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Abstract: The ability of diagnosis of the possible faults is a necessity for satellite launch vehicles
during their mission. In this paper, a structural analysis method is employed to divide the complex
propulsion system into simpler subsystems for fault diagnosis filter design. A robust fault diagnosis
method, which is an optimization based approach, is appliedto the subsystems of the propulsion system.
The optimization problem has been solved within two different tools and the results are compared with
two other optimization based approaches. The turbo-pump system is used to illustrate the employed
methods and obtained results.

1. INTRODUCTION

Reliability is a highly desired topic in many industrial appli-
cations, particularly in aerospace. The mission objectives of a
spacecraft may not be disrupted by any possible fault. A fault
diagnosis system is able to monitor the system performance
and alert the control system when a fault has occurred. In this
regards, the problem of model-based fault diagnosis has been
receiving increasing attention from the research communities
(Willsky, 1996).

By the early 90’s, the paradigm of the conventional methods
for fault diagnosis problem, which included annihilating the
matrices, was substituted by the methods based on norm min-
imization. This phenomenon opened the doors of theH2 ,
H∞ , and other optimization approaches to the field of fault
diagnosis (Frank and Ding, 1994; Mangoubi et al., 1995; Edel-
mayer et al., 1996; Edelmayer and Bokor, 2000). Most of those
FD approaches (except parameter identification methods) have
considered the models with additive fault input to the system. In
the other words, they are modeled as exogenous perturbations
to the system (Basseville, 1988; Chen and Patton, 1999; Frank,
1990).

In this paper, the fault is modeled as a parameter, since the
nature of many faults are parametric. Indeed, an exogenous
essentially bounded input cannot de-stabilize a linear system.;
whereas a parameter change might do so. A fault diagnosis
approach for systems with parametric fault which has been
proposed by (Stoustrup et al., 1997; Niemann and Stoustrup,
1997) is used here. The optimization problem has been defined
in the so-called standard set-up for robust control based onLFT.
In this approach, the residual is in fact an estimation of thefault.

⋆ This work is partly supported by the Southern Denmark Growth Forum and
the European Regional Development Fund under the project “Smart & Cool”.
The research is conducted in cooperation with European Space Agency (ESA),
ASTRIUM Space Transportation, SNECMA (A company of SAFRAN Group),
and Aalborg University.

A ”Hopper”, which is a horizontally launched and horizon-
tally landing rocket-propelled launch vehicle comprisinga non-
disposable primary stage and one expendable upper stage, is
under consideration as a reusable launch vehicle to replacethe
existing expandable launch vehicles in ESA (European Space
Agency) in the future. The advantages include: reduction of
transportation cost to orbit, return capability from orbit, and less
environmental pollution.

A key element for the re-usability and maintainability is given
by the health management system (HMS) being an integral part
of the system design (Belau and Sommer, 2006). The HMS
shall be able to diagnose faults of which the effect is hardly
recognizable due to system uncertainties (unpredictable envi-
ronmental conditions or system parameters) or sensor noise.

The main engine is a complex system with various subsystems.
Designing a filter for this system, which is capable of deter-
mining faults in a reliable manner, is shown to be a nearly
impossible task. To address and solve this problem, a structural
analysis approach was employed. The structural analysis ofthe
system leads to identifying subsystems with inherent redundant
information required for designing appropriate filters.

The contributions of this paper are two-fold: 1- illustrating
the advantage of combined utilization of qualitative as well as
quantitative methods to design a fault diagnosis system. Struc-
tural analysis method, which is a qualitative method, is used to
analyze the system and divide the system into manageable (and
monitorable) parts; whereas, quantitative (here optimization
based robust methods) are used for the detailed design. 2 - the
application of the parametric fault diagnosis filter designbased
on theH∞ as well as theµ synthesis, in the set-up presented
in (Stoustrup and Niemann, 2002; Niemann and Stoustrup,
2000; Soltani et al., 2011). In addition, the main results ofthe
designed filter has been compared with two other optimization
based methods (Khosrowjerdi M.J., 2005; Zhong M., 2003).



This paper is organized as follows: In Section II, an structural
analysis on the propulsion system is presented while the turbo-
pump has been chosen as a subsystem. The fault diagnosis
method has been presented in Section III and the fault estimator
design procedure has been described. In Section IV, the results
of fault estimation are illustrated and compared with two other
methods, and eventually, the conclusions are brought in Section
V.

2. STRUCTURAL ANALYSIS OF THE PROPULSION
SYSTEM

2.1 Motivation

The overall nonlinear system of the considered engine model
is translated to a model block diagram. The blocks in the
diagram, which is shown in figure 1 on the following page,
represent the functionalities of the engines main parts; valves,
pumps, combustion chamber, and the generator. The considered
plant has 14 independent inputs, 18 outputs, 14 intermittent
(nonmeasurable) variables, and 6 dynamic/continuous states.
12 failure cases were considered in this system. There are 6
differential equations that describe the dynamic behaviorof
the valves and pumps (Soltani and Izadi-Zamanabadi, 2007).
The number of the states in the system suggests that designing
a model-based fault diagnosis algorithm should be a fairly
manageable task. However, (Soltani and Izadi-Zamanabadi,
2007) shows a very limited success in detecting most of the
chosen faults due to the level of system nonlinearity.

The complexity of this system appeals for a method that enables
the design engineer(s) to break the system into small and
manageable parts for which the detailed design can be carried
out. In addition, it would be an advantage to be able to obtain
additional knowledge about which parts of the system are
monitorable and whether the selected faults can be detectedand
isolated.

2.2 Structural Analysis

Structural analysis is concerned with the properties of the
system structural model, which is the abstraction of its behavior
model in the sense that only the structure is considered. A case
in point, only the existence of relations between variablesand
parameters is taken into account (Blanke et al., 2006). The links
are represented by a bi-partite graph, which is independentof
the of the values of the variables and the parameters. Hence,the
structural model is a qualitative, very low level, easy to obtain,
model of the system behavior. The structural analysis provides
the following information:

• the subset of the components, in which the faults can
be detected and isolated, are identified, i.e., monitorable
subsets of the system.

• the possibility of designing residuals to meet specific
requirements.

• the existence of reconfiguration possibilities.

To demonstrate the use of the structural analysis, we have taken
the results for the liquid oxygen LOX turbo-pump. The struc-
tural model of the LOX pump is shown in table 1. The con-
straints areC = {c1,c2,c3,c4,c5,c6}, the unknown variables
and (intermittent) parameters areX = {Ro, p1, p3, p8, p13},
and the known (measured) variables areM = {m1,m4,m6,m14,m15,m16}.

Ro p1 p3 p8 p13 m1 m4 m6 m14 m15 m16

c1 × ➀ 1 1 1 1
c2 ➀ 1
c3 ➀ 1 1 1
c4 1 ➀ 1
c5 ➀ 1 1 1 1 1 1
c6 1 1 1 1 1 1 1 1

Table 1. Structural model of the LOX pump.

A matchingbetween an unknown variable/parameter and a con-
straint, denoted by a➀ in the cross section between the vari-
able column and the constraint row, indicates that the matched
variable can be calculated/computed through the correspond-
ing constraint. For instance,p13 can be calculated through
c1 when the values ofRo and m6 are known. The constraint
c1(Ro, p13,m6) = 0 represents the following dynamical behav-
ior:

Ṙo = ap13−a(α(max(0,y6))
2 +βmax(0,y6)Ro− γR2

o)

where a,α,β ,γ are known parameters. The× in the table
indicates that the value of corresponding variable can not
be uniquely calculated through the corresponding constraint,
hence can not be matched. The table shows that all unknown
variables/parameters are matched. On the other hand the con-
straintc6 is not matched. However,c6 contains unknown vari-
ables that are already matched (and hence can be calculated
uniquely). Therefore,c6 can be used to derive a relation that
contains only known variables. The obtained relation is hence
a redundancy relation. From the fault diagnosis viewpoint,the
subsystem that is represented by constraintsc1,c2,c3,c4,c5,c6
is observable (i.e. monitorable) and since it includes dynamical
behavior. Therefore, it is suited for detailed model-basedfault
diagnosis design.

The nonlinear version of the LOX pump’s system dynamic is
written in a compact form as:

Ṙo =
aoQ2

o

Roh
+boTo +coQoRo +doRohR

2
0 (1)

y1 = Ro

whereao, bo, co, anddo are constant coefficients depending on
the design of the turbo-pump andTo is the LOX turbine torque.
The pump speed is represented byRo, the pump flow byQo,
and the mixture ratio byRoh.

2.3 The fault augmented model

Due to the fact that efficiency lossδ has been considered as
a parametric fault for LOX turbo-pump, this fault affects the
pump shaft speed. The dynamic equation is satisfied only for
no fault case (δ = 0). The fault augmented model is

Ṙo =
(aoQ2

o

Roh
+coQoRo +doRohR

2
0

)

(1− p(δ ))+boTo (2)

y= Ro.

3. FAULT ESTIMATION METHOD

3.1 Robust Parametric FDI in A Standard Set-up

A general concept of parametric fault detection architecture in a
robust standard set-up is proposed in (Stoustrup and Niemann,



Fig. 1. Modular decomposition of engine system. (Known) Inputs to each block are shown by green color, faults have red color,
Blue color represents the measured outputs, and black colorrepresents internal variables which are not known (not measured).

2002). The approach is to model a potentially faulty component
as a nominal component in parallel with a (fictitious) error com-
ponent. Subsequently, the optimization procedure suggested
here estimates the ingoing and outgoing signals from the error
component. This works only well in cases where the compo-
nent is reasonably well excited, but on the other hand, if the
component is not active at all, there is absolutely no way to
detect whether it is faulty. The considered plant is described by
the model

{

ẋ = A∆x+Buu
y = Cyx+Dyuu

(3)

where A∆ is the deviated matrix from the nominal valueA
by a dependency to the fault where the dependency can be
nonlinear. The possibly nonlinear parameter dependency ofA∆
is approximated with a polynomial. Therefore,A∆ = A+ p(δ )A,
wherep is a polynomial function of the parameterδ satisfying
p(0) = 0 (the non-faulty operation mode). Finally, the model
(3) is written in linear fractional transformation form. Asa
result we get a system of the form

[

ẋ
z
y

]

=





A Bf Bu
Cf Dz f 0
Cy 0 Dyu





[

x
f
u

]

(4)

wherez is the external output,f is the fault input signal, the
matrix Dz f is well-posed (LFT’s are normally used), and the
connection betweenzand f is given by

f = ∆parz, (5)

(6)

where∆par is a diagonal matrix∆par = δ I .

The next step in setting up the fault estimation problem as a
standard problem is to introduce two fault estimation errors ef
adez as

ef = f − f̂
ez = z− ẑ

, (7)

where f̂ andẑ are the estimation off andz to be generated by
the filter respectively. Fig. 2 shows the setup for this approach.
To design a filterF such that applyingF to u andy provides the
two desired estimateŝf andẑ, one additional step is required.To
this end, we introduce a fictitious performance block∆per f ;
suggesting that the inputu was generated as a feedback∆per f

from the outputs

[

ef
ez

]

u = ∆per f

[

ef
ez

]

. (8)

Therefore, two filters (Wf (s) andWz(s)) are introduced to make

sure that the norm of
‖ef‖
‖ f‖ is minimized in the frequency area

of interest. (For incipient faults a low frequency filter is used.)
In fact, we introduce these filters to handle the high excitation
level of the inputs. Finally we introduce



Fig. 2. Standard problem set-up for parametric fault detection
combined with fictitious performance block (The dashed
lines are the connections which are artificially assumed
only for the design and they do not exist in implementa-
tion).

∆ =

[

∆par 0
0 ∆per f

]

. (9)

The significance of the∆per f block is the following. By the
small gain theorem, theH∞ norm of the transfer function from

u to

[

éf
éz

]

is bounded byγ if and only if the system in Fig.

2 is stable for all∆per f, ‖ ∆per f ‖∞< γ. Hence, the problem
of making the norm of the fault estimation error bounded by
some quantity has been transformed to a stability problem.
Eventually, the main result for FDI problem with parametric
fault is provided by the following (Stoustrup and Niemann,
2002):
Theorem 1.Let F(s) be a linear filter applied to the system in
Fig. 2
[

f̂
ẑ

]

= F

[

u
y

]

,

and assume thatF(s) satisfies:

‖ Fl (Gz̃w̃,F) ‖∞< γ, (10)

wherez̃=

[

z
éf
éz

]

, w̃ =

[

f
u

]

, andFl (.) is the lower Linear Ma-

trix Transformation (LFT) representation of the two connected
blocks (Zhou et al., 1995). Then the resulting fault estimation
error is bounded by

‖

[

éf
éz

]

‖∞< γN (11)

whereN is the excitation level of the system i.e.,‖ u ‖∞= N.

3.2 Design of The Fault Detector for Turbopump

As an example of the fault estimation method, we brought
one of the subsystems in the propulsion system (Soltani et al.,
2008). The Oxygen turbopump subsystem is actually the com-
bination of the RTO and PUMP O-1 blocks in Figure 1. The
dynamic model of this block is written as following

ẋ = (−ax−cQo)(1− p(δ ))+bTo, (12)
wherea, b, andc are constants from the linearization,x is the
shaft speed ,Qo is the pump flow , andTo is the turbine torque
and

p(δ ) = λδ 3 +δ 2−λδ (13)
is the parametric fault model with some constantλ .

The system is formulated in a standard form as

ẋ = −ax−xu +bTo +λ f1 + f2−λ f3
ẋu = −Wxu +WcQo

ẋe f = Ae fxe f +Be f(λ f1 + f2−λ f3− f̂ )
ẋez= Aezxez+Bez(λz1 +z2−λz3− ẑ)
z1 = ax+xu

z2 = f1
z3 = f2
éf = Ce fxe f +De fef

éz = Cezxez+Dezez

y1 = x
y2 = To

y3 = Qo

(14)

whereW is a relatively big constant used to include the actuator
fault in the state variables. The standard model (withDe f =
Dez= 0) becomes











































ẋ
ẋu
ẋe f
ẋez
· · ·
z3
z2
z1
éf
éz
· · ·
y1
y2
y3











































=

















A1
... B1 Bf

... B2
· · · · · · · · · · · · · · ·

C1
... D11 D1 f

... D12
· · · · · · · · · · · · · · ·

C2
... D21 D2 f

... D22

























































x
xu
xe f
xez
· · ·
To
Qo
f1
f2
f3
· · ·
ẑ1

f̂1









































, (15)

where the matrix values can be found in Appendix 5. Finally, a
H∞ filter F , which estimateŝf andẑand takesu andy as inputs,
is designed usinghinfsynin MATLAB. This filter results inef
andez vanishing to zero as time goes to infinity.

4. RESULTS

4.1 Comparable fault estimation/diagnosis algorithms

To evaluate the described algorithm in the previous section,
three other suggested optimization based robust methods are



employed. These methods are described in the following sub-
sections.
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Fig. 3. The result of theH∞ (with different γ values) andµ-
synthesis method to the injected step fault.

µ-Synthesis The optimization problem in Theorem 1 can
be solved using D-K iteration as a numerical method forµ-
synthesis. The set-up, should be formulated in a way so thatδ
is augmented in the set-up and considered to be in the unit circle
of the complex plane.

ẋ = −ax−xu +bTo +(ax+xu)λδ 3 +(ax+xu)δ 2− (ax+xu)λδ
ẋu = −Wxu +WcQo

ẋe f = Ae fxe f +Be f((ax+xu)λδ 3 +(ax+xu)δ 2− (ax+xu)λδ − f̂ )

ẋez= Aezxez+Bez((ax+xu)λδ 2 +(ax+xu)δ − (ax+xu)λ − ẑ)
éf = Ce fxe f +De fef

éz = Cezxez+Dezez

y1 = x
y2 = To

y3 = Qo,
(16)

Mixed H2 / H∞ Fault Diagnosis In (Khosrowjerdi M.J.,
2005), the residual for the system

ẋ = Ax+Bu+Bf fa +Bdda

y = Cx+Du+D f fs+Ddds
(17)

is given by

˙̂x = (A−KC)x̂+[B−KD K][u ym]T

δ̂ = −Cx+[−D 1][u ym]T ,
(18)

where the gainK is obtained trough solving the convex opti-
mization problem in (Khosrowjerdi M.J., 2005) and̂δ is the
estimated residual here.

Mixed H∞ / LMI Fault Diagnosis In (Zhong M., 2003), a
model-matching problem is solved by minimizing theH∞ norm
of the difference between the residual reference model and the
real residual. In this method, the residual for the system 17is
given by
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Fig. 4. The result of the mixedH2 / H∞ method to the injected
step fault (The upper graph is zoomed and illustrated in
the lower graph).
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Fig. 5. The result of the mixedH∞ / LMI method to the injected
step fault (The upper graph is zoomed and illustrated in the
lower graph).

˙̂x = (A−HC)x̂+[B−HD H][u ym]T

ŷm = Cx̂+Du

δ̂ = V[ym− ŷm],

(19)

wherex̂ andŷm are the estimates of the state and measurement
output vectors and the filter gainsH andV are designed accord-
ing to theorem 2 in (Zhong M., 2003).

4.2 Comparison of Estimation Results

Figure 3 shows the comparison of the different designs for
H∞ and µ synthesis. By reducing theγ of H∞ optimization
the estimation becomes more robust to the disturbances. The
comparison of theH∞ with µ-synthesis shows that in the
no-fault interval (0-25s), the estimation has lower amountof



fluctuations and is more robust. However, in the fault interval
(25s-50s), the residual generated byH∞ design is more robust
to the disturbances.

Figure 4 shows the output of the estimated residual generated
by the mixedH2 / H∞ design method. As the change in the
parameter results in instability of the system, the estimated
residual is also unbounded. Consequently, the estimated resid-
ual does not estimate to the injected fault, but it determines the
existence of a fault.

In figure 5, a similar type of output (unbounded) is observed.
The residual is the result of the mixedH∞ / LMI design method
which does not represent the estimation of the fault, thoughit
is less robust to the disturbances compared toH2 / H∞ design
method.

In figures 6, 7, 8, 9, 10, 11, 12, and 13, the output of all
four different FD filters are illustrated for different injected
faultsδ . These results show that the filter designed throughµ-
synthesis approach gives the best estimation of the injected fault
in different scenarios.

4.3 Structural Analysis Results

The structural analysis, carried out on the propulsion engine
model, identified 11 independent subsystems with inherent re-
dundant information. Hence it is possible to derive 11 differ-
ent and linearly independent residual expressions. 6 of these
subsystems exhibit dynamic behavior while the other 5 are of
algebraic nature. 12 different faults were considered in this
system. A preliminary analysis of the fault impacts on each
subsystem (represented by a corresponding residual) suggested
that all faults were detectable. In addition, 7 faults were isolable
while the other faults were group-wise isolable, i.e. a group
of 2 faults and a group of 3 faults were isolable, but with
no possibility of isolating the faults from each other in each
group (Soltani and Izadi-Zamanabadi, 2007). Detailed design
of fault diagnosis algorithms for each subsystem (in particular
those with dynamic behavior) were carried out, and the results
showed an exact match between the detected/isolated faultsand
the detectable/isolable faults determined in the structural anal-
ysis. Despite being a simple qualitative method the structural
analysis showed to be an extremely powerful tool for develop-
ing health monitoring systems in complex dynamical systems.

5. CONCLUSION

The structural analysis approach was applied to identify the
monitorable parts/subsystems of a complex propulsion system
and provide information about the possibility of detectingand
isolating the considered faults in the system. In this paper, the
process of using the structural analysis was briefly illustrated
by applying it on a turbo-pump subsystem.
The obtained filter was based on the parametric fault diagnosis
filter design approach based on theH∞ as well as theµ synthe-
sis, where the chosen turbo-pump subsystem was used as the
benchmark. Eventually, the results of the designed fault esti-
mator have been compared with that of two other optimization
based methods.

APPENDIX

Matrices Values

A1 =







−a −1 0 0
0 −W 0 0
0 0 Ae f 0

aλBez λBez 0 Aez






,

B1 =

[

To 0 0 0
0 Wc 0 0

]T

,

Bf =







λ 1 −λ
0 0 0
λ 1 −λ
0 Bez −λBez






,

B2 =







0 0
0 0
0 −Be f

−Bez 0






,

C1 =











a 1 0 0
0 0 0 0
0 0 0 0
0 0 Ce f 0
0 0 0 Cez











,

D11 = 05×2,

D1 f =











0 0 0
1 0 0
0 1 0
0 0 0
0 0 0











,

D12 = 05×2,

C2 =

[

1 0 0 0
0 0 0 0
0 0 0 0

]

,

D21 =

[

0 0
1 0
0 1

]

,

D2 f = 03×3,

andD22 = 03×2.
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Fig. 6. Fault injected as a step (a) the injectedδ , (b) the residual
provided byH∞ design, (c) the residual provided byµ
design, (d) the residual provided byH2 / H∞ design, and
(e) the residual provided byH∞LMI design.
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Fig. 7. Fault injected as a fast ramped-raising step (a) the
injectedδ , (b) the residual provided byH∞ design, (c) the
residual provided byµ design, (d) the residual provided
by H2 / H∞ design, and (e) the residual provided byH∞
/ LMI design.
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Fig. 8. Fault injected as a slow ramped-raising step (a) the
injectedδ , (b) the residual provided byH∞ design, (c) the
residual provided byµ design, (d) the residual provided
by H2 / H∞ design, and (e) the residual provided byH∞
/ LMI design.
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Fig. 9. Fault injected as rectangular pulses (a) the injected δ ,
(b) the residual provided byH∞ design, (c) the residual
provided byµ design, (d) the residual provided byH2 /
H∞ design, and (e) the residual provided byH∞ / LMI
design.
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Fig. 10. Fault injected as triangular pulses (a) the injected δ ,
(b) the residual provided byH∞ design, (c) the residual
provided byµ design, (d) the residual provided byH2 /
H∞ design, and (e) the residual provided byH∞ / LMI
design.
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Fig. 11. Fault injected as sine with the frequency of 2rad
s (a) the

injectedδ , (b) the residual provided byH∞ design, (c) the
residual provided byµ design, (d) the residual provided
by H2 / H∞ design, and (e) the residual provided byH∞
/ LMI design.



0 5 10 15 20 25 30

0

0.5

1

Time(s)

In
je

ct
ed

 δ

a

0 5 10 15 20 25 30

0

0.5

1

Time(s)

E
st

im
at

ed
 δ

b

0 5 10 15 20 25 30

0

0.5

1

Time(s)

E
st

im
at

ed
 δ

c

0 5 10 15 20 25 30
0

20

40

60

80

100

Time(s)

E
st

im
at

ed
 δ

d

0 5 10 15 20 25 30
0

10

20

30

Time(s)

E
st

im
at

ed
 δ

e

Fig. 12. Fault injected as sine with the frequency of 1rad
s (a) the

injectedδ , (b) the residual provided byH∞ design, (c) the
residual provided byµ design, (d) the residual provided
by H2 / H∞ design, and (e) the residual provided byH∞
/ LMI design.
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Fig. 13. Fault injected as sine with the frequency of 0.3rad
s (a)

the injectedδ , (b) the residual provided byH∞ design,
(c) the residual provided byµ design, (d) the residual
provided byH2 / H∞ design, and (e) the residual provided
by H∞ / LMI design.
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