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ABSTRACTWe survey main developments, results, and open problematerval temporal
logics and duration calculi. We present various formal eys$ studied in the literature
and discuss their distinctive features, emphasizing omesspreness, axiomatic systems, and
(un)decidability results.
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1. Introduction

Interval-based temporal logics stem from four major s¢ieareas:

Philosophy. The philosophical roots of interval temporal logics can taeed back
to Zeno and Aristotle. The nature of Time has always beenaufite subject
in philosophy, and in particular, the discussion whetheretinstants or time
periods should be regarded as the primary objects of terhpotalogy has a
distinct philosophical avour. Some of the modern formagilcal treatments of
interval-based structures of time include: [HAM 72] prawigl a philosophical
analysis of interval ontology and interval-based tenseclgdHUM 79] which
elaborates on Hamblin's work, introducing a sequent cakdibr an interval
tense logic over precedence and sub-interval relation®E[RO], a follow-
up on Humberstone's work, discussing and analyzing persist (preserva-
tion of truth in sub-intervals) and homogeneity; [BUR 82pposing axiomatic
systems for interval-based tense logics of the rationadsraals, studied ear-
lier in [ROE 80]. A comprehensive study and logical analysipoint-based
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and interval-based ontologies, languages, and logicésygscan be found in
[BEN 91].

Linguistics. Interval-based logical formalisms have featured in thelysiof natural
languages since the seminal work of Reichenbach [REI 47y Hhise as suit-
able frameworks for modeling progressive tenses and esipgesarious lan-
guage constructions involving time periods and event camathich cannot be
adequately grasped by point-based temporal languagesdhiersed temporal
languages and logics have been proposed and studied in [DEDWAM 79,
RIC 88], to mention a few. The linguistic aspects of intereglics will not be
treated here, apart from some discussion of the expregsigesbout various
interval-based temporal languages.

Artificial intelligence. Interval temporal languages and logics have sprung up from
expert systemplanning systemsheories of actions and changeatural lan-
guage analysis and processjrefc. as formal tools for temporal representation
and reasoning in arti cial intelligence. Some of the notabbntributions in
that area include: [ALL 83] proposing the thirteen Allenislations between
intervals in a linear ordering and a temporal logic for rewsg about them;
[ALL 85] providing an axiomatization and a representatiesult for interval
structures based on thmeetsrelation between intervals, further studied and
developed in [LAD 87], which also provides a completenesotbm and al-
gorithms for satis ability checking for Allen's calculuspresented as a rst-
order theory; [GAL 90] critically analyzing Allen's framewk and arguing the
necessity of considering points and intervals on a par, ahdl P4] develop-
ing interval-based theory of actions and events. A comprsilie survey on
temporal representation and reasoning in arti cial ingedhce can be found in
[CHI 00].

Computer science.One of the rst applications of interval temporal logics tons-
puter science, viz. for speci cation and design of hardweaseponents, was
proposed in [HAL 83, MOS 83] and further developed in [MOS B¥)S 94,
MOS 98, MOS 00a]. Later, other systems and applications tefval logics
were proposed in [BOW 00, CHA 98, DIL 92a, DIL 92b, DIL 96a, D36b,
RAS 99]. Model checking tools and techniques for intervaids were devel-
oped and applied in [CAM 96, PEN 98]. Particularly suitalpieerval logics for
speci cation and veri cation of real-time processes in quuiter science are the
duration calculi(see [CHA 91, CHA 94, CHA 99, HAN 92, HAN 97, S@R 90])
introduced as extensions of interval logics, allowing esgntation and reason-
ing about time durations for which a systemis in a given state an up-to-date
survey on duration calculi see [CHA 04].

Intervals can be regarded as primitive entities or as ddea terms of their
endpoints. Accordingly, interval-based temporal logiaa be divided into two main
classes: “pure' interval logics, where the semantics isrgily interval-based, that
is, formulas are directly evaluated with respect to intexvand “non-pure' interval
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logics, where the semantics is essentially point-basedrdarvals are only auxiliary
entities. An important family of ‘non-pure’ interval logids that of the logics in which
thelocality principle is imposed. Such a principle states that an at@mdposition is
true at an interval if and only if it is true at the beginningri®f that interval.

In this survey we outline (without claiming completenessjindevelopments,
results, and open problems on interval temporal logics amdtibn calculi, focusing
on “pure' interval logics and on those non-pure ones whiapaltbcality. We present
various formal systems studied in the literature and dsthsir distinctive features,
emphasizing on expressiveness, axiomatic systems, ajadkgidability results. Since
duration calculi are discussed in more details in [CHA 043, will present this topic
in a rather succinct way, while going in more detail on iné¢rogics, mainly on
propositional level.

The paper is organized as follows. In Section 2 we introdheebiasic syntactic
and semantic ingredients of interval temporal logics angtitan calculi, including
interval temporal structures, operators, and languagistheir syntax and semantics.
In Section 3 we discuss propositional interval logics, iot®® 4 we present a general
tableau method for them, while in Section 5 we brie y survegt-order interval logics
and duration calculi. Section 6 contains some concludingaré&s and directions for
future research.

2. Preliminaries
2.1. Temporal ontologies, interval structures and relations between intervals

Interval temporal logics are subject to the same ontoldgidemmas as the
instant-based temporal logic, viz.: should the time stmeebe considerelinear or
branching? Discret®r dense? Witlor without beginning#tc. In addition, however,
new dilemmas arise regarding the nature of the intervals:

— Should intervals include their end-points or not?
— Can they be unbounded?
— Are point-intervals (i.e. with coinciding endpoints) adsible or not?

— How are points and intervals related? Which is the primarpaept? Should an
interval be identified with the set of points in it, or theramsre into it?

The last question is of particular importance for the seimamf interval logics.

Given a strict partial orderin® =(D, < , anintervalin D is a pair[dy, d1] such
thatdy, d; € D anddy < dy. [dg, d1]is astrictinterval if dy < d;. Often we will refer
to all intervals orD asnon-strict intervalsto distinguish from the latter. In particular,
intervals[d, d] will be calledpoint-intervals A pointd belongs to an intervdldy, d;]
if dy < d < d; (i.e. the endpoints of an interval are included in it). Thedfeall
non-strict intervals oD will be denoted by[(D)™, while the set of all strict intervals
will be denoted byI(D) . By I(D) we will denote either of these. For the purpose of
this survey, we will call a paitD, I(D) aninterval structure
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In all systems considered here the intervals will be assumedr, although this
restriction can often be relaxed without essential comagitims. Thus, we will con-
centrate on partial orderings with thieear interval property:

zylr<y— 21 nE<zi<yAhr<z<y— 2z <22Vz =23V2 < 2)),

that is, orderings in which every interval is linear. Clgagl/ery linear ordering falls
here. An example of a non-linear ordering with this propéty

Figure 1. Interval structure with the linear interval property

while a non-example is:

Figure 2. Interval structure violating the linear interval property

An interval structure is:

—linear, if every two points are comparable;

—discrete, if every point with a successor/predecessor has an imeesliecces-
sor/predecessor along every path starting from/ending tihat is,

zyle<y—Tz@<zAz<yAN wlE<wAw<y—z<w))),
and

zylr<y—-r<zAz<yN wE<wAw<y—w<z2)));
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—dense if for every pair of different comparable points there éxignother point
in between:
z yle <y— Jz2(z < 2z Az <y));

—unbounded above(resp.below), if every point has a successor (resp. predeces-
sor);

— Dedekind complete if every non-empty and bounded above set of points has a
least upper bound.
Besides interval logics over the classes of linear, (umded, discrete, dense, and
Dedekind complete interval structures, we will be disaugshose interpreted on the
single structuredl, Z, Q, andR with their usual orderings.

It is well known that there are 13 different binary relatidretween intervals on a
linear ordering (and quite a few more on a partial orderig)L] 83]: equals, ends,
during, begins, overlaps, meets, befdmgether with their inverses.

current interval:

|
\
ends: | — ]
| —
\
\

during:

begins:

overlaps: —
meets: _

before:

Figure 3. Allen’s relations

These relations lead to a rich interval algebra, the seddallen's Interval Alge-
bra, which will not be discussed in detail here. A survey deAk Interval Algebra
and of a number of its tractable fragments, including Vilaimd Kautz's Point Al-
gebra [VIL 86], van Beek's Continuous Endpoint Algebra [BE#, and Nebel and
Birckert's ORD-Horn Algebra [NEB 95], can be found in [CHI]00

Another natural binary relation between intervals, de leaim terms of Allen's
relations, is the one cfub-intervalwhich comes in three versions. Given a partial
orderingD and intervalgsg, s1] and[dg, d1] in it:

—[s0, s1] is asub-intervalof [dg, d1] if dy < sg ands; < di. The relation of
sub-interval will be denoted by ;
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—[s0, 1] is aproper sub-intervabf [dy, d:], denotedsg, s1]@ldo, d1], if [so, s1]
[do, d1] and[s, s1] # [do, d1];

— [s0, s1] is astrict sub-intervalof [dy, d1], denoted sy, s1] @[do, d1], if dy < sg
ands; < dj.

Amongst the multitude ofernary relations between intervals there is one of par-
ticular importance for us, which corresponds to the binggration of concatenation
of meeting intervals. Such a ternary interval relation, chhinas been introduced by
Venema in [VEN 91], can be graphically depicted as follows:

Figure 4. The ternary relationA

It is denoted by4 and it is de ned as follows:

— Aijk if i meetsj, i beginsk, andj endsk,
that is,k is the concatenation afand;.

2.2. Propositional interval temporal languages and models

The generic language of propositional interval logicstidels the set of proposi-
tional lettersAP, the classical propositional connectiveandA (all others, including
the propositional constants and L, are de nable as usual), and a setiatierval tem-
poral operators (modalities3peci ¢ for each logical system.

There are two different natural semantics for interval ésgnamely, &trict one,
which excludes point-intervals, andnan-strict one, which includes them. Aon-
strict interval model is a pairM*=(D,V , whereD is a partial ordering and" :
I(D)* — P(AP) is avaluationassigning to each interval a set of atomic propositions
considered true at it. Respectivelystict interval models a structuréM ™= (D, V'
de ned likewise, wherd/ : I(D)~ — P(AP). When we do not wish to specify the
strictness, we will write simply, assuming either version.

Allen's relations give rise to respective unary modal opansg thus de ning the
modal logic of time intervals HS introduced by Halpern analism in [HAL 91].
Some of these modal operators are de nable in terms of otiret & suf ces to choose
as basic the modalities corresponding to the relatimggns, endsand their inverses.
Thus, the formulas of HS are generated by the following absgyntax:

¢pu=pl oAV [(B@I(E¢|(Bo|(E .

The formal semantics of these modal operators (given in [9ALin terms of
non-strict models) is de ned as follows:
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({B) M™,[dg,d1] (B ¢if M™,[dy,d2] ¢ for someds such thatly < dy < dy;

E ¢if Mt ,[ds,dy] ¢ for somed, such thatly < dy < dy;

((B') M™,[do, d1]

(

(E) M*,[do, di]
( B ¢if M*,[dy,d2] ¢ for somed, such thatl; < dy;
(

(
(
(
(E) M*,[dy,d1] (FE ¢if M*,[d2,d1] ¢ for somed, such thatdy < dp.

A useful new symbol is thenodal constantr for point-intervalsinterpreted in
non-strict models as follows:

(r) M, [do,d1] mif dy =d;.

Note that the constant is de nable as eithefB].L or [E]L, so it is only needed in
weaker languages. The presencer@fi the language allows one to interpret the strict
semantics into the non-strict one by means of the translatio

—7(p) =pforp e AP;

-7 )= 7(9);

—m(p AY) =T7(9) AT(¥);

—7({(x ¢) = (x ( 7AT(¢))forany (unary) interval diamond-modality .

The interpretation is effected by the following claim, pedvby a straightforward
induction ong :
PrRoOPOSITION1. — For every interval modeM, proper interval[dy, d;] in M, and

formula¢:
M~ [do,di]  iff MT,[do,d1] 7(9).

Usually, but not always, the non-strict semantics is takeddfault.

Venema introduced in [VEN 91] three binary modaliti@s D, andT’, associated
with the ternary relatiomd, with the following non-strict semantics:

(C) M*, k. ¢Cqy if there exist two intervalg, j such thatdijk andM™,i ¢,
andM™,j 9, thatis,

M*,[do,d1]  ¢Cy if M*,[dy, d] ¢, andM™,[dp,d;] 4 for some
do € D such thatly < dy < dj.

(D) M*,j @D if there exist two intervalg, k such thatdijk andM™,i ¢,
andM™,k 1, thatis,
M™,[do,d1] @Dy if M, [da,dy] ¢, andMT, [do,d;] ¢ for some
ds € D such thatd, < dj.

(T) M+,i  ¢Tw if there exist two intervalg, k such thatdijk andM™*,; ¢,
andM* .,k 1, thatis,

M, [do,di]  ¢T% it MT,[dy,d2] ¢, andMT,[dy,dz] ¢ for some
ds € D such thatl; < ds.
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3. Propositional Interval Logics

As already noted, every interval logic L has two versionsnely, thenon-strict
version L™ and thestrict one L, and when writing just L we will mean either one, as
speci ed in the text.

3.1. Monadic interval logics

In this section we introduce and analyze the most well-knawd/or interesting
interval logics involving only unary modal operators, siteg from the weakest. We
will assume that the semantic structures are of the mostrgetype we consider,
viz. interval structures over partial orderings with theelar interval property, unless
otherwise speci ed.

3.1.1. The sub-interval logi®
The logic D is the logic of the sub-interval relation. Sincelldws one to look inside
the current interval only, from the linear interval hypaifee it follows that we can
restrict ourselves to the class of linear structures.

The abstract syntax of the simplest version of D is:

p:=p| ¢loAY[(D ¢,
but one could also include in the language the modal constant

The sub-interval relation and the temporal logics assediatith it were stud-
ied, from the perspective of philosophical temporal logics|[HAM 72, ROE 80],
[HUM 79] (together with precedence), and [BEN 91]. In the qaner science litera-
ture, it was apparently rst mentioned in [HAL 91] and its egpsiveness (interpreted
over linear non-strict models) discussed in [LOD 00].

Besides the strict and non-strict versions, the logic Dvedl@ssential semantic
variations, depending on which sub-interval relation @, or @) is assumed. Ac-
cordingly, the truth de nition for D is based on the clause:

(D) M,[do,d1] (D ¢ if there exists a sub-intervgds, ds] of [dy, d1] such that
Ma [d27 dS] ¢

At present, we are not aware of any speci ¢ published resiliitait expressiveness,
axiomatic systems, and decidability for any variants ofltigéc D, but we note that
they all involve non-trivial valid formulas expressibleln associated with “length vs
depth'. To give some idea, here is an in nite scheme of vadidvfulas of the logic D,
with a strict sub-interval relation, which says that if ateitval contains suf ciently
many distinct sub-intervals (and hence, suf ciently maistidct points), then it con-

tains a chain of nested sub-intervals of pre-de ned length:

0
a(n) N

D @yn  pA—(D"T,
|
i=1 g

ford(n) "' +1
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3.1.2. The logicsBB andEE

Interval logics make it possible to express propertigsaifs of time points, rather
thansingletime points. In most cases, this feature prevents one frenpdissibility
of reducing interval-based temporal logics to point-bageds without resorting to
any kind of projection principle. However, there are a fewaptions where such a
reduction can be de ned thanks to a suitable choice of therial modalities, thus
allowing one to bene t from the good computational propestof point-based logics.
This is the case of the logi®B andEE (and of their fragments).

The logicBB is generated by the following abstract syntax:

pu=p| ¢olony (B o[(B ¢,

while EE is obtained from B by substituting(E for (B and(E for (B . Inthe
following, we restrict our attention tBB. However, all de nitions and results can be
easily adapted t&E.

The decidability, as well as other logical properties,BB can be obtained by
translating it into the propositional temporal logic ofder time Lin-PTL with tempo-
ral modalitiesF' (sometime in the future) anft (sometime in the past), which has the

nite model property and is decidable (see e.g. [GAB 94])eTarmulas of Lin-PTL
are de ned by

fa=pl fIfAglIPFIFES,

and a model for Lin-PTL is a pa{D,V , whereD = (D, < is a linearly ordered set
andV : D — P(AP) is a valuation function. The semantics is standard:

-M,d pifpeV(@);

- M,d fifitis not the case that/,d f;

~M,d fAgifM,d fandM,d g

—M,d Pf ifthere existsi“such thati"< d andM, d” f;

—M,d Ffifthere existsi“such thatl < d“andM,d” f.

The formulas oBB are simply translated into formulas of Lin-PTL by a mapping
7 which replacesB by P and(B by F.

Now, for every modeM = (D,V of BB, whereD = (D, < , and pointd € D,
we construct a model for Lin-PTM[d) = ([d),V , where[d) = {d"c D | d < d}
and the valuationV is de ned as follows: for ald™c [d) andp € AP: p € V(dY iff
p € V([d,dT). Conversely, every mod®1 = (D,V for Lin-PTL based on a linear
ordering with a least element can be obtained in such a way §@me model oBB.
LEMMA 2. — For every modeM = (D,V of BB, withD = (D, < , pointd € D,
and formulag € BB:

M, [d,dT ¢ iff M[d),d” 7(¢)
for anyd™ d.

PROOF. — Structural induction om. For propositional variables the claim holds by
de nition. The cases of the propositional connectives ar@ightforward.
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Let ¢ = (B . By de nition, 7(¢) = P7(x), and, by hypothesisyI, [d, d']

(B 4, that is, there existd™such thatd < d™< d“andM, [d,dT] . By the
inductive hypothesisM[d),d™ 7(x), and thusM[d),d” Pr(y).

The caseb = (B v is similar.

The claim of the lemma now follows immediately. ]
COROLLARY 3. — A formula¢ € BB is satisfiable in a modéVI of BB iff 7(¢) is
satisfiable in some modA[d).

Given a linear ordering. we denote by"L the ordering obtained froni by
adding a new least element. AccordinglyCifis a class of linear orderings, we de ne
TC={TL|LeC}

Consequently, we obtain the following theorem.

THEOREM 4. — The satisfiability problem for the logiBB, interpreted in a given
class of interval structures over a class of linear ordesnd, is reducible to the
satisfiability problem for the logitin-PTL interpreted over the classC.

Thus, for instance, the decidability &B over the class of all linear orderings
follows.

3.1.3. The logicBE
The logic BE features the two modalitié® and(F , and its formulas are gen-
erated by the following abstract syntax:

pu=pl ¢[oAV[(B G[(E ¢

As we have already shown, the modal constatg de nable agB].L. Accord-
ingly, the point-intervals that respectively begin and &mel current interval can be
captured as follows:

—[[BPJl¢, (@AT)V (B (¢pAT),and
—[[EPll¢, (@AT)V(E (pA).
BE is strictly more expressive than (the non-strict vergi§rD. On the one hand,

if we assume the sub-interval relation to be the strict ohe @ther two cases can be
dealt with in a similar way), the modalityD can be de ned as follows:

~(D ¢, (B(E¢.

On the other hand, the unde nability @8 and (E in D can be easily proved
as follows. Let(I(D)*, @V be a D-model, wher&(D)* is the set of all non-strict
intervals oveiD, @is the strict sub-interval relation ovi(D)*, andV is the valuation
function. The notions of p-morphism and bisimulation beaw®-models are de ned
in the usual way for modal logic (see e.g. [BLA 01]), and thatify the standard
truth-preservation properties. Given two linearly ordesetsD = {dy, d; }, with
do < dy, andD"= {d}, we take into consideration two D-mod&4* = (I(D)*, @
.V andM™ = (IXDY+, @ V" such that:

1) (D)™ = {[do, do), [d1, d1], [do, 111} andI DY = {[dg dgl};
2) the valuations of all intervals in both models are equdkip

LetR D xD"bethe relatiof (dy, d5), (d1,d5)}. Itisimmediate to show that such a
relation induces a bisimulatioi  |(D)* x1¥DY* betweerM* andM™ . First, all
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intervals of both models are evaluated{ig, and thus any pair af-related intervals
satis es the same atomic propositions. Second, the strizisterval relation is empty
in both models, and thus the back and the forth conditionsrizielly satis ed.
SinceM ™, [dy, d] satis es (B p (resp.,(E p), while M™ | [dy, d1] does not, it im-
mediately follows thatB (resp.,(F ) cannot be de ned in D.

BE is expressive enough to capture some relevant conditorthe underlying
interval structure, as originally pointed out by Halperm &hoham in the context of
the logic HS [HAL 91]), from where the examples below are addpFirst, one can
constrain an interval structure to be discrete by meanseofdimula:

—discrete , 7V I1 v ((BI1 A(EI1),
wherell is true over an intervdtly, d,] if and only if dy < d; and there are no points
betweeni, andd;. Such a condition can be expressed in BE as follows:

11, (B T A[B][B]L.

It is not dif cult to show that an interval structure is digte if and only if the
formuladiscreteis valid in it. Furthermore, one can easily force an intestalicture
to be dense by constraining the formula

—dense , I1.
to be valid. Finally, one can constrain an interval struetiar be Dedekind complete
by means of the formula

— Dedekind complete , ((Bcell A[[ER] gA[E([BRlg — (Bcell ))
— (B(E( = — (Dcell ))
wherecell is true over an intervdtly, d;] if and only if its endpoints satisfy a given
proposition lettey (the cell delimiters), all sub-intervals satisfy a propiosi letterp
(the cell content), and there exists at least one sub-iatteatisfyingp, that is,

cell , [[BRIgA[[ERIqA[DpA (Dp.

BE also allows one to de ne a modalifyli], referring to all sub-intervals of the
given interval, which in that logic is essentially equiva¢o theuniversal modality
over the submodel generated by the current interval:

—[Alllg, ¢ N [Blo A[E]$ N [BI[E]o.

As for (un)decidability results, Lodaya [LOD 00] proves ttodlowing theorem,
which tailors the undecidability proof for HS provided by lp@rn and Shoham (cf.
Theorem 12) to BE.

THEOREM 5. — The satisfiability problem for BE-formulas interpreted owen-
strict dense linear structures is not decidable.

Undecidability is proved by reducing the non-halting peshlof a Turing Machine
(TM) on a blank tape to the satis ability problem for BE. Aading to Halpern and
Shoham's approach, any computation of a TM is modeled as aiteérsequence of
con gurations of the machine, called instantaneous dpsoris (IDs for short). Each
ID is a nite sequence of tape cells that contain a unique t®pabol, and one of
the cells has additional information representing the hpeesition and the state of the
machine. A suitable proposition is used to talk about camsex IDs, e.g., to relate
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the n-th cell of a given ID to the same cell of the successiveBpexploiting such a
proposition, the transition functianof a TM can be expressed by examining a group
of three cells belonging to a given ID and determining theieaf the same three cells
in the successive ID. A suitable interval formula, paramiegel by a TM, can then be
built in such a way that such a formula is satis able if andyoiithe TM does not halt
on a blank tape. As a matter of fact, most of Halpern and Shihamof is carried
out in the BE fragment. The other modalities are only usegézity the sequence of
IDs and to express the relationships between consecutisellbdaya shows how to
treat the entire in nite computation as being inside a deingerval, which makes it
possible to use théD modality to express the relationships between conseciBive
as well as to talk about sequences of IDs.

Since density is expressible in BE by a constant formula, axeshlhe following
corollary of Theorem 5.

COROLLARY 6. — The satisfiability problem foBE over the class of all non-strict
linear structures is not decidable.

The satis ability of a formulap in a dense model is indeed equivalent to the satis a-
bility of [All] 11 A ¢ in any non-strict model.

We conclude our description of BE by remarking that a numideneaningful
problems, such as the decidability of the satis ability jplem for BE-formulas inter-
preted over special classes of linear orderings, or oviet stiodels, and the de nition
of sound and complete axiomatic systems for BE, are, at teedfeur knowledge,
still open.

3.1.4. Propositional neighbourhood logics

The interval logics based on theeetsrelation and its inversenet-byare called
neighbourhood logicsNotably, rst-order neighbourhood logics were introddand
studied by Zhou and Hansen in [CHA 98], while their propasitl variants, inter-
preted over linear structures (both strict and non-striggre studied only quite re-
cently by Goranko, Montanari, and Sciavicco [GOR 03b].

The language of propositional neighbourhood logics inetuithe modal operators
Or and &y borrowed from [CHA 98]. Its formulas are generated by thdofeing
abstract syntax:

p=pl ¢loAY[Ord| 9.

The dual operatord,_and [[_dre de ned in the usual way. To make it easier to
distinguish between the two semantics from the syntax, le@gerve this notation
for the case of non-strict propositional neighbourhooddsggenerically denoted by
PNL™*, while for the strict ones, denoted by PNL(A and(A are used instead of
$r and Oy, respectively. The class of non-strict propositional hegurhood logics
extended with the modal constantvill be denoted by PNLT.

The modalities A and(A were originally introduced in the logic HS [HAL 91]
as derived operators. The semantics of HS admits pointvedteand hence, accord-
ing to our classi cation, it is non-strict. However, the maities (A and (A only
refer to strict intervals, and thus the semantics of thenfiragt AA can be considered
essentially strict.

The formal semantics of the modal operatdrsand<) is de ned as follows:
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(Or) Mt ,[do,d1] O ¢ if there existsd, such thatl; < dy andM ™, [dy,ds]  ¢;

(&) M™T,[do,d1] <19 if there existsd, such thatly < dg andM™, [dy, do] ¢,

while the semantic clauses for the operatots and(A are:

((A) M~ ,[do,d1] (A ¢ if there existsds such thatd; < dy andM ™, [dy, ds]
ox

((A) M, [do,d1] (A ¢ifthere existsl, suchthatl, < dgpandM ™, [da, do]  &.

Propositional neighbourhood logics are quite expresstee.example, PNL al-
lows one to characterize various classes of linear strestur

(A-SPNLY) [A]p—(A p, in conjunction with its mirror image, de nes the class of
unboundedstructures;

(A-SPNL®) ((A (Ap — (A (A (A p)A(A[Alp — (A (A [Alp), in conjunc-
tion with its mirror image, de nes the class dénsestructures, extended with
the 2-element linear orderihg

(A-SPNL") ([A]L — [AJ(IAIIAIL V (A ((A T ATAIAILD) A (A T A TAI@ A
[4] pA[Alp)) — [AlJAKA ((A  pA[A][Alp)), in conjunction with its mirror
image, de nes the class dliscretestructures;

(A-SPNL®) (A (A [AlpA(A [A] [Alp—(A (A [A][A]pA[A](A  [A]p) de nes
the class oDedekind completstructures.

Moreover, the language of PNlover unbounded structures is powerful enough to
express thelifference#] operator:

[#la . [ATAIAIGATATTANLAlGATANL AN Al ATATT ATl Alg,

saying thay is true at every interval different from the current one, andsequently
to simulatenominals(the application of the operatarto ¢ constrains; to hold over
the current interval and nowhere else):

n(q), gAFIC @)

It follows (see, e.g., [GAR 93]) that every universal prage@f strict unbounded linear
structures can be expressed in PNL

Sound and complete axiomatic systems for propositiongjhtmiurhood logics
have been obtained in [GOR 03b].
THEOREM 7. — The following axiomatic system is sound and complete folotie
PNL™ of non-strict linear structures:

(A-NT) enough propositional tautologies;

1. The 2-element linear ordering cannot be separated in tigriege of PNL .



A Road Map of Interval Temporal Logics 25

(A-NK) the K axioms for [_and 1
(A-NNF0) L pl-<rp, and its inverse;
(A-NNF1) p— L p, and its inverse;
(A-NNF2) &r O1p— Lp, and its inverse;

(A-NNF3) LQip—10r Orp VOIO10r p, @nd its inverse;
(A-NNF4) & Of Or p—<Or Orp, and its inverse;

(A-NNF o) LghOrpiA .. A pn —Or (GghOrpiA ... AOrpn), and its inverse,
foreachn 1.

The rules of inference are Modus Ponens, Uniform Subsiiyand L—dnd [_Gen-
eralization. Interestingly, some of these axioms, incigdihe in nite scheme (A-
NNF.,), were not included in the axiomatization of the rst-ordegighbourhood
logic given in [BAR 00] as they could be derived using the -mstler axioms.

THEOREM 8. — [GOR 03b] A sound and complete axiomatic system for the logic
PNL * can be obtained from that f&?NL* by adding the following axioms:

(A-ml) 1 A Qr
(A-72) O (m A p)— L& — p), and its inverse;

(A-73) Orp A Legd— O (m A Orp A Leg), and its inverse.

Oncedr, ¢ are substituted byA , (A , and [, I accordingly by{A], [A], the
axioms for PNLT are very similar to those for PNL (accordingly modi ed to re-
ect the fact that point-intervals are now excluded), extdepthe scheme (A-NNE)
which is no longer valid.
THEOREM 9. — [GOR 03b] The following axiomatic system is sound and cotaple
for the logicPNL™ of strict linear models:

(A-ST) enough propositional tautologies;

(A-SK) the K axioms forfA] and[A];

(A-SNF1) p—[A](A p, and its inverse;

(A-SNF2) (A (A p—[A](A p, and its inverse;

(A-SNF3) ((A (A T A{A (A p)—pV(A (A (A pV(A (A (A p,and its inverse;
(A-SNF4) (A (A (A p—(A (A p, and its inverse.

Let us denote by PNLT, with A € {u, de, di, ¢, ude, udi,uc}, PNL™ interpreted
respectively over unbounded, dense, discrete, Dedekimglete, dense and unbounded,
discrete and unbounded, and Dedekind complete and unbalindar structures, re-
spectively. Likewise, PNL" denotes the respective class of non-strict models.
THEOREM 10. — [GOR 03b] The following hold:
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1) For everyAy, A2 € {u,de,di,c,ude,udi,uc}, PNL = PNL 27 iff the class
of linear orders characterized by the conditian is strictly contained in the class of
linear orders characterized by the condition.

2) PNLY%~ PNL*, where the inclusion is in terms of the obvious translation
between the two languages (which replaces the strict miekhivith the non-strict
ones, and vice versa).

3) PNL T= PNLY* = PNLIF = PNLUet = PNLY+ = pNLU +,

Note that the logic PNtY ~ does not yet characterize the interval structurez pf
because the formula

(A pA[A](p— (A p)A[A][A](p— (A p)—[A(A (A p
is valid in Z, but not in PNLUY ~ since it fails in a PNEY —-model based o# + Z.

THEOREM 11. — [GOR 03b] The axiomatic system f&NL~ extended with &-
SPNLY) (resp. A-SPNL%), (A-SPNLY), (A-SPNL"), and (A-SPNL“")) is sound
and complete for the class of unbounded (resp. dense, tisdense unbounded, and
discrete unbounded) structures.

Finally, we point out that most of the decidability problerekated to propositional
neighbourhood logics and their fragments are still open.

3.1.5. The logicHS

The most expressive propositional interval logic with ynaodal operators stud-
ied in the literature is Halpern and Shoham's logic HS introetd in [HAL 91]. HS
contains (as primitive or de nable) all unary modalitiegroduced earlier. As men-
tioned in Section 2, HS features the modalitigs , (£ and their inverse$B , (E ,
which suf ce to de ne all other modal operators, so that indze regarded as the tem-
poral logic of Allen's relations. Unlike most other previly studied interval logics,
HS was originally interpreted in non-strict models not oleear orderings, but over
all partial orderings with the linear interval property,daall results about HS stated
below apply to that class of models, unless otherwise speci

Formally, HS-formulas are generated by the following aagtsyntax:

pu=pl dloNY (B o|(E ¢|(Bo|(E ¢
Furthermore, as pointed out by Venema in [VEN 90], the neiginbood modalities
(A and(A are de nable in the non-strict semantics as follows:
(A ¢, [EP]B ¢ and
-(4 ¢, [[BPIKE ¢.
HS can express linearity of the interval structure by mediseofollowing formula:

— linear,
(Ap = [Alp vV (BpV (Bp)A({Ap — [Allp V (E pV (E p)),
as well as all conditions that can be expressed in its fragBEn

As expected, HS is a highly undecidable logic. In [HAL 91] thehors have ob-
tained important results about non-axiomatizability, @tidability and complexity of
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the satis ability in HS for many natural classes of modelsheif idea for proving
undecidability is based on using an in nitely ascendingusstge in the model to sim-
ulate the halting problem for Turing Machines. Avinitely ascending sequenisean

in nite sequence of pointdy, d, da, . . . such thatl; < dj1; for all i. Any unbounded
above ordering contains an in nite ascending sequenceagsobf ordered structures
contains an in nite ascending sequence if at least one ofthectures in the class
does.

THEOREM 12. — The validity problem irHS interpreted over any class of ordered
structures with an infinitely ascending sequence is r.ecdha

From Theorem 12, it immediately follows that HS is undeciddbr the class of
all (non-strict) models, the class of all linear models, thass of all discrete linear
models, the class of all dense linear models, the class afealte and unbounded
linear models, etc.

THEOREM 13. — The validity problem itHS interpreted over any class of Dedekind
complete ordered structures having an infinitely ascendiemuence ili-hard.

For instance, the validity in HS in any of the orderings oftla¢ural numbers, integers,
or reals is not recursively axiomatizable.

Undecidability occurs even without existence of in nitedgcending sequences.
We say that a class of ordered structuresur@soundedly ascending sequenifder
everyn there is a structure in the class with an ascending sequédrneergth at least
n.

THEOREM 14. — The validity problem itHS interpreted over any class of Dedekind
complete ordered structures having unboundedly ascersg#iggences is co-r.e. hard.

Another proof of undecidability of HS, using a tiling probie can be found in
[MAR 99], see also [GAB 00].

In [VEN 90] (see also [MAR 97]) Venema has shown that HS intetgd over
a linear ordering is at least as expressive as the universadic second-order logic
(where second-order quanti cation is only allowed over madic predicates) and there
are cases where it is strictly more expressive. As a coypiiiacan be proved that HS
is strictly more expressive than every point-based tenipogé on linear orderings.

In the same paper Venema provided an interesj@gmetricalinterpretation of
HS, using which he obtained sound and complete axiomatiemsysfor HS with
respect to relevant classes of structures. Here is the ieanterval can be viewed
as an ordered pair of coordinates ovet/a < x (D, < plane, wheregD, < is
supposed to be linear. Since the ending point of an intervetroe greater than or
equal to the starting point, only the north-west half-pléeonsidered. Clearly, this
geometrical interpretation has a good meaning only wheridf®ulas are interpreted
over linear frames. The geometrical operators are de nddlksvs:

— L&l (B ¢ (¢ holds at a point right below the current one);

— [4)] (B ¢ (¢ holds at a point right above the current one);

— E&] (F ¢ (¢ holds somewhere to the right of the current point);
- 147 (E ¢ (¢ holds somewhere to the left of the current point);
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- [a] gV ¢ v Lade holds at a point with the same longitude, i.e. on the
same vertical line);

—t4] EaV ¢ v L4y holds at a point with the same latitude, i.e. on the same
horizontal line).

Notice that, in order to obtain the mirror image (inversepdbrmula written in
the geometrical notation, one should simultaneously oeptdl [hy 1 aidd all Chy
E.ahd vice versa. Using this geometrical interpretatiomeviea has provided sound
and complete axiomatic systems for HS over the class of raitistres, the class of
all linear structures, the class of all discrete structuaeslQ. The basic axiomatic
system(A-HS) for HS includes the following axioms and their mirror-image

(A-HS1) enough propositional tautologies;
(A-HS2a) [(pl— ¢) — ([p}> [g)
(A-HS2b) [(pl— ¢) — (Lp- [g)
(A-HS3a) [T+ [

(A-HS3b) [T [

(A-HS4a) [T} p;

(A-HS4b) [T} p;

(A-HS5) [T1— [IT

(A-HS6) [T1— ET1

(A-HS7a) I3 LI

(A-HS7b) [CE# ELE]

(A-HS7c) EII - L]

(A-HS8) ([pAd [yl— [Leh [V [phq) v (TR A g),

and the following inference rules: Modus Ponens, Genextidin for [_1I,_H,_dnd
1. dnd a pair of additional, un-orthodox rules which guarartet all vertical and
horizontal lines in the model are “syntactically repreedht

hor(p) — ¢ ver(q) — ¢
¢ (G ’

wherep, ¢ do not occur inp, ¢ respectively, and

—hor(¢), ¢ALENEGN LA N EGANLCHAL DN EP),;
—ver(@), ¢N LN LENACIHA L dAN L HANEBHA LN LJ).
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The formulahor(¢) holds at an intervdldy, d1] if and only if ¢ holds at anyfd,, d;]
whered, < d; and nowhere else. Geometrically, it represents a horizéngaon
which ¢ is true, and only there. Likewiseer(¢) says thatp is true exactly at the
points of some vertical line.

THEOREM 15. — The axiomatic systefA\-HS) is sound and complete for the class
of all non-strict interval structures.

THEOREM 16. — A sound and complete axiomatic system for the class of tiscre
structures can be obtained frofA-HS) by adding the following axiom:

(A-HS?) discrete.

A sound and complete axiomatic system for the class of liseactures can be ob-
tained from(A-HS) by replacing axiom (A-HS8) by the following axiom:
(A-HS") (CTiI— (pV p v )L — (pV p v [p)l

A sound and complete axiomatic systemQaran be obtained from the system for
the class of linear structures by adding the following axiom

(A-HSQ) LT h [TA dense.

In conclusion, we note that, besides DB BEE, BE, and AA, there exist other inter-
esting fragments of HS, such as, for instancB, WhereD is the transpose of D (D
was already mentioned in [HAL 91]), and AD, which have notrb@westigated so
far. Moreover, to the best of our knowledge, the strict Iagie™ has not been stud-
ied yet either, and thus no complete axiomatic systems atidatality/undecidablity
results have been explicitly established for it.

3.2. Interval logics with binary operators

3.2.1. The chop operator and (Local) Propositional Interval Lagjic

Arguably, the most natural binary interval modality is tf@poperatorC. As proved

in [MAR 97], such an operator is not de nable in HS. The logiat features the
operatorC' and the modal constant interpreted according to the non-strict seman-
tics, is the propositional fragment of the rst-order Intal Temporal Logic (ITL)
introduced by Moszkowski in [MOS 83] (cf. Section 5.1), ubpidenoted by PITL.
PITL-formulas are de ned as follows:

pu=plm| ¢lony|eCy.
The modalities B and(E are de nable in PITL as follows:

- (B¢, ¢C m and

—(E ¢, nCo.

As a matter of fact, the study of PITL was originally con ned the class of
discrete linear orderings with nite time, with thehop operator paired with aext
operator, denoted bg), instead ofr. Intervals in such structures will be identi ed
with the ( nite) sequences of points occurring in them. Foy &, O¢ holds at a given
(discrete) interval = s1s5...sn, Withn 1, if ¢ holds at the intervad™= s, . . . s,
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(if any). It is immediate to see that, over discrete lineatesings, the modal constant
7 and thenextoperator are inter-changeable. On the one hand,()L; on the other
hand, for any, O¢ , (1C¢.

The logic PITL is quite expressive, as the following restdtfi [MOS 83] testi es.
THEOREM 17. — The satisfiability problem foPITL interpreted over the class of
non-strict discrete structures is undecidable.

The proof is actually an adaptation of a theorem by Chanded. CHA 85] show-
ing the undecidability of the satis ability problem for agpositional process logic.
Given two context-free grammaés;, andGs, one can build up a PITL-formula which
is satis able if and only if the intersection of the languaggnerated by the two gram-
mars is not empty. Since the latter problem is not decidatge [HOP 79]), the claim
immediately follows.

Since PITL is strictly more expressive than BE over the clafsdiscrete linear
structures, the above result does not transfer to the.la@erthe contrary, the un-
decidability of the satis ability problem for PITL over dee structures as well as
over all linear structures immediately follows from the enlability of BE over such
structures.

COROLLARY 18. — The satisfiability problem foPITL-formulas interpreted over
the class of (non-strict) dense linear structures is undisie.

COROLLARY 19. — The satisfiability problem faPITL interpreted over the class of
(non-strict) linear structures is undecidable.

The propositional counterpart of the fragment of ITL thalydncludes thechop
operator, has not been investigated yet, as far as we know.

Decidable variants of PITL, interpreted over nite or intei discrete structures,
have been obtained by imposing the so-caltexlity projection principlfMOS 83].
Such a locality constraint states that each propositica@lle is true over an interval
if and only if it is true at its rst state. This allows one to Itapse all the intervals
starting at the same state into the single interval congjsif the rst state only.

Let Local PITL (LPITL for short) be the logic obtained by imging the locality
projection principle to PITL. The syntax of LPITL coincidesth that of PITL, while
its semantic clauses are obtained from PITL ones by modjfthe truth de nition of
propositional variables as follows:

(|OC-PS].) 1V.[+7 [do, dl] piff pe V(do)

where the valuation functiol’ has been adapted to evaluate propositional variables
over points instead of intervals.

Various extensions of LPITL have been proposed in the liteea In [MOS 83],
Moszkowski focused his attention on the extension of LPIdief nite time) with
quanti cation over propositional variables, and he proted decidability of the re-
sulting logic, denoted by QLPITL, by reducing its satis hityi problem to that of
the point-based Quanti ed Propositional Temporal LogicTQPinterpreted over dis-
crete linear structures with an initial point. In fact, QORIlis translated into QPTL
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over nite time, the decidability of which can be proved byimple adaptation of the
standard proof for QPTL over in nite time.

THEOREM 20. — QPTLIs at least as expressive &L PITL interpreted over the
class of (non-strict) discrete linear structures.

Since the translation of QLPITL into QPTL is effective and TQPis (non-
elementarily) decidable, we have the following result.

COROLLARY 21. — The satisfiability problem for the logiQLPITL, interpreted
over the class of (non-strict) discrete linear structuregmon-elementarily) decid-
able.

The (non-elementary) decidability of LPITL immediatelfléovs from Corollary
21. Allower bound for the satis ability problem for LPITL, drthus for any extension
of it, has been given by Kozen (see [MOS 83]).

THEOREM 22. — Satisfiability for LPITL is non-elementary.

In several papers [MOS 83, MOS 94, MOS 98, MOS 00a, MOS 03],24{msski
explored the extension of LPITL with the so-calleltbp-starmodality, denoted by
For any¢, ¢ holds over a given (discrete) interval if and only if the vt can be
chopped into zero or more parts such thatolds over each of them. The resulting
logic, which we denote by LPITLE s interpreted over either nite or in nite discrete
linear structures. A sound and complete axiomatic SystemR6TL “With nite time
is given in [MOS 03].

THEOREM23. — The following axiomatic system is sound and complete forldss
of (non-strict) discrete linear structures:

(A-CLPITL 1) enough propositional tautologies;

(A-CLPITL 2) (¢C)CE — pC(YC9);

(A-CLPITL 3) (¢ V 9)CE — (9C€) V (¥C9);

(A-CLPITL 4) £C(¢ V ) — (£C9) V (ECY);

(A-CLPITL 5) wC¢ < ¢;

(A-CLPITL 6) ¢Cm < ¢;

(A-CLPITL7) p — ( pCT), withp € AP;

(A-CLPITL8) ( (¢ — H)CT)A (TC (€ — X)) — ((¢C&) — @WCX));
(A-CLPITL9) O¢ — O ¢;

(A-CLPITLQ ) oA (TC (¢ — O ¢)) — (TC ¢);
(A-CLPITL 1) ¢ 7 Vv (6 AQOT)CoY?

together with Modus Ponens and the following inferencestule

¢ ¢
(TC ¢)"  (oCT)
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All axioms have a fairly natural interpretation. In parti@y locality is basically dealt
with by Axiom (A-CLPITL7).

The chop-star operator is a special case of a more generedtopecalled the
projectionoperator. Such a binary operator, denoteghyj, yields general repetitive
behaviour: for any given pair of formulas, v, ¢ proj ¥ holds over an interval if
such an interval can be partitioned into a series of subniate each of which satis es
¢, while ¢ (called theprojected formul holds over the new interval formed from
the end points of these sub-intervals. Let us denote by LR4TLthe extension of
LPITL with the projection operatgrroj. By taking advantage from such an operator,
LPITLyo can express meaningful iteration constructs, sudfoasindwhi le loops:

—for ntimes dop, p projlen (n);

—while p dog, (®Aq)"A (TC(len (0) A p)),
where the formula occurring in thewhile loop typically is a point formula, that is,
a formula whose satisfaction is totally determined from tkestate of the satisfying
interval, and, for all 0, len (n) constrains the length of the current interval to be
exactlyn. len (n) is de ned as follows:

—len(n), O"TAQ" L.
Furthermore, the chop-star operator can be easily de néerins of projection oper-
ator as follows:

-¢5 ¢ proj T.

LPITL o was originally proposed by Moszkowski in [MOS 83] and latgstem-
atically investigated by Bowman and Thompson [BOW 98, BOW 08 particular,
a tableau-based decision procedure and a sound and corapileteatic system for
LPITL g , interpreted over nite discrete structures, is given irO@/ 03].

The core of the tableau method is the de nition of suitablenmal forms for all op-
erators of the logic. These normal forms provide inductieeions of the operators.
Then, in the style of [WOL 85], a tableau decision procedaretteck satis ability of
LPITLpo formulas is established. Although the method has been cigedlat the
propositional level, the authors advocate its validitydts rst-order LPITLg; .

The normal form for LPITl,; formulas has the following general format:

(mAde) V™ (¢ AOdi)

wherege and¢; are point formulas ang”is an arbitrary LPI Tl formula. The
rst disjunct states when a formula is satis ed over a poimteirval, while the second
one states the possible ways in which a formula can be sdtisver a strict interval,
namely, a point formula must hold at the initial point andrttaa arbitrary formula
must hold over the remainder of the interval. This normaif@mbodies a recipe for
evaluating LPITlyo formulas: the rst disjunct is the base case, while the sdcon
disjunct is the inductive step. Bowman and Thomson showat@hy LPITLy;
formula can be equivalently transformed into this normatfo
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In [BOW 03], Bowman and Thomson also provided a sound and tete@ax-
iomatic system for LPIT}; , interpreted over discrete linear structures. {ep,
& be arbitrary formulas angd € AP. The proposed system includes the following
axioms:

(A-LPITL1) enough propositional tautologies;
(A-LPITL2) 7« OT,;

(A-LPITL3) O¢ — O ¢;

(A-LPITL4) O(¢ — ¥) — O¢ — O
(A-LPITLS) (O9)CY — O(eCY);

(A-LPITLE) (¢ V Y)CE — ¢CE Vv YCE;
(A-LPITL7) ¢Cp V &) < ¢Cy Vv ¢CE;
(A-LPITL8) ¢C(pC¢) — (¢CY)CE;

(A-LPITLY) (p A 9)C% < p A (¢C), with p € AP;
(A-LPITL10) 7Cé < ¢Cr < ¢

(A-LPITL11) ¢ proj m < m;

(A-LPITL12) ¢ proj (¥ V &) < (¢ proj ¢) V (¢ proj §);
(A-LPITL13) ¢ proj (p Ap) < p A (¢ proj ¥);
(A-LPITL14) ¢ proj Qv «— (p A m)C(p proj ).

The inference rules, besides Modus Ponens@ngeneralization, include the follow-
ing rule:
¢ — O
¢

THEOREM24. — The above axiomatic system is sound and complete for the @las
(non-strict) discrete structures.

Finally, Kono [KON 95] presents a tableau-based decisiacgture for QLPITL
with projection which has been successfully implemented. The method gessea
deterministic state diagram as a veri cation result. Alibb it has been argued that
the associated axiomatic system is unsound (see [MOS 08])p'K work actually
inspired Bowman and Thompson's one.
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3.2.2. The logicsDT andBDT *

The most expressive propositional interval logic over @sbict) linear orderings
proposed in the literature is Venema's CDT [VEN 91]. A getieadion of CDT to
(non-strict) partial orderings with the linear intervabperty, called BCDT has been
recently investigated by Goranko, Montanari, and SciaviggOR 03a]. The lan-
guage of CDT and BCDT contains the three binary operatdrs D, andT’, together
with the modal constant. Formulas of CDT are generated by the following abstract
grammar:

pu=m|p| ¢loAY|dCY | ¢DY | ¢T).
The semantics of both CDT and BCDTs non-strict.

The following result links the expressiveness of CDT in teraf de nable bi-
nary operators to that of the fragment HQ](x;, z;) of rst-order logic over linear
orderings with at most three variables, at most two of whigh,z; andx; are free
[VEN 91].

THEOREM 25. — Every binary modal operator definable in B](z;, z; ) has an
equivalent inCDT, and vice versa.

As for the relationships with the other propositional intdrlogics, interpreted
over linear orderings, CDT is strictly more expressive tR&FL, since the latter is not
able to access any interval which is not a sub-interval ofthreent interval. Moreover,
it is immediate to show that CDT subsumes HS:

- EaF ( m)Co;
-1éF ( m)Dg;
- LaF ( MTe;
- LaF oC( 7).

A sound and complete axiomatic system for CDT over (normttlinear struc-
tures has been de ned by Venema in [VEN 91]. Let us de/ne(¢) as in the case
of HS. The axiomatic system for CDT includes the followingcems, and their in-
verses (obtained by exchanging the arguments of’aficcurrences, and replacing
each occurrence @f by D and vice versa):

(A-CDT1) enough propositional tautologies;
(A-CDT2a) (¢ V ¥)CE < ¢CE vV vC¢;
(A-CDT2b) (¢ V P)TE — ¢TE V YT;
(A-CDT2c) ¢T(yp V &) < ¢TY V ¢T;
(A-CDT3a) (¢T9)Co — ¥,

(A-CDT3b) (¢TY)Dy —  &;

(A-CDT3c) ¢T" (vC¢) —

(A-CDT4) #CT & m;
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(A-CDT5a) nC¢ « ¢;

(A-CDT5b) 7T'¢ « ¢;

(A-CDT5¢) ¢Tm — ¢;

(A-CDT6) [(r A $)CT A ((mr AY)CT)CT] — (x AY)CT;
(A-CDT6a) (pC)CE < dC(HCY);

(A-CDT6b) ¢T(CE) — (YC(PTE) V (ETO)TY);

(A-CDT6C) vC(¢T€) — ¢T(PCS);

(A-CDT7d) (¢T)CE — ((EDP)TY V pC(pDE));

and the following derivation rules: Modus Ponens, Geneasibhn:

¢ ¢ ¢
(oCv)  (oTY) (T ¢)

and the Consistency rule:jfe AP andp does not occur i, then
h( p) — ¢
¢

THEOREM26. — The above axiomatic system is sound and complete for the afas
(non-strict) linear orderings.

THEOREM27. — A sound and complete axiomatic system for the class of (tnmt)s
dense linear orderings can be obtained from the system fockass of (non-strict)
linear orderings by adding the following axiom:

(A-CDTY 7 — ( 7C 7).

and their inverses,

A sound and complete axiomatic system for the class of (mimh}<liscrete linear
orderings can be obtained from the system for the class of§tiict) linear orderings
by adding the following axiom:

(A-CDT?) 7 v ((I1CT) A (TCLY) ;

A sound and complete axiomatic systemQ@azan be obtained from the system for the
class of (non-strict) linear orderings by adding the foliog axiom:

(A-CDTQ) (7 — ( #C 7)A( 7TT)A( ©DT).

In [VEN 91], Venema has also developed a sound and compléteahadeduction
system for CDT, similar to the natural deduction system &ation algebras earlier
developed by Maddux [MAD 92].

Finally, as a consequence from previous results for HS ait,Rhe satis ability
(resp. validity) for CDT is not decidable over almost alldregsting classes of linear
orderings, including all, dense, discrete, etc. Again,dtniet versions of CDT and
BCDT™ have not been explicitly studied yet, but it is natural to estthat similar
results apply there, too.
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3.3. Restricted interval logics. split logics

Split Logics (SLs for short) can be viewed as an attempt aftifigng expressive,
yet decidable, propositional interval logics without ngsw to any locality principle.
We have already seen that, in the interval logic settingjdaédity can be gained
by reducing the set of modal operators (this is the caseB&aRBd EE) or by impos-
ing locality conditions (this is the case of LPITL). In theseaof SLs, decidability is
achieved by imposing suitable constraints on the intertracgires over which for-
mulas are interpreted. In the following, we brie y descrilbe basic features of SLs,
and we provide a short summary of the relevant results abent.t

SLs have been proposed by Montanari, Sciavicco, and Vitacal in [MON 02]
as the interval logic counterparts of the monadic rst-ar(ddFO) theories of time
granularity studied in [MON 96, FRA 02a] (as a matter of fabere exist also inter-
esting connections between SLs and the propositional densdogic proposed by
Ahmed and Venkatesh in [AHM 93]). SLs are propositional i logics equipped
with operators borrowed from HS and CDT, but interpretedr @geci ¢ structures,
calledsplit structures Models based on split structures are caliptit models The
distinctive feature of split structures is that every ingdrcan be “chopped' in at most
one way (obviously, there is no way to constrain the lengttheftwo resulting sub-
intervals). In [MON 02], the authors show that such a reStnicdoes not prevent
SLs from the possibility of expressing a number of meanihtgdfmporal properties.
Furthermore, they prove the decidability of various SLs mpbedding them into de-
cidable MFO theories of time granularity as well as their pteteness with respect
to the guarded fragment of these theories.

Formulas of SLs are generated by the following abstractesynt

pu=plonel ¢[(D¢[(D|(Fo|(F ¢|¢Co|oDo|¢To.

A split structure is a paikD, H(D) , whereH(D) is proper subset of(D) (a
precise characterization #(D) can be found [MON 02]). Asplit model is a pair
M=(D,V , whereV : H(D) — P(AP). The semantic clauses for the modalities
(D, (D ,(F ,and(F are the following ones (the semantic clausesfoD, andT’
have already been given):

(D) M,[do,d1] (D ¢ if there existds, d3 such thafds, ds]@[do, d;], and M,

[do,ds]  ¢;

((D) M,[do,d1] (D ¢ if there existds, ds such thafdy, d,]@d>, ds], and M,
[da2,ds] ¢

((F) M,[do,d1] (F ¢ if there existds, d3 such thatd; < ds, d> < ds, and
M7 [d2a d3] ¢1

((F) M,[do,d1] (F ¢ if there existds, ds such thatds < do, do < dgy, and
Ma [d37 d2] ¢

The modal constant can also be introduced as a useful shorthand.
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In the following we sketch the correspondence betweenlgglits and MFO the-
ories of time granularity. In particular, we enlighten these relationship that exists
between split structures and the temporal structuresifa tjranularity, called layered
(or granular) structures [MON 96]. Layered structuresaeglthe single ™ at' tempo-
ral domain of linear, point-based temporal logics by a (fladgsn nite) set of tem-
poral layers. Each layer is a discrete, linear, point-bakedain bounded in the past
and in nite in the future. The relationships between timép®belonging to the same
layer are governed by the usual order relation, while theteden points belonging
to different layers are expressed by means of suitable girojerelations. A formal
de nition of layered structures can be found in [MON 96, FR24). Here we give an
intuitive account of them. The domain of layered structuses set | {", where
I Z, which consists of many copies bf (possibly in nitely many), denoted™,
each one beinglayer of the structure. If there is a nite numberof layers, the struc-
ture is calledn-layered(n-LS), otherwise, the structure is calledlayered Among
w-layeredstructures, we consider thgpward unboundethyered structure (UULS),
which consists of a nest layer and an in nite sequence ofrseaand coarser layers,
and thedownward unboundedne (DULS), which consists of a coarsest layer and
an in nite sequence of ner and ner ones. In all cases, layare totally ordered
according to their degree of “coarseness/ neness', antd pamt of a given layer is
associated with points of the immediately ner layer, if anykfrefinability). This
accounts for a view of layered structures as (possibly itehsequences of (possibly
in nite) complete k-ary trees. In the case of the UULS, there is only one in nitet
built up from leaves, which form the nest layer of the struiet. In the case of the
DULS (resp.n-LS), the in nite sequence of in nite trees (resp. nite) &rdered ac-
cording to the ordering of the roots, which form the coarsagtr of the structure.
In [MON 96, FRA 02a], monadic second-order (MSQO) theorietagéred structures
have been systematically studied and the decidability afrabrer of them has been
proved.

SLs can be viewed as the interval logic counterparts of teeorder fragments of the
MSO theories of 2-re ngbIeAIayered structures. More prelgiswe focus our atten-
tion ogthe_theories MFD ; T", <1, <2, o, [1], interpreted over the-re nableg-LS,
MFO[ ; T', <1, <2, o, ]1], interpreted over the-re nable DULS, and MFQ ; T",
<9, Lo, l1] interpreted over th@-re nable UULS. The symbols in the square brackets
are (pre)interpreted as follows$y (z,y) (resp.l1 (x,y)) is a binary projection rela-
tion such thaty is the rst (resp. second) point in the re nement of <; is a strict
partial order such that <; y if « belongs to a tree that precedes the tydelongs
to; x <2 y holds ify is a descendant af. As for split structures, we consider (i) the
class of bounded below, unbounded above, dense, and withmalaixtervals split
structures, (ii) the class of bounded below, unbounded@htigcrete, and with max-
imal intervals split structures, and (iii) the class of bded below, unbounded above,
discrete split structures. A split structure with maximatervals is a split structure
(D,H(D) , such that, for ever{dy, d;] € H(D) there existdds, d;] € H(D) such
that[dy,d1] [ds, ds] andthere is n{dy, ds] € H(D) such thafd,, ds]@ldy, ds] (the
interval[ds, ds] is called amaximal interva).

THEOREM 28. — The following results hold:
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1) SL interpreted over the class of bounded below, unbounded ebov
dense,S and with maximal intervals split structures can bebesided into
MFO[ | T', <1, <2, lo, }1] interpreted over th@-refinableDULS,;

2) SL interpreted over the class of bounded below, unbounded eabdis-
crete,san_d with maximal intervals split structures can be bedded into
MFO[ ; T', <y, <2, lo, }1] interpreted over th@-refinablen-LS;

3) SL interpreted over the class of bounded below, unboundedeghdigcrete
split structures can be embedded ift-O[ ; T', <5, o, |1] interpreted over the
2-refinableUULS.

Since such MFO theories of time granularity are decidable,have the following
corollary.

COROLLARY 29. — The satisfiability problem foBL formulas, interpreted over the
above classes of split structures, is decidable.

4. A general tableau method for propositional interval logcs

In this section we describe a sound and complete tableauochétin BCDT",
developed by Goranko, Montanari and Sciavicco in [GOR 08a]jch combines fea-
tures of tableau methods for modal logics with constrainelananagement and the
classical tableau method for rst-order logic. The prombseethod can be adapted
to variations and subsystems of BCDTthus providing a general tableau method for
propositional interval logics.

First, some basic terminology. fnite treeis a nite directed connected graph
in which every node, apart from one (theot), has exactly one incoming arc. A
successopf a noden is a noden"such that there is an edge framto n"' A leaf is
a node with no successorspathis a sequence of nodes, . . ., ng such that, for all
1=0,...,k—1,nj,1 is asuccessor afj; abranchis a path from the root to a leaf.
Theheightof a noden is the maximum length (number of edges) of a path fioto
a leaf. Ifn, n"belong to the same branch and the heighh dé less than or equal to
the height ofn" we writen < n

LetC = (C, < be a nite partial order. Aabelled formulawith label inC, is a
pair (¢, [ci, ¢ 1), wheregp € BCDT* and[¢i, ¢j] € I(C)*.

For a noden in a tree, thedecorationv(n) is a triple ((¢, [ci, ¢ 1), C, un ), where
Cis a nite partial order(¢, [ci, ¢; ]) is a labelled formula, with label i€, andu, is a
local flag functionwhich associates the valué®r 1 with every branchB containing
n. Intuitively, the valued for a noden with respect to a brancB means thah can
be expanded o (in fact, n must be expanded oB, sooner or later, in order to
saturate the current decorated tree). For the sake of gityplive will often assume
the interval[c; , ¢; ] to consist of the elements < ¢4 < -+ < ¢, and sometimes,
with a little abuse of notation, we will writ€ = {¢; < cx,em < ¢j,...}. Adecorated
treeis a tree in which every node has a decoratifn). For every decorated tree, we
de ne aglobal flag functionu acting on pairgnode, branch through that nodey
u(n, B) = u, (B). Sometimes, for convenience, we will include in the degorabf
the nodes the global ag function instead of the local onesr @&y branchB in a
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decorated tree, we denote By the ordered set in the decoration of the leaBofand
for any noden in a decorated tree, we denote ®yn) the formula in its decoration.
If Bis a branch, the - n denotes the result of the expansionfvith the noden
(addition of an edge connecting the leaf®to n). Similarly, B-nj | ... | nx denotes
the result of the expansion &f with & immediate successor nodes, . . . , ng (which
producesk branches extending). A tableau for BCDT will be de ned as a special
decorated tree. We note again tlatemains nite throughout the construction of the
tableau.

DEFINITION 30. — Given a decorated tre&, a branchB in 7, and a noden € B
such thatv(n) = ((¢,[ci,¢g]), C,u), withu(n , B) = 0, thebranch-expansion rule
for B andn is defined as follows (in all the considered cases™, BY = 0 for all
new pairs(n™, BY of nodes and branches).

—If¢ = 4, then expand the branch t8 - ng, with v(ng) = ((¢, [ci, ¢ ],
CB y u).

—If ¢ = o A ¢, then expand the branch t® - ng -n;, with v(ng) =
((Wo,[ci ¢ 1), Ce,w) andv(ni) = ((¢¥1,[ci, ¢ 1), Cs , w).

—If ¢ = (Yo A 1), then expand the branch t® - ng|n;, with v(ng)
=(( %o,lci 1), Ce,u) andv(n) = (( 1, lci, 1), Ca,w).

—If¢p = (yoCvy1)andcis the least element @z , with¢; < ¢ < ¢, which has
not been used yet to expand the neden B, then expand the branch # - ng|n;,
with v(no) = (( o, [ci, c]),Cs,u) andv(ny) = (( ¢1,[c, ¢ 1), Cp , w).

—If ¢ = (YD), cis a minimal element ofg such thate < ¢;, and there
existsc™ € [c,¢i] which has not been used yet to expand the nod® B, then
take the least such™ € [c, ] and expand the branch t& - ng|n;, with v(ng)
= (( %o,[c7a]),Ca,u) andv(ng) = (( ¥1,[c7¢ 1), Ca s w).

—If¢ = (¢YoTy1), cis a maximal element &g such that; < ¢, and there
existsc™e [¢ , ¢] which has not been used yet to expand the node B, then take
the greatest such™ e [, ] and expand the branch t8 - ng|n;, so thatv(no)

= (( wOa [CJ 70%5 CB ,U) andV(l’ll) = (( ¢1> [Ci ) CIT)a CB ,'U,)-
—1If ¢ = (1oC11), then expand the branch 8 - (n; - my)| ... |(nj - m;)|(n"
mf)|...[(n1; -ml,), where:

1) for all e« € [ei, ¢, v(nk) = ((Yo,[ci, «]), Co,u) and v(my) = ((1,
[exs ¢ D) Cyu);

2)foralli < k < j— 1, letCy be the interval structure obtained by inserting
a new element betweernrx and cx 41 in [ci, ¢ ], v(n) = ((¥o, [ci, ), Ck, u), and
v(my) = (1, e, ¢ 1), Cr, w).

—If & = (YD), then repeatedly expand the current branch, once for each
minimal element (where[c, ¢i] = {¢ = ¢p < ¢1 < -+ ¢ }), by adding the decorated
sub-tree(ng - mo)| ... |(ni - my)|(nf- mP|... |0 mJ|(nf" mJY| ... |(n™ mT
to its leaf, where:
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1) for all ¢x such thatek € [c, ¢i], v(nk) = ((o, [k, ¢i]), Cs , w) andv(my)
= ((¢¥1,[ex, ¢1),Cr,u);

2)for all 0 < k < i, let C¢ be the interval structure obtained by inserting
a new element“immediately beforey in [c, ¢i], andv(ng) = ((¢o, [cHei]), Ck,u)
andv(my) = ((¥1, [ ¢]), Ck, );

3) forall0 < k < i, let Cx be the interval structure obtained by inserting a
new elementHin Cg , with c™'< ¢, which is incomparable with all existing predeces-
sors ofex, v(n,) = (Yo, [¢7 i), Ck, ), andv (o) = ((¢1, [ ¢]), Ci, ).

—If ¢ = (voT1), then repeatedly expand the current branch, once for eact ma
imal element (where[¢j, ] = {¢ < ¢ 41 < ---¢n = ¢}), by adding the decorated
sub-tree(n; -my)| . .. |(ny, -mn)|(nj‘j-m5| . |(nr[1j_1~mr?_1)|(njmmju§\ (0 FPmE
to its leaf, where:

1) for all ¢ such thatey € [¢, c], v(nk) = ((¥o, [¢ , ]), Cr , w) and v (my )
= ((¥1,[ci, ), C , u);

2) for all j < k < n, let Cy be the interval structure obtained by inserting a
new element-immediately aftery in [¢ , c], andv(ng) = ((+o, [¢j , ¢D), Ck, u) and
v(m?) = (¥, [, P, Ck, u);

3) forall j < k < n, let Cx be the interval structure obtained by inserting a
new elementHin Cg , with¢ < c¢5'which is incomparable with all existing successors
of e, v = (o, [, €D, Ci, w), andv(my) = (¢, [ci, ¢T), Ci, w).

Finally, for any nodem (# n) in B and any branchB"extendingB, let «(m, BY
be equal tou(m, B), and for any branchB™extendingB, u(n, BY = 1, unless
o= WoCy1), 0= (YoDyr),0r¢ = (T41) (in such cases(n, B = 0).

Let us brie y explain the expansion rules fggCvy; and  (yoC11) (Similar con-
siderations hold for the other temporal operators). The foit the (existential) for-
mulayyC, deals with the two possible cases: either there exjsis Cg such that
¢ < ok < ¢ andyy holds overc;, ¢] andwy; holds overc, ¢ ] or such an element
cx must be added. The (universal) formulép,C+,) states that, for al; < c¢ < ¢,

1o does not hold ove; , c] ory, does not hold ove, ¢ ]. As a matter of fact, the ex-
pansion rule imposes such a condition for a single elemanCg (the least element
which has not been used yet), and it does not change the agljwkmains equal
to 0). In this way, all elements will be eventually taken istmsideration, including
those elements in betweenandc; that will be added t€g in some subsequent steps
of the tableau construction.

Let us de ne now the notions of open and closed branch. We lsatya node
n in a decorated tre& is available on a branchB to which it belongs if and only if
u(n, B) = 0. The branch-expansion ruledpplicableto a noden on a branciB if the
node is available o3 and the application of the rule generates at least one ssarces
node with a new labelled formula. This second condition isde&l to avoid looping
of the application of the rule on formulagvoCv1), (YoD1), and (YoT1).
DEFINITION 31. — A branchB is closed if some of the following conditions holds:

(i) there are two nodes, n“e B such that/(n) = ((¥,[ci, ¢ 1), C,u) andv(n"
= (( ¥, [ci,q]), CHu) for some formulay andci,¢; € CNCY
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(i) there is a noden such that(n) = ((7, [ci, ¢ ]), C,u) andc; # ¢ ; or

(iii) there is a noden such that/(n) = (( 7,[ci,¢1),C,u) andeg =¢j.
If none of the above conditions hold, the branch is open.
DEFINITION 32. — Thebranch-expansion stratedgr a branch B in a decorated
tree7 is defined as follows:

1) Apply the branch-expansion rule to a branBtonly if it is open;

2) If Bis open, apply the branch-expansion rule to the closestdadat available
node inB for which the branch-expansion rule is applicable.
DEFINITION 33. — A tableaufor a given formulap eBCDT™ is any finite deco-
rated tree7 obtained by expanding the three-node decorated tree bpifram an
empty-decoration root and two leaves with decorati§@s, [cp, ce]), {co < ce},u)
and ((¢, [eb, b)), {cv}, u), where the value of is 0, through successive applications
of the branch-expansion strategy to the existing branches.

It is easy to show that iy € BCDT™, 7 is a tableau fop, n € 7, andC is the
ordered set in the decorationnf then(C, < is an interval structure.
THEOREM34 (SOUNDNESS AND COMPLETENESE — If ¢ € BCDT* and atableau
7T for ¢ is closed, thew is not satisfiable. Moreover, if € BCDT™ is a valid formula,
then there is a closed tableau forp.

5. First-Order Interval Logics and Duration Calculi

Research on interval temporal logics in computer scienceoriginally motivated
by problems in the eld of speci cation and veri cation of hdware protocols, rather
than by abstract philosophical or logical issues. Not ssirgly, it focused on rst-
order, rather than propositional, interval logics. In théxtion, we summarize some
of the most-important developments in rst-order interl@ics and duration calculi,
referring the interested reader to respectively [MOS 03] EBHA 04] for more de-
tails.

5.1. ThelogicITL

First-order ITL, interpreted over discrete linear ordgamvith nite time intervals,
was originally developed by Halpern, Manna, and Moszkouwsf¥OS 83, HAL 83].
The language of ITL includes terms, predicates, Booleanectives, rst-order quan-
ti ers, and the temporal modalitieS and(). Terms are built on variables, constants,
and function symbols in the usual way. Constants and funcyonbols are classi ed
asglobalrigid andtemporal flexible Terms are usually denoted By, . .., 6,,. Pred-
icate symbols are also partitioned into global and tempmmak. They are denoted by
p.¢,...,wherep' is a predicate of arity, ¢ is a predicate of arity, and so on. The
abstract syntax of ITL formulas is:

¢u=0]p"(01,...,00) | Fxg| PlPoAY| O|dC.
The semantics of ITL-formulas is a combination of the stadd®mantics of a

rst-order temporal logic with the semantics of PITL. An aemt of possible uses
and applications is e.g. [MOS 86].
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In [DUT 95a] Dutertre studies the fragment of ITL which we mdienote here
by ITLp, involving only thechopoperator. First, ITk is considered over abstract,
Kripke-style modelM™ = (W, R, I , whereW is a set of worlds (abstract intervals),
R is a ternary relation corresponding to Venema's ternargtiah A (cf. Section
2.1, andl is a rst-order interpretation. Further, Dutertre consi&la more concrete
semantics, over interval structures with associated themgeasure represented by a
special temporal variablewhich takes values in a commutative gro{ip, +, —,0 .
The language is assumed to have the exible congtaand the rigid symbol§ and
+, respectively interpreted as the neutral element and tbiiewl in (D,+,0 . The
semantics of ITk -formulas is a combination of the semantics of ITL (withoek),
and the interpretation dfin a modelM™ for an intervalldy, d1] is d; — dj.

As for the expressive power of IH, note that one can easily de ne the modal
constantr (cf. Section 2.2) by means &f

-7, ((=0).

Hence, the HS modalities correspondingoginsandendsare also de nable in
the language, and thus, from the results of Section 3.1.3ameconclude that T
is at least as expressive as PITL. The undecidability ofdgeleasily follows.

Dutertre developed a sound and complete axiomatic systefiilfg, (the details
of the soundness and completeness proof can be found in [Bd]).9n addition to
the standard axioms of rst-order classical logic, inchglthe axioms of identity and
the axioms describing the properties for the temporal dorBaiDutertre's systems
involves the following speci ¢ axioms for ITh.:

(A-ITLL) (eCY) N (9CE) — ¢C(p A ©);

(A-ITL2) (eCY) N (ECY) — (9N CY;

(A-ITL3) ((¢CY)CE) < (#C (Y CY));

(A-ITLE) (¢pCy) — ¢ if ¢is arigid formula;

(A-ITLS) (¢pCv) — 1 if 1) is arigid formula;

(A-ITLE) ((Hx)9pCvy) — (Fx)(oC) if x is not free imy;
(A-ITL7) (oC(Fx)y) — (3x)(oC) if z is not free ing;
(AITL8) (U =2)C9) — (U =2)C ¢);

(AITLY) (eC(U=1x)) — ( ¢C(U = x));

(A-ITL10) (=2 +y) < ((=2)CU =)

(A-ITL11Y) ¢ — (oC( =0));

(AITL12) & — ((l = 0)Ce).
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The inference rules are Modus Ponens, Generalization,d8gagon, and the follow-
ing Monotonicity rule:

¢ — Y
¢CE — PC¢’

together with the symmetric one. It should be noted thataerestrictions apply to
the instantiation with exible terms in quanti ed formulas

As in the propositional case, variants of ITL obtained by asipg the locality
constraint have been explored in the literature. Sound angbete axiomatic systems
for local variants of ITL for nite and in nite time have beeastablished in [DUT 95a,
DUT 95b, MOS 00b], while automata-theoretic techniquespf@mving completeness
of ITL have been applied in [MOS 00a, MOS 03].

For more details about completeness and decidabilitytesnl TL see [MOS 03].
See also [MOS 86] and [DUA 96], for applications of ITL to teonal logic program-
ming, and [MOS 96b, MOS 98], where the ITL-based programniémguage Tem-
pura is described in detail.

5.1.1. Some extensions and variations ®i_

An extension of ITL with projection has been studied in [GUEbDwhere a com-
plete axiomatic system for it has been established. A piibb@d extension of ITL
has been studied in [GUE 00d].

An interesting variation of ITL is the Signed Interval Lodi8IL) introduced by
Rasmussen [RAS 99, RAS 02]. The semantics of SIL is basexigmed intervals
i.e., intervals provided with direction (forward or backward). A sound and complete
axiomatic system for SIL was established in [RAS 99], a radtdeduction system in
[RAS 01b], and a sequent calculus in [RAS 01a].

Dillon, Kutty, Moser, Melliar-Smith, and Ramakrishna indiuce and study in a se-
ries of publications [RAM 92, DIL 92a, DIL 92b, DIL 93, DIL 94®IL 94b, DIL 95,
MOS 96a, DIL 96a, DIL 96b, DIL 94a] the so-called Future IntdrLogics. These
employ the locality principle and feature “interval motlel' encoded by pairs of for-
mulas and refer to intervals whose endpoints satisfy thesaulas. Notably, these
logics are more tractable and have lower complexity than B.§. Complexity re-
sults for Future Interval Logic have been obtained by Aahy ldarayana [AAB 85],
while applications of these logics have been explored in &aishna's PhD the-
sis [RAM 93].

5.2. Thelogic NL

The logic ITL has an intrinsic limitation: its modalities dot allow one to “look'
outside the current interval (modalities with this chagsistic are callecontracting
modalities). To overcome such a limitation, Zhou and Har[§&#A 91] proposed
the rst-order logic ofleft andright neighbourhood modalities, callegighbourhood
logic (NL for short), whose propositional fragment has been asalyn Section 3.1.4.
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First-order syntactic features are as in the ITL case. Rightleft neighbourhood
modalities are denoted By, and<}|, respectively. The abstract syntax of NL formulas
is:

ou=0p"(Or,....00) | dldAY[ 1] Ord | Txe,

where term%,...,60, are de ned asin ITL.

The semantic clauses for the neighbourhood modaktieand<); are de ned as
in the propositional case. The rest of the semantics of NLeigetl exactly as in
the ITL case. While practically meant to be the ordered addigroup of the real
numbers, the temporal domain is abstractly speci ed by medra set of rst-order
axioms de ning the so-calledl-model§CHA 98].

The rst-order neighbourhood logic NL is quite expressilreparticular, it allows
one to express thehopmodality as follows:

-¢CY, Fz,y(l=z+ Y AOIO (U =2) AP A O (L =y) AY)),
as well as any of the modalities corresponding to Allen'atiehs. Consequently, NL
can virtually express all interesting properties of theenhdng linear ordering, such
as discreteness, density, etc.

Here we give an axiomatic system for NL, due to Barua, Roy,Zrali [BAR 00],
where the soundness and completeness proofs can be founghatrfollows, the
symbol<) stands for eithety| or ), , while { stands for), (resp..) when<> stands
for &) (resp.,$r). The axiomatic system consists of the following axioms:

(A-NL1) $o — o, whereg is a global formula;
(A-NL2) [ 0©;

(ANL3) 2 0 — O( = 2);

(A-NLA) &0 V o) — Qo vV Qs

(A-NL5) $dzg — Fxdo;

(A-NLE) O((I=2)N¢) — L= 2z) — 9);
(ANL7) OGp — [0

(A-NL8) (I=1) — (¢ = OO =) A 9);

(A-NLY) (= O)A(  0) — (U =)A= y)A9)) < O =
z+y) A $P)),

plus the axioms for the domald (axioms for=, +, <, and—), and the usual axioms
for rst-order logic. The same restrictions that have beeadmfor the ITL concern-
ing the instantiation of quanti ed formulas still apply leer The inference rules are,
as usual, Modus Ponens, Necessitation, Generalizatiahthenfollowing rule for
Monotonicity:
¢ — Y
Op — O
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In [BAR 97], NL has been extended to a “two-dimensional' i@rscalled NI2,
where two modalities), and<>4 have been added and interpreted as "up' and "down'
neighbourhoods. Ni_can be used to specify super-dense computations, takitig ver
cal time as virtual time, and horizontal time as real time.

The relationship between the Neighbourhood Logic and aldetfragments of
Allen's Interval Algebra has been studied in [PUJ 97].

5.3. Duration calculi

Duration Calculus (DC for short) is an interval temporalilbgndowed with the
additional notion ofktate Each state is denoted by means of a state expression, and it
is characterized by duration The duration of a state is (the length of) the time period
during which the system remains in the state. DC has beemssftdly applied to the
speci cation and veri cation of real-time systems. Fortasce, it has been used to
express the behaviour of communicating processes shaprarassor and to specify
their scheduler, as well as to specify the requirements afsebgrner [SPR 90].

DC has originally been developed as an extension of MoszkisA$L, and thus
denoted by DC/ITL. Since the seminal work by Zhou, Hoare, Ragin [CHA 91],
various meaningful fragments of DC/ITL have been isolated analyzed. Recently,
an alternative Duration Calculus, based on the logic NL,tand denoted by DC/NL,
has been proposed by Roy in [ROY 97]. As a matter of fact, nessilts for DC/ITL
and its fragments transfer to DC/NL and its fragments. Infttlewing we introduce
the basic notions and we summarize the main results abouTDGfurther details
can be found in [CHA 04].

5.3.1. The calculus DC/ITL

Zhou, Hoare, and Ravn's DC/ITL is based on Moszkowski's ITiterpreted over
the class of non-strict interval structures baseoits only interval modality i€hop
Its distinctive feature is the notion of state. States apeasented by means of a new
syntactic category, callestate expressigrwhich is de ned as follows: the constants
0 and1 are state expressions, a state variablis a state expression, and, for any pair
of state expressions and7’, S andS Vv T are state expressions (the other Boolean
connectives are de ned in the usual way). Furthermore rgavstate expressidf) the
duration of S is denoted by S. DC/ITL terms are de ned as in ITL, provided that
temporal variables are replaced by state expressions. TD@dkmulas are generated
by the following abstract syntax:

(b:::pn(rlw"arn)'—l—' ¢|¢V¢|¢C¢|3x¢
wherer, ..., ry are termsp” is an-ary (global) predicate}’ is thechopmodality,

andz is a (global) variable.

Any state (expressiony is associated with a total functiofi : R — {0, 1},
which has a nite number of discontinuity points only. Foryaime pointt, the state
expression interpretatidhis de ned as follows:

—Z[0](t) = 0;
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-IK 1) =1,

—Z[51(®) = S();

=I[ SI(¢) = 1—TZIS1();

—I[S v T](t) = 1if Z[S]g) = 1 or Z[T](t) = 1, O otherwise.
The semantics of a durationS in a given (non-strict) model, Wil.p respect to an
interval [dy, d1], can be de ned using the Riemann de nite integrgcio1 Z[S](t)dt.
The semantics of the other syntactic constructs is given #wicase of ITL.

A number of useful abbreviations can be de ned in DC/ITL. larticular, [ S

stands for: S holds almost everywhere over a strict interval", and it imdd as
follows:
R R R R
R —IS1, (S= 1A (E 0.
1 is usually abbreviated by, and it can be viewed as the length of the current
interval; nally, [ ], which holds over point-intervals, can be de ned/as 0.

The satis ability problem for both rst-order DC/ITL (fulDC/ITL) and its frag-
ment devoid of rst-order quanti cation (Propositional DITL) has been shown to
be undecidable. First-order DC/ITL, provided with, at kdse functional symbot
and the predicate symbwdl, with the usual interpretation, has been completely axiom-
atized in [HAN 92]. The axiomatic system includes the foliog/speci ¢c axioms:

R
(A-DC1) 0=0;
R
(A-DC2) S O
R R R R
(A-DC3) S+ T= (SvI)+ (SAT);
R R R
(A-DC4) (( S=2)C( S=y) < ( S=a+y),
R R
(A-DC5) S = T provided thatS < T holds in propositional logic

W,
and the following inference rule (whefg . .. S, are state expressions an{i:1 Si
1): W
H([D, H(@) — H@V 7 (@C[51)
H(T) ’

in conjunction with its inverse (obtained by exchanging dhdering of the formulas
in everychop, whereH (¢) represents the formula obtained frdifi{ X)) by replacing

every occurrence ok in H by ¢.

Duration calculus on abstract domains has been studied@muatized in [GUE 98].

Various interesting fragments of DC have been investigbyedhou, Hansen, and
Sestoft in [CHA 93a]. First, they consider the possibilifyiterpreting DC formu-
las over different classes of structures. In particulae, ftagment of DOnterpreted
over N is the set of DC formulas interpreted ov@revaluated with respect adfi-
intervals, that is, intervals whose endpoints ardlinrhe fragment of DGnterpreted
overQ is similarly de ned. Then, the authors take into considerasome syntactic
sub-fragments of the above calculi and they atudy the dbiigaundecidability of
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their satis ability problem. It turns out that the fragmertf propositional DC whose
formulas are built up from primitive formulas of the typ&] only have a decidable
satis ability problem when interpreted ovél, Q, andR. A validity checking proce-
dure for some of these fragments was developed in [SKA 94]adying to the set
of primitive formulas those of the forth= k, the problem remains decidable owr
but it becomes undecidable over the other classes of stasctlihe same fragment at
the rst-order level is undecidable in all the consideredas Finally, the fragment
gf proggsitional DC whose formulas are built up from primgtiformulas of the type
S = T onlyisalso undecidable.

As for the complexity of the satis ability problem, in [RAB& Rabinovich re-
ports a result by Sestoft (personal communication) stdtiagthe satis ability prob-
lem for the fragment of DC whose formulas are built up frommptive formulas of
the type[.S] only, interpreted oveN, has a non-elementary complexity. Rabinovich
shows that the satis ability problem for the same fragmenterpreted oveR, also is
non-elementarily decidable, by providing a linear timeugttbn from the equivalence
problem for star-free expressions to the validity problemthe considered fragment
of DC.

In [CHE 00], Chetcuti-Sperandio and Farifias del Cerro isotanother fragment
of propositional DC by imposing suitable syntactic restoicss. Formulas of such a
fragment are generated by the following abstract syntax:

pu=TILPE[I=0[I=1[¢V¢[oA]|dC,

wherek is a constantP € {<,<,=, >}, and] is RS, for a given state5. The
resulting logic is shown to be expressive enough to captllen Interval Algebra.
The authors propose a sound, complete, and terminatinggtalslystem for the logic,
thus showing that its satis ability problem is decidablé€eltableau system is a mixed
procedure, combining standard tableau techniques witjpaesh constraint network
resolution algorithms.

5.3.2. Some extensions and variations of Duration Calculus

In [CHA 98] (see also [ROY 97]) Duration Calculus and the -stder neighbour-
hood logic (NL) have been combined into the (clearly, undabie) DC/NL which
has been completely axiomatized by merging the axiomasitesys for DC and NL.
The fragment of DC/NL obtained by restricting the formuladé built up only from
primitive formulas of the typé S| has been proved to be decidable, while the exten-
sion of the latter with primitive formulas of the type= k is undecidable, as already
mentioned.

Duration Calculus with in nite intervals has been studied[CHA 95]. Other
extensions of Duration Calculus include: Extended Durati@lculus for real-time
systems [CHA 93b], Mean Value Calculus of Durations [CHA,3(iration Calculus
with Iteration [HUN 99c, GUE 00c], Duration Calculus withdpection [GUE 02,
GUE 03], higher-order Duration Calculus [GUE 00a, NAI OQfplpabilistic Duration
Calculus for continuous time [HUN 99b].

Another variation of DC is Pandya's Interval Duration LoffRAN 96] the models
of which are timed state sequences in dense time structures.
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Applications of Duration Calculus to real-time and hybngtems have been de-
veloped in [HUN 99a, HUN 02, HUO 02, SIE 01, THA 01].

Automatic veri cation and model-checking tools for intaivogics and duration
calculi have been developed and analyzed in [KON 92, SKA $NK4, CAM 96,
YON 02] and program synthesis from DC speci cations has tstadied in [SIE 01].

Finally, in [FRA 96, FRA 02b, FRA 98] Franzle describes modeatcking meth-
ods for DC and he argues that, despite its undecidabilitihefclass of models is
restricted to the possible behaviours of embedded rea-siystems, model-checking
procedures are feasible for rich subsets of Duration Cadcaihd related logics.

For further details, recent results, and applications ofde€ [CHA 04].

6. Summary and concluding remarks

In this survey paper, we have attempted to give a generalrpicif the extensive
and rather diverse research done in the areas of intervalaiinogics and duration
calculi. Among all important issues in the eld, we have nigifocused on expres-
siveness, proof systems, and decidability/undecidgbigisults.

To summarize, sound and complete axiomatic systems on gitapl level are
known for CDT, with respect to certain classes of linear drdgs, for HS, with respect
to the class of partial orderings with the linear intervabgeerty, for the family of
logics in PA/ L, with respect to various classes of linear orderings, botihé strict
and non-strict semantics, and for ITL and NL with respectdnayal semantics, while
the problem of nding an axiomatic system for speci c lineanderings is still largely
unexplored.

Furthermore, sound and complete tableau systems have beeloped for BCDT
and for some local variants of ITL. Given the generality of BC", the tableau
method for such a logic is in fact a tableau method for a laegeety of propositional
interval logics.

The satis ability/validity problem has been shown to be eaidiable for HS, CDT,

ITL, and NL, with respect to most classes of structures. Asadten of fact, rather

weak subsystems of HS turn out to be (highly) undecidablsdare classes of struc-
tures. Decidable fragments have been obtained by imposwere restrictions on
the expressive power or the semantics of the logics (as anggaby imposing the

locality projection principle).

Finally, we point out once more that, to the best of our knolgks the problems of
constructing axiomatic systems, tableau systems, and€aitjability proofs have not
been explicitly addressed yet for the strict semanticsamsi of most of the existing
interval logics (with the exceptions of PNLand its subsystems).

In conclusion, the single major challenge in the area ofuaieiemporal logics is
to identify expressive enough, yet decidable, fragmentigaariogics which are gen-
uinely interval-based, that is, not explicitly translatatb point-based logics and not
invoking locality or other semantic restrictions reducthg interval-based semantics
to the point-based one.
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