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Abstract. Justification logics are epistemic logics that explicitly include
justifications for the agents’ knowledge. We develop a multi-agent jus-
tification logic with evidence terms for individual agents as well as for
common knowledge. We define a Kripke-style semantics that is similar to
Fitting’s semantics for the Logic of Proofs LP. We show the soundness,
completeness, and finite model property of our multi-agent justification
logic with respect to this Kripke-style semantics. We demonstrate that
our logic is a conservative extension of Yavorskaya’s minimal bimodal ex-
plicit evidence logic, which is a two-agent version of LP. We discuss the
relationship of our logic to the multi-agent modal logic S4 with common
knowledge. Finally, we give a brief analysis of the coordinated attack
problem in the newly developed language of our logic.

1 Introduction

Justification logics [Art08] are epistemic logics that explicitly include justifica-
tions for the agents’ knowledge. The first logic of this kind, the Logic of Proofs LP,
was developed by Artemov [Art95, Art01] to provide the modal logic S4 with
provability semantics. The language of justification logics has also been used to
create a new approach to the logical omniscience problem [AK09] and to study
self-referential proofs [Kuz10].

Instead of statements A is known, denoted �A, justification logics reason
about justifications for knowledge by using the construct [t]A to formalize state-
ments t is a justification for A, where evidence term t can be viewed as an
informal justification or a formal mathematical proof depending on the appli-
cation. Evidence terms are built by means of operations that correspond to the
axioms of S4, as is illustrated in Fig. 1.

Artemov [Art01] has shown that the Logic of Proofs LP is an explicit coun-
terpart of the modal logic S4 in the following formal sense: each theorem of LP
becomes a theorem of S4 if all terms are replaced with the modality �; and,
vice versa, each theorem of S4 can be transformed into a theorem of LP if occur-
rences of modality are replaced with suitable evidence terms. The latter process
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S4 axioms LP axioms
�(A→ B)→ (�A→ �B) [t](A→ B)→ ([s]A→ [t · s]B) (application)
�A→ A [t]A→ A (reflexivity)
�A→ ��A [t]A→ [!t][t]A (inspection)

[t]A ∨ [s]A→ [t + s]A (sum)

Fig. 1. Axioms of S4 and LP

is called realization, and the statement of correspondence is called a realization
theorem. Note that the operation + introduced by the sum axiom in Fig. 1
does not have a modal analog, but it is an essential part of the proof of the
realization theorem in [Art01]. Explicit counterparts for many normal modal
logics between K and S5 have been developed (see a recent survey in [Art08] and
a uniform proof of realization theorems for all single-agent justification logics
forthcoming in [BGK10]).

The notion of common knowledge is essential in the area of multi-agent sys-
tems, where coordination among agents is a central issue. The standard text-
books [FHMV95, MvdH95] provide excellent introductions to epistemic logics
in general and common knowledge in particular. Informally, common knowledge
of A is defined as the infinitary conjunction everybody knows A and everybody
knows that everybody knows A and so on. This is equivalent to saying that com-
mon knowledge of A is the greatest fixed point of

λX.(everybody knows A and everybody knows X) . (1)

Artemov [Art06] has created an explicit counterpart of McCarthy’s any fool
knows common knowledge modality [MSHI78], where common knowledge of A
is defined as an arbitrary fixed point of (1). The relationship between the tradi-
tional common knowledge from [FHMV95, MvdH95] and McCarthy’s version is
studied in [Ant07].

In this paper, we present a multi-agent justification logic with evidence terms
for individual agents as well as for common knowledge, with the intention to
provide an explicit counterpart of the h-agent modal logic of traditional common
knowledge S4Ch.

Multi-agent justification logics with evidence terms for each agent have been
considered in [Yav08, Ren09a, Art10], although common knowledge is not present
in any of them. Artemov’s interest [Art10] lies mostly in exploring a case of
two agents with unequal epistemic powers, e.g., Artemov’s Observer has suffi-
cient evidence to reproduce his Object Agent’s thinking, but not vice versa. Ya-
vorskaya [Yav08] studies various operations of evidence transfer between agents.
Among their systems, Yavorskaya’s minimal1 bimodal explicit evidence logic,
which is an explicit counterpart of S42, is the closest to our system. We will
show that in the case of two agents our system is its conservative extension.
Finally, Renne’s system [Ren09a] combines features of modal and dynamic epis-
temic logics, and hence cannot be directly compared to our system.

1 Minimality here is understood in the sense of the minimal transfer of evidence.
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An epistemic semantics for LP, F-models, was created by Fitting in [Fit05] by
augmenting Kripke models with an evidence function that specifies which formu-
lae are evidenced by a term at a given world. It is easily extended to the whole
family of single-agent justification logics (for details, see [Art08]). In [Art06] Arte-
mov extends F-models to justification terms for McCarthy’s common knowledge
modality in the presence of several ordinary modalities, creating the most general
type of epistemic models, sometimes called AF-models, where common evidence
terms are given their own accessibility relation not directly dependent on the
accessibility relations for individual modalities. Yavorskaya in [Yav08] proves
a stronger completeness theorem with respect to singleton F-models, indepen-
dently introduced by Mkrtychev [Mkr97] and now known as M-models, where
the role of the accessibility relation is completely taken over by the evidence
function.

The paper is organized as follows. In Sect. 2, we introduce the language
and give the axiomatization of a family of multi-agent justification logics with
common knowledge. In Sect. 3, we prove their basic properties including the in-
ternalization property, which is characteristic of all justification logics. In Sect. 4,
we give a Fitting-style semantics similar to AF-models and prove soundness and
completeness with respect to this semantics as well as with respect to singleton
models, thereby demonstrating the finite model property. In Sect. 5, we show
that for the two-agent case, our logic is a conservative extension of Yavorskaya’s
minimal bimodal explicit evidence logic. In Sect. 6, we show how our logic is
related to the modal logic of traditional common knowledge and discuss the
problem of realization. Finally, in Sect. 7, we provide an analysis of the coordi-
nated attack problem in our logic.

2 Syntax

To create an explicit counterpart of the modal logic of common knowledge S4Ch,
we use its axiomatization via the induction axiom from [MvdH95] rather than
via the induction rule to facilitate the proof of the internalization property for
the resulting justification logic. We supply each agent with its own copy of terms
from the Logic of Proofs, while terms for common and mutual knowledge employ
additional operations. As motivated in [BKS09], a proof of CA can be thought of
as an infinite list of proofs of the conjuncts EmA in the representation of common
knowledge through an infinite conjunction. To generate a finite representation
of this infinite list, we use an explicit counterpart of the induction axiom

A ∧ [t]C(A→ [s]EA)→ [ind(t, s)]CA

with a binary operation ind(·, ·). To access the elements of the list, explicit coun-
terparts of the co-closure axiom provide evidence terms that can be seen as
splitting the infinite list into its head and tail,

[t]CA→ [ccl1(t)]EA , [t]CA→ [ccl2(t)]E [t]CA ,
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by means of two unary co-closure operations ccl1(·) and ccl2(·). Evidence terms
for mutual knowledge are represented as tuples of the individual agents’ evidence
terms with the standard operation of tupling and with h unary projections.
While only two of the three operations on LP terms are adopted for common
knowledge evidence and none for mutual knowledge evidence, it will be shown in
Sect. 3 that most remaining operations are definable with the notable exception
of inspection for mutual knowledge.

We consider a system of h agents. Throughout the paper, i always denotes an
element of {1, . . . , h}, ∗ always denotes an element of {1, . . . , h,C}, and ~ always
denotes an element of {1, . . . , h,E,C}.

Let Cons~ := {c~1 , c
~
2 , . . . } and Var~ := {x~1 , x

~
2 , . . . } be countable sets of

proof constants and proof variables respectively for each ~. The sets Tm1, . . . ,
Tmh, TmE, and TmC of evidence terms for individual agents and for mutual and
common knowledge respectively are inductively defined as follows:

1. Cons~ ⊆ Tm~;

2. Var~ ⊆ Tm~;

3. !it ∈ Tmi for any t ∈ Tmi;

4. t+∗ s ∈ Tm∗ and t ·∗ s ∈ Tm∗ for any t, s ∈ Tm∗;

5. 〈t1, . . . , th〉 ∈ TmE for any t1 ∈ Tm1, . . . , th ∈ Tmh;

6. πit ∈ Tmi for any t ∈ TmE;

7. ccl1(t) ∈ TmE and ccl2(t) ∈ TmE for any t ∈ TmC;

8. ind(t, s) ∈ TmC for any t ∈ TmC and any s ∈ TmE.

Tm := Tm1 ∪ · · · ∪ Tmh ∪ TmE ∪ TmC denotes the set of all evidence terms.
The indices of the operations !, +, and · will usually be omitted if they can be
inferred from the context.

Let Prop := {P1, P2, . . . } be a countable set of propositional variables. For-
mulae are denoted by A, B, C, etc. and defined by the following grammar

A ::= Pj | ¬A | (A ∧A) | (A ∨A) | (A→ A) | [t]~A ,

where t ∈ Tm~. The set of all formulae is denoted by FmLPC
h
. We adopt the

following convention: whenever a formula [t]~A is used, it is assumed to be well-
formed, i.e., it is implicitly assumed that term t ∈ Tm~. This enables us to omit
the explicit typification of terms.

Axioms of LPC
h:

1. all propositional tautologies

2. [t]∗(A→ B)→ ([s]∗A→ [t · s]∗B) (application)

3. [t]∗A→ [t+ s]∗A, [s]∗A→ [t+ s]∗A (sum)

4. [t]iA→ A (reflexivity)

5. [t]iA→ [!t]i [t]iA (inspection)

6. [t1]1A ∧ · · · ∧ [th]hA→ [〈t1, . . . , th〉]EA (tupling)

7. [t]EA→ [πit]iA (projection)

8. [t]CA→ [ccl1(t)]EA, [t]CA→ [ccl2(t)]E [t]CA (co-closure)

9. A ∧ [t]C(A→ [s]EA)→ [ind(t, s)]CA (induction)
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A constant specification CS is any subset

CS ⊆
⋃

~∈{1,...,h,E,C}

{
[c]~A : c ∈ Cons~ and A is an axiom of LPC

h

}
.

A constant specification CS is called C-axiomatically appropriate if for each
axiom A, there is a proof constant c ∈ ConsC such that [c]CA ∈ CS. A constant
specification CS is called pure, if CS ⊆ {[c]~A : c ∈ Cons~ and A is an axiom}
for some fixed ~, i.e., if for all [c]~A ∈ CS, the constants c are of the same type.

Let CS be a constant specification. The deductive system LPC
h(CS) is the

Hilbert system given by the axioms of LPC
h above and rules modus ponens and

axiom necessitation:

A A→ B

B
,

[c]~A
, where [c]~A ∈ CS.

By LPC
h we denote the system LPC

h(CS) with

CS =
{

[c]CA : c ∈ ConsC and A is an axiom of LPC
h

}
. (2)

For an arbitrary CS, we write ∆ `CS A to state that A is derivable from ∆
in LPC

h(CS) and omit the mention of CS when working with the constant speci-
fication from (2) by writing ∆ ` A. We use ∆,A to mean ∆ ∪ {A}.

3 Basic Properties

In this section, we show that our logic possesses the standard properties expected
of any justification logic. In addition, we show that the operations on terms in-
troduced in the previous section are sufficient to express the operations of sum
and application for mutual knowledge evidence and the operation of inspection
for common knowledge evidence. This is the reason why +E, ·E, and !C are not
primitive connectives in the language. It should be noted that no inspection op-
eration for mutual evidence terms can be defined, which follows from Lemma 27
in Sect. 6 and the fact that EA→ EEA is not a valid modal formula.

We begin with the following observation:

Lemma 1. For any constant specification CS and any formulae A and B:
1. `CS [t]EA→ A for all t ∈ TmE; (E-reflexivity)
2. for any t, s ∈ TmE, there is a term t ·E s ∈ TmE such that
`CS [t]E(A→ B)→ ([s]EA→ [t ·E s]EB); (E-application)

3. for any t, s ∈ TmE, there is a term t+E s ∈ TmE such that
`CS [t]EA→ [t+E s]EA and `CS [s]EA→ [t+E s]EA; (E-sum)

4. for any t ∈ TmC and any i ∈ {1, . . . , h}, there is a term ↓ it ∈ Tmi such that
`CS [t]CA→ [↓ it]iA; (i-conversion)

5. `CS [t]CA→ A for all t ∈ TmC. (C-reflexivity)

Proof. 1. Immediate by the projection and reflexivity axioms.
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2. Set t ·E s := 〈π1t ·1 π1s, . . . , πht ·h πhs〉.
3. Set t+E s := 〈π1t+1 π1s, . . . , πht+h πhs〉.
4. Set ↓ it := πiccl1(t).
5. Immediate by 4. and the reflexivity axiom. ut

Unlike Lemma 1, the next lemma requires that a constant specification CS
be C-axiomatically appropriate.

Lemma 2. Let CS be C-axiomatically appropriate and A be a formula.
1. For any t ∈ TmC, there is a term !Ct ∈ TmC such that
`CS [t]CA→ [!Ct]C [t]CA. (C-inspection)

2. For any t ∈ TmC, there is a term W t ∈ TmC such that
`CS [t]CA→ [W t]C [ccl1(t)]EA. (C-shift)

Proof. 1. Set !Ct := ind(c, ccl2(t)), where [c]C([t]CA→ [ccl2(t)]E [t]CA) ∈ CS.
2. Set W t := c ·C (!Ct), where [c]C([t]CA→ [ccl1(t)]EA) ∈ CS. ut

The following two theorems are standard in justification logics. Their proofs
can be taken almost word for word from [Art01] and are, therefore, omitted here.

Lemma 3 (Deduction Theorem). Let CS be a constant specification and
∆ ∪ {A,B} ⊆ FmLPC

h
. Then ∆,A `CS B if and only if ∆ `CS A→ B.

Lemma 4 (Substitution). For any constant specification CS, any proposi-
tional variable P , any ∆ ∪ {A,B} ⊆ FmLPC

h
, any x ∈ Var~, and any t ∈ Tm~,

if ∆ `CS A, then ∆(x/t, P/B) `CS(x/t,P/B) A(x/t, P/B) ,

where A(x/t, P/B) denotes the formula obtained by simultaneously replacing all
occurrences of x in A with t and all occurrences of P in A with B, accordingly
for ∆(x/t, P/B) and CS(x/t, P/B).

The following lemma states that our logic can internalize its own proofs,
which is an important property of justification logics.

Lemma 5 (C-lifting). Let CS be a pure C-axiomatically appropriate constant
specification. If

[s1]CB1, . . . , [sn]CBn, C1, . . . , Cm `CS A ,

then for each ~, there is a term t~(x1, . . . , xn, y1, . . . , ym) ∈ Tm~ such that

[s1]CB1, . . . , [sn]CBn, [y1]~C1, . . . , [ym]~Cm `CS [t~(s1, . . . , sn, y1, . . . , ym)]~A

for fresh variables y1, . . . , ym ∈ Tm~.

Proof. We proceed by induction on the derivation of A.
If A is an axiom, there is a constant c ∈ TmC such that [c]CA ∈ CS because

CS is C-axiomatically appropriate. Then take

tC := c, ti :=↓ ic, tE := ccl1(c)
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and use axiom necessitation, axiom necessitation and i-conversion, or axiom
necessitation and the co-closure axiom respectively.

For A = [sj ]CBj , 1 ≤ j ≤ n, take

tC :=!Csj , ti :=↓ i!Csj , tE := ccl2(sj)

and use C-inspection, C-inspection and i-conversion, or the co-closure axiom
respectively.

For A = Cj , 1 ≤ j ≤ m, take t~ := yj ∈ Var~ for a fresh variable yj .
For A derived by modus ponens from D → A and D, by induction hypothesis

there are terms r~, s~ ∈ Tm~ such that [r~]~(D → A) and [s~]~D are provable.
Take t~ := r~ ·~ s~ and use ~-application, which is an axiom for ~ = i and for
~ = C or follows from Lemma 1 for ~ = E.

For A = [c]CE ∈ CS derived by axiom necessitation, take

tC :=!Cc, ti :=↓ i!Cc, tE := ccl2(c)

and use C-inspection, C-inspection and i-conversion, or the co-closure axiom
respectively. ut

Corollary 6 (Constructive necessitation). Let CS be a pure C-axiomatical-
ly appropriate constant specification. For any formula A, if `CS A, then for
each ~, there is a ground term t ∈ Tm~ such that `CS [t]~A.

The following two lemmas show that our system LPC
h can internalize versions

of the induction rule used in various axiomatizations of S4Ch (see [BKS09] for a
discussion of several axiomatizations of this kind).

Lemma 7 (Internalized induction rule 1). Let CS be a pure C-axiomatically
appropriate constant specification. For any formula A, if `CS A→ [s]EA, there
is a term t ∈ TmC such that `CS A→ [ind(t, s)]CA.

Proof. By constructive necessitation, there exists a term t ∈ TmC such that
`CS [t]C(A → [s]EA). It remains to use the induction axiom and propositional
reasoning. ut

Lemma 8 (Internalized induction rule 2). Let CS be a pure C-axiomatical-
ly appropriate constant specification. For any formulae A and B, if we have
`CS B → [s]E(A ∧B), then there exist a term t ∈ TmC and a constant c ∈ TmC

such that `CS B → [c · ind(t, s)]CA, where [c]C(A ∧B → A) ∈ CS.

Proof. Assume

`CS B → [s]E(A ∧B) . (3)

From this we immediately get `CS A ∧ B → [s]E(A ∧ B). Thus, by Lemma 7,
there is a t ∈ TmC with

`CS A ∧B → [ind(t, s)]C(A ∧B) . (4)
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Since CS is C-axiomatically appropriate, there is a constant c ∈ TmC such that

`CS [c]C(A ∧B → A) . (5)

Making use of C-application, we find by (4) and (5) that

`CS A ∧B → [c · ind(t, s)]C(A) . (6)

From (3) we get by E-reflexivity that `CS B → A ∧ B. This, together with (6),
finally yields `CS B → [c · ind(t, s)]C(A). ut

4 Soundness and Completeness

Definition 9. An AF-model meeting a constant specification CS is a structure
M = (W,R, E , ν), where (W,R, ν) is a Kripke model for S4h with a set of
possible worlds W 6= ∅, with a function R : {1, . . . , h} → P(W×W ) that assigns
a reflexive and transitive accessibility relation on W to each agent i ∈ {1, . . . , h},
and with a truth valuation ν : Prop→ P(W ). We always write Ri instead of R(i)
and define the accessibility relations for mutual and common knowledge in the
standard way: RE := R1 ∪ · · · ∪Rh and RC :=

⋃∞
n=1(RE)n.

An evidence function E : W × Tm → P
(

FmLPC
h

)
determines the formulae

evidenced by a term at a world. We define E~ := E � (W × Tm~). Note that
whenever A ∈ E~(w, t), it follows that t ∈ Tm~. The evidence function E must
satisfy the following closure conditions: for any worlds w, v ∈W ,

1. E∗(w, t) ⊆ E∗(v, t) whenever (w, v) ∈ R∗; (monotonicity)
2. if [c]~A ∈ CS, then A ∈ E~(w, c); (constant specification)
3. if (A→ B) ∈ E∗(w, t) and A ∈ E∗(w, s), then B ∈ E∗(w, t · s); (application)
4. E∗(w, s) ∪ E∗(w, t) ⊆ E∗(w, s+ t); (sum)
5. if A ∈ Ei(w, t), then [t]iA ∈ Ei(w, !t); (inspection)
6. if A ∈ Ei(w, ti) for all 1 ≤ i ≤ h, then A ∈ EE(w, 〈t1, . . . , th〉); (tupling)
7. if A ∈ EE(w, t), then A ∈ Ei(w, πit); (projection)
8. if A ∈ EC(w, t), then A ∈ EE(w, ccl1(t)) and [t]CA ∈ EE(w, ccl2(t)); (co-closure)
9. if A ∈ EE(w, s) and (A→ [s]EA) ∈ EC(w, t),

then A ∈ EC(w, ind(t, s)). (induction)

When the model is clear from the context, we will directly refer to R1, . . . , Rh,
RE, RC, E1, . . . , Eh, EE, EC, W , and ν.

Definition 10. A ternary relation M, w 
 A for formula A being satisfied at
a world w ∈W in an AF-modelM = (W,R, E , ν) is defined by induction on the
structure of the formula A:
1. M, w 
 P if and only if w ∈ ν(P );
2. 
 behaves classically with respect to the propositional connectives;
3. M, w 
 [t]~A if and only if 1) A ∈ E~(w, t) and 2) M, v 
 A for all v ∈ W

with (w, v) ∈ R~.
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We write M 
 A if M, w 
 A for all w ∈ W . We write 
CS A and say
that formula A is valid with respect to CS if M 
 A for all AF-models M
meeting CS.

Lemma 11 (Soundness). Provable formulae are valid: `CS A implies 
CS A.

Proof. Let M = (W,R, E , ν) be an AF-model meeting CS and let w ∈ W . We
show soundness by induction on the derivation of A. The cases for propositional
tautologies, for the application, sum, reflexivity, and inspection axioms, and for
modus ponens rule are the same as for the single-agent case in [Fit05] and are,
therefore, omitted. We show the remaining five cases:
(tupling) Assume M, w 
 [ti]iA for all 1 ≤ i ≤ h. Then for all 1 ≤ i ≤ h, we

have 1) M, v 
 A for all v ∈ W with (w, v) ∈ Ri and 2) A ∈ Ei(w, ti). So,
by the tupling closure condition, A ∈ EE(w, 〈t1, . . . , th〉) from 2). Since by

definition RE =
⋃h

i=1Ri, it follows from 1) that M, v 
 A for all v ∈ W
with (w, v) ∈ RE. Hence, M, w 
 [〈t1, . . . , th〉]EA.

(projection) Assume M, w 
 [t]EA. Then 1) M, v 
 A for all v ∈ W with
(w, v) ∈ RE and 2) A ∈ EE(w, t). By the projection closure condition, it

follows from 2) that A ∈ Ei(w, πit). In addition, since RE =
⋃h

i=1Ri, we get
M, v 
 A for all v ∈W with (w, v) ∈ Ri by 1). Thus, M, w 
 [πit]iA.

(co-closure) Assume M, w 
 [t]CA. Then 1) M, v 
 A for all v ∈ W with
(w, v) ∈ RC and 2) A ∈ EC(w, t). It follows from 1) that for all v′ ∈ W with
(w, v′) ∈ RE, we haveM, v′ 
 A since RE ⊆ RC; also, due to the monotonic-
ity closure condition, M, v′ 
 [t]CA since RE ◦ RC ⊆ RC. From 2), by the
co-closure closure condition, A ∈ EE(w, ccl1(t)) and [t]CA ∈ EE(w, ccl2(t)).
Hence, M, w 
 [ccl1(t)]EA and M, w 
 [ccl2(t)]E [t]CA.

(induction) AssumeM, w 
 A andM, w 
 [t]C(A→ [s]EA). From the second
assumption and the reflexivity of RC, we get M, w 
 A → [s]EA; thus,
M, w 
 [s]EA by the first assumption. So A ∈ EE(w, s) and, by the second
assumption, A → [s]EA ∈ EC(w, t). By the induction closure condition, we
have A ∈ EC(w, ind(t, s)). To showM, v 
 A for all v ∈W with (w, v) ∈ RC,
we prove that M, v 
 A for all v ∈ W with (w, v) ∈ (RE)n by induction on
the positive integer n.
The base case n = 1 immediately follows from M, w 
 [s]EA.
Induction step. Let (w, v′) ∈ (RE)n and (v′, v) ∈ RE for some v, v′ ∈ W .
By induction hypothesis, M, v′ 
 A. Since M, w 
 [t]C(A→ [s]EA), we get
M, v′ 
 A→ [s]EA. Thus, M, v′ 
 [s]EA, which yields M, v 
 A.
Finally, we conclude that M, w 
 [ind(t, s)]CA.

(axiom necessitation) Let A be an axiom and c be a proof constant such that
[c]~A ∈ CS. Since A is an axiom,M, w 
 A for all w ∈W , as shown above.
Since M is an AF-model meeting CS, we also have A ∈ E~(w, c) for all
w ∈W by the constant specification closure condition. Thus,M, w 
 [c]~A
for all w ∈W . ut

Definition 12. Let CS be a constant specification. A set Φ of formulae is called
CS-consistent if Φ 0CS φ for some formula φ. A set Φ is called maximal CS-
consistent if it is CS-consistent and has no CS-consistent proper extensions.
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Whenever safe, we do not mention the constant specification and only talk about
consistent and maximal consistent sets. It can be easily shown that maximal
consistent sets contain all axioms of LPC

h and are closed under modus ponens.

Definition 13. For a set Φ of formulae, we define

Φ/~ := {A : there is a t ∈ Tm~ such that [t]~A ∈ Φ} .

Definition 14. Let CS be a constant specification. The canonical AF-model
M = (W,R, E , ν) meeting CS is defined as follows:

1. W := {w ⊆ FmLPC
h

: w is a maximal CS-consistent set};
2. Ri := {(w, v) ∈W ×W : w/i ⊆ v};
3. E~(w, t) := {A ∈ FmLPC

h
: [t]~A ∈ w};

4. ν(Pn) := {w ∈W : Pn ∈ w}.

Lemma 15. Let CS be a constant specification. The canonical AF-model meet-
ing CS is an AF-model meeting CS.

Proof. The proof of reflexivity and transitivity of each Ri, as well as the ar-
gument for the constant specification, application, sum, and inspection closure
conditions, is the same as in the single-agent case (see [Fit05]). We show the
remaining five closure conditions:
(tupling) Assume A ∈ Ei(w, ti) for all 1 ≤ i ≤ h. By definition of Ei, we have

[ti]iA ∈ w for all 1 ≤ i ≤ h. Therefore, by the tupling axiom and maximal
consistency, [〈t1, . . . , th〉]EA ∈ w. Thus, A ∈ EE(w, 〈t1, . . . , th〉).

(projection) Assume A ∈ EE(w, t). Thus, we have [t]EA ∈ w. Then, by the pro-
jection axiom and maximal consistency, [πit]iA ∈ w, and thus A ∈ Ei(w, πit).

(co-closure) Assume A ∈ EC(w, t). Thus, [t]CA ∈ w, and, by the co-closure
axioms and maximal consistency, [ccl1(t)]EA ∈ w and [ccl2(t)]E [t]CA ∈ w.
Hence, A ∈ EE(w, ccl1(t)) and [t]CA ∈ EE(w, ccl2(t)).

(induction) Assume A ∈ EE(w, s) and (A → [s]EA) ∈ EC(w, t). Then we have
[s]EA ∈ w and [t]C(A → [s]EA) ∈ w. From `CS [s]EA → A (Lemma 1.1)
and the induction axiom, it follows by maximal consistency that A ∈ w and
[ind(t, s)]CA ∈ w. Therefore, A ∈ EC(w, ind(t, s)).

(monotonicity) We show only the case of ∗ = C since the other cases are
the same as in [Fit05]. It is sufficient to prove by induction on the positive
integer n that

if [t]CA ∈ w and (w, v) ∈ (RE)n, then [t]CA ∈ v . (7)

Base case n = 1. Assume (w, v) ∈ RE, i.e., w/i ⊆ v for some i. As [t]CA ∈ w,
[πiccl2(t)]i [t]CA ∈ w by maximal consistency, and hence [t]CA ∈ w/i ⊆ v.
The argument for the induction step is similar.
Now assume (w, v) ∈ RC =

⋃∞
n=1(RE)n and A ∈ EC(w, t), i.e., [t]CA ∈ w. As

shown above, [t]CA ∈ v. Thus, A ∈ EC(v, t). ut

10



Remark 16. Let R′C denote the binary relation on W given by

(w, v) ∈ R′C if and only if w/C ⊆ v .

An argument similar to the one just used for monotonicity shows that RC ⊆ R′C.
However, the converse does not hold for any pure C-axiomatically appropri-
ate constant specification CS, which we demonstrate by adapting an example
from [MvdH95]. Let

Φ := {[sn]E . . . [s1]EP : n ≥ 1, s1, . . . , sn ∈ TmE} ∪ {¬ [t]CP : t ∈ TmC} .

This set is CS-consistent for any P ∈ Prop.
To see this, let Φ′ ⊆ Φ be finite and let m denote the maximal number of

terms such that [sm]E . . . [s1]EP ∈ Φ′. Define the model N := (N, RN , EN , νN )
by
– RNi := {(n, n+ 1) ∈ N2 : n mod h = i} ∪ {(n, n) ∈ N2 : n ∈ N};
– EN (n, s) := FmLPC

h
for all n ∈ N and terms s ∈ Tm;

– νN (P ) := {1, 2, . . . ,m+ 1} ⊆ N.
Clearly, N meets any constant specification; in particular, it meets CS. It can
also be easily verified that N , 1 
 Φ′; therefore, Φ′ is CS-consistent.

Since Φ is CS-consistent, there exists a maximal CS-consistent set w ⊇ Φ.
Let us show that the set Ψ := {¬P} ∪ (w/C) is also CS-consistent. Indeed, if it
were not the case, there would exist formulae B1, . . . , Bn ∈ w/C such that

`CS B1 → (B2 → · · · → (Bn → P ) . . . ) .

Then, by Corollary 6, there would exist a term s ∈ TmC such that

`CS [s]C(B1 → (B2 → · · · → (Bn → P ) . . . )) .

But this would imply [(. . . (s · t1) · · · tn−1) · tn]CP ∈ w for [tj ]CBj ∈ w, 1 ≤ j ≤ n,
a contradiction with the consistency of w.

Let v be a maximal CS-consistent set that contains Ψ , i.e., v ⊇ Ψ . Clearly,
w/C ⊆ v, i.e., (w, v) ∈ R′C, but (w, v) /∈ RC because this would imply P ∈ v,
which cannot happen. It follows that RC ( R′C.

Similarly, we can define R′E by (w, v) ∈ R′E if and only if w/E ⊆ v. However,
R′E = RE for any C-axiomatically appropriate constant specification CS. Indeed,
is easy to show that RE ⊆ R′E. For the converse, assume (w, v) /∈ RE, then
(w, v) /∈ Ri for all 1 ≤ i ≤ h. So there are formulae A1, . . . , Ah such that
[ti]iAi ∈ w for some ti ∈ Tmi, but Ai /∈ v. Now let [ci]C(Ai → A1∨· · ·∨Ah) ∈ CS
for constants c1, . . . , ch. Then [↓ ici · ti]i(A1 ∨ · · · ∨Ah) ∈ w for all 1 ≤ i ≤ h, so
[〈↓1c1 · t1, . . . , ↓hch · th〉]E(A1∨· · ·∨Ah) ∈ w. However, Ai /∈ v for any 1 ≤ i ≤ h;
therefore, by the maximal consistency of v, A1 ∨ · · · ∨ Ah /∈ v either. Hence,
w/E * v, so (w, v) /∈ R′E.

Lemma 17 (Truth Lemma). Let CS be a constant specification andM be the
canonical AF-model meeting CS. For all formulae A and all worlds w ∈W ,

A ∈ w if and only if M, w 
 A .
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Proof. The proof is by induction on the structure of A. The cases for proposi-
tional variables and propositional connectives are immediate by the definition
of 
 and by the maximal consistency of w. We check the remaining cases:
Case A is [t]iB. Assume A ∈ w. Then B ∈ w/i and B ∈ Ei(w, t). Consider
any v such that (w, v) ∈ Ri. Since w/i ⊆ v, it follows that B ∈ v, and thus, by
induction hypothesis, M, v 
 B. And M, w 
 A immediately follows from this.

For the converse, assumeM, w 
 [t]iB. By definition of 
 we getB ∈ Ei(w, t),
from which [t]iB ∈ w immediately follows by definition of Ei.
Case A is [t]EB. Assume A ∈ w and consider any v such that (w, v) ∈ RE.
Then (w, v) ∈ Ri for some 1 ≤ i ≤ h, i.e., w/i ⊆ v. By definition of EE, we
get B ∈ EE(w, t). By maximal consistency of w, it follows that [πit]iB ∈ w, and
thus B ∈ w/i ⊆ v. Since, by induction hypothesis, M, v 
 B, we conclude that
M, w 
 A. The argument for the converse repeats the one from the previous
case.
Case A is [t]CB. Assume A ∈ w and consider any v such that (w, v) ∈ RC,
i.e., (w, v) ∈ (RE)n for some n ≥ 1. As in the previous cases, B ∈ EC(w, t) by
definition of EC. By (7) we find A ∈ v, and thus, by C-reflexivity and maximal
consistency, also B ∈ v. Hence, by the induction hypothesis M, v 
 B. Now
M, w 
 A immediately follows. The argument for the converse repeats the one
from the previous cases. ut

Note that the converse directions in the proof above are far from trivial in
the modal case, see e.g. [MvdH95]. The last case, in particular, usually requires
more sophisticated methods that guarantee the finiteness of the model.

Theorem 18 (Completeness). LPC
h(CS) is sound and complete with respect

to the class of AF-models meeting CS, i.e., for all formulae A ∈ FmLPC
h

,

`CS A if and only if 
CS A .

Proof. Soundness has already been shown in Lemma 11. For completeness, let
M be the canonical AF-model meeting CS and assume 0CS A. Then {¬A} is
CS-consistent and hence is contained in some maximal CS-consistent set w ∈W .
So, by Lemma 17, M, w 
 ¬A, and hence, by Lemma 15, 1CS A. ut

M-models were introduced as semantics for LP by Mkrtychev [Mkr97]. They
form a subclass of F-models (see [Fit05]).

Definition 19. An M-model is a singleton AF-model.

Theorem 20 (Completeness with respect to M-models). LPC
h(CS) is also

sound and complete with respect to the class of M-models meeting CS.

Proof. Soundness follows immediately from Lemma 11. Now assume that 0CS A,
then {¬A} is CS-consistent, and hence M, w 
 ¬A for some world w0 ∈ W in
the canonical AF-model M = (W,R, E , ν) meeting CS.

Let M′ = (W ′, R′, E ′, ν′) be the restriction of M to {w0}, i.e., W ′ := {w0},
R′~ := {(w0, w0)} for any ~, E ′ := E � (W ′ × Tm), and ν′(Pn) := ν(Pn) ∩W ′.
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SinceM′ is clearly an M-model meeting CS, it remains to demonstrate that
M′, w0 
 B if and only ifM, w0 
 B for all formulaeB. We proceed by induction
on the structure of B. The cases where either B is a propositional variable or
its primary connective is propositional are trivial. Therefore, we only show the
case of B = [t]~C. First, observe that

M, w0 
 [t]~C if and only if C ∈ E ′~(w0, t) . (8)

Indeed, by Lemma 17, M, w0 
 [t]~C if and only if [t]~C ∈ w0, which, by
definition of the canonical AF-model, is equivalent to C ∈ E~(w0, t) = E ′~(w0, t).

If M, w0 
 [t]~C, then M, w0 
 C since R~ is reflexive. By induction
hypothesis,M′, w0 
 C. By (8) we have C ∈ E ′~(w0, t), and thusM′, w0 
 [t]~C.

If M, w0 1 [t]~C, then by (8) we have C /∈ E ′~(w, t), so M′, w0 1 [t]~C. ut

Corollary 21 (Finite model property). LPC
h(CS) enjoys the finite model

property with respect to AF-models.

5 Conservativity

Yavorskaya in [Yav08] introduced a two-agent version of LP, which we extend to
an arbitrary h in the natural way:

Definition 22. The language of LPh is obtained from that of LPC
h by restrict-

ing the set of operations to ·i, +i, and !i and by dropping all terms from TmE

and TmC. The axioms are restricted to application, sum, reflexivity, and inspec-
tion for each i. The definition of constant specification is changed accordingly.

We show that LPC
h is conservative over LPh by adapting a technique from [Fit08].

Definition 23. The mapping × : FmLPC
h
→ FmLPh

is defined as follows:

1. P× := P for propositional variables P ∈ Prop;
2. × commutes with propositional connectives;

3. ([t]~A)× :=

{
A× if t contains a subterm s ∈ TmE ∪ TmC,

[t]~A
× otherwise.

Theorem 24. Let CS be a constant specification for LPC
h. For an arbitrary for-

mula A ∈ FmLPh
, if LPC

h(CS) ` A, then LPh(CS×) ` A.

Proof. Since A× = A for any A ∈ FmLPh
, it suffices to demonstrate that for any

formula D ∈ FmLPC
h
, if LPC

h(CS) ` D, then LPh(CS×) ` D×, which can be done
by induction on the derivation of D.
Case when D is a propositional tautology, then so is D×.
Case when D = [t]iB → B is an instance of the reflexivity axiom. Then D× is
either [t]iB

× → B× or B× → B×, i.e., an instance of the reflexivity axiom
of LPh or a propositional tautology respectively.
Case when D = [t]∗(B → C) → ([s]∗B → [t · s]∗C) is an instance of the
application axiom. We distinguish the following possibilities:

13



1. Both t and s contain a subterm from TmE ∪ TmC. Then D× has the form
(B× → C×)→ (B× → C×), which is a propositional tautology and, thus, an
axiom of LPh.

2. Neither t nor s contains a subterm from TmE∪TmC. Then D× is an instance
of the application axiom of LPh.

3. Term t contains a subterm from TmE ∪ TmC while s does not. Then D× is
(B× → C×) → ([s]iB

× → C×), which can be derived in LPh(CS×) from
the reflexivity axiom [s]iB

× → B× by propositional reasoning. In this case,
translation × does not map an axiom of LPC

h to an axiom of LPh.

4. Term s contains a subterm from TmE ∪ TmC while t does not. Then D× is
[t]i(B

× → C×)→ (B× → C×), an instance of the reflexivity axiom of LPh.

Case when D = [t]∗B → [t+ s]∗B is an instance of the sum axiom. Then D× be-
comes B× → B×, [t]iB

× → B×, or [t]iB
× → [t+ s]iB

×, i.e., a propositional
tautology, an instance of the reflexivity axiom of LPh, or an instance of the sum
axiom of LPh respectively. The sum axiom [s]∗B → [t+ s]∗B is treated in the
same manner.

Case when D = [t]iB → [!t]i [t]iB is an instance of the inspection axiom. Then
D× is either the propositional tautology B× → B× or [t]iB

× → [!t]i [t]iB
×, an

instance of the inspection axiom of LPh.

Case when D = [t1]1B ∧ · · · ∧ [th]hB → [〈t1, . . . , th〉]EB is an instance of the
tupling axiom. We distinguish the following possibilities:

1. At least one of the ti’s contains a subterm from TmE ∪ TmC. Then D× has
the form C1 ∧ · · · ∧ Ch → B× with at least one Ci = B× and is, therefore, a
propositional tautology.

2. None of the ti’s contains a subterm from TmE ∪TmC. Then D× has the form
[t1]1B

× ∧ · · · ∧ [th]hB
× → B×, which can be derived in LPh(CS×) from the

reflexivity axiom. This is another case when translation × does not map an
axiom of LPC

h to an axiom of LPh.

Case when D is an instance of the projection axiom [t]EB → [πit]iB or of the
co-closure axiom, i.e., [t]CB → [ccl1(t)]EB or [t]CB → [ccl2(t)]E [t]CB. Then D× is
the propositional tautology B× → B×.

Case when D = B ∧ [t]C(B → [s]EB) → [ind(t, s)]CB is an instance of the
induction axiom. ThenD× is B×∧(B× → B×)→ B×, a propositional tautology.

Case when D is derived by modus ponens is trivial.

Case when D is [c]~B ∈ CS. Then D× is either B× or [c]iB
×. In the former

case, B is an axiom of LPC
h, and hence B× is derivable in LPh(CS×), as shown

above; in the latter case, [c]iB
× ∈ CS×. ut

Remark 25. Note that CS× need not, in general, be a constant specification
for LPh because, as noted above, for an axiom D of LPC

h, its image D× is not
always an axiom of LPh. To ensure that CS× is a proper constant specification,
(A → B) → ([s]iA → B) and [t1]1A ∧ · · · ∧ [th]hA → A have to be made
axioms of LPh. Another option is to use Fitting’s concept of embedding one
justification logic into another, which involves replacing constants in D with
more complicated terms in D× (see [Fit08] for details).
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6 Forgetful Projection and a Word on Realization

Most justification logics are introduced as explicit counterparts to particular
modal logics in the strict sense described in Sect. 1. Although the realization
theorem for LPC

h remains an open problem, in this section we prove that each
theorem of our logic LPC

h states a valid modal fact if all terms are replaced with
the corresponding modalities, which is one direction of the realization theorem.
We also discuss approaches to the harder opposite direction.

We start with recalling the modal language of common knowledge. Modal
formulae are defined by the following grammar

A ::= Pj | ¬A | (A ∧A) | (A ∨A) | (A→ A) | �iA | EA | CA ,

where Pj ∈ Prop. The set of all modal formulae is denoted by FmS4Ch
.

The Hilbert system S4Ch [MvdH95] is given by the modal axioms of S4 for
individual agents, by the necessitation rule for �1, . . . ,�h, and C, by modus
ponens, and by the axioms

C(A→ B)→ (CA→ CB), CA→ A, EA↔ �1A ∧ · · · ∧�hA,

A ∧ C(A→ EA)→ CA, CA→ E(A ∧ CA).

Definition 26 (Forgetful projection). The mapping ◦ : FmLPC
h
→ FmS4Ch

is
defined as follows:
1. P ◦ := P for propositional variables P ∈ Prop;
2. ◦ commutes with propositional connectives;
3. ([t]iA)◦ := �iA

◦;
4. ([t]EA)◦ := EA◦;
5. ([t]CA)◦ := CA◦.

Lemma 27. Let CS be any constant specification. For any formula A ∈ FmLPC
h

,

if LPC
h(CS) ` A, then S4Ch ` A◦.

Proof. The proof is by easy induction on the derivation of A. ut

Definition 28 (Realization). A realization is a mapping r : FmS4Ch
→ FmLPC

h

such that (r(A))◦ = A. We usually write Ar instead of r(A).

We can think of a realization as a function that replaces occurrences of modal
operators (including E and C) with evidence terms of the corresponding type.
The problem of realization for a given pure C-axiomatically appropriate constant
specification CS can be stated as follows:

Is there a realization r such that LPC
h(CS) ` Ar for any theorem A of S4Ch?

A positive answer to this question would constitute the harder direction of the
realization theorem, which is often demonstrated using induction on a cut-free
sequent proof of the modal formula.
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Cut-free systems for S4Ch are presented in [AJ05] and [BS09]. They are based
on an infinitary ω-rule of the form

EmA,Γ for all m ≥ 1

CA,Γ
(ω).

However, realization of such a rule meets with serious difficulties in reaching
uniformity among the realizations of the approximants EmA.

A finitary cut-free system is obtained in [JKS07] by finitizing this ω-rule via
the finite model property. Unfortunately, the “somewhat unusual” structural
properties of the resulting system (see discussion in [JKS07]) make it hard to
use it for realization.

The non-constructive, semantic realization method from [Fit05] cannot be
applied directly because of the non-standard behavior of the canonical model
(see Remark 16).

Perhaps the infinitary system presented in [BKS09], which is finitely branch-
ing but admits infinite branches, can help in proving the realization theorem
for LPC

h. For now this remains work in progress.

7 Coordinated attack

To illustrate our logic, we will now analyze the coordinated attack problem
along the lines of [FHMV95], where additional references can be found. Let us
briefly recall this classical problem. Suppose two divisions of an army, located
in different places, are about to attack an enemy. They have some means of
communication, but these may be unreliable, and the only way to secure a victory
is to attack simultaneously. How should generals G and H who command the two
divisions coordinate their attacks? Of course, general G could send a message mG

1

with the time of attack to general H. Let us use the proposition del to denote
the fact that the message with the time of attack has been delivered. If the
generals trust the authenticity of the message, say because of a signature, the
message itself can be taken as evidence that it has been delivered. So general H,
upon receiving the message, knows the time of attack, i.e.,

[
mG

1

]
Hdel . However,

since communication is unreliable, G considers it possible that his message has
not been delivered. But if general H sends an acknowledgment mH

2 , he in turn
cannot be sure whether the acknowledgment has reached G, which prompts yet
another acknowledgment mG

3 by general G, and so on.

In fact, common knowledge of del is a necessary condition for the attack. In-
deed, it is reasonable to assume it to be common knowledge between the generals
that they should only attack simultaneously or not attack at all, i.e., that they
attack only if both know that they attack: [t]C(att → [s]Eatt) for some terms s
and t. Thus, by the induction axiom, we get att → [ind(t, s)]Catt . Another rea-
sonable assumption is that it is common knowledge that neither general attacks
unless the message with the time of attack has been delivered: [r]C(att → del)
for some term r. Using the application axiom, we obtain att → [r · ind(t, s)]Cdel .
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We now show that common knowledge of del cannot be achieved and that,
therefore, no attack will take place, no matter how many messages and acknowl-
edgments mG

1 , mH
2 , mG

3 , . . . are sent by the generals even if all the messages are
successfully delivered.

In the classical modeling without evidence, the reason is that the sender of
the last message always considers the possibility that his last message, say mH

2k,
has not been delivered. To give a flavor of the argument carried out in detail
in [FHMV95], we provide a countermodel where mH

2 is the last message, it has
been delivered, but H is unsure of that, i.e.,

[
mG

1

]
Hdel ,

[
mH

2

]
G

[
mG

1

]
Hdel , but

¬ [s]H
[
mH

2

]
G

[
mG

1

]
Hdel for all terms s. Indeed, consider the model M with

W := {0, 1, 2, 3}, ν(del) := {0, 1, 2}, RG being the reflexive closure of {(1, 2)},
RH being the reflexive closure of {(0, 1), (2, 3)}, and any evidence function E
such that del ∈ EH(0,mG

1 ) and
[
mG

1

]
Hdel ∈ EG(0,mH

2 ). Then, whatever EC is,

we haveM, 0 1 [s]H
[
mH

2

]
G

[
mG

1

]
Hdel andM, 0 1 [t]Cdel for any s and t because

M, 3 1 del .
In our models with explicit evidence, there is an alternative possibility for

the lack of knowledge: the absence of evidence. For example, G may receive the
acknowledgment mH

2 but not consider it to be evidence for
[
mG

1

]
Hdel because

the signature of H is missing.
We now demonstrate that common knowledge of the time of attack cannot

emerge, basing the argument solely on the lack of common knowledge evidence.
A corresponding M-model M = (W,R, E , ν) is obtained as follows: W := {w},
Ri := {(w,w)}, ν(del) := {w}, and E is the minimal evidence function such that
del ∈ EH(w,mG

1 ) and
[
mG

1

]
Hdel ∈ EG(w,mH

2 ). In this model M,w 1 [t]Cdel
for any evidence term t because del /∈ EC(w, t) for any t. To show the latter
statement, note that for any term t, by Lemma 27,

0
[
mG

1

]
Hdel ∧

[
mH

2

]
G

[
mG

1

]
Hdel → [t]Cdel (9)

because

S4Ch 0 �Hdel ∧�G�Hdel → Cdel ,

which is easy to demonstrate. Thus, the negation of the formula from (9) is satis-
fiable, and for each t there is a world wt in the canonical AF-model with evidence
function Ecan such that del ∈ EcanH (wt,m

G
1 ) and

[
mG

1

]
Hdel ∈ EcanG (wt,m

H
2 ), but

by the Truth Lemma 17, del /∈ EcanC (wt, t). Since Ecan � ({wt}×Tm) satisfies all
the closure conditions, minimality of E implies that EC(w, s) ⊆ EcanC (wt, s) for
any term s. In particular, del /∈ EC(w, t) for any term t.

8 Conclusions

We have presented an explicit evidence system LPC
h with common knowledge,

which is a conservative extension of the multi-agent explicit evidence logic LPh.
The major open problem at the moment remains proving the realization theorem,
one direction of which we have demonstrated.
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Our analysis of the coordinated attack problem in the language of LPC
h shows

that access to explicit evidence creates more alternatives than the classical modal
approach. In particular, the lack of knowledge can occur either because messages
are not delivered or because evidence of authenticity is missing.

We have mostly concentrated on the study of C-axiomatically appropriate
constant specifications. For modeling distributed systems with different reason-
ing capabilities of agents, it is also interesting to consider i-axiomatic appro-
priate, E-axiomatic appropriate, and mixed constant specifications, where only
certain aspects of reasoning are common knowledge.

We established soundness and completeness with respect to AF-models and
singleton M-models. Can other semantics for justification logics such as (arith-
metical) provability semantics [Art95, Art01] and game semantics [Ren09b] be
adapted to LPC

h?
There are further interesting questions: Is LPC

h decidable and, if yes, what is
its complexity compared to that of S4Ch? How robust is our treatment of common
knowledge if the individual modalities are taken to be of type K, K5, etc.?
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