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Abstract: As reported in earlier work, methods for hybrid optimal control can be used for
optimal path planning of multi-agent systems. This paper considers a multi-vehicle transport
scenario in which a hybrid model is used to represent the continuous dynamics of the vehicle
motion and the dynamics arising from the docking-events between vehicles and a transported
object. The decisions on the vehicles’ heading and speed as well as on the docking sequence
are strongly coupled and require a tailored numeric solution. The paper proposes a hierarchical
solution strategy with three layers: on the upper layer a discrete event sequencing problem is
solved, the middle layer determines docking positions and times, and the lower layer provides
optimal vehicle paths. By a combination of graph search and embedded continuous optimal
control, the efficiency of obtaining (sub-)optimal solutions is improved. The algorithm is
illustrated by a scenario in which three vehicles transport one object.
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1. INTRODUCTION

This contribution deals with the task how a group of agents
moving in a plane can optimally transport a passive object
to a desired location. The task involves discrete decisions
with respect to where and when the vehicles dock to the
transport object and continuous decisions for the vehicle
motion, thus leading to a hybrid optimal control problem.
Hybrid systems, as e.g. introduced in Alur et al. (1995)
or Lynch et al. (2003) are widely used for modeling multi-
agent systems (see e.g. Jadbabaie et al. (2003) or Fierro
et al. (2001)) as they allow for continuous control and
logic-based decisions in one model.

There is a number of intensively studied tasks for multi-
vehicle systems. In formation control, stability of synchro-
nization of the vehicles is discussed. Dunbar and Murray
(2006) present an optimization-based receding-horizon ap-
proach. Waypoint problems are examples for cooperative
tasking, see Reinl et al. (2009) for a mixed-integer opti-
mization approach. Further, consensus problems, coverage
problems, or rendezvous problems are discussed, see the
overview on cooperative control for multi-vehicle systems
by Murray (2007). Our application scenario is a novel
cooperative tasking scenario and a solution is provided by
a decoupling approach of hybrid optimal control. A large
object is transported from a start to a goal position by
several small agents that sequentially dock to the object
in order to share workload. On the discrete-event level,
it has to be decided in what order agents will take part
in transportation. The continuous problem delivers state
trajectories as well as the places and times of docking. It is
evident that optimal agent paths can only be found when
the docking order is known, but also a decision on the
optimal docking order requires knowledge on the cost of
the individual paths.

The presented approach starts from a known three-layer
approach to hybrid optimal control, where the middle
layer provides switching states and times for a lower
layer which computes optimized continuous trajectories,
see Shaikh and Caines (2007); Xu and Antsaklis (2004);
Gokbayrak and Cassandras (2000). On the upper layer,
the switching sequence is determined by enumeration of
all possible sequences. The best switching sequence is
then chosen by comparison of costs for the embedded
continuous optimization problems. The possible number
of discrete sequences in general increases exponentially
with the number of discrete states or decisions to be
made. Therefore, decoupling is used here, by replacing the
optimal switching states and times on the middle layer
by approximations. This allows to use efficient solution
methods which are available for discrete systems to find
the appropriate switching sequences without the necessity
of enumeration. The continuous optimal control problems
of the lower layer are considered as embedded problems
of the graph search. In most applications decoupling of
the optimal control problem delivers only sub-optimal
solutions (Stursberg (2004)). For the given scenario, three
different techniques for decoupling the discrete and the
continuous dynamics are proposed. The first approach
approximates docking sites by geometric considerations.
The latter two establish two variants of optimization based
approximation of the docking sites, compare to Li and
Cassandras (2006).

Mixed integer approaches also showed promising perfor-
mance for some multi-agent cooperative tasks, see Reinl
et al. (2009); Earl and D’Andrea (2002). However, the
computational efforts are still high. The hierarchical three-
layer approach presented here is intended to lead to a good
compromise between optimality and numerical efficiency.



Sec. 2 introduces the multi-agent setting, its modeling,
and the optimal control problem. Sec. 3 provides the so-
lution approach based on hierarchical optimization, Sec. 4
presents numerical results, and Sec. 5 concludes the paper.

2. TRANSPORTATION PROBLEM

In the multi-agent system (MAS) transportation problem
illustrated in Fig. 1, the vehicles V1, . . . , VN have to coop-
erate in order to transport the object TO from its initial to
a given target position. The object TO is passive, i.e. it can
only be moved and steered by a certain number of driving
vehicles being attached to it. Realizing the cooperative
task with maximum performance requires to determine
the best suited sequence for the vehicles to dock to TO
as well as the most suitable docking sites and docking
times. The initial positions of the vehicles are denoted
by p0

V1
, . . . , p0

VN
. Note that all vehicles, which have not

yet docked to TO, may decide to move towards a future
docking position, what calls for a centralized planning
method. Let DV (t) denote the index set of docked (or
active) vehicle(s) moving TO at time t, and conversely,
let MV (t) denote the set of indices of the vehicles not yet
docked to TO.

Fig. 1. Scenario: vehicles V1, . . . , V4 cooperate to trans-
port object TO from a starting to a goal position.
The arrows show the heading of the vehicles, and
p0

V1
, . . . , p0

V4
denote the vehicles’ initial positions in

a plane spanned by axes ξ and η.

2.1 Hybrid System Model

In a hybrid model, the transportation planning scenario
with multiple vehicles is mathematically described by col-
lections of dynamical systems that evolve on continuous-
variable state spaces and are subject to continuous control
and discrete transitions.

A continuously-controlled autonomously-switching hybrid
dynamical system formally is given by the tuple

H = [Q, Σ,A,G] (1)

(see Branicky et al. (1998)) and can be used to model the
MAS transportation scenario as follows:

Q=
{

q1, . . . , qNq

}

is the finite set of discrete states with
q(t) ∈ Q. Within a discrete state, the MAS evolves
continuously on an ordered set of time intervals

Λ = {[t0, t1[, [t1, t2[, . . . , [tL−1, te]} (2)

where L is the number of discrete states that appear in a
solution. A discrete state q is assigned to every possible
set of indices of docked vehicles in DV (t), compare Fig. 2.
Switching between two discrete states occurs at switching
times ti in Λ, at which a vehicle docks to TO. A set
of logic rules is introduced to impose bounds on the
number of discrete states and transitions between them:
A structure of the MAS is considered, in which docking
occurs sequentially and the following assumptions holds:

• undocking is not allowed once a vehicle has docked to
the object TO,

• at each docking event only one vehicle in addition to
the object TO is involved,

• all vehicles have to dock once to the object TO.

Therefore, the number of discrete states in a feasible run of
H is L = NV + 1. With these rules, the discrete structure
of the MAS is an acyclic directed graph as depicted in
Fig. 2. A possible ratio for the last assumption is that a
preceding analysis has determined already the set of agents
that should contribute to the transportation task.

Fig. 2. Graph structure for three vehicles and sequential
docking: bold numbers stand for the discrete state in-
dex q, the indices contained in DV are given in braces.

Σ = {Σq}q∈Q
is the collection of controlled dynamical

systems, where each Σq = [Xq, F q, Uq] is a continuously-
controlled dynamical system. The continuous state vectors
xq of dimension nxq

∈ N
+ are defined on the continuous

state spaces Xq ⊆ R
nxq . Accordingly, the continuous

control inputs uq(t) of dimension nuq
∈ N

+ are defined
on the continuous input spaces Uq ⊆ R

nuq . The time-
invariant vector fields F q : R

nxq × R
nuq → R

nxq provide
the continuous dynamics of H.
The state spaces Xq := X of the MAS are identical for
all q and are defined as the product of the configuration
spaces of the vehicles and the TO:

X = CV1 × CV2 × . . . × CVN × CTO. (3)

Within this paper, a unicycle dynamics is chosen as a
nonlinear model for the motion of each agent:





η̇

ξ̇

θ̇



 =

(

us cos(θ)
us sin(θ)

uω

)

, CV = R
2 × [−π; π] (4)

The control input for every vehicle is (uω, us)
T , where uω

directly sets the angular velocity of the orientation and us

sets the speed.



The object TO moves passively, and hence the dynamics
for TO is:




η̇

ξ̇

θ̇



 = wf(b(t))

(

us cos(θ)
us sin(θ)

uω

)

, CTO = R
2 × [−π; π] (5)

The constant w is an arbitrary gain. The function f(b) =
tanh( 2

NV
b) with b(t) = |DV (t)| is an activation gain: the

more vehicles dock to the object the faster can it be
moved; however, ultimately the transported object has a
maximum moving speed.

The state xq = x ∈ X specifies all agent configurations
and is

x = ((xV1)T , . . . , (xVN )T , (xVT O)T )T , (6)

where the dimension of x is nx = N dim(CV )+dim(CTO).
In summary, the dynamics of the MAS is:

ẋ = F q(x, uq), (7)

with F q and uq such that ẋ is given by (4) for free vehicles,
and by (5) for docked vehicles and the transported object
TO in accordance with the state vector in (6).

A= {Aq}q∈Q
is the collection of autonomous jump sets. An

autonomous jump set Aq is a specified region in the state
space Xq where autonomous switching occurs in case the
state vector xq is hitting its boundary. In our application,
it is used to describe docking that occurs when a vehicle
meets the transportation object:

Aq =
{

x | xVi = xVT O , i ∈ MV

}

. (8)

G = {Gq}q∈Q
is the autonomous jump transition map with

hybrid transition functions Gq : Aq ×Q → Xq ×Q. Hence,
Gq contains all possible discrete transitions and the update
of the continuous states, when the state vector xq hits Aq

according to a transition q → q+.

The MAS evolves in the hybrid state space S = X × Q of
H and σ(t) = (x(t), q(t)) is the hybrid state vector with
σ ∈ S. Let Φq = (q(t0), q(t1), q(t2), . . . , q(tL−1)) be the
discrete state sequence, ΦA = (x(t0), x(t1), . . . , x(tL−1))
the sequence of switching points, Φx the continuous state
trajectory, and Φu the trajectory of the control inputs.

2.2 Optimal Control Problem

The objective is to move the object TO from its initial
position to a final configuration in an energy and time
optimal manner. The following hybrid optimal control
problem is considered: Find a discrete state sequence
Φq, a sequence of switching points ΦA, and continuous
control inputs Φu such that the state trajectories Φx and
Φq of the autonomously-switching, continuously-controlled
hybrid dynamical system H satisfy the following hybrid
boundary value problem:

σ(t0) = (x0
q , q(t0)), σ(te) = (xe

q, q(te)), te free (9)

such that the following real-valued cost function is mini-
mized:

J =

L−1
∑

k=0

{∫ tk+1

tk

uT
q(tk)uq(tk) + µk dτ

}

. (10)

The first part of J formulates the running costs due to the
continuous dynamics and the second term encodes time
optimality weighted by µk.

Finally, let the solution of the optimization problem be
denoted by Φopt

q , Φopt
A

, Φopt
u

. Note that a globally best
solution involves the coupling of locally best solutions
(Φopt

u
) and globally best plans (Φopt

q ) through ΦA and ts.

3. SOLUTION BY A HIERARCHICAL ALGORITHM

The hybrid optimal control problem (HOCP) is solved
by separating the optimization of the continuous and the
discrete dynamics. A hierarchical structure is used where
the middle layer accounts for the coupling of optimal
discrete and optimal continuous dynamics via optimal
docking sites and times.

The three-layer approach is illustrated in Fig. 3: On the
upper layer, the optimal discrete state sequence is deter-
mined, on the middle layer the optimal docking positions
are computed, and on the lower layer, the continuous
optimal control problems are solved as two-point boundary
value Problems (TPBVP). Each of the loops uses the opti-
mal cost value of the embedded problem on the next lower
layer as performance index for variations of the respective
argument on its own layer. In order to adequately measure
changes in the performance index due to variations on a
higher layer, all optimal solutions of the embedded sub-
problems on lower layers need to be recalculated. By that,
an embedded sub-problem can be considered as a ’black-
box’ where the input (varied argument) and the output
(corresponding performance index) are the only measur-
able quantities from the perspective of the upper layer.

Docking sequence Φq

Docking positions ΦA

Paths Φx, Φu

Φq ΦA

BVP

Gradient descent

Enumeration

Fig. 3. Structure of hierarchical optimal control algorithm

First, the algorithm generates all possible docking se-
quences Φq that are in accordance with the transition
maps in G. Furthermore, the algorithm has to be initialized
with one feasible location sequence Φq and L − 1 docking
sites ΦA. As a consequence, L TPBVPs are considered on
the lower layer and are solved for the initialized docking
positions. By gradient-descent applied to the vector of
docking sites ΦA, the docking configuration is varied until
the optimal sequence of docking sites Φopt

A
is found. The

overall cost as the sum of costs of the L TPBVPs has to be
computed for each variation of the docking positions. The
information stored with each optimized feasible run Φq is
a structure HR = (Φq, Φu, Φx, ΦA, te, J) and is passed
to the upper layer. The algorithm continues with a re-
initialization using the next location schedule Φq and an
initial sequence ΦA, and it calculates the optimal values
HR. In this enumerative approach, the algorithm finishes
when all possible docking sequences have been examined.
The best plan for the vehicles’ transportation scheme is
the one with lowest cost index J .



3.1 Nonlinear Programming for embedded Continuous
Subproblems

The embedded continuous subproblem is to find a dis-
cretized trajectory of the control inputs Φu leading to
a discretized state trajectory Φx via (4), such that the
transportation is successful within each discrete state of
the sequence fixed by the higher layer. Here, a discrete
state sequence Φq, a sequence of docking sites ΦA, and
the initial state vector x0 of the system are assumed to be
provided. The TPBVPs are solved in a two-step procedure:
First, a shooting method is used to provide a sufficiently
good initial solution. This solution is then further im-
proved using a collocation technique, see W.H.Press et al.
(1992). In both steps, one boundary is given by the initial
system configuration. The second boundary corresponds
to either a docking event or the TO target configuration.

In the shooting approach, the second boundary of a single
TPBVP is considered as a soft constraint by implementing
a penalty term ϑpen(x(tk+1)) into the local cost function
Jloc.

Jloc = ϑpen(x(tk+1)) +

∫ tk+1

tk

uT
q uq + µkdτ . (11)

The penalty term penalizes deviations of the vehicles
boundary state x(tk+1) from the desired docking position.
The system dynamics (7) is satisfied by numerical integra-
tion with fixed step-width. The free variables (discretized
control input trajectory uq and end time tk+1) are ad-
justed by gradient search until the local cost function Jq

is minimized. In general, the desired docking position is
not met exactly and the optimal trajectory is refined by
the collocation algorithm.

For the collocation method, the system ODEs (7) are
replaced by finite difference equations on a mesh of colloca-
tion points that cover the range of integration. The initial
solutions for the control inputs and the state variables are
obtained from the preceding shooting and are assigned
to the appropriate mesh points. A polynomial is sought
which satisfies the ODEs at the collocation points and
the boundary conditions at the initial and the final time.
The shooting and the collocated problem can be solved
using the MATLAB routine ’fmincon’, which provides an
implementation of Sequential Quadratic Programming.

3.2 Combinatorics versus Suboptimality

In particular the optimization of the docking configura-
tions is a computational costly task, as the component-
wise gradient calculation requires to run the embedded
continuous control problems of the lower layer for every
variation of docking sites on the middle layer. Therefore,
testing all feasible location schedules of a graph structure
is very time consuming. It is proposed here to substitute
the optimization of docking sites on the middle layer by an
approximation of optimized docking sites. This decouples
the discrete and continuous dynamics, such that methods
of dynamic programming can be used to determine the
optimal discrete sequence.

An overview on the decoupling algorithm is given in Fig. 4.
For every sequence of locations Φq on the upper layer,
an approximation for the sequence of docking sites ΦA

is calculated on the middle layer. Thus, the problem of
finding the appropriate docking sequence with its docking
sites is decoupled from finding the continuous controls
on the lower layer. Therefore, branches in the tree which
are not likely to lead to optimal solution candidates can
be pruned. This approach is an instance of dynamic
programming and implemented using a depth-first label
correcting technique, see e.g. Bertsekas (2006). The final
candidates are further evaluated using the enumerative
optimization approach. Fig. 5 depicts the weighted tree
structure for three vehicles with pruned branches.

Docking sequence Φq

Docking
positions ΦA

Paths Φx, Φu

Φq ΦA

BVP

Approximation

Dynamic programming

Fig. 4. Structure of the hierarchically decoupled optimal
control algorithm.

Fig. 5. Label correcting technique: transitions where ac-
cumulated costs exceed an upper limit are disabled.
The given numbers provide transition costs for one
transition.

Different approaches are proposed to approximate sub-
optimal docking configurations - a partitioning of the state
space into polygonal regions with focal points and two
optimization based consensus techniques.

For the first approach, named centroid approach, the
docking configurations are approximated as centroids of a
triangular region. For a fixed docking sequence V1, . . . , VN

(received from the upper layer), the corners of the centroid
that defines the docking position of the vehicle Vi are
the current position of the transported object TO (with
vehicles V1, . . . , Vi−1), the initial position of vehicle Vi,
and the initial position of vehicle Vi+1 that will dock



afterwards. Thus, the sub-optimal docking configuration is
assumed to be the average of the positions of the vehicles
that are considered within an action horizon of three
vehicles.

For the second approach, the docking position of vehicles
and transported object is the solution of an optimization
problem. There, a consensus configuration between one
agent and the object is sought with respect to energy and
time optimality and used as docking position. Thus, for the
definition of the docking positions, small subproblems of
the total optimal control problem from Sec. 3.1 are solved.

The objective of the related TPBVP on [tk, tk+1[ is to
remove the docking error for tk+1:

ϑerr(x(tk+1)) = ‖xVi
(tk+1) − xTO(tk+1)‖ , (12)

while initial values are given for tk and only the dynamics
of one vehicle Vi and the transported object TO are
considered. Energy and time optimality of the docking
configuration is assured by additionally considering the
original objective function:

J̃ = ϑerr(x(tk+1)) +

∫ tk+1

tk

uT u + µk dτ. (13)

The approximated docking point is chosen to be the
final value of the obtained transport object trajectory
xTO(tk+1). This approach is termed direct consensus tech-
nique.

As an extension, the finite horizon consensus approach
seeks to involve future dockings into the calculation of
optimized docking sites. An optimization based consensus
method for a horizon of two transitions minimizes the
error:

ϑerr(xq(tk+1)) = ‖xVi
(tk+1) − xTO(tk+1)‖

+
∥

∥xVi+1
(tk+1) − xTO(tk+1)

∥

∥ , (14)

instead of (12).

In all of these alternatives, the configuration of the free
vehicles still has to be defined after finding the docking
sites. These configurations are approximated to be on the
path towards their future docking position.

4. NUMERICAL RESULTS OF OPTIMIZATION

In the following, the solutions of the decoupling approaches
are discussed in comparison to the solution of the enumera-
tive optimization. In Fig. 6, the solution of the enumerative
approach is displayed as reference solution for an example.
For a setup with three vehicles, the computation time is
about 14 hours, while the optimal solution of a single
TPBVP on the lower layer is computed in average within
approx. 12 seconds.

The solution obtained from the centroid technique is
shown in Fig. 7. In comparison to the optimal reference
solution in Fig. 6, the accumulated costs are, of course,
higher (as the solution is sub-optimal), and also the
sequence of vehicle docking differs. The same holds for
the solution obtained from the direct consensus approach
depicted in Fig. 8.

In comparison to the direct consensus approach (Fig. 8),
solutions of the centroid technique (Fig. 7) are compu-
tationally less expensive, resulting from cheaper vehicle

Fig. 6. Optimal solution with enumerative optimization:
J = 38.52.

Fig. 7. Optimized solution with the centroid technique:
J = 42.10.

Fig. 8. Optimized solution with the direct consensus ap-
proach: J = 46.12.

trajectories, see Table 1. This effect may surprise, be-
cause the computed consensus docking configurations are
assumed to represent the closest configuration between
the interacting vehicle and TO, while referring to a dis-
tance measure that considers the real-valued output of the
objective function. Indeed, this assumption holds for the
first docking, whereas in the subsequent locations higher
costs are aggregated. The calculation of consensus config-
urations considering only the currently involved vehicles
does not contribute significantly to the performance in
a global context. Thus, locally this approach leads to



optimal configurations, whereas the performance is worse
for the complete evolution.

Table 1. Performance on a 1.6 GHz Intel Cen-
trino platform with 1.25 GB RAM.

Method Time [h] Cost Sequence
enumerative 14 38.52 V1, V2, V3

centroid technique 0.16 42.10 V1, V3, V2

direct consensus 0.25 46.12 V1, V3, V2

finite horizon consensus 0.5 41.28 V1, V2, V3

Due to this issue, the finite horizon consensus approach is
proposed and applied in order to combine the advantages
of the other two techniques. In Fig. 9, the corresponding
optimized trajectories are depicted. The similarity of these
sub-optimal trajectories with the optimal ones in Fig. 6
is significant. The numerical calculations to obtain this
result took approximately 30 minutes (compared to 14
hours for the enumerative approach). Note, that the first
two solution approaches led to the docking sequence V1 −
V3 − V2, and only the finite horizon consensus method
produces the docking sequence V1−V2−V3 of the reference
solution. However, with respect to the costs of the overall
evolution, both docking sequences lead to relatively similar
values. Finally, note that the centroid method is the fastest
technique and produced solutions in approximately 10
minutes.

Fig. 9. Optimized solution with the finite horizon consen-
sus approach: J = 41.28.

5. CONCLUSION

A method to model and optimize cooperative transporta-
tion planning in a multi-agent setting has been proposed.
For this application, the discrete and the continuous dy-
namics are strongly coupled at the level of optimal docking
sites and times. In comparison to a brute-force enumer-
ative approach for optimizing the motion of the agents,
a considerable decrease of computational time can be
achieved by allowing sub-optimal solutions for the docking
sites and times. With three different methods for approx-
imating the sites and times, similar results are obtained
which are not considerably worse with respect to the costs
of the overall execution than obtained for the reference
solution, while the time of computation is reduced by
more than one order of magnitude. Among the proposed
techniques, the finite horizon optimization-based consen-
sus approach was found to provide the best compromise of

optimization result and time of computation for the inves-
tigated example. Further investigations will predominantly
address the scalability of the method.
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