intervals should be used as the underlying temporal
primitive [ART 01]. As known from temporal logic and other areas of artificial in-
telligence, this decision has a severe impact on the expressiveness and computational
properties of the resulting logic [GAB 94, GAB ar, GOR 03b, GOR 03a]. In DL re-
search, both routes haven been taken as witnessed by a series of papers on point-based
TDLs [SCH 93, WOL 98, WOL 99, STU 01, LUT 01, ART 02, GAB 03], and a num-
ber of papers on interval-based ones [SCH 90, ART 94, BET 97, ART 98, LUT ar].

Interval-based TDLs have the advantage that they provide an attractive temporal
expressivitiy much richer than the expressivity of point-based TDLs. On the other
hand, the computational behavior of interval-based TDLs is often problematic: even
very basic formalisms often turn out to be undecidable. An important example is
the interval-based TDL proposed by Schmiedel [SCH 90], which is very natural but
undecidable since it contains Halpern and Shoham’s (undecidable) interval-based tem-
poral logic—called HS in the following—as a fragment [VEN 90, HAL 91]. Due to
these computational problems, one of the prime goals of this research area has been
to identify decidable TDLs that are expressive enough to allow the representation of
temporal conceptual knowledge in relevant application areas.

In this paper, we are concerned with two decidable interval-based TDLs: T L-
ALCF [ART 98], and ALCF(D) [LUT 02a]. T L-ALCF is close in spirit to Schmie-
del’s undecidable temporal DL, and thus also to the temporal logic HS . It was de-
veloped for reasoning about actions and plans [ART 98, ART 99a], and is well-suited
for application domains in which objects have properties that vary over time. For ex-
ample, in T L-ALCF we can describe the evolution of students using the following
concept:

3(x, y)(y s x).(Student@x u Bachelor-Student@y).

Here, x and y denote time intervals and (y s x) states that x and y begin at the same
time point, but y ends before x. Thus, the described persons are students for some time
interval x and bachelor students for some initial sub-interval y of x (since they become
master’s students or PhD students afterwards, which is not modeled for simplicity).



Correspondence between Temporal DLs 213

T L-ALCF is equipped with a rather rich language for expressing temporal rela-
tionships that is based on the-well known Allen relations for expressing the possible
relationships between time intervals [ALL 83]. In [ART 98], Artale and Franconi
show that concept satisfiability and subsumption, the fundamental reasoning tasks in
description logics, are both decidable for T L-ALCF . To do this, they use algorithms
that first convert concepts into a certain normal form by means of a quite complex
syntactic rewriting, and then apply two classical reasoning procedures, one developed
for temporal constraint networks and one for description logics, to reason on the nor-
malized concept.

The second description logic addressed in this paper, ALCF(D), is not a temporal
DL in its general form. Rather, it is equipped with so-called concrete domains, which
are used for representing qualities of real-world entities that are of a “concrete nature”:
e.g. lengths, weights, temperatures, durations, and spatial extensions [LUT 03]. The
concrete domain D of ALCF(D) is not fixed, but rather can ALCF(D) be “instanti-
ated” with a number of different concrete domains. In [LUT 97, LUT ar], it is shown
that a concrete domain A based on temporal intervals and the Allen relations yields an
instantiation ALCF(A) of ALCF(D) that is well-suited for interval-based reasoning
with temporal knowledge.

The paradigm underlying the representation of temporal conceptual knowledge
with ALCF(A) is quite different from the one of T L-ALCF . While T L-ALCF is
well-suited for reasoning about objects whose properties vary over time, in ALCF(A)
objects are associated with a fixed temporal extension that can be understood as their
lifespan, and during which all of their properties remain constant. It is then possible
to enforce temporal constraints on the lifespans of related objects. For example, we
can define a summer semester as a semester which is properly contained in some year
(in contrast to winter semesters, which overlap two years):

Semester u ∃in-year.Year u ∃time, (in-year ◦ time).during.

The first conjunct states that the described objects are semesters, whereas the second
conjunct states that semesters are related to the year in which they take place via
the functional relation in-year. Finally, the last conjunct says that the lifespan of the
semester is properly contained in the lifespan of the associated year. It has been shown
that satisfiability and subsumption of ALCF(A)-concepts is decidable and PSPACE-
complete [LUT 02c].

Intuitively, the two TDLs T L-ALCF and ALCF (A) are closely related: they
both allow the representation of temporal conceptual knowledge based on time inter-
vals, and they both contain the non-temporal DL ALCF as a proper fragment. Nev-
ertheless, the different underlying paradigms make it surprisingly hard to relate the
expressive power of the two logics. The purpose of the current paper is twofold:

1) Understand the relationship between T L-ALCF and ALCF(A) in terms of
their expressivity;

2) Provide a tight PSPACE complexity bound for concept satisfiability in
T L-ALCF .
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More precisely, we start with T L-ALCF and show, on an intuitive level, how T L-
ALCF concepts can be translated into ALCF(A) concepts that have the same mean-
ing. This shows how the gap between the two knowledge representation paradigms
of T L-ALCF and ALCF(A) can be bridged. Then, we formalize the translation
by polynomially reducing T L-ALCF concept satisfiability to ALCF(A) concept
satisfiability. Due to the known PSPACE complexity of ALCF(A), this yields a
PSPACE upper bound for T L-ALCF concept satisfiability, which is tight. An ad-
ditional advantage of the reduction is that “practicable” reasoning becomes available
for T L-ALCF . Indeed, all modern DL reasoners such as the ones initially mentioned
are based on tableau-style reasoning procedures [BAA 00]. For the logic ALCF(A),
such a procedure has been developed in [LUT 02c]. In contrast, no (terminating)
tableau-style algorithms have yet been found for logics of the T L-ALCF family. Via
our translation, the ALCF(A) decision procedure can be used for T L-ALCF , thus
replacing the less practicable reasoning methods based on syntactic rewriting.

This paper is organized as follows: in Section 2, we introduce the syntax and
semantics of T L-ALCF , together with a running example. In Section 3, we give the
syntax and semantics of ALCF(A), and show how this logic is able to express the
example introduced in Section 2. Based on this example translation, we discuss how
the different paradigms of temporal-conceptual knowledge representation underlying
T L-ALCF and ALCF(A) are related. The translation is made precise in Section 4,
where we use the ideas of Section 3 to reduce T L-ALCF concept satisfiability to
ALCF(A) concept satisfiability. In this way, we demonstrate the generality of the
translation technique proposed in Section 3 and obtain a PSPACE-completeness result
for T L-ALCF concept satisfiability. Section 5 makes some conclusions and shows
future directions.

2. The logic T L-ALCF

The temporal description logic T L-ALCF [ART 94, ART 98] can be viewed as a
combination of the non-temporal description logic ALCF [HOL 90] with the interval-
based temporal logic HS of Halpern and Shoham [HAL 91]. However, to obtain de-
cidable reasoning problems, T L-ALCF allows only existential temporal quantifiers,
but no universal temporal quantifiers—thus including only a fragment of HS. Tech-
nically, T L-ALCF can be regarded as a decidable fragment of first-order interval
temporal logic.

The combinatory character of T L-ALCF is reflected by its syntax, which is di-
vided into the temporal part TL and the atemporal part ALCF . We fix countably
infinite and pairwise disjoint sets of atomic concepts, roles, features, parametric fea-
tures, and temporal variables. Then, T L-ALCF concepts are built following the
syntax rules in Figure 1. In the figure and throughout this paper, we use

– A to denote atomic concepts,

– C, D to denote (temporal) T L-ALCF concepts,
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TL C, D → E | (non-temporal concept)

C u D | (conjunction)

C@X | (qualifier)

C[Y ]@X | (substitutive qualifier)

3(X)Tc.C (temporal quantifier)

Tc → (X r Y ) (temporal constraint)

Tc → Tc | Tc Tc

r, s → r , s | (disjunction)

s | mi | f | . . . (Allen’s relations)

X, Y → ] | x | y | . . . (temporal variables)

X → X | X X

ALCF E, F → A | (atomic concept)

¬E | (complement)

E u F | (conjunction)

E t F | (disjunction)

∀R.E | (universal quantifier)

∃R.E | (existential quantifier)

p : E | (selection)

p↓q | (agreement)

p↑q | (disagreement)

p↑ (undefinedness)

p, q → f | (atomic feature)

?g | (atomic parametric feature)

p ◦ q (path)

Figure 1. Syntax rules for the description logic T L-ALCF
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– E, F to denote (non-temporal) ALCF concepts,

– R to denote roles,

– f to denote (non-parametric) features,

– ?g to denote parametric features,

– p and q to denote paths, i.e. finite sequences γ1 ◦ · · · ◦ γk, where each γi is a
feature or a parametric feature,

– X, Y to denote temporal variables, and

– r, s to denote (Allen’s) interval relations.

The ? symbol is not intended as an operator, but only used to distinguish paramet-
ric from non-parametric features. For the basic temporal interval relations, Allen’s
notation [ALL 83] is used: before (b), meets (m), during (d), overlaps (o), starts (s),
finishes (f), equal (=), after (a), met-by (mi), contains (di), overlapped-by (oi), started-
by (si), and finished-by (fi).

Due to the wealth of expressive means, a first encounter with T L-ALCF’s syntax
can be slightly confusing. We will give some intuitive examples after introducing
the semantics. However, an in-depth introduction to knowledge representation with
T L-ALCF is out of the scope of this paper, and we refer the interested reader to
[ART 98]. We should also like to note that the purpose of many of T L-ALCF’s
operators is to allow an intuitive representation of temporal knowledge. Technically,
they can be viewed as syntactic sugar: T L-ALCF concepts can be converted into
equivalent ones in a quite convenient normal form, which is introduced in Section 4.

The core of the temporal part of T L-ALCF is constituted by the temporal existen-
tial quantifier “3” and by the “@” operator. The 3 operator introduces temporal vari-
ables that stand for time intervals, and relates such variables via temporal constraints
based on the Allen relations. Then the @ operator allows to specify which concepts
are “true” at intervals denoted by temporal variables. The special temporal variable
], usually called now, is intended as the reference interval and cannot be bound by
the temporal quantifier (3). Thus, ] is a free temporal variable in each T L-ALCF
concept in which it occurs. In the following, we only admit concepts that have no
variables except ] as their free variable.

T L-ALCF is provided with a two-dimensional semantics, which is defined in
several steps. We start with assuming a temporal structure T = (P , <), where P
is a set of time points and < is a linear, unbounded, and dense order on P . The
interval set of a structure T is defined as the set T ?

<
of all closed proper intervals

[u, v]
.
= {x ∈ P | u ≤ x ≤ v, u 6= v} in T . An interpretation I

.
= 〈T ?

<
, ∆I , ·I〉

consists of

– a set T ?
<

(the interval set of the selected temporal structure T ),

– a set ∆I (the domain of I), and

– a function ·I (the interpretation function of I), which gives a meaning to atomic
concepts, roles, features and parametric features:
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AI ⊆ T ?
<
× ∆I ; RI ⊆ T ?

<
× ∆I × ∆I ;

fI : (T ?
<
× ∆I)

partial
7−→ ∆I ; ?gI : ∆I partial

7−→ ∆I

Note the relationship between roles, features, and parametric features: first, features
are simply roles that are required to be functional; second, parametric features dif-
fer from features in being independent from time, i.e., they are (temporally) global
functional roles.

(s)E = {([u, v], [u1, v1]) ∈ T ?
<
× T ?

<
| u = u1 ∧ v < v1}

. . .(similarly for the other Allen relations)

(r, s)E = rE ∪ sE

〈X, Tc〉E = {V : X 7→ T ?
<
| ∀(X r Y ) ∈ Tc. (V(X),V(Y )) ∈ rE}

AI
V,t,H = {a ∈ ∆I | (t, a) ∈ AI}

(¬C)IV,t,H = ∆I \ CI
V,t,H

(C u D)IV,t,H = CI
V,t,H ∩ DI

V,t,H

(C t D)IV,t,H = CI
V,t,H ∪ DI

V,t,H

(∀R.C)IV,t,H = {a ∈ ∆I | ∀b.(a, b) ∈ RI
t ⇒ b ∈ CI

V,t,H}

(∃R.C)IV,t,H = {a ∈ ∆I | ∃b.(a, b) ∈ RI
t ∧ b ∈ CI

V,t,H}

(p : C)IV,t,H = {a ∈ dompIt | pIt (a) ∈ CI
V,t,H}

(p↓q)IV,t,H = {a ∈ dompIt ∩ domqIt | pIt (a) = qIt (a)}

(p↑q)IV,t,H = {a ∈ dompIt ∩ domqIt | pIt (a) 6= qIt (a)}

(p↑)IV,t,H = ∆I \ dompIt

(C@X)IV,t,H = CI
V,V(X),H

(C[Y ]@X)IV,t,H = CI
V,t,H∪{Y 7→V(X)}

(3(X)Tc.C)IV,t,H = {a ∈ ∆I | ∃W . W ∈ 〈X, Tc〉E
H∪{]7→t}

∧ a ∈ CI
W,t,∅}

RI
t = {(a, b) ∈ ∆I × ∆I | (t, a, b) ∈ RI}

fI
t (a) = b iff fI(t, a) = b

(γ ◦ q)It (a) = b iff qIt (γI
t (a)) = b

?gIt = ?gI

Figure 2. The T L-ALCF semantics

The second step in defining T L-ALCF’s semantics consists of dealing with tem-
poral constraint networks that occur inside the 3 operator. These networks are one of
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the most common formalisms for temporal reasoning in AI, see e.g. [ALL 83, VIL 90,
NEB 95]. Formally, a temporal constraint network is a labeled directed graph 〈X, Tc〉,
where X is a set of variables representing the nodes and Tc is a set of temporal con-
straints representing the labeled edges as defined in Figure 1. The semantics of tem-
poral constraint networks is defined using variable assignments, i.e. total functions
V : X 7→ T ?

<
associating an interval to each temporal variable from a set X. As

defined by the temporal interpretation function ·E in the upper half of Figure 2, an
interpretation of a temporal constraint network is a set of variable assignments that
satisfy the temporal constraints. The notation 〈X, Tc〉E{x1 7→t1,x2 7→t2,...}, used to inter-

pret concept expressions in the next step, denotes the subset of 〈X, Tc〉E where the
variable xi is mapped to the interval value ti.

We can now perform the last step of defining T L-ALCF’s semantics. The inter-
pretation CI

V,t,H of a T L-ALCF concept C with free variables x1, . . . , xk (possibly
including ]) is based on

– a variable assignment V such that x1, . . . , xk are in the domain of V ,

– an interval t ∈ T ?
<

, and

– an assignment constraint H = {y1 7→ t1, . . .} with yi variable and ti ∈ T ?
<

.

The exact details of defining the interpretation of T L-ALCF concepts can be found
in the lower part of Figure 2.

Intuitively, the interpretation CI
V,t,H of a T L-ALCF concept C is the set of ele-

ments of the domain which are of type C at the time interval t, with the assignment for
the free temporal variables in C given by V (c.f. the definition of (C@X)IV,t,H) and
with the assignment of variables in the scope of the outermost temporal quantifiers
constrained by H. The natural interpretation function CI

t , being equivalent to the in-
terpretation function CI

V,t,H with any V such that V(]) = t, and H = ∅, is introduced
as an abbreviation. An interpretation I is a model for a concept C if, for some t ∈ T ?

<
,

CI
t 6= ∅. If a concept has a model, then it is satisfiable, otherwise it is unsatisfiable.

We will now informally discuss the intended meaning of T L-ALCF concepts. As
already noted, a central role is played by the temporal existential quantifier “3” and
the temporal qualification operator “@”. For example, to represent all the objects that
satisfy a concept C at a time interval that is after the “current interval”, we can write

3(x)(x a ]).(C@x).

Here, the 3 operator introduces the new variable x and ensures that the time interval
it denotes is located after the current interval ]. Then, the @ operator “evaluates” C at
x thus ensuring that C holds at the time interval denoted by x.
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Let us now consider some more interesting examples from the well-known blocks
world domain. First, we define a concept representing the action of stacking a block
on top of another block1.

Basic-Stack = 3(x y)(x m ])(] m y).
((?BLOCK : OnTable)@x u (?BLOCK : OnBlock)@y)

����������	�

�������
denotes any action involving a ?BLOCK that was once OnTable and

then OnBlock. The parametric feature ?BLOCK plays the role of formal parameter of
the action, mapping any individual action of type Basic-Stack to the block to be
stacked, independently from time. The ] interval can be understood as the occurring
time of the stacking action. The temporal constraints (x m ]) and (] m y) state that
the interval x should meet the interval ]—the occurrence interval of the action type����������	�

�������

—and that ] should meet y.

� -

� -�-

-�

�������������������������! "��#%$�&%'

( �%)�*%+
�����������! "��#�$�,�' -/.0 "��#�$�&213��#�$�,�'

( �%)�*%+
�����������! "��#�$2&%' ( ��)�*%+������������! 4��#�$�&%'

5�6 *����7 "��#�$�&213��#�$�,�'

w

x y

v z

]

Figure 3. Temporal dependencies in the definition of the


�������

action

To illustrate the expressive power of other T L-ALCF constructors, let us now
refine the

�����2����	�

�������
example. Figure 3 shows the temporal configuration induced

by the stacking action in some more detail: a stacking action involves two blocks—
BLK1 and BLK2—which should be both clear at the beginning; the central part of the
action consists of grasping one block; at the end, the blocks are one on top of another,
and the bottom one is no longer clear. The formal definition of the action


��������
is:

Stack = 3(x y z v w) (x fi ])(y mi ])(z mi ])(v o ])(w f ])(w mi v).
((?BLOCK2 : Clear-Block)@x u (?BLOCK1◦ON↓?BLOCK2)@y u
(?BLOCK1 : Clear-Block)@v u (?BLOCK1 : Holding-Block)@w u
(?BLOCK1 : Clear-Block)@z)

Apart from providing a more fain-grained modeling, the new definition of stacking
uses the feature agreement constructor: (?BLOCK1◦ON ↓ ?BLOCK2)@y indicates that,
at interval y, the object 8�9 which ?

��: 8
;�<7= is placed is ?
��: 8
;�<�> . Note that the world

states described at the intervals denoted by v, w, z are the result of an action of grasp-
ing a previously clear block:

1. In this paper, equalities are used only for introducing names for complex concepts. Such
equalities are thus not intended to denote so-called TBoxes, which are frequently used with
description logics. Please refer to Section 5 for a brief discussion of reasoning under TBoxes.
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Grasp = 3(x w z) (x o ])(w f ])(w mi x)(z mi ]).
((?BLOCK1 : Clear-Block)@x u (?BLOCK1 : Holding-Block)@w u
(?BLOCK1 : Clear-Block)@z)

The


�������

action can be redefined by making use of the ��� ����� action:

Stack = 3(x y u v) (x fi ])(y mi ])(u f ])(v o ]).
((?BLOCK2 : Clear-Block)@x u (?BLOCK1◦ON↓?BLOCK2)@y u
(Grasp[x]@v)@u)

The temporal substitutive qualifier (Grasp[x]@v) renames within the defined ��� �����
action the variable x to v. Thus, it is a way of establishing a coreference between two
temporal variables ensuring that the temporal constraints peculiar to the renamed vari-
able x are inherited by the substituting interval v. Furthermore, the effect of tempor-
ally qualifying the grasping action at u is that the ] variable associated to the grasping
action—referring to the occurrence time of the action itself—is bound to the interval
denoted by u. Because of this binding on the occurrence time of the grasping action,
the ] variable in the grasping action and the ] variable in the stacking action denote
different time intervals, so that the grasping action occurs at an interval finishing the
occurrence time of the stacking action.

3. The logic ALCF(A)

As noted in the introduction, the temporal description logic ALCF(A) is obtained
by taking the logic ALCF(D), which provides for concrete domains, and instantiat-
ing it with a concrete domain A that is based on time intervals and the Allen inter-
val relations [LUT 97, LUT 02c, LUT ar]. For the sake of brevity, we do not intro-
duce ALCF(D) in general (see, e.g. [LUT 02c]), but rather define it’s specialization
ALCF(A) right away.

The syntax ofALCF(A) is obtained from the syntax ofALCF as given in Figure 1
by making the following modifications:

– ALCF(A) does not provide parametric features.

– ALCF(A) is equipped with a new sort of feature, so called temporal features.

– The temporal part of ALCF(A) is integrated into the language by adding the
temporal concept constructor:

E, F → ∃p1, p2.r,

where r is one of the Allen relations, and p1, . . . , pn are temporal paths—sequences
γ1 ◦ · · · ◦ γk ◦ h with γ1, . . . , γk features, and h a temporal feature.

In contrast to T L-ALCF , the semantics of ALCF(A) is not a multi-dimensional
one, but rather it is very close to “classical” description logics semantics. To introduce
it, we again fix a linear, unbounded, and dense temporal structure T = (P , <)—this



Correspondence between Temporal DLs 221

structure is assumed to be the same as in the T L-ALCF case. Then, an ALCF(A)
interpretation I = (∆I , ·I) consists of a set ∆I(the domain), and an interpretation
function ·I that assigns a meaning to atomic concepts, roles, features, and temporal
features:

AI ⊆ ∆I ; RI ⊆ ∆I × ∆I ;

fI : ∆I partial
7−→ ∆I ; hI : ∆I partial

7−→ T ?
<

If p = q ◦ h is a temporal path, then pI is defined as hI(qI(·)), where the meaning of
atemporal paths is defined as in Figure 2. Apart from the temporal concept constructor,
the interpretation of complex concepts is also determined by Figure 2—just omit the
three temporal indices. The semantics of the new temporal concept constructor is
given as follows:

(∃p1, p2.r)
I = {a ∈ ∆I | ∃t1, t2 ∈ T ?

<
: (a, t1) ∈ pI1 ∧ (a, t2) ∈ pI2 ∧ (t1, t2) ∈ rE},

where rE is defined as in Figure 2.

Before discussing the intuitions behind ALCF(A), let us adopt two conventions:
first, we will use parametric feature names of T L-ALCF as non-temporal feature
names in ALCF(A). Thus, we may write e.g. ?BLOCK in an ALCF(A) concept to
denote a (non-temporal) feature. Second, in the following we will only need a single
temporal feature which will be denoted with time.

Comparing the semantics of T L-ALCF and ALCF(A), the main difference is
that T L-ALCF’s semantics is two-dimensional (i.e. based on the product of the
domain and the set of time intervals), while ALCF(A)’s semantic is not. The con-
sequences of this difference can be summarized as follows:

– in T L-ALCF , a domain element may be in the extension of a concept only
w.r.t. a given time interval; moreover, objects are not associated with a “life span”, but
rather exist at any given time interval.

– in ALCF(A), concept membership of domain elements is independent of time;
moreover, objects are associated with a unique life span via the time feature.2

The semantic difference induces two different paradigms for the representation of
temporal conceptual knowledge. If the aim is to talk about “eternal” objects whose
properties vary over time, then T L-ALCF seems like a natural choice. On the other
hand, if we want to reason about temporal entities that are associated with a unique
temporal extension, then using ALCF(A) is the better approach.

2. Or with multiple time spans if we admit more than one temporal feature. This can be very
useful: consider e.g. the introduction of distinct temporal features for the life time, the youth, the
work time, etc. However, in the context of T L-ALCF we prefer to stick to a single temporal
feature.
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Despite these differences, there exists a close and natural relationship between the
two temporal description logics T L-ALCF and ALCF(A). To get a first idea, let us
represent the basic stack action from Section 2 in the framework of ALCF(A) :

Basic-Stack
.
= step1 : (?BLOCK : OnTable) u

step2 : (?BLOCK : OnBlock) u
∃(step1 ◦ time), (step] ◦ time).m u
∃(step] ◦ time), (step2 ◦ time).m

The concept states that any
����������	�

�������

is related to three objects via the features

step1, step2, and
����� �

]. These objects describe the basic stack action at different
time intervals – with

����� �
] representing the occurring time of the action. For each

step, a corresponding time interval is associated by the time feature. The relation
between these time intervals is described using the temporal concept constructor and
resembles the temporal network in the T L-ALCF definition of the basic stack. In
step1, the ?BLOCK is 8�� �����	�
� , and in step2 it is 8�� ���
����� . This situation is illus-
trated in Figure 4.

step2

�����2����	�

�������

?BLOCK : OnBlock

meetsmeets

step1

time time time

step]

?BLOCK : OnTable

Figure 4. Model of the ALCF(A)
�������
��	�

�������

Comparing the two definitions of
����������	%

�������

, their main difference can be char-
acterized as follows: in the T L-ALCF definition, the basic stack is represented by a
single logical object, whose properties are defined separately for each temporal inter-
val. To the contrary, in ALCF(A), the basic stack is represented by a logical “meta-
object” (the

�����2����	%

�������
object itself in the above concept definition) and a set of

additional logical “temporal-facet” objects (the stepi successors of the
����������	%

�������

meta-object), each of which has unique properties and represents the basic stack at a
unique time interval.

To reduce satisfiability of T L-ALCF concepts to satisfiability of ALCF(A) con-
cepts, we exploit the idea suggested by this simple example: the translation must
be such that one domain element in models of the T L-ALCF concepts corresponds
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to a number of domain elements in models of its ALCF(A) translation, i.e. one
meta-object together with a number of temporal-facet objects that represent the single
T L-ALCF domain element at different time intervals. An additional difficulty is to
preserve the temporal invariance of parametric features. As illustrated in the next sec-
tion, this problem is solved by using the feature agreement constructor of ALCF(A).

4. The reduction

This section presents the reduction of T L-ALCF concept satisfiability to
ALCF(A) concept satisfiability. To simplify matters, we will only consider
T L-ALCF concepts in so-called existential normal form (ENF). In this normal form,
the only temporal operator that may occur is a single “3” operator, i.e. T L-ALCF
concepts in ENF are of the form

C = 3(X)Tc.Q0 u Q1@X1 u . . . u Qn@Xn, (∗)

where X = {X1, . . . , Xn} and each Qi is an (atemporal) ALCF concept. Addition-
ally, we assume that the T L-ALCF concepts Q0, . . . , Qn are in negation normal form
(NNF), i.e. that negation occurs only in front of concept names. In this case, we will
simply say that the concept C is in normal form (NF). As the following proposition
shows, normal form can be assumed without loss of generality.

¬ > → ⊥ ¬ ⊥ → >

¬(C u D) → ¬C t ¬D ¬(C t D) → ¬C u ¬D

¬(∀R.C) → ∃R.¬C ¬(∃R.C) → ∀R.¬C

¬¬C → C ¬(p : C) → p↑ t p : ¬C

¬(p↓q) → p↑ t q↑ t p↑q ¬(p↑q) → p↑ t q↑ t p↓q

¬(p↑) → p : >

Figure 5. NNF rewrite rules

PROPOSITION 1 (EQUIVALENCE OF NF). — Every T L-ALCF concept C can be
converted in polynomial time into an equivalent concept in normal form.

PROOF. — In [ART 98], it is shown that every T L-ALCF concept can be converted
in polynomial time to an equivalent one in ENF. We can then convert the Q0, . . . , Qn

to NNF by exhaustively applying the rewrite rules in Figure 5. Note that this takes only
polynomial time and the length of the resulting concept is polynomial in the length of
the original concept. ■
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Let C be a T L-ALCF concept in NF of the form (∗). To translate C into an
equi-satisfiable ALCF(A) concept Ψ(C), we introduce the new features f0, . . . , fn

(corresponding to the stepi features in Section 3), the new concept names Ai,j for
all 0 ≤ i, j ≤ n, and the new concrete feature time. We assume w.l.o.g. that these
features and concept names are not used in the T L-ALCF concept C. For the re-
mainder of this section, we use the symbol f to denote features that are distinct from
the reserved features f0, . . . , fn, parametric features are denoted by ?g, and γ denotes
features that may or may not be parametric, but are distinct from the reserved fea-
tures. To define the concept Ψ(C), we need to define a number of auxiliary concepts.
To start with, we need a mapping from T L-ALCF’s temporal constraint networks to
ALCF(A) concepts.

DEFINITION 2 (TRANSLATION OF TEMPORAL NETWORKS). — Let Tc be a tem-
poral constraint network for the set of variables X = {X0, X1, . . . , Xn}, where
X0 = ]. For each temporal constraint (X r Y ) ∈ Tc, we define an ALCF(A)
concept, α(X r Y ), as follows:

α(X r Y ) := ∃(fi ◦ time), (fj ◦ time).r if X = Xi and Y = Xj .

Then, the translation α(Tc) of Tc is defined as follows:

α(Tc) := u
(XrY )∈Tc

α(X r Y ).

The remaining auxiliary concepts—ΓC, Ω, Ω′—are defined in Figure 6. In the
definition of ΓC , we use feat(C) to denote the set of all features (either non-parametric
or parametric) in C, and rol(C) to denote the set of all role names in C.

DEFINITION 3 (TRANSLATION OF T L-ALCF CONCEPTS). — Given a
T L-ALCF concept C, its ALCF(A) translation, Ψ(C), is defined as:

Ψ(C) := α(Tc) u ΓC u Ω u Ω′.

Before giving a formal proof of the fact that Ψ(C) and C are equi-satisfiable, let
us briefly discuss the various concepts used in the reduction. The concept Ω enforces
the existence of n + 1 temporal-facet objects as fi-successors of the root object (i.e.
the object that satisfies the reduction concept Ψ(C)). Thus, this root object is a meta-
object in the sense of the previous section. Furthermore, Ω ensures that, for each i,
the temporal facet that is an fi-successor must be a member of Ψi(Qi). The purpose
of the Ψi translation used here is to insert the fi features after each feature and role
name used in Qi. This is necessary since not only the root object, but also all other
objects are composed of a meta-object and n + 1 temporal facets.
The concept α(Tc) associates a time feature to each temporal-facet of the root meta-
object ensuring that the values of such time features satisfy all constraints in Tc. It is
interesting to note that only the fi successors of the root meta-object are equipped with
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Ω := f0 : Ψ0(Q0) u · · · u fn : Ψn(Qn)

Ω′ := u
0≤i<j≤n

(∃(fi ◦ time), (fj ◦ time). =) → Ai,j

ΓC := u
0≤i<j≤n

Ai,j → fi ↓ fj u

u
0≤i<j≤n

Ai,j →
(

u
0≤k≤n

( u
γ∈feat(C)

(fk : γ↑tfk : γ : Ai,j) u

u
R∈rol(C)

fk : ∀R.Ai,j)
)

u

u
?g used in C

((un
j=0fj ◦ ?g↑) t (un

j=1(f0 ◦ ?g)↓(fj ◦ ?g)))

Φi(γ) := γ

Φi(p ◦ γ) := Φi(p) ◦ fi ◦ γ

Γi
C(γ) := γ : ΓC

Γi
C(γ ◦ p) := γ : (ΓC u fi : Γi

C(p))

Ψi(A) := A

Ψi(¬ A) := ¬ A

Ψi(D u E) := Ψi(D) u Ψi(E)

Ψi(D t E) := Ψi(D) t Ψi(E)

Ψi(∃R.D) := ∃R.(ΓC u fi : Ψi(D))

Ψi(∀R.D) := ∀R.(fi : Ψi(D))

Ψi(p : D) := Φi(p) : fi : Ψi(D) u Γi
C(p)

Ψi(p↓q) := Φi(p)↓Φi(q) u Γi
C(p) u Γi

C(q)

Ψi(p↑q) := Φi(p)↑Φi(q) u Γi
C(p) u Γi

C(q)

Ψi(p↑) := Φi(p)↑

Figure 6. Definition of auxiliary concepts
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time intervals via the time feature. As we said before, all successors of such temporal-
facet objects implicitly “inherit” the same temporal structure via the Ψi translation.
The concept ΓC serves two purposes. First, the last row of ΓC uses feature agreements
to ensure that parametric features are independent from time, i.e. if two ALCF(A)
domain elements d1 and d2 represent two temporal-facet of the same meta-object,
then d1 and d2 should have the same successor for each parametric feature. Second,
together with the Ω′ concept and translations Ψi and Γi

C , ΓC ensures that if, for a given
meta-object, two variables Xi and Xj denote the same time interval, then for each
successor of such meta-object both fi and fj features coincide. The latter is necessary
since, in T L-ALCF models, a domain element together with a time interval uniquely
identifies concept membership, role membership, etc.

Proof of correctness

Throughout the proofs, we will write sub(C) to denote the set of all subconcepts of
the concept C, including C itself. We now establish the correctness of our reduction.
For the sake of clarity, it is split into two propositions.

PROPOSITION 4. — Let C be a T L-ALCF concept in normal form. ThenALCF(A)
satisfiability of Ψ(C) implies T L-ALCF satisfiability of C.

PROOF. — Let I be a model of Ψ(C), and let dC ∈ Ψ(C)I . We define ∆∗ to be the
smallest subset of ∆ satisfying the following properties:

1) dC ∈ ∆∗;

2) if d ∈ ∆∗, d′ ∈ ∆I , 0 ≤ i ≤ n, and ∃R.(ΓC u fi : Ψi(D)) ∈ sub(Ψ(C)) such
that

- fI
i (d) ∈ (∃R.(ΓC u fi : Ψi(D)))I ,

- (fI
i (d), d′) ∈ RI , and

- d′ ∈ (ΓC u fi : Ψi(D))I ,

then d′ ∈ ∆∗;

3) if d ∈ ∆∗, d1, . . . , dk ∈ ∆I , 0 ≤ i ≤ n, X ∈ sub(Ψ(C)), and p∗ is a path
such that

- d = d1,

- X is of the form Φi(p) : fi : Ψi(D) u Γi
C(p), and p∗ = p,

X is of the form Φi(p) ↓ Φi(q) u Γi
C(p) u Γi

C(q), and p∗ ∈ {p, q}, or
X is of the form Φi(p) ↑ Φi(q) u Γi

C(p) u Γi
C(q), and p∗ ∈ {p, q},

- fI
i (d) ∈ XI ,

- p∗ = γ1 ◦ · · · ◦ γk−1, and

- (fI
i (d`), d`+1) ∈ γI

` for 1 ≤ ` < k,

then d1, . . . , dk ∈ ∆∗.

Obviously, the sub-interpretation of I induced by ∆∗ is rooted by dC . Moreover, it is
not hard to show that ∆∗ ⊆ ΓI

C :
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– dC ∈ ΓI
C by definition of Ψ(C).

– if d′ ∈ ∆∗ due to Property 2, then d′ ∈ ΓC by choice of d′;

– Let d1, . . . , dk ∈ ∆∗ due to Property 3. Using the definition of the concept
Γi

C(p) and the fact that fI
i (d1) ∈ Γi

C(p∗), it is easily verified that dj ∈ ΓI
C for

1 ≤ j ≤ k.

We now define a T L-ALCF interpretation J . For convenience, we set

ti := timeI(fI
i (dC)), for 0 ≤ i ≤ n

and use this abbreviation for the remainder of the proof. Now set

∆J := ∆∗

AJ := {(t, d) | d ∈ ∆J , t = ti, and fI
i (d) ∈ AI for some i ≤ n}

RJ := {(t, d, d′) | d, d′ ∈ ∆J , t = ti, and (fI
i (d), d′) ∈ RI for some i ≤ n}

fJ := {(t, d, d′) | d, d′ ∈ ∆J , t = ti, and fI((fI
i (d)) = d′ for some i ≤ n}

?gJ := {(d, d′) | d, d′ ∈ ∆J and ?gI(fI
0 (d)) = d′}

We now prove some important properties of J . Note that the first property implies
that the interpretation of non-parametric features in J is functional as required (the
interpretation of parametric features is obviously also functional, but does not depend
on the following property).

1) For all d ∈ ∆∗ and all i, j with ti = tj , we have fI
i (d) = fI

j (d).

Proof: By definition of Ω′, ti = tj implies dC ∈ Ai,j . Since ∆∗ is rooted by dC

and ∆∗ ⊆ ΓI
C , the definition of ΓC (second/third line) yields that ∆∗ ⊆ AI

i,j . Again
by definition of ΓC (first line) and since ∆∗ ⊆ ΓI

C , this implies fI
i (d) = fI

j (d) for all
d ∈ ∆∗.

2) For all d ∈ ∆∗, all i with 1 ≤ i ≤ n, and all parametric features ?g, either
?gI(fI

i (d)) and ?gI(fI
0 (d)) are both undefined, or ?gI(fI

i (d)) = ?gI(fI
0 (d)).

The proof is easy by considering the fact that ∆∗ ⊆ ΓI
C together with the last line

of the definition of ΓC .

3) Let d, d′ ∈ ∆∗, p be a path not containing the features f1, . . . , fn, and 0 ≤ i ≤
n. Then d′ ∈ (Φi(p))I(fI

i (d)) iff pJti
(d) = d′.

The proof is by induction on the length of p. For the induction start, let p be of
length one, i.e. p = γ. Then Φi(p) = γ.

First, assume that γ is a non-parametric feature. Then, d′ = γI(fI
i (d)) implies

(ti, d, d′) ∈ γJ by definition of J , and thus the “only if” direction holds. For the
“if” direction, assume that (ti, d, d′) ∈ γJ . Then there is a j with 0 ≤ j ≤ n such
that ti = tj and γI(fI

j (d)) = d′. By Property 1, we have fI
j (d) = fI

i (d) and thus
γI(fI

i (d)) = d′ as required.

Let now γ be a parametric feature. Then, γI(fI
i (d)) = d′ iff (by Property 2)

γI(fI
0 (d)) = d′ iff γJ (d) = d′.
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Now for the induction step. Let p = q ◦ γ. Then Φi(p) = Φi(q) ◦ fi ◦ γ. As-
sume that (Φi(p))I(fI

i (d)) = d′. Then there is a d′′ with (Φi(q))
I(fI

i (d)) = d′′ and
γI(fI

i (d′′)) = d′. By IH, we obtain qJti
(d) = d′′. To prove that pJti

(d) = d′, it thus re-
mains to show that γJ

ti
(d′′) = d′. In both the non-parametric and the parametric case,

this can be done exactly as in the induction start (using the fact that γI(fI
i (d′′)) = d′).

Vice-versa, assume that pJti
(d) = d′. Then there is a d′′ such that qJti

(d) = d′′ and
γJ

ti
(d′′) = d′. By IH, the former yields (Φi(q))

I(fI
i (d)) = d′′. It thus remains to

show that γI(fI
i (d′′)) = d′, which can again be done as in the induction start (using

the fact that γJ
ti

(d′′) = d′).

We now prove the following, central claim:

CLAIM 5. — For all d ∈ ∆J , 0 ≤ i ≤ n, and D ∈ sub(C), we have that fI
i (d) ∈

Ψi(D)I implies d ∈ DJ
ti

.

This claim easily yields the desired result: since C is in normal form, it is of the
form

C = 3(X)Tc.Q0 u Q1@X1 u . . . u Qn@Xn,

with X = {X1, . . . , Xn}. We define a variable assignment W for by setting
W(Xi) := ti for 1 ≤ i ≤ n. Since dC ∈ α(Tc)I , we have W ∈ 〈X, Tc〉E] 7→t0

.
Using the claim, it is then readily verified that

dC ∈ (Q0 u Q1@X1 u . . . u Qn@Xn)JW,t0,∅.

Thus, dC ∈ CJ
t0

and C is T L-ALCF satisfiable as required. The proof of the claim
is by structural induction:

– D is a concept name. Then, Ψi(D) = A and (ti, d) ∈ AJ is an immediate
consequence of the definition of J .

– D = ¬A (A is a concept name since C is in NNF). Then, Ψi(D) = ¬A.
Suppose fI

i (d) /∈ AI and (ti, d) ∈ AJ . Then there is a j with 0 ≤ j ≤ n such that
ti = tj and fI

j (d) ∈ AI . By Property 1, we have fI
j (d) = fI

i (d). Thus, fI
i (d) ∈ AI ,

which is a contradiction.

– D = D1 u D2. Easy using IH and the semantics.

– D = D1 t D2. Easy using IH and the semantics.

– D = ∃R.E. Then, Ψi(D) = ∃R.(ΓC u fi : Ψi(E)). Since fI
i (d) ∈ Ψi(D)I ,

there is a d′ such that (fI
i (d), d′) ∈ RI and d′ ∈ (ΓC u fi : Ψi(E))I . By definition

of ∆∗, we thus have d′ ∈ ∆∗. Moreover, fI
i (d′) ∈ Ψi(E)I . By definition of RJ , we

obtain (ti, d, d′) ∈ RJ . By IH and since fI
i (d′) ∈ Ψi(E)I , we get d′ ∈ EJ

ti
. Thus,

d ∈ DJ
ti

.

– D = ∀R.E. Then, Ψi(D) = ∀R.(fi : Ψi(E)). Let (ti, d, d′) ∈ RJ . Then there
is a j with 0 ≤ j ≤ n such that ti = tj and (fI

j (d), d′) ∈ RI . By Property 1, we have
fI

j (d) = fI
i (d) and hence (fI

i (d), d′) ∈ RI . Since fI
i (d) ∈ Ψi(D)I , we thus have

d′ ∈ (fi : Ψi(E))I and fI
i (d′) ∈ Ψi(E)I . Thus, IH yields d′ ∈ EJ

ti
as required.
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– D = p : E. Then, Ψi(D) = Φi(p) : fi : Ψi(E) u Γi
C(p). Since fI

i (d) ∈
Ψi(D), there is a d′ ∈ ∆I such that (Φi(p))I(fI

i (d)) = d and fI
i (d) ∈ Ψi(E)I .

By Property 3, we thus have pJti
(d) = d′, and IH yields d′ ∈ EJ

ti
. Summing up, we

obtain d ∈ DJ
ti

.

– D = p ↓ q. Then, Ψi(D) = Φi(p) ↓ Φi(q) u Γi
C(p) u Γi

C(q). Since fI
i (d) ∈

Ψi(D)I , there is a d′ ∈ ∆I such that

(Φi(p))I(fI
i (d)) = (Φi(q))

I(fI
i (d)) = d.

By definition of ∆∗, we have d′ ∈ ∆∗. By Property 3, we have pJti
(d) = qJti

(d) = d′,
and thus d ∈ DJ

ti
as required.

– D = p ↑ q. Then, Ψi(D) = Φi(p) ↑ Φi(q) u Γi
C(p) u Γi

C(q). Analogous to the
previous case.

– D = p↑. Then, Ψi(D) = Φi(p)↑. Let fI
i (d) ∈ Ψi(D)I , and assume that

d /∈ DJ
ti

. Then there is a d′ ∈ ∆J such that pJti
(d) = d′. By Property 3, we thus have

(Φi(p))I(fI
i (d)) = d′, which is a contradiction.

■

PROPOSITION 6. — Let C be a T L-ALCF concept in normal form. Then
T L-ALCF satisfiability of C implies ALCF(A) satisfiability of Ψ(C).

PROOF. — Let J be a T L-ALCF model of C and let dC ∈ ∆J and t0 ∈ T ?
<

such
that dC ∈ CJ

t0
. Let

C = 3(X)Tc.Q0 u Q1@X1 u . . . u Qn@Xn

with X = {X1, . . . , Xn}. By the semantics, there exists a variable assignment W ∈
〈X, Tc〉E]→t0

such that

dC ∈ (Q0 u Q1@X1 u . . . u Qn@Xn)JW,t0,∅. (∗)

In the remainder of this proof, we use X0 = ], and ti to denote W(Xi), for 1 ≤ i ≤ n.
We now construct an ALCF-interpretation I :

∆I := ∆J ∪ {(d, ti) | d ∈ ∆J and 0 ≤ i ≤ n}

AI := {(d, t) | (t, d) ∈ AJ and t = ti for some i ≤ n}

fI := {((d, t), d′) | (t, d, d′) ∈ fJ and t = ti for some i ≤ n}

?gI := {((d, ti), d
′) | (d, d′) ∈ ?gJ and 0 ≤ i ≤ n}

RI := {((d, t), d′) | (t, d, d′) ∈ RJ and t = ti for some i ≤ n}

timeI := {((dC , ti), ti) | 0 ≤ i ≤ n}

AI
j,` :=

{

∆J if tj = t`

∅ otherwise

fI
i := {(d, (d, ti)) | d ∈ ∆J and 0 ≤ i ≤ n}
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for all concept names A, Ai,j , non-parametric features f , reserved features fi, para-
metric features ?g, role names R, and j, ` ∈ {0, . . . , n}. We show that dC ∈ Ψ(C)I .
To this end, it is readily verified that dC ∈ (α(Tc)uΓC uΩ′)I . It thus remains to show
that dC ∈ ΩI . This is obviously an immediate consequence of (∗), I’s interpretation
of the fi features, and the following claim:

CLAIM 7. — For all d ∈ ∆J , 0 ≤ i ≤ n, and D ∈ sub(C), we have that d ∈ DJ
ti

implies (d, ti) ∈ Ψi(D)I .

Before we prove the claim, let us state three useful properties of ∆I :

1) ∆J ⊆ ΓI
C , as it is easily verified by considering the definitions of both AI

j,`

and ?gI .

2) For all d ∈ ∆J , paths p not containing the features f0, . . . , fn, and i ∈
{0, . . . , n}, the following holds: if there is a d′ with pJti

(d) = d′, then (d, ti) ∈
Γi

C(p)I .

The proof is by induction on the length of p, using Property 1. Details are left to
the reader.

3) Let d, d′ ∈ ∆J , p be a path not containing the features f0, . . . , fn, and i ∈
{0, . . . , n}. Then pJti

(d) = d′ iff (Φi(p))I((d, ti)) = d′.

The proof is again by induction on the length of p. Details are left to the reader.

We now proof the claim by structural induction:

– D is a concept name. Then, Ψi(D) = A, and (d, ti) ∈ DI is an immediate
consequence of the definition of J .

– D = ¬A (A is a concept name since C is in NNF). Then, Ψi(D) = ¬A. It is
an immediate consequence of the definition of AI that (ti, d) /∈ AJ , which implies
(d, ti) /∈ AI .

– D = D1 u D2. Easy using IH and the semantics.

– D = D1 t D2. Easy using IH and the semantics.

– D = ∃R.E. Then, Ψi(D) = ∃R.(ΓC u fi : Ψi(E)). Since d ∈ DJ
ti

, there
is a d′ ∈ ∆J such that (ti, d, d′) ∈ RJ and d′ ∈ EJ

ti
. By definition of RI , we

obtain ((d, ti), d
′) ∈ RI . By IH, we get (d′, ti) ∈ EI . By the interpretation of the fi

features, this yields d′ ∈ (fi : Ψi(E))I . By Property 1, we get (d, ti) ∈ Ψi(D)I .

– D = ∀R.E. Then, Ψi(D) = ∀R.(fi : Ψi(E)). Let ((d, ti), d
′) ∈ RI . By

definition of RI , we have d′ ∈ ∆J and (ti, d, d′) ∈ RJ . Since d ∈ DJ
ti

, we thus
have d′ ∈ EJ

ti
. Thus, IH yields (d′, ti) ∈ Ψi(E)I . By the interpretation of the fi

features, this yields d′ ∈ (fi : Ψi(E))I as required.

– D = p : E. Then, Ψi(D) = Φi(p) : fi : Ψi(E) u Γi
C(p). Since d ∈ DJ

ti
,

there are is a d′ ∈ ∆J such that pJti
(d) = d′ and d′ ∈ EJ

ti
. By Property 3, we have

Φi(p)I((d, ti)) = d′ and IH yields (d′, ti) ∈ Ψi(E)I . Thus, by the interpretation
of the fi features we have (d, ti) ∈ (Φi(p) : fi : Ψi(E))I . To verify that (d, ti) ∈
Ψi(D)I , it thus remains to show that (d, ti) ∈ Γi

C(p)I , which is true because of
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Property 2.

– D = p ↓ q. Then, Ψi(D) = Φi(p) ↓ Φi(q) u Γi
C(p) u Γi

C(q). Since d ∈ DJ
ti

,
there are is a d′ ∈ ∆J such that pJti

(d) = qJti
(d) = d′. By Property 3, we have

Φi(p)I((d, ti)) = Φi(q)
I((d, ti)) = d′. Thus, (d, ti) ∈ (Φi(p) ↓ Φi(q))

I . To verify
that (d, ti) ∈ Ψi(D)I , it thus remains to show that (d, ti) ∈ (Γi

C(p)uΓi
C(q))I , which

is an easy consequence of Property 2.

– D = p ↑ q. Then, Ψi(D) = Φi(p) ↑ Φi(q) u Γi
C(p) u Γi

C(q). Analogous to the
previous case.

– D = p↑. Then, Ψi(D) = Φi(p)↑. Let d ∈ (p↑)J and assume that (d, ti) /∈
Ψi(D)I . Then there is a d′ ∈ ∆I such that Φi(p)I((d, ti)) = d′. By definition of
Φi(p) and of I, we have d′ ∈ ∆J . By Property 3, we obtain pJti

(d) = d′, which is a
contradiction.

■

Since satisfiability of ALCF(A) concepts is PSPACE-complete [LUT 02c], satis-
fiability of ALC-concepts is PSPACE-hard, and ALC is a fragment of T L-ALCF , we
obtain the following theorem.

THEOREM 8. — Satisfiability of T L-ALCF concepts is PSPACE-complete.

5. Conclusions

We have discussed the relationship between the two interval-based temporal DLs
T L-ALCF and ALCF(A), and found that the gap between the two different know-
ledge representation paradigms suggested by these logics can be bridged by a suitable
translation. Based on this translation, we have presented a reduction from T L-ALCF
concept satisfiability to ALCF(A) concept satisfiability that allowed us to determ-
ine the complexity of T L-ALCF concept satisfiability as a PSPACE-complete prob-
lem. Moreover, the reduction allows to use the ALCF(A) tableau algorithm described
in [LUT 02c] to be used for reasoning on T L-ALCF concept expressions.

Concerning future work, the described reduction can be extended in at least two
interesting directions:

(1) In this paper, we concentrated on the satisfiability of concepts. In description
logics, an equally important reasoning task is the subsumption of concepts: a concept
C is subsumed by a concept D if CI ⊆ DI for all interpretations I. In description lo-
gics with all Boolean operators, subsumption can be reduced to (un)satisfiability: C is
subsumed by D iff C u ¬D is unsatisfiable. Clearly, we cannot do this in T L-ALCF
since full negation is not available in the temporal part.3 Moreover, our reduction can-
not be used to decide T L-ALCF subsumption. Consider, for example, the concepts

3. Indeed, adding full negation to T L-ALCF would result in undecidability. Still, it was shown
in [ART 98] that subsumption of T L-ALCF-concepts is decidable.
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C = 3(x)(] before x).A@x

D = 3(x, y)(] before x)(y equals x).A@y

Then C is subsumed by D (actually, they are equivalent concepts), but Ψ(C) is not
subsumed by Ψ(D) since Ψ(C) has only two “reserved features” f0 and f1, while
Ψ(D) has three: f0, f1, and f2. It would thus be interesting to extend the correspond-
ence between T L-ALCF and ALCF(A) developed in this paper to concept subsump-
tion.

(2) For the reduction, we consider the satisfiability of concepts without reference
to so-called TBoxes. As modern DLs are usually equipped with TBoxes [BAA 03b],
it would be worthwhile to add them to both T L-ALCF and ALCF(A), and to ex-
tend our reduction accordingly. However, we cannot expect to obtain PSPACE-results:
in [LUT 02b], it is proved that ALCF concept satisfiability w.r.t. general TBoxes
(also known as GCIs) is undecidable. Thus, the same holds for both T L-ALCF
and ALCF(A). Undecidability may be overcome by resorting to so-called acyclic
TBoxes [BAA 03b]. However, as proved in [LUT 99], ALCF concept satisfiability
w.r.t. acyclic TBoxes is NEXPTIME-hard. Clearly, this lower bound is inherited by
T L-ALCF and ALCF(A). A matching upper bound for ALCF(A) has been proved
in [LUT 02c]. A similar bound for T L-ALCF is yet to be established.
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