
25 April 2024

Università degli studi di Udine

Original

A Road Map of Interval Temporal Logics and Duration Calculi

Publisher:

Published
DOI:10.3166/jancl.14.9-54

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/857681 since



A Road Map of Interval Temporal Logics
and Duration Calculi

Valentin Goranko* — Angelo Montanari** — Guido Sciavicco**

* Department of Mathematics and Statistics,
Rand Afrikaans University (South Africa)

vfg@rau.ac.za

** Dipartimento di Matematica e Informatica,
Università di Udine (Italy)

{montana,sciavicc}@dimi.uniud.it

ABSTRACT.We survey main developments, results, and open problems on interval temporal
logics and duration calculi. We present various formal systems studied in the literature
and discuss their distinctive features, emphasizing on expressiveness, axiomatic systems, and
(un)decidability results.
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1. Introduction

Interval-based temporal logics stem from four major scienti�c areas:

Philosophy. The philosophical roots of interval temporal logics can be traced back
to Zeno and Aristotle. The nature of Time has always been a favourite subject
in philosophy, and in particular, the discussion whether time instants or time
periods should be regarded as the primary objects of temporal ontology has a
distinct philosophical �avour. Some of the modern formal logical treatments of
interval-based structures of time include: [HAM 72] providing a philosophical
analysis of interval ontology and interval-based tense logics; [HUM 79] which
elaborates on Hamblin's work, introducing a sequent calculus for an interval
tense logic over precedence and sub-interval relations; [ROE 80], a follow-
up on Humberstone's work, discussing and analyzing persistency (preserva-
tion of truth in sub-intervals) and homogeneity; [BUR 82] proposing axiomatic
systems for interval-based tense logics of the rationals and reals, studied ear-
lier in [ROE 80]. A comprehensive study and logical analysisof point-based
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and interval-based ontologies, languages, and logical systems can be found in
[BEN 91].

Linguistics. Interval-based logical formalisms have featured in the study of natural
languages since the seminal work of Reichenbach [REI 47]. They arise as suit-
able frameworks for modeling progressive tenses and expressing various lan-
guage constructions involving time periods and event duration which cannot be
adequately grasped by point-based temporal languages. Period-based temporal
languages and logics have been proposed and studied in [DOW 79, KAM 79,
RIC 88], to mention a few. The linguistic aspects of intervallogics will not be
treated here, apart from some discussion of the expressiveness about various
interval-based temporal languages.

Artificial intelligence. Interval temporal languages and logics have sprung up from
expert systems, planning systems, theories of actions and change, natural lan-
guage analysis and processing, etc. as formal tools for temporal representation
and reasoning in arti�cial intelligence. Some of the notable contributions in
that area include: [ALL 83] proposing the thirteen Allen's relations between
intervals in a linear ordering and a temporal logic for reasoning about them;
[ALL 85] providing an axiomatization and a representation result for interval
structures based on themeetsrelation between intervals, further studied and
developed in [LAD 87], which also provides a completeness theorem and al-
gorithms for satis�ability checking for Allen's calculus represented as a �rst-
order theory; [GAL 90] critically analyzing Allen's framework and arguing the
necessity of considering points and intervals on a par, and [ALL 94] develop-
ing interval-based theory of actions and events. A comprehensive survey on
temporal representation and reasoning in arti�cial intelligence can be found in
[CHI 00].

Computer science.One of the �rst applications of interval temporal logics to com-
puter science, viz. for speci�cation and design of hardwarecomponents, was
proposed in [HAL 83, MOS 83] and further developed in [MOS 84,MOS 94,
MOS 98, MOS 00a]. Later, other systems and applications of interval logics
were proposed in [BOW 00, CHA 98, DIL 92a, DIL 92b, DIL 96a, DIL96b,
RAS 99]. Model checking tools and techniques for interval logics were devel-
oped and applied in [CAM 96, PEN 98]. Particularly suitable interval logics for
speci�cation and veri�cation of real-time processes in computer science are the
duration calculi(see [CHA 91, CHA 94, CHA 99, HAN 92, HAN 97, SØR 90])
introduced as extensions of interval logics, allowing representation and reason-
ing about time durations for which a system is in a given state. For an up-to-date
survey on duration calculi see [CHA 04].

Intervals can be regarded as primitive entities or as de�nable in terms of their
endpoints. Accordingly, interval-based temporal logics can be divided into two main
classes: `pure' interval logics, where the semantics is essentially interval-based, that
is, formulas are directly evaluated with respect to intervals, and `non-pure' interval
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logics, where the semantics is essentially point-based andintervals are only auxiliary
entities. An important family of `non-pure' interval logics is that of the logics in which
the locality principle is imposed. Such a principle states that an atomicproposition is
true at an interval if and only if it is true at the beginning point of that interval.

In this survey we outline (without claiming completeness) main developments,
results, and open problems on interval temporal logics and duration calculi, focusing
on `pure' interval logics and on those non-pure ones which adopt locality. We present
various formal systems studied in the literature and discuss their distinctive features,
emphasizing on expressiveness, axiomatic systems, and (un)decidability results. Since
duration calculi are discussed in more details in [CHA 04], we will present this topic
in a rather succinct way, while going in more detail on interval logics, mainly on
propositional level.

The paper is organized as follows. In Section 2 we introduce the basic syntactic
and semantic ingredients of interval temporal logics and duration calculi, including
interval temporal structures, operators, and languages with their syntax and semantics.
In Section 3 we discuss propositional interval logics, in Section 4 we present a general
tableau method for them, while in Section 5 we brie�y survey �rst-order interval logics
and duration calculi. Section 6 contains some concluding remarks and directions for
future research.

2. Preliminaries

2.1. Temporal ontologies, interval structures and relations between intervals

Interval temporal logics are subject to the same ontological dilemmas as the
instant-based temporal logic, viz.: should the time structure be consideredlinear or
branching? Discreteor dense? Withor without beginning?etc. In addition, however,
new dilemmas arise regarding the nature of the intervals:

– Should intervals include their end-points or not?

– Can they be unbounded?

– Are point-intervals (i.e. with coinciding endpoints) admissible or not?

– How are points and intervals related? Which is the primary concept? Should an
interval be identified with the set of points in it, or there ismore into it?

The last question is of particular importance for the semantics of interval logics.

Given a strict partial orderingD =〈D,<i, an interval in D is a pair[d0, d1] such
thatd0, d1 ∈ D andd0 ≤ d1. [d0, d1] is astrict interval ifd0 < d1. Often we will refer
to all intervals onD asnon-strict intervals, to distinguish from the latter. In particular,
intervals[d, d] will be calledpoint-intervals. A point d belongs to an interval[d0, d1]
if d0 ≤ d ≤ d1 (i.e. the endpoints of an interval are included in it). The set of all
non-strict intervals onD will be denoted byI(D)+, while the set of all strict intervals
will be denoted byI(D)−. By I(D) we will denote either of these. For the purpose of
this survey, we will call a pair〈D, I(D)i an interval structure.
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In all systems considered here the intervals will be assumedlinear, although this
restriction can often be relaxed without essential complications. Thus, we will con-
centrate on partial orderings with thelinear interval property:

∀x∀y(x < y → ∀z1∀z2(x < z1 < y∧x < z2 < y → z1 < z2∨z1 = z2∨z2 < z1)),

that is, orderings in which every interval is linear. Clearly every linear ordering falls
here. An example of a non-linear ordering with this propertyis:

•

•

•

• •

H H H

� � �
� � � •H H H •

•

H H H •

Figure 1. Interval structure with the linear interval property

while a non-example is:

• • •H H H

� � �

•

•H H H

� � � • •

Figure 2. Interval structure violating the linear interval property

An interval structure is:

– linear, if every two points are comparable;

– discrete, if every point with a successor/predecessor has an immediate succes-
sor/predecessor along every path starting from/ending in it, that is,

∀x∀y(x < y → ∃z(x < z ∧ z ≤ y ∧ ∀w(x < w ∧ w ≤ y → z ≤ w))),

and

∀x∀y(x < y → ∃z(x ≤ z ∧ z < y ∧ ∀w(x ≤ w ∧ w < y → w ≤ z)));
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– dense, if for every pair of different comparable points there exists another point
in between:

∀x∀y(x < y → ∃z(x < z ∧ z < y));

– unbounded above(resp.below), if every point has a successor (resp. predeces-
sor);

– Dedekind complete, if every non-empty and bounded above set of points has a
least upper bound.
Besides interval logics over the classes of linear, (un)bounded, discrete, dense, and
Dedekind complete interval structures, we will be discussing those interpreted on the
single structuresN,Z,Q, andR with their usual orderings.

It is well known that there are 13 different binary relationsbetween intervals on a
linear ordering (and quite a few more on a partial ordering) [ALL 83]: equals, ends,
during, begins, overlaps, meets, before, together with their inverses.

current interval:

ends:

during:

begins:

overlaps:

meets:

before:

Figure 3. Allen’s relations

These relations lead to a rich interval algebra, the so-called Allen's Interval Alge-
bra, which will not be discussed in detail here. A survey of Allen's Interval Algebra
and of a number of its tractable fragments, including Vilainand Kautz's Point Al-
gebra [VIL 86], van Beek's Continuous Endpoint Algebra [BEE89], and Nebel and
Bürckert's ORD-Horn Algebra [NEB 95], can be found in [CHI 00].

Another natural binary relation between intervals, de�nable in terms of Allen's
relations, is the one ofsub-intervalwhich comes in three versions. Given a partial
orderingD and intervals[s0, s1] and[d0, d1] in it:

– [s0, s1] is a sub-intervalof [d0, d1] if d0 ≤ s0 ands1 ≤ d1. The relation of
sub-interval will be denoted by⊑;
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– [s0, s1] is aproper sub-intervalof [d0, d1], denoted[s0, s1]@[d0, d1], if [s0, s1] ⊑
[d0, d1] and[s0, s1] 6= [d0, d1];

– [s0, s1] is astrict sub-intervalof [d0, d1], denoted[s0, s1] @[d0, d1], if d0 < s0
ands1 < d1.

Amongst the multitude ofternary relations between intervals there is one of par-
ticular importance for us, which corresponds to the binary operation of concatenation
of meeting intervals. Such a ternary interval relation, which has been introduced by
Venema in [VEN 91], can be graphically depicted as follows:

k

i j

Figure 4. The ternary relationA

It is denoted byA and it is de�ned as follows:

– Aijk if i meetsj, i beginsk, andj endsk,
that is,k is the concatenation ofi andj.

2.2. Propositional interval temporal languages and models

The generic language of propositional interval logics includes the set of proposi-
tional lettersAP , the classical propositional connectives¬ and∧ (all others, including
the propositional constants⊤ and⊥, are de�nable as usual), and a set ofinterval tem-
poral operators (modalities)speci�c for each logical system.

There are two different natural semantics for interval logics, namely, astrict one,
which excludes point-intervals, and anon-strict one, which includes them. Anon-
strict interval model is a pairM+= 〈D, V i, whereD is a partial ordering andV :
I(D)+ → P(AP) is avaluationassigning to each interval a set of atomic propositions
considered true at it. Respectively, astrict interval modelis a structureM−= 〈D, V i
de�ned likewise, whereV : I(D)− → P(AP). When we do not wish to specify the
strictness, we will write simplyM, assuming either version.

Allen's relations give rise to respective unary modal operators, thus de�ning the
modal logic of time intervals HS introduced by Halpern and Shoham in [HAL 91].
Some of these modal operators are de�nable in terms of othersand it suf�ces to choose
as basic the modalities corresponding to the relationsbegins, ends, and their inverses.
Thus, the formulas of HS are generated by the following abstract syntax:

φ ::= p | ¬φ | φ ∧ ψ | 〈Biφ | 〈Eiφ | 〈Biφ | 〈Eiφ.

The formal semantics of these modal operators (given in [HAL91] in terms of
non-strict models) is de�ned as follows:
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(〈Bi) M
+, [d0, d1]  〈Biφ if M

+, [d0, d2]  φ for somed2 such thatd0 ≤ d2 < d1;

(〈Ei) M
+, [d0, d1]  〈Eiφ if M

+, [d2, d1]  φ for somed2 such thatd0 < d2 ≤ d1;

(〈Bi) M
+, [d0, d1]  〈Biφ if M

+, [d0, d2]  φ for somed2 such thatd1 < d2;

(〈Ei) M
+, [d0, d1]  〈Eiφ if M

+, [d2, d1]  φ for somed2 such thatd2 < d0.

A useful new symbol is themodal constantπ for point-intervalsinterpreted in
non-strict models as follows:

(π) M
+, [d0, d1]  π if d0 = d1.

Note that the constantπ is de�nable as either[B]⊥ or [E]⊥, so it is only needed in
weaker languages. The presence ofπ in the language allows one to interpret the strict
semantics into the non-strict one by means of the translation:

– τ(p) = p for p ∈ AP ;
– τ(¬φ) = ¬τ(φ);
– τ(φ ∧ ψ) = τ(φ) ∧ τ(ψ);
– τ(〈∗iφ) = 〈∗i (¬π ∧ τ(φ)) for any (unary) interval diamond-modality〈∗i .
The interpretation is effected by the following claim, proved by a straightforward

induction onφ :
PROPOSITION1. — For every interval modelM, proper interval[d0, d1] in M, and
formulaφ:

M
−, [d0, d1]  φ iff M

+, [d0, d1]  τ(φ).

Usually, but not always, the non-strict semantics is taken by default.

Venema introduced in [VEN 91] three binary modalitiesC, D, andT , associated
with the ternary relationA, with the following non-strict semantics:

(C) M
+, k  φCψ if there exist two intervalsi, j such thatAijk andM

+, i  φ,
andM

+, j  ψ, that is,

M
+, [d0, d1]  φCψ if M

+, [d0, d2]  φ, andM
+, [d2, d1]  ψ for some

d2 ∈ D such thatd0 ≤ d2 ≤ d1.

(D) M
+, j  φDψ if there exist two intervalsi, k such thatAijk andM

+, i  φ,
andM

+, k  ψ, that is,

M
+, [d0, d1]  φDψ if M

+, [d2, d0]  φ, andM
+, [d2, d1]  ψ for some

d2 ∈ D such thatd2 ≤ d0.

(T ) M
+, i  φTψ if there exist two intervalsj, k such thatAijk andM

+, j  φ,
andM

+, k  ψ, that is,

M
+, [d0, d1]  φTψ if M

+, [d1, d2]  φ, andM
+, [d0, d2]  ψ for some

d2 ∈ D such thatd1 ≤ d2.
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3. Propositional Interval Logics

As already noted, every interval logic L has two versions, namely, thenon-strict
version L+ and thestrict one L−, and when writing just L we will mean either one, as
speci�ed in the text.

3.1. Monadic interval logics

In this section we introduce and analyze the most well-knownand/or interesting
interval logics involving only unary modal operators, starting from the weakest. We
will assume that the semantic structures are of the most general type we consider,
viz. interval structures over partial orderings with the linear interval property, unless
otherwise speci�ed.

3.1.1. The sub-interval logicD
The logic D is the logic of the sub-interval relation. Since Dallows one to look inside
the current interval only, from the linear interval hypothesis, it follows that we can
restrict ourselves to the class of linear structures.

The abstract syntax of the simplest version of D is:

φ ::= p | ¬φ | φ ∧ ψ | 〈Diφ,

but one could also include in the language the modal constantπ.

The sub-interval relation and the temporal logics associated with it were stud-
ied, from the perspective of philosophical temporal logics, in [HAM 72, ROE 80],
[HUM 79] (together with precedence), and [BEN 91]. In the computer science litera-
ture, it was apparently �rst mentioned in [HAL 91] and its expressiveness (interpreted
over linear non-strict models) discussed in [LOD 00].

Besides the strict and non-strict versions, the logic D allows essential semantic
variations, depending on which sub-interval relation (⊑, @, or @) is assumed. Ac-
cordingly, the truth de�nition for D is based on the clause:

(〈Di) M, [d0, d1]  〈Diφ if there exists a sub-interval[d2, d3] of [d0, d1] such that
M, [d2, d3]  φ.

At present, we are not aware of any speci�c published resultsabout expressiveness,
axiomatic systems, and decidability for any variants of thelogic D, but we note that
they all involve non-trivial valid formulas expressible inD, associated with `length vs
depth'. To give some idea, here is an in�nite scheme of valid formulas of the logic D,
with a strict sub-interval relation, which says that if an interval contains suf�ciently
many distinct sub-intervals (and hence, suf�ciently many distinct points), then it con-
tains a chain of nested sub-intervals of pre-de�ned length:

d(n )^

i =1

〈Di

0

@pi ∧
^

j 6=i

¬pj

1

A → 〈Din⊤,

for d(n) ≥
�
2n −1

2

�
+ 1
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3.1.2. The logicsBB andEE
Interval logics make it possible to express properties ofpairsof time points, rather

thansingletime points. In most cases, this feature prevents one from the possibility
of reducing interval-based temporal logics to point-basedones without resorting to
any kind of projection principle. However, there are a few exceptions where such a
reduction can be de�ned thanks to a suitable choice of the interval modalities, thus
allowing one to bene�t from the good computational properties of point-based logics.
This is the case of the logicsBB andEE (and of their fragments).

The logicBB is generated by the following abstract syntax:

φ ::= p | ¬φ | φ ∧ ψ | 〈Biφ | 〈Biφ,

while EE is obtained from BB by substituting〈Ei for 〈Bi and〈Ei for 〈Bi. In the
following, we restrict our attention toBB. However, all de�nitions and results can be
easily adapted toEE.

The decidability, as well as other logical properties, ofBB can be obtained by
translating it into the propositional temporal logic of linear time Lin-PTL with tempo-
ral modalitiesF (sometime in the future) andP (sometime in the past), which has the
�nite model property and is decidable (see e.g. [GAB 94]). The formulas of Lin-PTL
are de�ned by

f ::= p | ¬f | f ∧ g | Pf | Ff,

and a model for Lin-PTL is a pair〈D,Vi, whereD = 〈D,<i is a linearly ordered set
andV : D 7→ P(AP) is a valuation function. The semantics is standard:

–M,d  p if p ∈ V(d);
–M,d  ¬f if it is not the case thatM,d  f ;

–M,d  f ∧ g if M,d  f andM,d  g;

–M,d  Pf if there existsd′ such thatd′ < d andM,d′  f ;

–M,d  Ff if there existsd′ such thatd < d′ andM,d′  f .
The formulas ofBB are simply translated into formulas of Lin-PTL by a mapping

τ which replaces〈Bi by P and〈Bi by F .
Now, for every modelM = 〈D, V i of BB, whereD = 〈D,<i, and pointd ∈ D,

we construct a model for Lin-PTLM[d) = 〈[d),Vi, where[d) = {d′ ∈ D | d ≤ d′}
and the valuationV is de�ned as follows: for alld′ ∈ [d) andp ∈ AP: p ∈ V(d′) iff
p ∈ V ([d, d′]). Conversely, every modelM = 〈D,Vi for Lin-PTL based on a linear
ordering with a least element can be obtained in such a way from some model ofBB.
LEMMA 2. — For every modelM = 〈D, V i of BB, with D = 〈D,<i, pointd ∈ D,
and formulaφ ∈ BB:

M, [d, d′]  φ iff M[d), d′  τ(φ)

for anyd′ ≥ d.
PROOF. — Structural induction onφ. For propositional variables the claim holds by
de�nition. The cases of the propositional connectives are straightforward.
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Let φ = 〈Biψ. By de�nition, τ(φ) = Pτ(ψ), and, by hypothesis,M, [d, d′] 
〈Biψ, that is, there existsd′′ such thatd ≤ d′′ < d′ andM, [d, d′′]  ψ. By the
inductive hypothesis,M[d), d′′  τ(ψ), and thusM[d), d′  Pτ(ψ).

The caseφ = 〈Biψ is similar.
The claim of the lemma now follows immediately. ■

COROLLARY 3. — A formulaφ ∈ BB is satisfiable in a modelM of BB iff τ(φ) is
satisfiable in some modelM[d).

Given a linear orderingL we denote by+L the ordering obtained fromL by
adding a new least element. Accordingly, ifC is a class of linear orderings, we de�ne
+C = {+L | L ∈ C}.

Consequently, we obtain the following theorem.
THEOREM 4. — The satisfiability problem for the logicBB, interpreted in a given
class of interval structures over a class of linear orderings C, is reducible to the
satisfiability problem for the logicLin-PTL interpreted over the class+C.

Thus, for instance, the decidability ofBB over the class of all linear orderings
follows.

3.1.3. The logicBE
The logic BE features the two modalities〈Bi and〈Ei, and its formulas are gen-

erated by the following abstract syntax:

φ ::= p | ¬φ | φ ∧ ψ | 〈Biφ | 〈Eiφ.

As we have already shown, the modal constantπ is de�nable as[B]⊥. Accord-
ingly, the point-intervals that respectively begin and endthe current interval can be
captured as follows:

– [[BP ]]φ , (φ ∧ π) ∨ 〈Bi(φ ∧ π), and

– [[EP ]]φ , (φ ∧ π) ∨ 〈Ei(φ ∧ π).
BE is strictly more expressive than (the non-strict versionof) D. On the one hand,

if we assume the sub-interval relation to be the strict one (the other two cases can be
dealt with in a similar way), the modality〈Di can be de�ned as follows:

– 〈Diφ , 〈Bi〈Eiφ.
On the other hand, the unde�nability of〈Bi and〈Ei in D can be easily proved

as follows. Let〈I(D)+,@, V i be a D-model, whereI(D)+ is the set of all non-strict
intervals overD, @is the strict sub-interval relation overI(D)+, andV is the valuation
function. The notions of p-morphism and bisimulation between D-models are de�ned
in the usual way for modal logic (see e.g. [BLA 01]), and they satisfy the standard
truth-preservation properties. Given two linearly ordered setsD = {d0, d1}, with
d0 < d1, andD′ = {d′

0}, we take into consideration two D-modelsM
+ = 〈I(D)+,@

, V i andM
′+ = 〈I ′(D′)+,@, V ′i such that:

1) I(D)+ = {[d0, d0], [d1, d1], [d0, d1]]} andI ′(D′)+ = {[d′
0, d

′
0]};

2) the valuations of all intervals in both models are equal to{p}.
LetR ⊆ D×D′ be the relation{(d0, d

′
0), (d1, d

′
0)}. It is immediate to show that such a

relation induces a bisimulationZ ⊆ I(D)+×I ′(D′)+ betweenM+ andM′+. First, all
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intervals of both models are evaluated to{p}, and thus any pair ofZ-related intervals
satis�es the same atomic propositions. Second, the strict sub-interval relation is empty
in both models, and thus the back and the forth conditions aretrivially satis�ed.
SinceM

+, [d0, d1] satis�es 〈Bip (resp.,〈Eip), while M
′+, [d0, d1] does not, it im-

mediately follows that〈Bi (resp.,〈Ei) cannot be de�ned in D.
BE is expressive enough to capture some relevant conditionson the underlying

interval structure, as originally pointed out by Halpern and Shoham in the context of
the logic HS [HAL 91]), from where the examples below are adapted. First, one can
constrain an interval structure to be discrete by means of the formula:

– discrete , π ∨ l1 ∨ (〈Bil1 ∧ 〈Eil1 ),
wherel 1 is true over an interval[d0, d1] if and only if d0 < d1 and there are no points
betweend0 andd1. Such a condition can be expressed in BE as follows:

l 1 , 〈Bi⊤ ∧ [B][B]⊥.

It is not dif�cult to show that an interval structure is discrete if and only if the
formuladiscreteis valid in it. Furthermore, one can easily force an intervalstructure
to be dense by constraining the formula

– dense , ¬l1 .
to be valid. Finally, one can constrain an interval structure to be Dedekind complete
by means of the formula

– Dedekind complete , (〈Bicell ∧ [[EP]]¬q ∧ [E]([[BP]]q → 〈Bicell ))
→ 〈Bi([E](¬π → 〈Dicell ))
wherecell is true over an interval[d0, d1] if and only if its endpoints satisfy a given
proposition letterq (the cell delimiters), all sub-intervals satisfy a proposition letterp
(the cell content), and there exists at least one sub-interval satisfyingp, that is,

cell , [[BP]]q ∧ [[EP]]q ∧ [D]p∧ 〈Dip.

BE also allows one to de�ne a modality[All], referring to all sub-intervals of the
given interval, which in that logic is essentially equivalent to theuniversal modality
over the submodel generated by the current interval:

– [All]φ , φ ∧ [B]φ ∧ [E]φ ∧ [B][E]φ.
As for (un)decidability results, Lodaya [LOD 00] proves thefollowing theorem,

which tailors the undecidability proof for HS provided by Halpern and Shoham (cf.
Theorem 12) to BE.
THEOREM 5. — The satisfiability problem for BE-formulas interpreted over non-
strict dense linear structures is not decidable.
Undecidability is proved by reducing the non-halting problem of a Turing Machine
(TM) on a blank tape to the satis�ability problem for BE. According to Halpern and
Shoham's approach, any computation of a TM is modeled as an in�nite sequence of
con�gurations of the machine, called instantaneous descriptions (IDs for short). Each
ID is a �nite sequence of tape cells that contain a unique tapesymbol, and one of
the cells has additional information representing the headposition and the state of the
machine. A suitable proposition is used to talk about consecutive IDs, e.g., to relate
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the n-th cell of a given ID to the same cell of the successive ID. By exploiting such a
proposition, the transition functionδ of a TM can be expressed by examining a group
of three cells belonging to a given ID and determining the value of the same three cells
in the successive ID. A suitable interval formula, parameterized by a TM, can then be
built in such a way that such a formula is satis�able if and only if the TM does not halt
on a blank tape. As a matter of fact, most of Halpern and Shoham's proof is carried
out in the BE fragment. The other modalities are only used to specify the sequence of
IDs and to express the relationships between consecutive IDs. Lodaya shows how to
treat the entire in�nite computation as being inside a denseinterval, which makes it
possible to use the〈Di modality to express the relationships between consecutiveIDs
as well as to talk about sequences of IDs.

Since density is expressible in BE by a constant formula, we have the following
corollary of Theorem 5.
COROLLARY 6. — The satisfiability problem forBE over the class of all non-strict
linear structures is not decidable.
The satis�ability of a formulaφ in a dense model is indeed equivalent to the satis�a-
bility of [All]¬l 1 ∧ φ in any non-strict model.

We conclude our description of BE by remarking that a number of meaningful
problems, such as the decidability of the satis�ability problem for BE-formulas inter-
preted over special classes of linear orderings, or over strict models, and the de�nition
of sound and complete axiomatic systems for BE, are, at the best of our knowledge,
still open.

3.1.4. Propositional neighbourhood logics
The interval logics based on themeetsrelation and its inversemet-byare called

neighbourhood logics. Notably, �rst-order neighbourhood logics were introduced and
studied by Zhou and Hansen in [CHA 98], while their propositional variants, inter-
preted over linear structures (both strict and non-strict), were studied only quite re-
cently by Goranko, Montanari, and Sciavicco [GOR 03b].

The language of propositional neighbourhood logics includes the modal operators
♦r and♦l borrowed from [CHA 98]. Its formulas are generated by the following
abstract syntax:

φ ::= p | ¬φ | φ ∧ ψ | ♦r φ | ♦lφ.

The dual operators2r and 2l are de�ned in the usual way. To make it easier to
distinguish between the two semantics from the syntax, we will reserve this notation
for the case of non-strict propositional neighbourhood logics, generically denoted by
PNL+, while for the strict ones, denoted by PNL−, 〈Ai and〈Ai are used instead of
♦r and♦l , respectively. The class of non-strict propositional neighbourhood logics
extended with the modal constantπ will be denoted by PNL� +.

The modalities〈Ai and〈Ai were originally introduced in the logic HS [HAL 91]
as derived operators. The semantics of HS admits point-intervals and hence, accord-
ing to our classi�cation, it is non-strict. However, the modalities 〈Ai and〈Ai only
refer to strict intervals, and thus the semantics of the fragment AA can be considered
essentially strict.

The formal semantics of the modal operators♦r and♦l is de�ned as follows:
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(♦r ) M
+, [d0, d1]  ♦r φ if there existsd2 such thatd1 ≤ d2 andM

+, [d1, d2]  φ;

(♦l ) M
+, [d0, d1]  ♦lφ if there existsd2 such thatd2 ≤ d0 andM

+, [d2, d0]  φ,

while the semantic clauses for the operators〈Ai and〈Ai are:

(〈Ai) M
−, [d0, d1]  〈Aiφ if there existsd2 such thatd1 < d2 andM

−, [d1, d2] 
φ;

(〈Ai) M
−, [d0, d1]  〈Aiφ if there existsd2 such thatd2 < d0 andM−, [d2, d0]  φ.

Propositional neighbourhood logics are quite expressive.For example, PNL− al-
lows one to characterize various classes of linear structures:

(A-SPNLu ) [A]p→〈Aip, in conjunction with its mirror image, de�nes the class of
unboundedstructures;

(A-SPNLde) (〈Ai〈Aip → 〈Ai〈Ai〈Aip) ∧ (〈Ai[A]p → 〈Ai〈Ai[A]p), in conjunc-
tion with its mirror image, de�nes the class ofdensestructures, extended with
the 2-element linear ordering1;

(A-SPNLdi ) ([A]⊥ → [A]([A][A]⊥ ∨ 〈Ai(〈Ai⊤ ∧ [A][A]⊥))) ∧ ((〈Ai⊤ ∧ [A](p ∧
[A]¬p∧ [A]p)) → [A][A]〈Ai(〈Ai¬p∧ [A][A]p)), in conjunction with its mirror
image, de�nes the class ofdiscretestructures;

(A-SPNLc) 〈Ai〈Ai[A]p∧〈Ai[A]¬[A]p→〈Ai(〈Ai[A] [A]p∧ [A] 〈Ai¬ [A] p) de�nes
the class ofDedekind completestructures.

Moreover, the language of PNL−over unbounded structures is powerful enough to
express thedifference[6=] operator:

[6=]q , [A][A][A]q∧[A][A][A]q∧[A][A][A]q∧[A][A][A]q,

saying thatq is true at every interval different from the current one, andconsequently
to simulatenominals(the application of the operatorn to q constrainsq to hold over
the current interval and nowhere else):

n(q) , q∧[6=](¬q).

It follows (see, e.g., [GAR 93]) that every universal property of strict unbounded linear
structures can be expressed in PNL−.

Sound and complete axiomatic systems for propositional neighbourhood logics
have been obtained in [GOR 03b].
THEOREM 7. — The following axiomatic system is sound and complete for thelogic
PNL+ of non-strict linear structures:

(A-NT) enough propositional tautologies;

1. The 2-element linear ordering cannot be separated in the language of PNL� .
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(A-NK) theK axioms for2r and2l ;

(A-NNF0) 2r p→♦r p, and its inverse;

(A-NNF 1 ) p→2r ♦l p, and its inverse;

(A-NNF2) ♦r ♦l p→2r ♦l p, and its inverse;

(A-NNF3) 2r ♦l p→♦l♦r ♦r p ∨♦l♦l♦r p, and its inverse;

(A-NNF4) ♦r ♦r ♦r p→♦r ♦r p, and its inverse;

(A-NNF∞) 2r q∧♦r p1∧ . . .∧♦r pn→♦r (2r q∧♦r p1∧ . . .∧♦r pn ), and its inverse,
for eachn ≥ 1 .

The rules of inference are Modus Ponens, Uniform Substitution, and2r and2l Gen-
eralization. Interestingly, some of these axioms, including the in�nite scheme (A-
NNF∞), were not included in the axiomatization of the �rst-orderneighbourhood
logic given in [BAR 00] as they could be derived using the �rst-order axioms.
THEOREM 8. — [GOR 03b] A sound and complete axiomatic system for the logic
PNL� + can be obtained from that forPNL+ by adding the following axioms:

(A-π 1 ) ♦lπ ∧ ♦r π;

(A-π2) ♦r (π ∧ p)→2r (π → p), and its inverse;

(A-π3) ♦r p ∧ 2r q → ♦r (π ∧ ♦r p ∧ 2r q), and its inverse.

Once♦r ,♦l are substituted by〈Ai, 〈Ai, and2r ,2l accordingly by[A], [A], the
axioms for PNL− are very similar to those for PNL+ (accordingly modi�ed to re-
�ect the fact that point-intervals are now excluded), except for the scheme (A-NNF∞)
which is no longer valid.
THEOREM 9. — [GOR 03b] The following axiomatic system is sound and complete
for the logicPNL− of strict linear models:

(A-ST) enough propositional tautologies;

(A-SK) theK axioms for[A] and[A];

(A-SNF1 ) p→[A]〈Aip, and its inverse;

(A-SNF2) 〈Ai〈Aip→[A]〈Aip, and its inverse;

(A-SNF3) (〈Ai〈Ai⊤ ∧ 〈Ai〈Aip)→p∨〈Ai〈Ai〈Aip∨〈Ai〈Ai〈Aip, and its inverse;

(A-SNF4) 〈Ai〈Ai〈Aip→〈Ai〈Aip, and its inverse.

Let us denote by PNL� −, with λ ∈ {u, de, di, c, ude, udi, uc}, PNL− interpreted
respectively over unbounded, dense, discrete, Dedekind complete, dense and unbounded,
discrete and unbounded, and Dedekind complete and unbounded linear structures, re-
spectively. Likewise, PNL� + denotes the respective class of non-strict models.
THEOREM 10. — [GOR 03b] The following hold:
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1) For everyλ1, λ2 ∈ {u, de, di, c, ude, udi, uc}, PNL� 1− PNL� 2− iff the class
of linear orders characterized by the conditionλ2 is strictly contained in the class of
linear orders characterized by the conditionλ1.

2) PNLude − PNL+, where the inclusion is in terms of the obvious translation
between the two languages (which replaces the strict modalities with the non-strict
ones, and vice versa).

3) PNL += PNLu+ = PNLde+ = PNLude+ = PNLdi + = PNLudi +.
Note that the logic PNLudi − does not yet characterize the interval structure ofZ,
because the formula

〈Aip∧[A](p→〈Aip)∧[A][A](p→〈Aip)→[A]〈Ai〈Aip

is valid in Z, but not in PNLudi − since it fails in a PNLudi −-model based onZ + Z.

THEOREM 11. — [GOR 03b] The axiomatic system forPNL− extended with (A-
SPNLu ) (resp. (A-SPNLde), (A-SPNLdi ), (A-SPNLude ), and (A-SPNLudi )) is sound
and complete for the class of unbounded (resp. dense, discrete, dense unbounded, and
discrete unbounded) structures.

Finally, we point out that most of the decidability problemsrelated to propositional
neighbourhood logics and their fragments are still open.

3.1.5. The logicHS
The most expressive propositional interval logic with unary modal operators stud-

ied in the literature is Halpern and Shoham's logic HS introduced in [HAL 91]. HS
contains (as primitive or de�nable) all unary modalities introduced earlier. As men-
tioned in Section 2, HS features the modalities〈Bi, 〈Ei and their inverses〈Bi, 〈Ei,
which suf�ce to de�ne all other modal operators, so that it can be regarded as the tem-
poral logic of Allen's relations. Unlike most other previously studied interval logics,
HS was originally interpreted in non-strict models not overlinear orderings, but over
all partial orderings with the linear interval property, and all results about HS stated
below apply to that class of models, unless otherwise speci�ed.

Formally, HS-formulas are generated by the following abstract syntax:

φ ::= p | ¬φ | φ ∧ ψ | 〈Biφ | 〈Eiφ | 〈Biφ | 〈Eiφ.

Furthermore, as pointed out by Venema in [VEN 90], the neighbourhood modalities
〈Ai and〈Ai are de�nable in the non-strict semantics as follows:

– 〈Aiφ , [[EP ]]〈Biφ, and

– 〈Aiφ , [[BP ]]〈Eiφ.
HS can express linearity of the interval structure by means of the following formula:

– linear ,
(〈Aip → [A](p ∨ 〈Bip ∨ 〈Bip)) ∧ (〈Aip → [A](p ∨ 〈Eip ∨ 〈Eip)),
as well as all conditions that can be expressed in its fragment BE.

As expected, HS is a highly undecidable logic. In [HAL 91] theauthors have ob-
tained important results about non-axiomatizability, undecidability and complexity of
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the satis�ability in HS for many natural classes of models. Their idea for proving
undecidability is based on using an in�nitely ascending sequence in the model to sim-
ulate the halting problem for Turing Machines. Aninfinitely ascending sequenceis an
in�nite sequence of pointsd0, d1, d2, . . . such thatdi < di +1 for all i. Any unbounded
above ordering contains an in�nite ascending sequence. A class of ordered structures
contains an in�nite ascending sequence if at least one of thestructures in the class
does.

THEOREM 12. — The validity problem inHS interpreted over any class of ordered
structures with an infinitely ascending sequence is r.e.-hard.

From Theorem 12, it immediately follows that HS is undecidable for the class of
all (non-strict) models, the class of all linear models, theclass of all discrete linear
models, the class of all dense linear models, the class of alldense and unbounded
linear models, etc.

THEOREM 13. — The validity problem inHS interpreted over any class of Dedekind
complete ordered structures having an infinitely ascendingsequence isΠ1

1-hard.

For instance, the validity in HS in any of the orderings of thenatural numbers, integers,
or reals is not recursively axiomatizable.

Undecidability occurs even without existence of in�nitelyascending sequences.
We say that a class of ordered structures hasunboundedly ascending sequencesif for
everyn there is a structure in the class with an ascending sequence of length at least
n.

THEOREM 14. — The validity problem inHS interpreted over any class of Dedekind
complete ordered structures having unboundedly ascendingsequences is co-r.e. hard.

Another proof of undecidability of HS, using a tiling problem, can be found in
[MAR 99], see also [GAB 00].

In [VEN 90] (see also [MAR 97]) Venema has shown that HS interpreted over
a linear ordering is at least as expressive as the universal monadic second-order logic
(where second-order quanti�cation is only allowed over monadic predicates) and there
are cases where it is strictly more expressive. As a corollary, it can be proved that HS
is strictly more expressive than every point-based temporal logic on linear orderings.

In the same paper Venema provided an interestinggeometricalinterpretation of
HS, using which he obtained sound and complete axiomatic systems for HS with
respect to relevant classes of structures. Here is the idea.An interval can be viewed
as an ordered pair of coordinates over a〈D,<i × 〈D,<i plane, where〈D,<i is
supposed to be linear. Since the ending point of an interval must be greater than or
equal to the starting point, only the north-west half-planeis considered. Clearly, this
geometrical interpretation has a good meaning only when HS-formulas are interpreted
over linear frames. The geometrical operators are de�ned asfollows:

– 3φ , 〈Biφ (φ holds at a point right below the current one);

– 3φ , 〈Biφ (φ holds at a point right above the current one);

– 3φ , 〈Eiφ (φ holds somewhere to the right of the current point);

– 3φ , 〈Eiφ (φ holds somewhere to the left of the current point);
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– 3φ , 3φ ∨ φ ∨ 3φ (φ holds at a point with the same longitude, i.e. on the
same vertical line);

– 3φ , 3φ ∨ φ ∨ 3φ (φ holds at a point with the same latitude, i.e. on the same
horizontal line).

Notice that, in order to obtain the mirror image (inverse) ofa formula written in
the geometrical notation, one should simultaneously replace all3 by 3 and all3 by
3, and vice versa. Using this geometrical interpretation, Venema has provided sound
and complete axiomatic systems for HS over the class of all structures, the class of
all linear structures, the class of all discrete structures, andQ. The basic axiomatic
system(A-HS) for HS includes the following axioms and their mirror-images:

(A-HS1) enough propositional tautologies;

(A-HS2a) 2(p → q) → (2p → 2q);

(A-HS2b) 2(p → q) → (2p → 2q);

(A-HS3a) 33p → 3p;

(A-HS3b) 33p → 3p;

(A-HS4a) 32p → p;

(A-HS4b) 32p → p;

(A-HS5) 3⊤ → 32⊥;

(A-HS6) 2⊥ → 2⊥;

(A-HS7a) 33p→ 33p;

(A-HS7b) 33p↔ 33p;

(A-HS7c) 33p → 33p;

(A-HS8) (3p ∧ 3q) → [3(p ∧ 3q) ∨ 3(p ∧ q) ∨ 3(3p ∧ q)],

and the following inference rules: Modus Ponens, Generalization for 2,2,2, and
2, and a pair of additional, un-orthodox rules which guarantee that all vertical and
horizontal lines in the model are `syntactically represented':

hor(p) → φ

φ

ver(q) → ψ

ψ
,

wherep, q do not occur inφ, ψ respectively, and

– hor(φ) , φ ∧ 2φ ∧ 2φ ∧ 2(¬φ ∧ 2¬φ ∧ 2¬φ) ∧ 2(¬φ ∧ 2¬φ ∧ 2¬φ);
– ver(φ) , φ ∧ 2φ ∧ 2φ ∧ 2(¬φ ∧ 2¬φ ∧ 2¬φ) ∧ 2(¬φ ∧ 2¬φ ∧ 2¬φ).
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The formulahor(φ) holds at an interval[d0, d1] if and only if φ holds at any[d2, d1]
whered2 ≤ d1 and nowhere else. Geometrically, it represents a horizontal line on
which φ is true, and only there. Likewisever(φ) says thatφ is true exactly at the
points of some vertical line.
THEOREM 15. — The axiomatic system(A-HS) is sound and complete for the class
of all non-strict interval structures.
THEOREM 16. — A sound and complete axiomatic system for the class of discrete
structures can be obtained from(A-HS) by adding the following axiom:

(A-HSz ) discrete.

A sound and complete axiomatic system for the class of linearstructures can be ob-
tained from(A-HS) by replacing axiom (A-HS8) by the following axiom:
(A-HSlin ) (33p) → (3p ∨ p ∨ 3p), (33p) → (3p ∨ p ∨ 3p).

A sound and complete axiomatic system forQ can be obtained from the system for
the class of linear structures by adding the following axiom:

(A-HSQ) 3⊤ ∧ 3⊤∧ dense.

In conclusion, we note that, besides D, BB, EE, BE, and AA, there exist other inter-
esting fragments of HS, such as, for instance, DD, whereD is the transpose of D (DD
was already mentioned in [HAL 91]), and AD, which have not been investigated so
far. Moreover, to the best of our knowledge, the strict logicHS− has not been stud-
ied yet either, and thus no complete axiomatic systems and decidability/undecidablity
results have been explicitly established for it.

3.2. Interval logics with binary operators

3.2.1. The chop operator and (Local) Propositional Interval Logics.
Arguably, the most natural binary interval modality is thechopoperatorC. As proved
in [MAR 97], such an operator is not de�nable in HS. The logic that features the
operatorC and the modal constantπ, interpreted according to the non-strict seman-
tics, is the propositional fragment of the �rst-order Interval Temporal Logic (ITL)
introduced by Moszkowski in [MOS 83] (cf. Section 5.1), usually denoted by PITL.
PITL-formulas are de�ned as follows:

φ ::= p | π | ¬φ | φ ∧ ψ | φCψ.

The modalities〈Bi and〈Ei are de�nable in PITL as follows:

– 〈Biφ , φC¬π, and

– 〈Eiφ , ¬πCφ.
As a matter of fact, the study of PITL was originally con�ned to the class of

discrete linear orderings with �nite time, with thechopoperator paired with anext
operator, denoted by©, instead ofπ. Intervals in such structures will be identi�ed
with the (�nite) sequences of points occurring in them. For anyφ,©φ holds at a given
(discrete) intervalσ = s1s2 . . . sn , with n ≥ 1 , if φ holds at the intervalσ′ = s2 . . . sn
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(if any). It is immediate to see that, over discrete linear orderings, the modal constant
π and thenextoperator are inter-changeable. On the one hand,π , ©⊥; on the other
hand, for anyφ, ©φ , l 1 Cφ.

The logic PITL is quite expressive, as the following result from [MOS 83] testi�es.
THEOREM 17. — The satisfiability problem forPITL interpreted over the class of
non-strict discrete structures is undecidable.
The proof is actually an adaptation of a theorem by Chandra etal. [CHA 85] show-
ing the undecidability of the satis�ability problem for a propositional process logic.
Given two context-free grammarsG1 andG2, one can build up a PITL-formula which
is satis�able if and only if the intersection of the languages generated by the two gram-
mars is not empty. Since the latter problem is not decidable (see [HOP 79]), the claim
immediately follows.

Since PITL is strictly more expressive than BE over the classof discrete linear
structures, the above result does not transfer to the latter. On the contrary, the un-
decidability of the satis�ability problem for PITL over dense structures as well as
over all linear structures immediately follows from the undecidability of BE over such
structures.
COROLLARY 18. — The satisfiability problem forPITL-formulas interpreted over
the class of (non-strict) dense linear structures is undecidable.
COROLLARY 19. — The satisfiability problem forPITL interpreted over the class of
(non-strict) linear structures is undecidable.

The propositional counterpart of the fragment of ITL that only includes thechop
operator, has not been investigated yet, as far as we know.

Decidable variants of PITL, interpreted over �nite or in�nite discrete structures,
have been obtained by imposing the so-calledlocality projection principle[MOS 83].
Such a locality constraint states that each propositional variable is true over an interval
if and only if it is true at its �rst state. This allows one to collapse all the intervals
starting at the same state into the single interval consisting of the �rst state only.

Let Local PITL (LPITL for short) be the logic obtained by imposing the locality
projection principle to PITL. The syntax of LPITL coincideswith that of PITL, while
its semantic clauses are obtained from PITL ones by modifying the truth de�nition of
propositional variables as follows:

(loc-PS1) M
+, [d0, d1]  p iff p ∈ V (d0).

where the valuation functionV has been adapted to evaluate propositional variables
over points instead of intervals.

Various extensions of LPITL have been proposed in the literature. In [MOS 83],
Moszkowski focused his attention on the extension of LPITL (over �nite time) with
quanti�cation over propositional variables, and he provedthe decidability of the re-
sulting logic, denoted by QLPITL, by reducing its satis�ability problem to that of
the point-based Quanti�ed Propositional Temporal Logic QPTL, interpreted over dis-
crete linear structures with an initial point. In fact, QLPITL is translated into QPTL
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over �nite time, the decidability of which can be proved by a simple adaptation of the
standard proof for QPTL over in�nite time.
THEOREM 20. — QPTL is at least as expressive asQLPITL interpreted over the
class of (non-strict) discrete linear structures.
Since the translation of QLPITL into QPTL is effective and QPTL is (non-
elementarily) decidable, we have the following result.
COROLLARY 21. — The satisfiability problem for the logicQLPITL, interpreted
over the class of (non-strict) discrete linear structures is (non-elementarily) decid-
able.

The (non-elementary) decidability of LPITL immediately follows from Corollary
21. A lower bound for the satis�ability problem for LPITL, and thus for any extension
of it, has been given by Kozen (see [MOS 83]).
THEOREM 22. — Satisfiability for LPITL is non-elementary.

In several papers [MOS 83, MOS 94, MOS 98, MOS 00a, MOS 03], Moszkowski
explored the extension of LPITL with the so-calledchop-starmodality, denoted by∗.
For anyφ, φ∗ holds over a given (discrete) interval if and only if the interval can be
chopped into zero or more parts such thatφ holds over each of them. The resulting
logic, which we denote by LPITL∗, is interpreted over either �nite or in�nite discrete
linear structures. A sound and complete axiomatic system for LPITL∗ with �nite time
is given in [MOS 03].
THEOREM23. — The following axiomatic system is sound and complete for theclass
of (non-strict) discrete linear structures:

(A-CLPITL 1 ) enough propositional tautologies;

(A-CLPITL 2) (φCψ)Cξ ↔ φC(ψCξ);

(A-CLPITL 3) (φ ∨ ψ)Cξ → (φCξ) ∨ (ψCξ);

(A-CLPITL 4) ξC(φ ∨ ψ) → (ξCφ) ∨ (ξCψ);

(A-CLPITL 5) πCφ↔ φ;

(A-CLPITL 6) φCπ ↔ φ;

(A-CLPITL 7) p → ¬(¬pC⊤), with p ∈ AP;

(A-CLPITL 8 ) ¬(¬(φ → ψ)C⊤) ∧ ¬(⊤C¬(ξ → χ)) → ((φCξ) → (ψCχ));

(A-CLPITL 9) ©φ → ¬©¬φ;

(A-CLPITL 10 ) φ ∧ ¬(⊤C¬(φ → ¬©¬φ)) → ¬(⊤C¬φ);

(A-CLPITL 11 ) φ∗ ↔ π ∨ (φ ∧©⊤)Cφ∗,

together with Modus Ponens and the following inference rules:

φ

¬(⊤C¬φ)
,

φ

¬(¬φC⊤)
.
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All axioms have a fairly natural interpretation. In particular, locality is basically dealt
with by Axiom (A-CLPITL7).

The chop-star operator is a special case of a more general operator, called the
projectionoperator. Such a binary operator, denoted byproj, yields general repetitive
behaviour: for any given pair of formulasφ, ψ, φ proj ψ holds over an interval if
such an interval can be partitioned into a series of sub-intervals each of which satis�es
φ, while ψ (called theprojected formula) holds over the new interval formed from
the end points of these sub-intervals. Let us denote by LPITLproj the extension of
LPITL with the projection operatorproj. By taking advantage from such an operator,
LPITLproj can express meaningful iteration constructs, such asfor andwhile loops:

– for n times do p , p proj len (n);
– while p do q , (p ∧ q)∗ ∧ ¬(⊤C(len (0) ∧ p)),

where the formulap occurring in thewhile loop typically is a point formula, that is,
a formula whose satisfaction is totally determined from the�rst state of the satisfying
interval, and, for alln ≥ 0, len (n) constrains the length of the current interval to be
exactlyn. len (n) is de�ned as follows:

– len (n) , ©n⊤ ∧©n+1⊥.
Furthermore, the chop-star operator can be easily de�ned interms of projection oper-
ator as follows:

– φ∗ , φ proj ⊤.
LPITLproj was originally proposed by Moszkowski in [MOS 83] and later system-

atically investigated by Bowman and Thompson [BOW 98, BOW 03]. In particular,
a tableau-based decision procedure and a sound and completeaxiomatic system for
LPITLproj , interpreted over �nite discrete structures, is given in [BOW 03].

The core of the tableau method is the de�nition of suitable normal forms for all op-
erators of the logic. These normal forms provide inductive de�nitions of the operators.
Then, in the style of [WOL 85], a tableau decision procedure to check satis�ability of
LPITLproj formulas is established. Although the method has been developed at the
propositional level, the authors advocate its validity also for �rst-order LPITLproj .

The normal form for LPITLproj formulas has the following general format:

(π ∧ φe) ∨
_

i

(φi ∧©φ′
i )

whereφe andφi are point formulas andφ′
i is an arbitrary LPITLproj formula. The

�rst disjunct states when a formula is satis�ed over a point interval, while the second
one states the possible ways in which a formula can be satis�ed over a strict interval,
namely, a point formula must hold at the initial point and then an arbitrary formula
must hold over the remainder of the interval. This normal form embodies a recipe for
evaluating LPITLproj formulas: the �rst disjunct is the base case, while the second
disjunct is the inductive step. Bowman and Thomson showed that any LPITLproj

formula can be equivalently transformed into this normal form.
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In [BOW 03], Bowman and Thomson also provided a sound and complete ax-
iomatic system for LPITLproj , interpreted over discrete linear structures. Letφ, ψ,
ξ be arbitrary formulas andp ∈ AP . The proposed system includes the following
axioms:

(A-LPITL1) enough propositional tautologies;

(A-LPITL2) ¬π ↔ ©⊤;

(A-LPITL3) ©φ → ¬©¬φ;

(A-LPITL4) ©(φ → ψ) → ©φ → ©ψ;

(A-LPITL5) (©φ)Cψ ↔ ©(φCψ);

(A-LPITL6) (φ ∨ ψ)Cξ ↔ φCξ ∨ ψCξ;

(A-LPITL7) φC(ψ ∨ ξ) ↔ φCψ ∨ φCξ;

(A-LPITL8) φC(ψCξ) ↔ (φCψ)Cξ;

(A-LPITL9) (p ∧ φ)Cψ ↔ p ∧ (φCψ), with p ∈ AP;

(A-LPITL10) πCφ↔ φCπ ↔ φ;

(A-LPITL11) φ proj π ↔ π;

(A-LPITL12) φ proj (ψ ∨ ξ) ↔ (φ proj ψ) ∨ (φ proj ξ);

(A-LPITL13) φ proj (p ∧ ψ) ↔ p ∧ (φ proj ψ);

(A-LPITL14) φ proj © ψ ↔ (φ ∧ ¬π)C(φ proj ψ).

The inference rules, besides Modus Ponens and©-generalization, include the follow-
ing rule:

φ → ©kφ

¬φ
.

THEOREM 24. — The above axiomatic system is sound and complete for the class of
(non-strict) discrete structures.

Finally, Kono [KON 95] presents a tableau-based decision procedure for QLPITL
with projection, which has been successfully implemented. The method generates a
deterministic state diagram as a veri�cation result. Although it has been argued that
the associated axiomatic system is unsound (see [MOS 03]), Kono's work actually
inspired Bowman and Thompson's one.
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3.2.2. The logicsCDT andBCDT +

The most expressive propositional interval logic over (non-strict) linear orderings
proposed in the literature is Venema's CDT [VEN 91]. A generalization of CDT to
(non-strict) partial orderings with the linear interval property, called BCDT+ has been
recently investigated by Goranko, Montanari, and Sciavicco [GOR 03a]. The lan-
guage of CDT and BCDT+ contains the three binary operatorsC,D, andT , together
with the modal constantπ. Formulas of CDT are generated by the following abstract
grammar:

φ ::= π | p | ¬φ | φ ∧ ψ | φCψ | φDψ | φTψ.

The semantics of both CDT and BCDT+ is non-strict.

The following result links the expressiveness of CDT in terms of de�nable bi-
nary operators to that of the fragment FO3[<](xi , xj ) of �rst-order logic over linear
orderings with at most three variables, at most two of which,viz xi andxj are free
[VEN 91].
THEOREM 25. — Every binary modal operator definable in FO3[<](xi , xj ) has an
equivalent inCDT, and vice versa.

As for the relationships with the other propositional interval logics, interpreted
over linear orderings, CDT is strictly more expressive thanPITL, since the latter is not
able to access any interval which is not a sub-interval of thecurrent interval. Moreover,
it is immediate to show that CDT subsumes HS:

– 3φ = (¬π)Cφ;

– 3φ = (¬π)Dφ;

– 3φ = (¬π)Tφ;

– 3φ = φC(¬π).
A sound and complete axiomatic system for CDT over (non-strict) linear struc-

tures has been de�ned by Venema in [VEN 91]. Let us de�nehor(φ) as in the case
of HS. The axiomatic system for CDT includes the following axioms, and their in-
verses (obtained by exchanging the arguments of allC occurrences, and replacing
each occurrence ofT byD and vice versa):

(A-CDT1) enough propositional tautologies;

(A-CDT2a) (φ ∨ ψ)Cξ ↔ φCξ ∨ ψCξ;

(A-CDT2b) (φ ∨ ψ)Tξ ↔ φTξ ∨ ψTξ;

(A-CDT2c) φT (ψ ∨ ξ) ↔ φTψ ∨ φTξ;

(A-CDT3a) ¬(φTψ)Cφ → ¬ψ;

(A-CDT3b) ¬(φTψ)Dψ → ¬φ;

(A-CDT3c) φT¬(ψCφ) → ¬ψ;

(A-CDT4) ¬πC⊤ ↔ ¬π;
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(A-CDT5a) πCφ↔ φ;

(A-CDT5b) πTφ↔ φ;

(A-CDT5c) φTπ → φ;

(A-CDT6) [(π ∧ φ)C⊤ ∧ ((π ∧ ψ)C⊤)C⊤] → (π ∧ ψ)C⊤;

(A-CDT6a) (φCψ)Cξ ↔ φC(ψCξ);

(A-CDT6b) φT (ψCξ) ↔ (ψC(φTξ) ∨ (ξTφ)Tψ);

(A-CDT6c) ψC(φTξ) → φT (ψCξ);

(A-CDT7d) (φTψ)Cξ → ((ξDφ)Tψ ∨ ψC(φDξ));

and the following derivation rules: Modus Ponens, Generalization:

φ

¬(¬φCψ)
,

φ

¬(¬φTψ)
,

φ

¬(ψT¬φ)
, and their inverses,

and the Consistency rule: ifp ∈ AP andp does not occur inφ, then

hor( p) → φ

φ
.

THEOREM 26. — The above axiomatic system is sound and complete for the class of
(non-strict) linear orderings.
THEOREM27. — A sound and complete axiomatic system for the class of (non-strict)
dense linear orderings can be obtained from the system for the class of (non-strict)
linear orderings by adding the following axiom:

(A-CDTd) ¬π → (¬πC¬π).

A sound and complete axiomatic system for the class of (non-strict) discrete linear
orderings can be obtained from the system for the class of (non-strict) linear orderings
by adding the following axiom:

(A-CDT z ) π ∨ ((l 1 C⊤) ∧ (⊤Cl 1)) ;

A sound and complete axiomatic system forQ can be obtained from the system for the
class of (non-strict) linear orderings by adding the following axiom:

(A-CDTQ) (¬π → (¬πC¬π)) ∧ (¬πT⊤) ∧ (¬πD⊤).

In [VEN 91], Venema has also developed a sound and complete natural deduction
system for CDT, similar to the natural deduction system for relation algebras earlier
developed by Maddux [MAD 92].

Finally, as a consequence from previous results for HS and PITL, the satis�ability
(resp. validity) for CDT is not decidable over almost all interesting classes of linear
orderings, including all, dense, discrete, etc. Again, thestrict versions of CDT and
BCDT+ have not been explicitly studied yet, but it is natural to expect that similar
results apply there, too.
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3.3. Restricted interval logics: split logics

Split Logics (SLs for short) can be viewed as an attempt of identifying expressive,
yet decidable, propositional interval logics without resorting to any locality principle.
We have already seen that, in the interval logic setting, decidability can be gained
by reducing the set of modal operators (this is the case of BB and EE) or by impos-
ing locality conditions (this is the case of LPITL). In the case of SLs, decidability is
achieved by imposing suitable constraints on the interval structures over which for-
mulas are interpreted. In the following, we brie�y describethe basic features of SLs,
and we provide a short summary of the relevant results about them.

SLs have been proposed by Montanari, Sciavicco, and Vitacolonna in [MON 02]
as the interval logic counterparts of the monadic �rst-order (MFO) theories of time
granularity studied in [MON 96, FRA 02a] (as a matter of fact,there exist also inter-
esting connections between SLs and the propositional densetime logic proposed by
Ahmed and Venkatesh in [AHM 93]). SLs are propositional interval logics equipped
with operators borrowed from HS and CDT, but interpreted over speci�c structures,
calledsplit structures. Models based on split structures are calledsplit models. The
distinctive feature of split structures is that every interval can be `chopped' in at most
one way (obviously, there is no way to constrain the length ofthe two resulting sub-
intervals). In [MON 02], the authors show that such a restriction does not prevent
SLs from the possibility of expressing a number of meaningful temporal properties.
Furthermore, they prove the decidability of various SLs by embedding them into de-
cidable MFO theories of time granularity as well as their completeness with respect
to the guarded fragment of these theories.

Formulas of SLs are generated by the following abstract syntax:

φ ::= p | φ ∧ φ | ¬φ | 〈Diφ | 〈Diφ | 〈F iφ | 〈F iφ | φCφ | φDφ | φTφ.

A split structure is a pair〈D,H(D)i, whereH(D) is proper subset ofI(D) (a
precise characterization ofH(D) can be found [MON 02]). Asplit model is a pair
M= 〈D, V i, whereV : H(D) → P(AP). The semantic clauses for the modalities
〈Di, 〈Di, 〈F i, and〈F i are the following ones (the semantic clauses forC,D, andT
have already been given):

(〈Di) M, [d0, d1]  〈Diφ if there existd2, d3 such that[d2, d3]@[d0, d1], andM,

[d2, d3]  φ;

(〈Di) M, [d0, d1]  〈Diφ if there existd2, d3 such that[d0, d1]@[d2, d3], andM,

[d2, d3]  φ;

(〈F i) M, [d0, d1]  〈F iφ if there existd2, d3 such thatd1 < d2, d2 < d3, and
M, [d2, d3]  φ;

(〈F i) M, [d0, d1]  〈F iφ if there existd2, d3 such thatd3 < d2, d2 < d0, and
M, [d3, d2]  φ.

The modal constantπ can also be introduced as a useful shorthand.
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In the following we sketch the correspondence between splitlogics and MFO the-
ories of time granularity. In particular, we enlighten the close relationship that exists
between split structures and the temporal structures for time granularity, called layered
(or granular) structures [MON 96]. Layered structures replace the single `�at' tempo-
ral domain of linear, point-based temporal logics by a (possibly in�nite) set of tem-
poral layers. Each layer is a discrete, linear, point-baseddomain bounded in the past
and in�nite in the future. The relationships between time points belonging to the same
layer are governed by the usual order relation, while those between points belonging
to different layers are expressed by means of suitable projection relations. A formal
de�nition of layered structures can be found in [MON 96, FRA 02a]. Here we give an
intuitive account of them. The domain of layered structuresis a set

S
i ∈I T

i , where
I ⊆ Z, which consists of many copies ofN (possibly in�nitely many), denotedT i ,
each one being alayerof the structure. If there is a �nite numbern of layers, the struc-
ture is calledn-layered(n-LS), otherwise, the structure is calledω-layered. Among
ω-layeredstructures, we consider theupward unboundedlayered structure (UULS),
which consists of a �nest layer and an in�nite sequence of coarser and coarser layers,
and thedownward unboundedone (DULS), which consists of a coarsest layer and
an in�nite sequence of �ner and �ner ones. In all cases, layers are totally ordered
according to their degree of `coarseness/�neness', and each point of a given layer is
associated withk points of the immediately �ner layer, if any (k-refinability). This
accounts for a view of layered structures as (possibly in�nite) sequences of (possibly
in�nite) completek-ary trees. In the case of the UULS, there is only one in�nite tree
built up from leaves, which form the �nest layer of the structure. In the case of the
DULS (resp.n-LS), the in�nite sequence of in�nite trees (resp. �nite) isordered ac-
cording to the ordering of the roots, which form the coarsestlayer of the structure.
In [MON 96, FRA 02a], monadic second-order (MSO) theories oflayered structures
have been systematically studied and the decidability of a number of them has been
proved.
SLs can be viewed as the interval logic counterparts of the �rst-order fragments of the
MSO theories of 2-re�nable layered structures. More precisely, we focus our atten-
tion on the theories MFO[

S
i T

i , <1, <2, ↓0, ↓1], interpreted over the2-re�nablen-LS,
MFO[

S
i T

i , <1, <2, ↓0, ↓1], interpreted over the2-re�nable DULS, and MFO[
S

i T
i ,

<2, ↓0, ↓1] interpreted over the2-re�nable UULS. The symbols in the square brackets
are (pre)interpreted as follows:↓0 (x, y) (resp.↓1 (x, y)) is a binary projection rela-
tion such thaty is the �rst (resp. second) point in the re�nement ofx; <1 is a strict
partial order such thatx <1 y if x belongs to a tree that precedes the treey belongs
to; x <2 y holds if y is a descendant ofx. As for split structures, we consider (i) the
class of bounded below, unbounded above, dense, and with maximal intervals split
structures, (ii) the class of bounded below, unbounded above, discrete, and with max-
imal intervals split structures, and (iii) the class of bounded below, unbounded above,
discrete split structures. A split structure with maximal intervals is a split structure
〈D,H(D)i, such that, for every[d0, d1] ∈ H(D) there exists[d2, d3] ∈ H(D) such
that[d0, d1] ⊑ [d2, d3] and there is no[d4, d5] ∈ H(D) such that[d2, d3]@[d4, d5] (the
interval [d2, d3] is called amaximal interval).
THEOREM 28. — The following results hold:
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1) SL interpreted over the class of bounded below, unbounded above,
dense, and with maximal intervals split structures can be embedded into
MFO[

S
i T

i , <1, <2, ↓0, ↓1] interpreted over the2-refinableDULS;

2) SL interpreted over the class of bounded below, unbounded above, dis-
crete, and with maximal intervals split structures can be embedded into
MFO[

S
i T

i , <1, <2, ↓0, ↓1] interpreted over the2-refinablen-LS;

3) SL interpreted over the class of bounded below, unbounded above, discrete
split structures can be embedded intoMFO[

S
i T

i , <2, ↓0, ↓1] interpreted over the
2-refinableUULS.
Since such MFO theories of time granularity are decidable, we have the following
corollary.
COROLLARY 29. — The satisfiability problem forSL formulas, interpreted over the
above classes of split structures, is decidable.

4. A general tableau method for propositional interval logics

In this section we describe a sound and complete tableau method for BCDT+,
developed by Goranko, Montanari and Sciavicco in [GOR 03a],which combines fea-
tures of tableau methods for modal logics with constraint label management and the
classical tableau method for �rst-order logic. The proposed method can be adapted
to variations and subsystems of BCDT+, thus providing a general tableau method for
propositional interval logics.

First, some basic terminology. Afinite treeis a �nite directed connected graph
in which every node, apart from one (theroot), has exactly one incoming arc. A
successorof a noden is a noden′ such that there is an edge fromn to n

′. A leaf is
a node with no successors; apath is a sequence of nodesn0 , . . . ,nk such that, for all
i = 0, . . . , k − 1 , ni+1 is a successor ofni ; a branchis a path from the root to a leaf.
Theheightof a noden is the maximum length (number of edges) of a path fromn to
a leaf. Ifn,n′ belong to the same branch and the height ofn is less than or equal to
the height ofn′, we writen ≺ n

′.
Let C = 〈C,<i be a �nite partial order. Alabelled formula, with label inC, is a

pair (φ, [ci , cj ]), whereφ ∈ BCDT+ and[ci , cj ] ∈ I(C)+.
For a noden in a tree, thedecorationν(n) is a triple((φ, [ci , cj ]),C, un ), where

C is a �nite partial order,(φ, [ci , cj ]) is a labelled formula, with label inC, andun is a
local flag functionwhich associates the values0 or 1 with every branchB containing
n. Intuitively, the value0 for a noden with respect to a branchB means thatn can
be expanded onB (in fact, n must be expanded onB, sooner or later, in order to
saturate the current decorated tree). For the sake of simplicity, we will often assume
the interval[ci , cj ] to consist of the elementsci < ci +1 < · · · < cj , and sometimes,
with a little abuse of notation, we will writeC = {ci < ck , cm < cj , . . .}. A decorated
tree is a tree in which every node has a decorationν(n). For every decorated tree, we
de�ne a global flag functionu acting on pairs(node, branch through that node)as
u(n, B) = un (B). Sometimes, for convenience, we will include in the decoration of
the nodes the global �ag function instead of the local ones. For any branchB in a
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decorated tree, we denote byCB the ordered set in the decoration of the leaf ofB, and
for any noden in a decorated tree, we denote byΦ(n) the formula in its decoration.
If B is a branch, thenB · n denotes the result of the expansion ofB with the noden
(addition of an edge connecting the leaf ofB to n). Similarly,B ·n1 | . . . | nk denotes
the result of the expansion ofB with k immediate successor nodesn1 , . . . ,nk (which
producesk branches extendingB). A tableau for BCDT+ will be de�ned as a special
decorated tree. We note again thatC remains �nite throughout the construction of the
tableau.

DEFINITION 30. — Given a decorated treeT , a branchB in T , and a noden ∈ B

such thatν(n) = ((φ, [ci , cj ]),C, u), with u(n , B) = 0, thebranch-expansion rule
for B andn is defined as follows (in all the considered cases,u(n′ , B′) = 0 for all
new pairs(n′ , B′) of nodes and branches).

– If φ = ¬¬ψ, then expand the branch toB · n0 , with ν(n0) = ((ψ, [ci , cj ]),
CB , u).

– If φ = ψ0 ∧ ψ1, then expand the branch toB · n0 ·n1 , with ν(n0) =
((ψ0, [ci , cj ]),CB , u) andν(n1 ) = ((ψ1, [ci , cj ]),CB , u).

– If φ = ¬(ψ0 ∧ ψ1), then expand the branch toB · n0 |n1 , with ν(n0)
= ((¬ψ0, [ci , cj ]),CB , u) andν(n1) = ((¬ψ1, [ci , cj ]),CB , u).

– If φ = ¬(ψ0Cψ1) andc is the least element ofCB , with ci ≤ c ≤ cj , which has
not been used yet to expand the noden onB, then expand the branch toB · n0 |n1 ,
with ν(n0) = ((¬ψ0, [ci , c]),CB , u) andν(n1) = ((¬ψ1, [c, cj ]),CB , u).

– If φ = ¬(ψ0Dψ1), c is a minimal element ofCB such thatc ≤ ci , and there
existsc′ ∈ [c, ci ] which has not been used yet to expand the noden on B, then
take the least suchc′ ∈ [c, ci ] and expand the branch toB · n0 |n1 , with ν(n0)
= ((¬ψ0, [c′, ci ]),CB , u) andν(n1) = ((¬ψ1, [c′, cj ]),CB , u).

– If φ = ¬(ψ0Tψ1), c is a maximal element ofCB such thatcj ≤ c, and there
existsc′ ∈ [cj , c] which has not been used yet to expand the noden onB, then take
the greatest suchc′ ∈ [cj , c] and expand the branch toB · n0 |n1 , so thatν(n0)
= ((¬ψ0, [cj , c

′]),CB , u) andν(n1) = ((¬ψ1, [ci , c
′]),CB , u).

– If φ = (ψ0Cψ1), then expand the branch toB · (ni · mi )| . . . |(nj · mj )|(n′
i ·

m
′
i )| . . . |(n

′
j −1 · m′

j −1), where:

1) for all ck ∈ [ci , cj ], ν(nk ) = ((ψ0, [ci , ck ]),CB , u) and ν(mk ) = ((ψ1,

[ck , cj ]), CB , u);
2) for all i ≤ k ≤ j − 1 , let Ck be the interval structure obtained by inserting

a new elementc betweenck and ck+1 in [ci , cj ], ν(n′
k ) = ((ψ0, [ci , c]),Ck , u), and

ν(m′
k ) = ((ψ1, [c, cj ]),Ck , u).

– If φ = (ψ0Dψ1), then repeatedly expand the current branch, once for each
minimal elementc (where[c, ci ] = {c = c0 < c1 < · · · ci }), by adding the decorated
sub-tree(n0 · m0)| . . . |(ni · mi )|(n′

1 · m′
1)| . . . |(n′

i · m
′
i )|(n

′′
0 · m′′

0 )| . . . |(n′′
i · m′′

i )
to its leaf, where:
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1) for all ck such thatck ∈ [c, ci ], ν(nk ) = ((ψ0, [ck , ci ]),CB , u) andν(mk )
= ((ψ1, [ck , cj ]),CB , u);

2) for all 0 < k ≤ i, let Ck be the interval structure obtained by inserting
a new elementc′ immediately beforeck in [c, ci ], andν(n′

k ) = ((ψ0, [c′, ci ]), Ck , u)
andν(m′

k ) = ((ψ1, [c′, cj ]),Ck , u);
3) for all 0 ≤ k ≤ i, let Ck be the interval structure obtained by inserting a

new elementc′ in CB , with c′ < ck , which is incomparable with all existing predeces-
sors ofck , ν(n′′

k ) = ((ψ0, [c′, ci ]),Ck , u), andν(m′′
k ) = ((ψ1, [c′, cj ]),Ck , u).

– If φ = (ψ0Tψ1), then repeatedly expand the current branch, once for each max-
imal elementc (where[cj , c] = {cj < cj +1 < · · · cn = c}), by adding the decorated
sub-tree(nj ·mj )| . . . |(nn ·mn )|(n′

j ·m
′
j )| . . . |(n

′
n −1 ·m

′
n −1 )|(n′′

j ·m
′′
j )| . . . |(n′′

n ·m
′′
n )

to its leaf, where:

1) for all ck such thatck ∈ [cj , c], ν(nk ) = ((ψ0, [cj , ck ]),CB , u) andν(mk )
= ((ψ1, [ci , ck ]),CB , u);

2) for all j ≤ k < n, let Ck be the interval structure obtained by inserting a
new elementc′ immediately afterck in [cj , c], andν(n′

k ) = ((ψ0, [cj , c
′]),Ck , u) and

ν(m′
k ) = ((ψ1, [ci , c

′]),Ck , u);
3) for all j ≤ k ≤ n, let Ck be the interval structure obtained by inserting a

new elementc′ in CB , withck < c′, which is incomparable with all existing successors
of ck , ν(n′′

k ) = ((ψ0, [cj , c
′]),Ck , u), andν(m′′

k ) = ((ψ1, [ci , c
′]),Ck , u).

Finally, for any nodem (6= n) in B and any branchB′ extendingB, let u(m, B′)
be equal tou(m, B), and for any branchB′ extendingB, u(n, B′) = 1 , unless
φ = ¬(ψ0Cψ1), φ = ¬(ψ0Dψ1), or φ = ¬(ψ0Tψ1) (in such casesu(n, B′) = 0).

Let us brie�y explain the expansion rules forψ0Cψ1 and¬(ψ0Cψ1) (similar con-
siderations hold for the other temporal operators). The rule for the (existential) for-
mulaψ0Cψ1 deals with the two possible cases: either there existsck in CB such that
ci ≤ ck ≤ cj andψ0 holds over[ci , ck ] andψ1 holds over[ck , cj ] or such an element
ck must be added. The (universal) formula¬(ψ0Cψ1) states that, for allci ≤ c ≤ cj ,
ψ0 does not hold over[cj , c] orψ1 does not hold over[c, cj ]. As a matter of fact, the ex-
pansion rule imposes such a condition for a single elementc in CB (the least element
which has not been used yet), and it does not change the �ag (which remains equal
to 0). In this way, all elements will be eventually taken intoconsideration, including
those elements in betweenci andcj that will be added toCB in some subsequent steps
of the tableau construction.

Let us de�ne now the notions of open and closed branch. We say that a node
n in a decorated treeT is available on a branchB to which it belongs if and only if
u(n, B) = 0. The branch-expansion rule isapplicableto a noden on a branchB if the
node is available onB and the application of the rule generates at least one successor
node with a new labelled formula. This second condition is needed to avoid looping
of the application of the rule on formulas¬(ψ0Cψ1),¬(ψ0Dψ1), and¬(ψ0Tψ1).
DEFINITION 31. — A branchB is closed if some of the following conditions holds:

(i) there are two nodesn,n′ ∈B such thatν(n) = ((ψ, [ci , cj ]),C, u) andν(n′)
= ((¬ψ, [ci , cj ]), C′, u) for some formulaψ andci , cj ∈ C ∩ C′;
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(ii) there is a noden such thatν(n) = ((π, [ci , cj ]),C, u) andci 6= cj ; or
(iii) there is a noden such thatν(n) = ((¬π, [ci , cj ]),C, u) andci = cj .

If none of the above conditions hold, the branch is open.
DEFINITION 32. — Thebranch-expansion strategyfor a branchB in a decorated
treeT is defined as follows:

1) Apply the branch-expansion rule to a branchB only if it is open;

2) IfB is open, apply the branch-expansion rule to the closest to the root available
node inB for which the branch-expansion rule is applicable.
DEFINITION 33. — A tableaufor a given formulaφ ∈BCDT+ is any finite deco-
rated treeT obtained by expanding the three-node decorated tree built up from an
empty-decoration root and two leaves with decorations((φ, [cb, ce]), {cb < ce}, u)
and((φ, [cb, cb]), {cb}, u), where the value ofu is 0, through successive applications
of the branch-expansion strategy to the existing branches.

It is easy to show that ifφ ∈ BCDT+, T is a tableau forφ, n ∈ T , andC is the
ordered set in the decoration ofn, then〈C, <i is an interval structure.
THEOREM34 (SOUNDNESS AND COMPLETENESS). — If φ ∈BCDT+ and a tableau
T for φ is closed, thenφ is not satisfiable. Moreover, ifφ ∈ BCDT+ is a valid formula,
then there is a closed tableau for¬φ.

5. First-Order Interval Logics and Duration Calculi

Research on interval temporal logics in computer science was originally motivated
by problems in the �eld of speci�cation and veri�cation of hardware protocols, rather
than by abstract philosophical or logical issues. Not surprisingly, it focused on �rst-
order, rather than propositional, interval logics. In thissection, we summarize some
of the most-important developments in �rst-order intervallogics and duration calculi,
referring the interested reader to respectively [MOS 03] and [CHA 04] for more de-
tails.

5.1. The logic ITL

First-order ITL, interpreted over discrete linear orderings with �nite time intervals,
was originally developed by Halpern, Manna, and Moszkowskiin [MOS 83, HAL 83].
The language of ITL includes terms, predicates, Boolean connectives, �rst-order quan-
ti�ers, and the temporal modalitiesC and©. Terms are built on variables, constants,
and function symbols in the usual way. Constants and function symbols are classi�ed
asglobal/rigid andtemporal/ flexible. Terms are usually denoted byθ1, . . . , θn . Pred-
icate symbols are also partitioned into global and temporalones. They are denoted by
pi , qj , . . ., wherepi is a predicate of arityi, qj is a predicate of arityj, and so on. The
abstract syntax of ITL formulas is:

φ ::= θ | pn (θ1, . . . , θn ) | ∃xφ| ¬φ | φ ∧ ψ | © φ | φCψ.

The semantics of ITL-formulas is a combination of the standard semantics of a
�rst-order temporal logic with the semantics of PITL. An account of possible uses
and applications is e.g. [MOS 86].
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In [DUT 95a] Dutertre studies the fragment of ITL which we will denote here
by ITLD , involving only thechopoperator. First, ITLD is considered over abstract,
Kripke-style modelsM+ = 〈W,R, Ii, whereW is a set of worlds (abstract intervals),
R is a ternary relation corresponding to Venema's ternary relationA (cf. Section
2.1, andI is a �rst-order interpretation. Further, Dutertre considers a more concrete
semantics, over interval structures with associated `length' measure represented by a
special temporal variablel which takes values in a commutative group〈D,+,−, 0i.
The language is assumed to have the �exible constantl, and the rigid symbols0 and
+, respectively interpreted as the neutral element and the addition in 〈D,+, 0i. The
semantics of ITLD -formulas is a combination of the semantics of ITL (withoutnext),
and the interpretation ofl in a modelM+ for an interval[d0, d1] is d1 − d0.

As for the expressive power of ITLD , note that one can easily de�ne the modal
constantπ (cf. Section 2.2) by means ofl:

– π , (l = 0).
Hence, the HS modalities corresponding tobeginsandendsare also de�nable in

the language, and thus, from the results of Section 3.1.3, wecan conclude that ITLD
is at least as expressive as PITL. The undecidability of the logic easily follows.

Dutertre developed a sound and complete axiomatic system for ITLD (the details
of the soundness and completeness proof can be found in [DUT 95a]). In addition to
the standard axioms of �rst-order classical logic, including the axioms of identity and
the axioms describing the properties for the temporal domain D, Dutertre's systems
involves the following speci�c axioms for ITLD :

(A-ITL1) (φCψ) ∧ ¬(φCξ) → φC(ψ ∧ ¬ξ);

(A-ITL2) (φCψ) ∧ ¬(ξCψ) → (φ ∧ ¬ξ)Cψ;

(A-ITL3) ((φCψ)Cξ) ↔ (φC(ψCξ));

(A-ITL4) (φCψ) → φ if φ is a rigid formula;

(A-ITL5) (φCψ) → ψ if ψ is a rigid formula;

(A-ITL6) ((∃x)φCψ) → (∃x)(φCψ) if x is not free inψ;

(A-ITL7) (φC(∃x)ψ) → (∃x)(φCψ) if x is not free inφ;

(A-ITL8) ((l = x)Cφ) → ¬((l = x)C¬φ);

(A-ITL9) (φC(l = x)) → ¬(¬φC(l = x));

(A-ITL10) (l = x+ y) ↔ ((l = x)C(l = y));

(A-ITL11) φ → (φC(l = 0));

(A-ITL12) φ → ((l = 0)Cφ).
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The inference rules are Modus Ponens, Generalization, Necessitation, and the follow-
ing Monotonicity rule:

φ → ψ

φCξ → ψCξ
,

together with the symmetric one. It should be noted that certain restrictions apply to
the instantiation with �exible terms in quanti�ed formulas.

As in the propositional case, variants of ITL obtained by imposing the locality
constraint have been explored in the literature. Sound and complete axiomatic systems
for local variants of ITL for �nite and in�nite time have beenestablished in [DUT 95a,
DUT 95b, MOS 00b], while automata-theoretic techniques forproving completeness
of ITL have been applied in [MOS 00a, MOS 03].

For more details about completeness and decidability results on ITL see [MOS 03].
See also [MOS 86] and [DUA 96], for applications of ITL to temporal logic program-
ming, and [MOS 96b, MOS 98], where the ITL-based programminglanguage Tem-
pura is described in detail.

5.1.1. Some extensions and variations ofITL
An extension of ITL with projection has been studied in [GUE 00b] where a com-

plete axiomatic system for it has been established. A probabilistic extension of ITL
has been studied in [GUE 00d].

An interesting variation of ITL is the Signed Interval Logic(SIL) introduced by
Rasmussen [RAS 99, RAS 02]. The semantics of SIL is based onsigned intervals,
i.e., intervals provided with adirection(forward or backward). A sound and complete
axiomatic system for SIL was established in [RAS 99], a natural deduction system in
[RAS 01b], and a sequent calculus in [RAS 01a].

Dillon, Kutty, Moser, Melliar-Smith, and Ramakrishna introduce and study in a se-
ries of publications [RAM 92, DIL 92a, DIL 92b, DIL 93, DIL 94c, DIL 94b, DIL 95,
MOS 96a, DIL 96a, DIL 96b, DIL 94a] the so-called Future Interval Logics. These
employ the locality principle and feature `interval modalities' encoded by pairs of for-
mulas and refer to intervals whose endpoints satisfy these formulas. Notably, these
logics are more tractable and have lower complexity than e.g. ITL. Complexity re-
sults for Future Interval Logic have been obtained by Aaby and Narayana [AAB 85],
while applications of these logics have been explored in Ramakrishna's PhD the-
sis [RAM 93].

5.2. The logic NL

The logic ITL has an intrinsic limitation: its modalities donot allow one to `look'
outside the current interval (modalities with this characteristic are calledcontracting
modalities). To overcome such a limitation, Zhou and Hansen[CHA 91] proposed
the �rst-order logic ofleft andright neighbourhood modalities, calledneighbourhood
logic (NL for short), whose propositional fragment has been analyzed in Section 3.1.4.
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First-order syntactic features are as in the ITL case. Rightand left neighbourhood
modalities are denoted by♦r and♦l , respectively. The abstract syntax of NL formulas
is:

φ ::= θ | pn (θ1, . . . , θn ) | ¬φ | φ ∧ ψ | ♦lφ | ♦r φ | ∃xφ,

where termsθ1, . . . , θn are de�ned as in ITL.
The semantic clauses for the neighbourhood modalities♦l and♦r are de�ned as

in the propositional case. The rest of the semantics of NL is de�ned exactly as in
the ITL case. While practically meant to be the ordered additive group of the real
numbers, the temporal domain is abstractly speci�ed by means of a set of �rst-order
axioms de�ning the so-calledA-models[CHA 98].

The �rst-order neighbourhood logic NL is quite expressive.In particular, it allows
one to express thechopmodality as follows:

– φCψ , ∃x, y(l = x+ y) ∧ ♦l♦r ((l = x) ∧ φ ∧ ♦r ((l = y) ∧ ψ)),
as well as any of the modalities corresponding to Allen's relations. Consequently, NL
can virtually express all interesting properties of the underlying linear ordering, such
as discreteness, density, etc.

Here we give an axiomatic system for NL, due to Barua, Roy, andZhou [BAR 00],
where the soundness and completeness proofs can be found. Inwhat follows, the
symbol♦ stands for either♦l or♦r , while♦ stands for♦r (resp.,♦l ) when♦ stands
for ♦l (resp.,♦r ). The axiomatic system consists of the following axioms:

(A-NL1) ♦φ → φ, whereφ is a global formula;

(A-NL2) l ≥ 0;

(A-NL3) x ≥ 0 → ♦(l = x);

(A-NL4) ♦(φ ∨ ψ) → ♦φ ∨ ♦ψ;

(A-NL5) ♦∃xφ → ∃x♦φ;

(A-NL6) ♦((l = x) ∧ φ) → 2((l = x) → φ);

(A-NL7) ♦♦φ → 2♦φ;

(A-NL8) (l = x) → (φ↔ ♦♦((l = x) ∧ φ);

(A-NL9) ((x ≥ 0) ∧ (y ≥ 0)) → (♦((l = x) ∧ ♦((l = y) ∧ ♦φ)) ↔ ♦((l =
x+ y) ∧ ♦φ)),

plus the axioms for the domainD (axioms for=,+,≤, and−), and the usual axioms
for �rst-order logic. The same restrictions that have been made for the ITL concern-
ing the instantiation of quanti�ed formulas still apply here. The inference rules are,
as usual, Modus Ponens, Necessitation, Generalization, and the following rule for
Monotonicity:

φ → ψ

♦φ → ♦ψ
.
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In [BAR 97], NL has been extended to a `two-dimensional' version, called NL2,
where two modalities♦u and♦d have been added and interpreted as `up' and `down'
neighbourhoods. NL2 can be used to specify super-dense computations, taking verti-
cal time as virtual time, and horizontal time as real time.

The relationship between the Neighbourhood Logic and tractable fragments of
Allen's Interval Algebra has been studied in [PUJ 97].

5.3. Duration calculi

Duration Calculus (DC for short) is an interval temporal logic endowed with the
additional notion ofstate. Each state is denoted by means of a state expression, and it
is characterized by aduration. The duration of a state is (the length of) the time period
during which the system remains in the state. DC has been successfully applied to the
speci�cation and veri�cation of real-time systems. For instance, it has been used to
express the behaviour of communicating processes sharing aprocessor and to specify
their scheduler, as well as to specify the requirements of a gas burner [SØR 90].

DC has originally been developed as an extension of Moszkowski's ITL, and thus
denoted by DC/ITL. Since the seminal work by Zhou, Hoare, andRavn [CHA 91],
various meaningful fragments of DC/ITL have been isolated and analyzed. Recently,
an alternative Duration Calculus, based on the logic NL, andthus denoted by DC/NL,
has been proposed by Roy in [ROY 97]. As a matter of fact, most results for DC/ITL
and its fragments transfer to DC/NL and its fragments. In thefollowing we introduce
the basic notions and we summarize the main results about DC/ITL. Further details
can be found in [CHA 04].

5.3.1. The calculus DC/ITL
Zhou, Hoare, and Ravn's DC/ITL is based on Moszkowski's ITL interpreted over

the class of non-strict interval structures based onR. Its only interval modality ischop.
Its distinctive feature is the notion of state. States are represented by means of a new
syntactic category, calledstate expression, which is de�ned as follows: the constants
0 and 1 are state expressions, a state variableX is a state expression, and, for any pair
of state expressionsS andT , ¬S andS ∨ T are state expressions (the other Boolean
connectives are de�ned in the usual way). Furthermore, given a state expressionS, the
duration ofS is denoted by

R
S. DC/ITL terms are de�ned as in ITL, provided that

temporal variables are replaced by state expressions. DC/ITL formulas are generated
by the following abstract syntax:

φ ::= pn (r1, . . . , rn ) | ⊤ | ¬φ | φ ∨ ψ | φCψ | ∃xφ

wherer1, . . . , rn are terms,pn is an-ary (global) predicate,C is thechopmodality,
andx is a (global) variable.

Any state (expression)S is associated with a total functionS : R 7→ {0, 1 },
which has a �nite number of discontinuity points only. For any time pointt, the state
expression interpretationI is de�ned as follows:

– I[0](t) = 0;
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– I[1]( t) = 1 ;

– I[S](t) = S(t);
– I[¬S](t) = 1 − I[S](t);
– I[S ∨ T ](t) = 1 if I[S](t) = 1 or I[T ](t) = 1 , 0 otherwise.

The semantics of a duration
R
S in a given (non-strict) model, with respect to an

interval [d0, d1], can be de�ned using the Riemann de�nite integral
Rd1

d0

I[S](t)dt.
The semantics of the other syntactic constructs is given as in the case of ITL.

A number of useful abbreviations can be de�ned in DC/ITL. In particular, ⌈S⌉
stands for: “S holds almost everywhere over a strict interval", and it is de�ned as
follows:

– ⌈S⌉ , (
R
S =

R
1) ∧ ¬(

R
1 =

R
0).R

1 is usually abbreviated byl, and it can be viewed as the length of the current
interval; �nally, ⌈ ⌉, which holds over point-intervals, can be de�ned asl = 0.

The satis�ability problem for both �rst-order DC/ITL (fullDC/ITL) and its frag-
ment devoid of �rst-order quanti�cation (Propositional DC/ITL) has been shown to
be undecidable. First-order DC/ITL, provided with, at least, the functional symbol+
and the predicate symbol=, with the usual interpretation, has been completely axiom-
atized in [HAN 92]. The axiomatic system includes the following speci�c axioms:

(A-DC1)
R

0 = 0;

(A-DC2)
R
S ≥ 0;

(A-DC3)
R
S +

R
T =

R
(S ∨ T ) +

R
(S ∧ T );

(A-DC4) ((
R
S = x)C(

R
S = y)) ↔ (

R
S = x+ y);

(A-DC5)
R
S =

R
T provided thatS ↔ T holds in propositional logic

and the following inference rule (whereS1 . . . Sn are state expressions and
Wn

i =1 Si ↔
1 ):

H(⌈ ⌉), H(φ) → H(φ ∨
Wn

i =1(φC⌈Si ⌉))
H(⊤)

,

in conjunction with its inverse (obtained by exchanging theordering of the formulas
in everychop), whereH(φ) represents the formula obtained fromH(X) by replacing
every occurrence ofX in H by φ.
Duration calculus on abstract domains has been studied and axiomatized in [GUE 98].

Various interesting fragments of DC have been investigatedby Zhou, Hansen, and
Sestoft in [CHA 93a]. First, they consider the possibility of interpreting DC formu-
las over different classes of structures. In particular, the fragment of DCinterpreted
over N is the set of DC formulas interpreted overR evaluated with respect ofN-
intervals, that is, intervals whose endpoints are inN. The fragment of DCinterpreted
overQ is similarly de�ned. Then, the authors take into consideration some syntactic
sub-fragments of the above calculi and they atudy the decidability/undecidability of
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their satis�ability problem. It turns out that the fragments of propositional DC whose
formulas are built up from primitive formulas of the type⌈S⌉ only have a decidable
satis�ability problem when interpreted overN, Q, andR. A validity checking proce-
dure for some of these fragments was developed in [SKA 94]. Byadding to the set
of primitive formulas those of the forml = k, the problem remains decidable overN,
but it becomes undecidable over the other classes of structures. The same fragment at
the �rst-order level is undecidable in all the considered cases. Finally, the fragment
of propositional DC whose formulas are built up from primitive formulas of the typeR
S =

R
T only is also undecidable.

As for the complexity of the satis�ability problem, in [RAB 98] Rabinovich re-
ports a result by Sestoft (personal communication) statingthat the satis�ability prob-
lem for the fragment of DC whose formulas are built up from primitive formulas of
the type⌈S⌉ only, interpreted overN, has a non-elementary complexity. Rabinovich
shows that the satis�ability problem for the same fragment,interpreted overR, also is
non-elementarily decidable, by providing a linear time reduction from the equivalence
problem for star-free expressions to the validity problem for the considered fragment
of DC.

In [CHE 00], Chetcuti-Sperandio and Fariñas del Cerro isolate another fragment
of propositional DC by imposing suitable syntactic restrictions. Formulas of such a
fragment are generated by the following abstract syntax:

φ ::= ⊤ | ⊥ | lPk | I = 0 | I = l | φ ∨ ψ | φ ∧ ψ | φCψ,

wherek is a constant,P ∈ {<,≤,=,≥, >}, andI is
R
S, for a given stateS. The

resulting logic is shown to be expressive enough to capture Allen's Interval Algebra.
The authors propose a sound, complete, and terminating tableau system for the logic,
thus showing that its satis�ability problem is decidable. The tableau system is a mixed
procedure, combining standard tableau techniques with temporal constraint network
resolution algorithms.

5.3.2. Some extensions and variations of Duration Calculus
In [CHA 98] (see also [ROY 97]) Duration Calculus and the �rst-order neighbour-

hood logic (NL) have been combined into the (clearly, undecidable) DC/NL which
has been completely axiomatized by merging the axiomatic systems for DC and NL.
The fragment of DC/NL obtained by restricting the formulas to be built up only from
primitive formulas of the type⌈S⌉ has been proved to be decidable, while the exten-
sion of the latter with primitive formulas of the typel = k is undecidable, as already
mentioned.

Duration Calculus with in�nite intervals has been studied in [CHA 95]. Other
extensions of Duration Calculus include: Extended Duration Calculus for real-time
systems [CHA 93b], Mean Value Calculus of Durations [CHA 94], Duration Calculus
with Iteration [HUN 99c, GUE 00c], Duration Calculus with Projection [GUE 02,
GUE 03], higher-order Duration Calculus [GUE 00a, NAI 00], probabilistic Duration
Calculus for continuous time [HUN 99b].

Another variation of DC is Pandya's Interval Duration Logic[PAN 96] the models
of which are timed state sequences in dense time structures.



48 JANCL – 14/2004. Issue on Interval Temporal Logics and Duration Calculi

Applications of Duration Calculus to real-time and hybrid systems have been de-
veloped in [HUN 99a, HUN 02, HUO 02, SIE 01, THA 01].

Automatic veri�cation and model-checking tools for interval logics and duration
calculi have been developed and analyzed in [KON 92, SKA 94, HAN 94, CAM 96,
YON 02] and program synthesis from DC speci�cations has beenstudied in [SIE 01].

Finally, in [FRÄ 96, FRÄ 02b, FRÄ 98] Fränzle describes modelchecking meth-
ods for DC and he argues that, despite its undecidability, ifthe class of models is
restricted to the possible behaviours of embedded real-time systems, model-checking
procedures are feasible for rich subsets of Duration Calculus and related logics.

For further details, recent results, and applications of DCsee [CHA 04].

6. Summary and concluding remarks

In this survey paper, we have attempted to give a general picture of the extensive
and rather diverse research done in the areas of interval temporal logics and duration
calculi. Among all important issues in the �eld, we have mainly focused on expres-
siveness, proof systems, and decidability/undecidability results.

To summarize, sound and complete axiomatic systems on propositional level are
known for CDT, with respect to certain classes of linear orderings, for HS, with respect
to the class of partial orderings with the linear interval property, for the family of
logics inPNL, with respect to various classes of linear orderings, both in the strict
and non-strict semantics, and for ITL and NL with respect to general semantics, while
the problem of �nding an axiomatic system for speci�c linearorderings is still largely
unexplored.
Furthermore, sound and complete tableau systems have been developed for BCDT+

and for some local variants of ITL. Given the generality of BCDT+, the tableau
method for such a logic is in fact a tableau method for a large variety of propositional
interval logics.
The satis�ability/validity problem has been shown to be undecidable for HS, CDT,
ITL, and NL, with respect to most classes of structures. As a matter of fact, rather
weak subsystems of HS turn out to be (highly) undecidable forsome classes of struc-
tures. Decidable fragments have been obtained by imposing severe restrictions on
the expressive power or the semantics of the logics (as an example, by imposing the
locality projection principle).
Finally, we point out once more that, to the best of our knowledge, the problems of
constructing axiomatic systems, tableau systems, and (un)decidability proofs have not
been explicitly addressed yet for the strict semantics variants of most of the existing
interval logics (with the exceptions of PNL− and its subsystems).

In conclusion, the single major challenge in the area of interval temporal logics is
to identify expressive enough, yet decidable, fragments and/or logics which are gen-
uinely interval-based, that is, not explicitly translatedinto point-based logics and not
invoking locality or other semantic restrictions reducingthe interval-based semantics
to the point-based one.
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