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ABSTRACTSINnce 1993, when Hudelmaier developed¥m log n)-space decision procedure for
propositional Intuitionistic Logic, a lot of work has beenrte to improve the efficiency of the
related proof-search algorithms. In this paper a tablealcoéus using the signT, F andF.
with a new set of rules to treat signed formulas of the KIdA — B) — C') is provided. The
main feature of the calculus is the reduction of both the determinism in proof-search and
the width of proofs with respect to Hudelmaier's one. Thesgrovements have a significant
influence on the performances of the implementation.

KEYWORDSIntuitionistic Propositional Logic, tableau calculi, diséon procedures
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1. Introduction

In this paper we present a tableau calculus for propositioraitionistic Logic
Int. The main feature of the calculus is a new set of rules to sigated formulas
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of the kind T((A — B) — (). This calculus collocates itself in a long history
of researches on the design of efficient decision procedorebnt. In this con-
text, the main concern is the treatment of “positive” imatige formulas, namely
implicative formulas having sigi" in a tableau deduction or occurring in the left-
side of a sequent (Dyckhoff, 1992; Hudelmaier, 1989; Huadédm 1993; Miglioli
et al, 1997; Vorob’ev, 1970). Differently from Classical Logintuitionistic impli-
cation is the main source of inefficiency in proof search fe known calculi and
this circumstance makes the decision procedures for pitigiee Intuitionistic Logic
Pspacecomplete (Statman, 1979; Waakdral., 1999).

Gentzen’s early calculi (Gentzen, 1969) fart were based on the re-use of im-
plicative formulas. The major drawback of this solutionhattdeductions may have
infinite depth, hence some loop-checking mechanism is mkdguarantee termina-
tion. To this aim, Vorob’ev (Morob’ev, 1970) introduced (ine context of sequent
calculi) rules to treat signed formulas of the kil§A — B) according to the main
connective ofd. See also (Dyckhoff, 1992; Migliokt al, 1997), where calculi with
analogous properties are given. In these cases, the rd-fssenalas is avoided by re-
placingT (A — B) with “simpler” formulas built up from the subformulas df — B;
moreover, suitable measures on formulas are defined, whmfagtee that derivations
have bounded depth. But, although on the one hand decisaegures for these
calculi do not need loop-checking mechanisms, on the othed lthe rules to treat
formulas of the kindl'((AV B) — C) andT((A — B) — () still give rise to proofs
that may be of exponential depth in the size of the formulaetptoved. This problem
is overcome in Hudelmaier’s sequent calculi (Hudelmai®83), where proofs have
linear depth and the related decision procedures re@uirelog n)-space. Here we
refer to the Hudelmaier’s sequent calculus, whose novelties essentially regard the
treatment of formulas of the kinfl(A — B). To save space, in some rulesiaf the
repetition of formulas is avoided by introducing new prafiosal variables. More-
over, LG provides rules to handle sets of formulas containing lbtd — B) and
F A, giving a rule for every possible form of the main connectifed. We remark
that in (Hudelmaier, 1993) th@(n log n)-space result is proved for the calcull’,
which improved.G by providing a compact notation to represent the pairs ohtdas
FA,T(A — B).

The calculusly, We introduce in this paper is a refinement of Hudelmaier’s cal
culusLG (Hudelmaier, 1993). Here, we impro¥&s by giving rules to treat formulas
ofthe kindT'((A — B) — (), for all the main connectives d8, without introducing
rules treating pairs of signed formulas. As discussed irptyper, even althoughy,,;
has the same computational performances of Hudelmaidcslzat allows us to de-
fine a “better” decision procedure due to the following fafsin general7y,,¢ proofs
have width which is less than that of the correspondiigproofs; (ii) 71t rules re-
duce the search space. Thus, both the search space and #residimof the proofs
of T1n¢ are narrower tha.GG. The new rules offt, give rise to a calculus whose
proofs have depth bounded By, wheren is the size of the formula to be proved;
from such a calculus a@(nlogn)-space decision procedure is designed. We have
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implemented a decision procedure based/gp, calledriTP-3F, based on theiTp
theorem prover of (Avellonet al, 2008). Even if the computational complexity of
our decision procedure only slightly improves the one ofdlfaneet al,, 2004; Fior-
ino, 2001), the experimental results show that the new thilgisly improve the per-
formances of the implementation. In particular, in the pape compare theiTpP-3F
with pPITP (Avelloneet al,, 2008) and STRIP (Galmichet al., 1999).

We point out that our reasoning is based on semantic toolsyeals (Hudelmaier,
1993) uses syntactic techniques; to prove the equivalesivecen.G and Gentzen
calculus, the author has to introduce some auxiliary cabnd prove their equiva-
lence. As a by-product, our decision procedure allows usiidd la counter-model for
A wheneverA is not intuitionistically valid.

The paper is structured as follows: in the next section wethice notations and
the preliminary definitions. In Sectidd 3 we descrilig; and we discuss the main
differences with respect to Hudelmaier’s calculuS. In Sectiong¥ andl5 we prove
that 71, is sound and complete and we discuss the computational eaitypbf the
related decision procedure. Finally, in Secfidn 6 we dis¢be performances of the
PITP-3F implementation of/y,;.

2. Notation and preliminaries

We consider the propositional languagéased on a denumerable set of proposi-
tional variables (atomspV, the logical connectives, A, Vv, —, the parenthesig”
and ). We write A € £ to mean thatd is a formula of£. To avoid unessential
parenthesis, we assume thabinds stronger than andV; moreoverA andV bind
stronger than-.

Kripke models are the main tool to semantically charactepiopositional Intu-
itionistic Logic Int, see e.g. (Chagrost al, 1997; Fitting, 1969) for the details. A
Kripke model forL is a structurd = (P, <, p, I}, where(P, <, p) is a finite poset
with minimum elemenp and|F is theforcing relation namely a binary relation on
P x PV satisfying themonotonicity conditiona I+ p anda < g implies3 I p. The
forcing relation is extended to arbitrary formulasas follows:

1) alF ANBiff alF Aanda |k B;

2) alF AV Biff alF Aora - B;

3) alF A — Biff, forevery 5 € P suchthatx < 3, 8 I+ A impliesg I+ B;
4) « I+ = Aiff, for every 5 € P such thaty < 3, 5 IF A does not hold.

We write o ¥ A to mean thatx I A does not hold. It is easy to check that the
monotonicity property holds for arbitrary formulas, ifr, every formulad € L, o I+
Aanda < gimpliesg I A. AformulaA is valid in a Kripke modek = (P, <, p, )

iff p IF A (by monotonicity property, this means that- A for everya € P). Itis
well-known (Chagroet al,, 1997; Fitting, 1969) that propositional Intuitionistiogic
Int coincides with the set of formulas valid in all Kripke models



Downloaded by [University Degli Studi Dell'Insurbria], [Mauro Ferrari] at 01:24 14 April 2012

152 Journal of Applied Non-Classical Logics. Volume 19 — R2009

3. The tableau calculus

The tableau calculugr,; we present in this section, is a refinement of the one
introduced in (Fiorino, 2001; Migliolet al,, 1997). It works onsigned formulas
namely expressions of the kifidA, FA or F. A, whereA € L. Signed formulas have
a natural interpretation in Kripke semantics. Given a KeipkodelK = (P, <, p, IF),
an elementy € P and a signed formul#l, « realizesH in K, and we writel, o> H,
iff:

- H=TAandal A4;

- H=FAanda F A4;

- H=F.Aanda - -A.

K,a ¥ H means thaft, o > H does not hold. Given a sét of signed formulas,
K, o> Siff K, o> H foreveryH € S; we say thatS is realizableif K, o > S for
someK anda. We call thecertainpart of S the set

Se = {TA|TAec S}U{F,A|F.AecS}

We remark that, by the monotonicity properdy, o> .S anda < g imply K, 31> S..

Table 1. The7in¢ calculus

S, T(AA B) S, F(ANA B) S, F (AN B)
——— X TA —— X FA FcA
S, TA,TB S,FA|S FB S.,F.A| S, F.B
S, T(AV B) S,F(AV B) S,F.(AV B)
— TV — X FVv ———— F.V
S, TA|S,TB S, FA,FB S, F.A F.B
S,F(A— B S, Fc.(A— B
Tabled? anfl]3 #FH #
S., TA,FB S,, TA,F.B
S, T(—A) S, F(-A) S, Fe(—A)
R —F~ —F.
S, F.A Se, TA S., TA
whereS, = {TA | TA € S} U{F.A|F.A €S}

The rules of the tableau calculGg,: are shown in Tablesl [-3. In the rules we
write S, H as a shorthand fo¥ U { H}. Every rule applies to a set of signed formulas,
but only acts on the signed formula explicitly indicated in the premise; we call
the major premiseof the rule, whereas we call all the other signed formunésor
premisef the rule.
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Table 2. Rules forT —

S,TA,T(A — B)
S, TA,TB

MP

S, T(A— B)

——— T—certain If S = SC
S,F.A|S,TB

S, T((AAB) — C)
S,T(A — (B — ()

—A

S, T(—-A — B)
T
S.,TA|S,TB

——

S, T((AV B)—C)
S, T(A— q),T(B — q),T(q — C)

T—v With ¢ a new atom

The sets in the consequence are obtained by decomposinmansay the major
premise of the rule and either copying all the minor prem(ses, e.g., the rul&A of
Table[1) or only copying the certain part of the minor premisee, e.g., the rulé —
of Table[1). When the conclusion of a rulecontains two sets, we separate them with
thesplitting symbo| and we callR asplitting rule

Some rules require additional conditions in order to be iapgpl The ruleT —
certain of Table[2 can be applied only § = S.., namely the se$ of minor premises
does not contaifr-signed formulas. The rul&/ P (modus ponensf Table[2, hav-
ing T(A — B) as major premise, requires the presenc&'ef among the minor
premises. We point out that in (Hudelmaier, 1993) this raleeistricted to the case
where A is a propositional variable. Finally, we notice that somkeswf Tableg
and(3 require the introduction of a new atggmamely a propositional variabienot
occurring in the premises of the rule. This expedient goe& tta(Hudelmaier, 1993)
and avoids repetitions of subformulas of the major premisthe conclusion of a
rule. For instance, without the introduction @fthe consequence @ — Vv should
beS, T(A — C), T(B — C), whereC occurs twice, and this double occurrence
prevents the definition of a linear complexity measure os sesigned formulas.

A setS of signed formulas isontradictoryif {TA,FA} C Sor{TA,F.A} C S,
for some formulaA. Clearly, contradictory sets are not realizablepvdof table(or
proof tree) forS is a finite treer with S as root and such that all the children of a
nodeS’ of 7 are the sets in the consequence of a rule applieti.tdf all the leaves
of 7 are contradictory sets, we say thais aclosed proof tabldéor S and we say that
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S is provable in7r,¢. A set of signed formulas$' is consisteniff S is not provable
in Tine. As stated in TheorelJLO of Sectibh B, is acomplete calculuor Int,
namely: for every finite set of signed formul&s .S is consistent if and only i is
realizable. In particular, let us say that a formulds provable in7py iff {FA} is
provable. Sinced € Int if and only if the set{ F A} is not realizable, as a corollary
of the completeness @i, We get:

COROLLARY 1 (). — Alis provable in7y, iff A € Int.

Table 3. Rules forT ——

S, T(A—p)—0)

T——Atom Wherep e PV
Se, TA,Fp,T(p — C) | 5, TC

S, T((A— —-B)— ()
S..TA,TB|S,TC

S, T(A— (XAY))—C)

T——A With ¢ a new atom
Se, TA/Fq, T(X - (Y —q)),T(¢— C)| S, TC

S, T(A—(XVY)) —C)

T——Vv With ¢ a new atom
S.,TA,Fq,T(X — q), T(Y —¢q),T(¢— C)| S, TC

S, T(A—- (X —=Y)) —C)
T
S.,TA,TX,Fq, T(Y — q),T(¢g— C)|S,TC

with ¢ a new atom

Given a setS, in general we can apply t6 more than one rule, according to the
choice of the major premisl € S. Suppose that, after having applied the rBleno
closed proof table fofs is found. If R is an invertible rule, we can conclude th#t
is consistent, otherwise we have to backtrack and chooSeaimother major premise.
Invertible rules off1,¢ can be semantically characterized as foIIENSetR be arule
with premiseS and consequenc® | ... |S,; R isinvertibleiff, forevery1 < k < n,
Si realizable impliesS realizable. Suppose that, after having appliedo S, the
proof search fotS fails. This means that there is a sgt in the consequence at
such thatSy, is consistent. By the completeness®f, S is realizable henceRR
being invertible,S is realizable as well. By the completenessZgf;, we conclude
thatsS is consistent, thus there is no way to build a closed prodété S.

1. The discussion holds for any complete calculudfar.



Downloaded by [University Degli Studi Dell'Insurbria], [Mauro Ferrari] at 01:24 14 April 2012

A tableau calculus for Propositional Intuitionistic Logic155

One can easily check that the rul&s\, FA, TV, FV, F.v, T- of Table[1 and
the rulesM P, T — certain, T — A, T — Vv of Table[2 are invertible. All the other
rules are not invertible, since the sein the premise is reduced t%.. For instance,
let us consider the rulB.A of Table[d. IfS., F. A is realizable, thers., F.(A A B)
is realizable, but we cannot conclude anything about thkzedslity of the signed
formulas inS'\ S..

To conclude this section we discuss the main novelties ofaleulus; in particular
we consider the differences amofig,; and the tableau calculi of (Fiorino, 2001;
Miglioli et al,, 1997) and the sequent calculi introduced in (Hudelmai@®3). For
sequent calculiwe present the rules adopting the standarslation into tableau rules.

First of all we notice that the rules of Tablgs 1 &hd 2 esskyntiaincide with those
described in (Miglioliet al,, 1997), where the sigh'. is introduced to characterize
Intuitionistic negation. The rules of Talle 3 replace thie ru

S, T((A— B)— ()

T——

S.,TA,FB,T(B — C) | S, TC

of (Miglioli et al, 1997), that goes back to (Dyckhoff, 1992) and (Vorob’ev7Qp
(given in a sequent calculus style), and Fiorino’s tkile —— (Fiorino, 2001) shown
at the end of this section. The aim of the rdle —— is to avoid loop-checking
in the decision procedure. On the other hand, the doublergmme of the for-
mula B in the leftmost conclusion o' —— gives rise to deductions that may be
of exponential depth in the length of the formula to be prowsee (Galmichest
al., 1999; Hudelmaier, 1993) for a detailed discussion. In (@locier, 1993) the
problem is solved by introducing, beside the rile——, some rules to treat the
leftmost conclusion off ——, according to the main connective 8f Moreover,
the calculusLG (Hudelmaier, 1993) provides rules to handle the pairs aihtdas
FB,T(B — (), according to the main connective &. The tableau rules corre-
sponding to the rules afG for B = X v Y are:

SSFXVY), T(XVY —CO)
S, T(Y —q),T(¢— C),FX,T(X — q)

Hud—Vq

SSF(XVY), T(XVY — ()
S, T(X —q), T(¢— C),FY,T(Y — q)

Hud—Vo

whereq is a propositional variable not occurring in the premises.rdmark that both
the rules are required to get completeness. Indeed, to awlaof fors, T((A —
X VY) — C) (working on the signed formul@((4 — X VYY) — ()), in LG we
firstly have to apply the rul@ ——:

S, T(A—-XVY)—C)

T——

Se, TAF(XVY), T(XVY - C)| S, TC



Downloaded by [University Degli Studi Dell'Insurbria], [Mauro Ferrari] at 01:24 14 April 2012

156 Journal of Applied Non-Classical Logics. Volume 19 — R2009

At this point we have to non-deterministically choose whiale to apply between
Hud — Vv andHud — Vs. In the former case we get

S.,TA,T(Y —¢q),T(¢ — C),FX,T(X — q) | S, TC
in the latter
Se, TA,T(X — ¢q),T(¢ — C),FY, T(Y —¢q) | S,TC

Obviously, to build up a closed proof table it may be necgsgatry both rules. In
contrast, in7y,¢ only the application of the rul® —— V is required:

S, T(A—-XVY)—C)

T——V

S.,TA,Fq, T(X — q),T(Y — q),T(¢ — C) | S, TC

Hence our rule decreases the non-determinism in prootisear

Now, let us consider the rule dfG forthe caseB = X A Y
SSF(XAY), T(XANY —C)

Hud—AN
SSFX,T(X - (Y —-0C))|S,FY, T(Y - (X - ())

and let us consider the tableau
S, T(A—XAY)—C)
T
Se, TAF(XAY), T(XAY —C)|S,TC

——

Hud—AN

S, TA/FX,T(X - (Y = C) | S;,,TAFY, T(Y - (X —-C)) | S, TC
In our calculus, for the same initial premise we get:

S, T(A—XAY)—C)

T——A

SC,TA,F(],T(X - (Y - Q)>aT(q - C) | S, TC

wheregq is a new propositional variable. Our rule decreases thehwadithe proof
tree. Indeed, to decide the realizability of the initial, sgith our calculusZy, two
sets have to be decided, instead of three sets A&in

Finally, let us consider théG rule for the caséd3 = X — Y
SFX —Y),T(X —>Y)—0)

Hud——
S., TX,FY,T(Y — C)

and let us consider the tableau
S, T(A— (X —=Y)) —C)
T——
S, TA/F( X —-Y), T(X—-Y)—0C)|S,TC

Hud——
S.,TA, TX,FY,T(Y — C) | S, TC



Downloaded by [University Degli Studi Dell'Insurbria], [Mauro Ferrari] at 01:24 14 April 2012

A tableau calculus for Propositional Intuitionistic Logic157

In our calculus the corresponding tableau is

S,T((A — (X — Y)) — (O)

T—>——

Se, TA,TX,Fq, T(Y — ¢),T(¢ — C) | S, TC

with ¢ a new propositional variable. Hence, while we apply one imvertible rule,

in the previous proof tree two non-invertible rules are iszph A deeper discussion
about the proof-search strategy is given after the prodi®@iGompleteness Theorem
in Sectiorl’®.

We emphasize that the rules of Table 3 are a refinement of khe ru

S, T((A— B)— ()

Fio—— with ¢ a new atom
Se,TA,Fq,T(B — q), T(¢ — C) | S,TC

introduced in (Fiorino, 2001). The calculus (Fiorino, 2D@lves rise to proof trees
having depth bounded Bn, wheren is the length of the formula to be proved, and
this yields anO(n log n)-space decision procedure fhit. Rules of Tabl€13 are ob-
tained by specializing rulé'io —— according to the main connective Bf As we
discuss in Sectiddl 5, the new rules allow us to get proof theedg deptt8n at most
(see Theorem11).

4. Soundness

In order to prove the soundnesshf,;, we prove that its rules preserve realizabil-
ity, namely: if the set in the premise of a ruleis realizable, then one of the sets in
the consequence @t is realizable as well.

The following lemma is helpful to treat the rules of Table 3.
LEMMA 2. — LetK = (P, <, p,IF) be a Kripke model and let € P such that

K,a>ST(A—B)—C) and K,ap TC

LetV be the set of propositional variables occurringdu {T((A — B) — C)} and
let ¢ be a propositional variable such that¢ V. Then, there exists a Kripke model
K' = (P, <, p,IF)anda’ € P’ such that

K' o/ > 8., TAFq, T(B— q),T(q — B),T(qg — C)

PROOF3. — LetK' = (P, <, p,I') be the Kripke model based on the po&etp, <
) with I+ defined as follows:

- if p € Vthen, foreveryy € P, v I piff v I+ p;
- foreveryy € P,y I ¢iff v I+ B;
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- if p €V U{q} then, for everyy € P, v ¥ p.

It is easy to check thdt’ satisfies the monotonicity condition. Moreover,Hf is
a formula whose propositional variables belongit@and~y € P, then~ I+ H iff

~ IF H. In particular, by the assumptionsl- (A — B) — C anda ¥ C, we get
alF (A — B) — Canda ¥ C. This impliesa ¥/ A — B, therefore there exists
B € Psuchthaty < 3, 8 IH Aandg ¥ B. We get:

1) B3I B — qandg IF ¢ — B (by definition ofl- ong);
2) ¥ q (by (1) and by the fact that ¥/ B);
3) BIF g — C(indeedx ' (A — B) — C,a < fandg I+ ¢ — B).

Summarizing, we conclude
K'. 3t S, TA,Fq, T(B — q), T(q¢ — B), T(q — O)

which proves the assertion. |
Now we prove that the rules @f,,¢ preserve the realizability.

LEMMA 4. — Let S be a set of signed formulas, 1& = (P, <, p,IF) be a Kripke
model and letn € P such thatK,« > S, and letR be a rule of71,,¢ applicable
to S. Then, there exist a s&t’ in the consequence of the rulg, a Kripke model
K' = (P, < p,IF)yanda’ € P’ such thatk’, o’ > S'.

PROOF5. — By case distinction ok. We only discuss the most relevant cases of
Table$? anfil3.

RuleT — certain: letus assumé’, o > S., T(A — B). By finiteness ofP, there
is ¢ € P such thatx < ¢ and¢ is a maximal element oK (that is, for every) € P,
¢ < ¢ implies¢ = ). By the monotonicity propertyi, ¢ > S., T(A — B). If
¢ |- B, we immediately gei<, ¢ > S., T B; otherwisep ¥ A and, beingp a maximal
element, this implies IF - A, hencek, ¢ > S., F. A.

RuleT —— Atom: if K,a> S, T(4A — p) — C), thena IF (A — p) —

C, thusa IF Cora ¥ A — p. In the first case, we immediately deduce that
K,a > S, TC. Inthe second case, there exigtsc P such thate < 3, 5 IF A
andj ¥ p. Moreover, since? I (A — p) — C, we also haves IF p — C. We
conclude thats, > S., TA, Fp, T(p — C).

RuleT —— Vv:if K,a> S, T((A— (XVY)) - C), thenalF (A — (XVY)) —
C. If a I+ C, we immediately gef(, o > S, TC. Otherwise, by Lemmia 2 there exist
a Kripke modelK’ = (P',<’, p,IF'), o’ € P’ andgq such that

K o' >S8.,TAFq,T(XVY)—q),T(qg— (XVY)),T(qg—C).

Sinced’ I (X VY) — ¢ implies bothe! I X — ganddo’ IH' Y — ¢, we get
K',o'> 8., TA,Fq, T(X —q), T(Y — q),T(qg = O).
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RuleT -——:if K,a> S, T(A - (X - Y)) — C), thenalF (4 - (X —
Y)) — C. If a IF C, we immediately gefX, o > S, TC. Otherwise, by Lemmil 2
there exist a Kripke moddt’ = (P', <', p’,I), o/ € P’ andq such that

K' o'>S5.,TAFqT(X -Y)—¢q),T(¢g— (X —Y)),T(¢g—C).

Sinced’ IH (X — Y) — gandd’ ¥ ¢, there existg?’ € P’ such that' <’ 7,
G X andg’ ¥'Y. Sincef’ IH ¢ — (X — Y), we have’’ ¥/ q. Moreover, since
B'IH (X —Y) — g, itholds thats’ IF' Y — ¢. Summarizing, we get

K',f' > S, TA,Fq, TX,T(Y — q), T(g — C)
and this concludes the proof.

The other cases are similar. In particular, in theses casesonsequence of a rule
is realized in the same modgl (or even at the same element [ |

As a consequence we get:

THEOREM6 (SOUNDNESYS. — Let.S be a set of signed formulas. 3fis realizable,
thenS is consistent.

PROOF 7. — Suppose that is not consistent and letbe a closed proof table fdf.
If, by absurd,S is realizable, by the previous lemma there must be adgaif 7 such
thatS; is realizable, a contradiction (recall th&j is a contradictory set). Thus,is
not realizable, and this concludes the proof. |

5. Completeness

To prove the completeness Bf,; we introduce the complexity measuteg on
formulas:

- if pis a propositional variable, theleg(p) = 0;
- deg(A A B) = deg(A) + deg(B) + 2;

- deg(AV B) = deg(A) + deg(B) + 3;

- deg(A — B) = deg(A) + deg(B) + 1;

- deg(—A) = deg(A) + 1.

We extend the functiodeg to signed formulas as follows:

- For asigned formul& A (S € {T,F,F.}), deg(SA) = deg(A).
- For afinite setS of signed formulasdeg(S) = ;. g deg(H).

The definition ofdeg is motivated by the fact that, 8’ is a set in the consequence of
a rule of 71, applied to a finite set of signed formul&sthendeg(S’) < deg(S).

To describe our proof search strategy, we introduce thenatirule related toS
and H, whereS is a set of signed formulas artd a signed formula.

- If H has not the fornT(A — B), the rule related t& and H is the only rule
of Table[1 having? as major premise anfl\ { H} as set of minor premises.
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- If H=T(A — B)andTA € S, the rule related t& and H is the ruleM P of
Table[2 havingd as major premise anfl \ { H# } as set of minor premises.

-IfH=T(A — B), TA ¢ SandS = S, the rule related t& and H is the
ruleT — certain of Table[2 havingd as major premise anfl\ { H } as set of minor
premises.

-IfH=T(A— B), TA ¢ SandS # S, the rule related t& and H is one
of the rules of Tablg]2 arid 3 havidg as major premise anfl \ { #} as set of minor
premises (there exists only one applicable rule).

Notice that givenS and H there exists at most one rule of 71, related toS and
H. If Ris a splitting rule, we denote witR g ;; andR% ;; the leftmost set and the
rightmost set in the consequencelfespectively; for non-splitting rules we denote
with Ry ;; the only set in the consequence Bf(R%  is not defined). The main
lemma to prove the completenessif; is:

LEMMA 8. — Let S be a finite set of signed formulas. dfis consistent, thel§' is
realizable.

PrROOF9. — By complete induction odeg(.S). Assume that the assertion holds for
all S” such thatleg(S’) < deg(S); we prove it forS. Let S, C S be the set of signed
formulasH of S satisfying one of the following conditions:

() H=T(AANB)orH=F(AANB)orH =T(AVvV B)orH =F(AV B) or
H=F.(AvB)orH =T(-A)orH = T((AAB) — C)orH = T((AVvB) — C).
(i) H=T(A— B)and(TAec SorS =5,).
(i) H=T(+-A—-C)orH=T(A—p) — C)orH =T((A— —-B) = C)
orH=T(A— (XAY)) -C)orH=T(A— (XVY)) - C)orH =
T((A— (X —»Y)) — C), andR% y is consistent.

Firstly, let us assume thay # 0 and letH be any formula ofSy. SinceS is
consistent, there exists € {1,2} such that the set’ = R’gﬂ is consistent; in
particular, if H is one of the signed formulas in case (iii), we taKe= R§7H, where
we recall thatR% ,; = (S \ {H}) U {TC}. SinceS’ is consistent andeg(5’) <
deg(S), by induction hypothesis there exists a Kripke mofiel= (P, <, p,IFF) such
thatK, pr> S’. Itis easy to check that’, p > .S, and this proves the assertion.

Secondly, let us assume thsg = 0. LetS; C S be the set of formula&l € S
satisfying one of the following conditions:

1) H=TporH =F.por H= Fp, with p a propositional variable.
2) H = T(p — B), with p a propositional variable arilp ¢ S.

Let Sy C S be the set of formula#l € S satisfying one of the following conditions:

3) H=F.(AAB)orH =F(A— B)orH =F.(A— B)orH =F(—A) or
H =F.(-A).
4) H=T(-A— C)orH = T((A — Z) — C), andRj  is consistent.

SinceS is consistent and, is empty, we haves; U So = S. If Sy = (), then
S = S; can be realized in the Kripke mod&l = (P, <, p,I) whereP = {p} and,
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for every propositional variablg, p I+ p iff Tp € S (note thatK can be seen as
a classical model). Otherwis® = ). Let us assumé&s = {Hy,..., H,}. By the
choice ofSs, foreveryj € {1,...,n}thereisk € {1,2} such that the séf; = R’ngj

is consistent (if; # F.(AA B), we takek = 1). Sincedeg(T;) < deg(S) andT} is
consistent, by induction hypothesis there exists a Kripkd@hi'; = (P;, <;, p;, I-;)
such thati{;, p; > T};. Without loss of generality, we assume that thés are pairwise
disjoint. We build the Kripke modeK = (P, <, p,I) wherep is a new element

(p & U1<j<n P;) and the immediate successorsoéire the elements,, ..., py;
formally:
Pp= U B uip <= {J <5 ullpa) | ae P}
1<j<n 1<j<n

Finally, for everya € P and every propositional variabje « I p iff one of the
following conditions holds:

- thereisj € {1,...,n} such thatr € P; anda IF; p;
-a=pandTpc S.

One can easily prove that satisfies the monotonicity condition. Moreover, for every
a € P; and every formuld?, o IF H iff o I-; H; in particular K, p; > T} for every
1<j<n.

We prove thati, p > H for everyH € S (recall thatS = S; U Ss). The proof
bases on a case distinction on the conditions (1)—(4).

If H = Tp, by definitionp IF p. If H = Fp then, by consistency of, Tp ¢ S,
hencep ¥ p. If H = F¢p, thenF.p € T for everyl < j <n (indeedF.p € S. and
S. C Tj). It follows thatp; |- —p for everyl < j < n. Moreover, by consistency of
S, Tp ¢ S. We conclude I —p.

Let H = T(p — B) and leta € P such thata I+ p. SinceTp ¢ S (by
Condition (2) in the definition 0f;), we havep ¥ p, hencex # p. Leti be such that
«a € P;. Sincep; I p — B andp; < «, it follows thata I+ B.

Let H = F(A — B). There exists am such that’,,, = (S.\{H})U{TA,FB}
andK, p,, > T,,. It follows thatp,, I A andp,, ¥ B, hencep ¥ A — B.

LetH = T((A — (X AY)) — C). There existsn such that
T = (Sc\ {H}) U {TA Fp, T(X — (Y —p)), T(p— C)}

andX, p,, > Ty,,. Leta € PsuchthatvlF A — (X AY). Sincep < pp, pm IF A
andp,, ¥ X AY (otherwise,p,, IF p would follow), o # p. Letj be such that
a € P;. If j = m, we havep,, < «a, which impliesa IF C. Letj # m. In this

case H € T}. By the fact thatf€, p; > T, H € T andp; < «, we geta |- C. The
remaining cases are similar. [ |

By the previous lemma and the Soundness Theorem (Theddrewe6ypnclude
that 71, is a complete calculus fdmt:
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THEOREM 10 (COMPLETENESY. — Let .S be a finite set of signed formulas. Then,
S is consistent if and only i’ is realizable.

The proof of Lemmd8 implicitly defines a decision procedwre Ifituitionistic
Logic; indeed, starting from a finite sét of signed formulas, either a closed proof
table or a counter-model f&f can be built. In the following, we sketch the strategy
we apply in the decision procedure.

In our decision procedure, cases (i)—(ii) in the definitidnSe correspond to the
application of invertible rules. As usual, applying inviele rules before non-invertible
ones reduces the search-space. Accordingly, if theresei{ist S satisfying one of
cases (i)—(ii), we firstly apply the rule related $oand H; if the search for a closed
proof table fails, we conclude thatis not provable (as discussed in Secfidn 3, there
is no need to backtrack and try the application of another twlS). Otherwise, let
us assume that no formuld € S satisfies cases (i)—(ii) and that there existdaga-
T(A — B)in S. Under that assumption, we try to build first a proof table tfoe
“invertible consequenceR? ,, = (S \ {H}) U {TC}; if such a proof does not exist,
we get a counter-model fa# and hences is not provable. On the other hand, if we
find a proof foer;’H but 72157H is not provable, one of the cases (3) and (4) in the
definition of Sy holds: neither a proof table nor any counter model can betagisd.
We have to try the application of another rule¥decause the counter model f6r
relies on the counter model (‘R}gﬂj, for all H; € S, as a whole. In all the other
cases, either non-invertible rules are applicablé tw no rules at all.

Finally, we remark that a proof table for a s¢hot containingf’-signed formulas
is a classical derivation. Indeed, in the proof we can alvapy one of the rules of
Table[d or the ruled/ P andT — certain of Table[2, which are classical rules and
do not generat&-signed formulas.

We conclude this section discussing the complexity of oloutas. Given a for-
mula A, |A| denotes the number symbols occurringdnsimilarly, if S is a set of
signed formulas,S| is the number of symbols occurring

THEOREM11 (). —Let.S be afinite set of signed formulas. Then, the depth of every
proof table forS is at mosB3|S]|.

PROOF12. — Let us consider the complexity measdeg defined at the beginning
of Sectiorb. By induction hypothesis on the structure ofranfda A, one can prove
thatdeg(A4) < 3]A|. This implies thatdeg(S) < 3|S|. By inspecting the rules of
the calculus and how they are used to build proof tablesllavic that the complexity
w.r.t. deg of every set of signed formulas in a proof tree is higher tHetsammediate
successors, and this proves the proposition. |

An inspection of the rules ofy, yields that the increase of symbols in any con-
sequence compared to its premise is bounded by a constarg.cAssequence, see
(Hudelmaier, 1993), a depth-first decision procedurefoequires at mosd(n logn)
bits to store the required data structures.
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6. Experimental results

We devote this section to discuss the improvements obtaigeidnplementing
rules of Tabld B. We have implemented the new rules by matulifgiTP (Avellone
et al, 2008). No further modification has been done. We eatp-3F the new ver-
sion of the theorem prov&rWwe remark thap TP implements the tableau calculus of
(Avellone et al, 2004; Fiorino, 2001) and it is at present the fastest aviltheo-
rem prover for propositional Intuitionistic Logic on therfoulas of the ILTP library,
see (Avelloneet al,, 2008) for a detailed comparison with other provers.

Experiments have been carried out along the lines of (Retths, 2007) and the
results are summarized in Tab@dB-6n particular, Tablé}4 and Tablé 5 refer to
simulations over randomly generated formulas with a timerabof 10 minutes, the
former considering formulas with 2000 connectives and 18@ables, the latter re-
ferring to formulas with 5000 connectives and 100 variabledble® summarizes the
results obtained with the same formulas considered in TEbléth the time bound
extended to 50 minutes. In every entry we indicate the nurab&rmulas decided
in the specified time range and between brackets we put thititoe required to de-
cide them; %(n.a.)” in the last column means thiaformulas have not been decided
within the indicated time bound. The last row indicates tAmgn number of formulas
of PITP-3F overpPITP.

Table 4. Randomly generated formulas with00 connectives an@l00 variables, time
limit 10 minutes

0-1s 1-10s 10-100s  100-600Fs >600s
PITP 1905(20s) 20(71s) 14(508s) 11(2576s38(n.a.)
PITP-3F 1910(21s) 19(67s) 13(368s) 12(2901s34(n.a.)
Total improvement +5 +4 +3 +4

A deeper analysis of the execution times on randomly geeé@rfarmulas with 2000
connectives and 100 variables shows thatr requires 3175 seconds to solve the
1950 formulas decided in 10 minutes. To decide these 19%0uias,PITP-3F takes
1913 seconds: this gives an improvement of about 40%. If wsider also the four
formulas decided byi1TP-3F and not decided byiTpin 10 minutes, we have that
PITP-3F requires 3357 seconds, whergaspP requires 6876 seconds with an advan-
tage of about 51%. We run also STRIP on the same formulasnBthie experiments
we observed that on the first 782 formulas, STRIP took morne fleminutes on 341
of them.

As for Table[B, if we consider the formulas decided by both/pre in 10 minutes
we get thaPI1TP-3F requires 3093 seconds wheregasP requires 4651 seconds, with

2. Available ahttp://www.dimequant .unimib.it/“guidofiorino/pitp.jsp
3. Experiments have been carried out on a 3.00GHz Intel Xédd ébmputer with 2MB cache
size and 2GB RAM.
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Table 5. Randomly generated formulas with00 connectives an@l00 variables, time
limit 10 minutes

0-1s 1-10s 10-100s  100-600s >600s
PITP 1810(43s) 41(142s) 22(844s) 14(3622<)13(n.a.)
PITP-3F 1810(42s) 44(140s) 22(678s) 23(5904<)01(n.a.)
Total improvement 0 +3 +3 +12

a time reduction of about 34%. If we also consider the twebrenilas decided by
PITP-3F and not decided bpiTPin 10 minutes, we have that TP-3F requires 6765
seconds, whereas TP requires 45320 seconds and the improvement is about 85%.
If we extend the time bound to 50 minutes (Table 6) we see RiTet-3F requires
16950 seconds wherers prequires 30156 seconds, with an advantage of about 44%.
Finally, if we also consider the seven formulas decideé oy-3F and not decided by
PITPin 50 minutes we have 24893 seconds vs. 128349 seconds wiitipaovement

of about 80%.

Table 6. Randomly generated formulas with00 connectives an@l00 variables, time
limit 50 minutes

0-1s 1-10s 10-100s  100-3000s>3000s
PITP 1810(43s) 41(142s) 22(844s) 32(2912795(n.a.)
PITP-3F 1810(42s) 44(140s) 22(678s) 36(2403298(n.a.)
Total improvement 0 +3 +3 +7

As another experiment we run both provers on 2000 randonmgigeed formulas
containing 750 connectives and 50 variables without timnétlip1TP-3F solved all the
formulas in 77848 seconds wheregasp took 166573 seconds.

To conclude this discussion, we remark that we have not tepexperiments over
the formulas in ILTP Library (Rathst al., 2007). On these formulasTpr-3F weakly
improvesPITP, but this essentially depends on implementation featimdsgd, on the
formulas of ILTP Library the significant features of our ales are not exploited since
they contains only “trivial” cases of nested implicatiomslaonly theT —— Atom
rule is required.

In Table[T we report the results related to some formulas ©PIlibrary modi-
fied by substituting every propositional varialleoccurring in them with the formula
(r; — s;) — t;. By this substitution we obtain formulas with nested imations.
The execution times show thatTpr-3F is faster tharpiTp; in particular, on the fam-
ily formulas obtained from SYJ207+1 and SYJ211+1 the rugmime of PITP grows
faster tharpiTP-3F. This is a further clue that the rules introduced in this pape
prove the performances. For the sake of completeness weuslsaRIP. The results
show thatsTRrIP outperformsPiTP-3F on two families of formulas. We remark that
the growing ratio on the family SYJ203 is approximately féor both provers. On
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the other familie®1TP-3F is faster thars TRIP. We also remark that on such a families
PITP-3F has a lower growing ratio thesmRIP.

Table 7. pPiTPandPiTP-3F compared on formulas of ILTP library modified by substi-
tuting p; with (r; — s;) — t; (times in seconds)

Formula| PITP PITP-3F | STRIP Formula| PITP PITP-3F | STRIP
SYJ SYJ

201.3 0.12 0.11 0 209+1.6| 0.18 0.13 9.56
201.4 1.46 1.17 0.004 209+1.7| 1.48 1.02 254

201.5 1592 | 12.21 0.008 209+1.8| 13.99 | 9.28 > 600
201.6 165.78 | 126.23 0.02 209+1.9| 141.95| 92.99 > 600

203.8 0.290 | 0.210 0.056 211+1.6| 0.66 0.04 43
203.9 1.06 0.8 0.2 211+1.7| 2.7 0.05 > 600
203.10 | 4.12 3.02 0.85 211+1.8| 11.24 | 0.12 > 600

203.11 | 1595 | 11.71 3.10 211+1.9| 46.22 | 0.28 > 600

207+1.2| 0.02 0.001 > 600
207+1.3| 0.78 0.170 > 600
207+1.4| 151.83| 8.5 > 600

7. Conclusions

This paper describes the tableau calculus for propositioraitionistic Logic
Tt On the one handy,, has the same computational properties of the calculus
LG presented in paper (Hudelmaier, 1993), on the other Handhas some features
that LG lacks and deserves to be considered. In particular, botrtied search-space
and the size of the proof-tree @f,; are narrower thail.G and this can reduce the
running time. 71, is also an improvement of the calculus of (Avellogteal., 2004)
on whichpITPis based. At presemiTP is the fastest prover among those of ILTP li-
brary. Our comparisons betweermrp andrPITP-3F, that is the implementation eiTp
in which the new rules are inserted, confirm that in the pca,,; gives advantages.
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