
Robust and Efficient Algorithms for
L∞-Norm Computation for Descriptor

Systems ?

P. Benner ∗ V. Sima ∗∗ M. Voigt ∗

∗Max Planck Institute for Dynamics of Complex Technical Systems,
39106 Magdeburg, Germany (e-mails: benner@mpi-magdeburg.mpg.de,

voigtm@mpi-magdeburg.mpg.de)
∗∗National Institute for Research and Development in Informatics,

011455 Bucharest, Romania (e-mail: vsima@ici.ro)

Abstract: In this paper we discuss algorithms for the computation of the L∞-norm of transfer
functions related to descriptor systems, both in the continuous- and discrete-time context. We
show how one can achieve this goal by computing the eigenvalues of certain structured matrix
pencils. These pencils can be transformed to skew-Hamiltonian/Hamiltonian matrix pencils
which are constructed by only using the original data. Furthermore, we apply a structure-
preserving algorithm to compute the desired eigenvalues. In this way we increase robustness
and efficiency of the method. Finally, we present numerical results in order to illustrate the
advantages of our approach.
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1. INTRODUCTION

For the analysis of linear dynamical systems, system norms
play a great role. One of the most popular norms is
the L∞-norm. It has important applications in model
order reduction as an error measure (Mehrmann and
Stykel (2005)). Another field of application is robust
control where it takes the role of a robustness measure
for dynamical systems (Zhou and Doyle (1998); Losse
et al. (2008)). This paper is devoted to the computation of
this norm for the special case of descriptor systems which
represents a more general concept than that of standard
state-space systems.

In this paper we consider continuous-time linear time-
invariant (LTI) systems

Σc :

{
Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

and discrete-time LTI systems of the form

Σd :

{
Ex(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(2)

with E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m,
descriptor vector x(t) ∈ Rn, control vector u(t) ∈ Rm, and
output vector y(t) ∈ Rp. We allow the matrix E to be
singular. In this case we speak about descriptor systems
or singular systems. However, throughout this work, we
always assume that the matrix pencil λE − A is regular,
i.e., det(λE −A) 6≡ 0.

? This work was supported by the Deutsche Forschungsgemeinschaft
under grant BE-2174/6-1.

By taking the Laplace transform of the equations in (1)
or the Z-transform of the equations in (2) we obtain the
transfer function of the corresponding system, given by

G(λ) = C (λE −A)
−1
B +D, (3)

where λ is replacing the Laplace variable s for a continuous-
time system, and the Z-transform variable z for a discrete-
time system. By Lp×m∞ (iω) and Lp×m∞

(
eiω
)

we denote the
Banach spaces of all p × m matrix-valued functions that
are bounded on the imaginary axis, or the unit circle,
respectively. In this work we consider the corresponding
rational subspaces RLp×m∞ (iω) and RLp×m∞

(
eiω
)
. It can

be shown that each G ∈ RLp×m∞ (iω) has a realization
of the form (1) and that each G ∈ RLp×m∞

(
eiω
)

has a
realization of the form (2). For G ∈ RLp×m∞ (iω), the L∞-
norm is defined by

‖G‖L∞
:= sup

ω∈R
σmax (G (iω)) ,

and for G ∈ RLp×m∞
(
eiω
)

it is given by

‖G‖L∞
:= sup

ω∈[−π,π)
σmax

(
G
(
eiω
))
,

where σmax(·) denotes the largest singular value. As an
agreement, we set ‖G‖L∞

= ∞ if G is not in the
corresponding space. For continuous-time systems this is
the case when G has purely imaginary poles, or when it
is improper, that is limω→∞G(iω) =∞. For discrete-time
systems, G 6∈ RLp×m∞

(
eiω
)

when G has unitary poles, i.e.,
poles on the unit circle. The poles of G are the controllable
and observable eigenvalues of λE−A. The implementation
of the algorithms can detect whether G is not an element
of the corresponding L∞-space and returns the norm value
∞ in this case.
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Note that for stable systems, the L∞-norm is equivalent
to the well-known H∞-norm.

2. COMPUTATION OF THE L∞-NORM

For the computation of the L∞-norm we make use of the
following matrix pencils

Hc(γ) :=

[
λE −A 0

0 λET +AT

]
−
[
B 0
0 −CT

]
×
[
−D γIp
γIm −DT

]−1 [
C 0
0 BT

]
=

[
λE −A+BR−1γ DTC γBR−1γ BT

−γCTS−1γ C λET +AT − CTDR−1γ BT

]
,

Hd(γ) :=

[
λE −A 0

0 λAT − ET
]
−
[
B 0
0 −λCT

]
×
[
−D γIp
γIm −DT

]−1 [
C 0
0 BT

]
=

[
λE −A+BR−1γ DTC γBR−1γ BT

−γλCTS−1γ C λAT − ET − λCTDR−1γ BT

]
,

with Rγ := DTD − γ2Im and Sγ := DDT − γ2Ip
(Genin et al. (1998); Voigt (2010)). The following theorem
connects the singular values of G(iω) and G

(
eiω
)

with
the finite, purely imaginary eigenvalues of Hc(γ) and the
unitary eigenvalues of Hd(γ), respectively (Benner et al.
(2012); Benner and Voigt (2011)).

Theorem 1. (a) Assume that G ∈ RLp×m∞ (iω), γ > 0 is
not a singular value of D and ω0 ∈ R. Then, γ is a
singular value of G(iω0) if and only if Hc(γ) has the
eigenvalue iω0.

(b) Assume that G ∈ RLp×m∞
(
eiω
)
, γ > 0 is not a singular

value of D and ω0 ∈ [−π, π). Then, γ is a singular
value ofG

(
eiω0

)
if and only ifHd(γ) has the eigenvalue

eiω0 .

The following statement is a direct consequence of Theo-
rem 1 (Benner et al. (2012); Benner and Voigt (2011)).

Theorem 2. (a) Assume that G ∈ RLp×m∞ (iω) and let
γ > minω∈R σmax(G(iω)) be not a singular value of
D. Then ‖G‖L∞

≥ γ if and only if Hc(γ) has finite,
purely imaginary eigenvalues.

(b) Assume that G ∈ RLp×m∞
(
eiω
)

and let γ >

minω∈[−π,π) σmax(G(eiω)) be not a singular value of
D. Then ‖G‖L∞

≥ γ if and only if Hd(γ) has unitary
eigenvalues.

Algorithm 1 summarizes the generalization of the method
presented in Bruinsma and Steinbuch (1990); Boyd and
Balakrishnan (1990) to the descriptor system case. It is
monotonically converging with a quadratic rate of con-
vergence, and the relative error is at most ε (assuming
exact arithmetic). The computing time is affected by the
number of frequency points in each step. A good choice
of initial value γlb can reduce the CPU time drastically.
The value γlb is determined by evaluating σmax(G(iω)), or
σmax

(
G(eiω)

)
at the boundary of the frequency intervals

[0,∞), or [0, π), respectively, and further inner test fre-
quencies, see Sima (2006) for further details. Care must
be taken of the eigenvalue computation, as missing only
one of the desired eigenvalues could force the algorithm to

fail. Within the next section we show how one can exploit
the structure of the pencils Hc(γ) and Hd(γ) for the robust
determination of the eigenvalues.

Algorithm 1 Computation of the L∞-Norm

Input: LTI descriptor system with transfer function G ∈
RLp×m∞ (iω) or G ∈ RLp×m∞

(
eiω
)
, tolerance ε.

Output: ‖G‖L∞
.

1: Compute an initial value γlb < ‖G‖L∞
.

2: if continuous-time system then
3: repeat
4: Set γ := (1 + ε)γlb.
5: Compute the finite, purely imaginary eigenvalues

of the matrix pencil Hc(γ).
6: if no finite, purely imaginary eigenvalues then
7: break.
8: else
9: Set {iω1, . . . , iωk} = finite, purely imaginary

eigenvalues with ωj ∈ [0,∞), j = 1, . . . , k.
10: Set mj =

√
ωjωj+1, j = 1, . . . , k − 1.

11: Compute the largest singular value of
G(imj), j = 1, . . . , k − 1.

12: Set γlb = maxj σmax (G (imj)).
13: end if
14: until break
15: else
16: repeat
17: Set γ := (1 + ε)γlb.
18: Compute the unitary eigenvalues of the matrix

pencil Hd(γ).
19: if no unitary eigenvalues then
20: break.
21: else
22: Set {eiω1 , . . . , eiωk} = unitary eigenvalues with

ωj ∈ [0, π), j = 1, . . . , k.
23: Set mj = 1

2 (ωj + ωj+1), j = 1, . . . , k − 1.
24: Compute the largest singular value of

G(eimj ), j = 1, . . . , k − 1.
25: Set γlb = maxj σmax

(
G
(
eimj

))
.

26: end if
27: until break
28: end if
29: Set ‖G‖L∞

= γlb.

3. ROBUST COMPUTATION OF THE DESIRED
EIGENVALUES

In this section we further analyze the matrix pencils Hc(γ)
and Hd(γ) which both have certain structures that we
want to exploit and preserve. First, note that Hc(γ) is
a skew-Hamiltonian/Hamiltonian matrix pencil (Benner
et al. (1999)) and that Hd(γ) is equivalent to a so-called re-
duced BVD pencil which can be seen as a generalization of
symplectic pencils (Byers et al. (2009)). Define the matrix

Jn :=
[

0 In
−In 0

]
. For a better readability, throughout this

paper, we always assume that J is a copy of Jn of appro-
priate dimension. Let R[λ]k×k be the set of all polynomials
with coefficients in Rk×k. A matrix pencil λS − H ∈
R[λ]2n×2n is called skew-Hamiltonian/Hamiltonian if S is
skew-Hamiltonian, i.e., (SJ )T = −SJ , and H is Hamil-
tonian, i.e., (HJ )T = HJ . Pencils of this structure have
many nice structural properties. The most important one
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is the Hamiltonian eigensymmetry, i.e., the eigenvalues are
symmetric with respect to the real and the imaginary axis.
This means that the eigenvalues occur in pairs (λ,−λ)
if they are real, or in pairs

(
λ, λ

)
if they are imaginary,

or otherwise in quadruples
(
λ,−λ, λ,−λ

)
. Reduced BVD

pencils have a particular block structure described in Byers
et al. (2009). They satisfy the symplectic eigensymmetry,
i.e., symmetry with respect to the unit circle. In other
words, eigenvalues occur in pairs

(
λ, λ

)
if they are unitary,

or otherwise in quadruples
(
λ, λ−1, λ, λ

−1)
.

Naively constructing the matrix pencils Hc(γ) and Hd(γ)
could be very ill-advised because they contain a lot of ma-
trix products and inverses. If γ is close to a singular value
of D, then the matrices Rγ and Sγ are ill-conditioned. And
even if they are not, forming “matrix-times-its-transpose”-
like products like BR−1γ BT suffers from numerical insta-
bility (Benner et al. (1999)). Therefore, explicitly forming
the matrix pencils must be avoided, if possible. Luckily, it
is possible to formulate related matrix pencils which can
be directly constructed by only using the original data.
This can be achieved by applying an extension strategy
similar to the one described in Benner et al. (1999). Within
the next two subsections we describe the transformations
applied to Hc(γ) and Hd(γ) in order to get the pencils that
were used in our implementation (Benner et al. (2012);
Benner and Voigt (2011)). For both, the continuous-time
and the discrete-time case, we first construct so-called even
matrix pencils whose finite, purely imaginary eigenvalues
we are interested in. However, for the actual computations
we use a structure-preserving algorithm on related skew-
Hamiltonian/Hamiltonian matrix pencils (Benner et al.
(1999)). In this way we obtain very accurate and reliable
results.

3.1 The Continuous-Time Case

By reverting the Schur complement structure of Hc(γ) we
obtain an extended matrix pencil

H(1)
c (γ) =


λE −A 0 −B 0

0 λET +AT 0 CT

−C 0 −D γIp
0 −BT γIm −DT

 ,
which has the same finite eigenvalues as Hc(γ) (Voigt
(2010)). However, we loose the skew-Hamiltonian/Ha-
miltonian structure by this operation. Luckily, we can

transform H(1)
c (γ) to an even pencil. A matrix pencil λS−

H ∈ R[λ]n×n is called even, if S = −ST and H = HT .
Even and skew-Hamiltonian/Hamiltonian matrix pencils
are closely related to each other which we will explain in
detail in Subsection 3.3. In particular, even pencils also
have a Hamiltonian spectrum (Schröder (2008)). Now, by

performing some block permutations in H(1)
c (γ) we obtain

the even matrix pencil

H(2)
c (γ) =


0 λE −A 0 −B

−λET −AT 0 −CT 0
0 −C γIp −D
−BT 0 −DT γIm

 .

3.2 The Discrete-Time Case

The discrete-time case is more involved than the conti-
nuous-time one. Similar to the considerations above we
can exploit the Schur complement structure of Hd(γ) and
obtain the extended matrix pencil

H(1)
d (γ) =


λE −A 0 −B 0

0 λAT − ET 0 λCT

−C 0 −D γIp
0 −BT γIm −DT

 ,
with the same finite eigenvalues as Hd(γ). By some block
permutations and transposing the pencil we obtain the
following D-type matrix pencil (Xu (2006))

H(2)
d (γ) =


0 −λET +AT CT 0

λA− E 0 0 −B
λC 0 γIp −D
0 −BT −DT γIm

 .
D-type matrix pencils have the general form

λED −AD = λ

[
0 F
−GT 0

]
−
[

0 G
−FT H

]
with symmetric H, and have symplectic eigenstructure
with possible additional infinite eigenvalues. We consider
the generalized Cayley transform

c(E ,A) := λ (A+ E)− (A− E) .

Applying c(·) to a D-type matrix pencil yields a matrix
pencil (Xu (2006)) of the form

λẼ − Ã : = c(ED,AD)

= λ

[
0 G+ F

−GT − FT H

]
−
[

0 G− F
GT − FT H

]
.

Pencils of this structure have Hamiltonian eigensymmetry
and might have additional eigenvalues 1. In particular,
unitary eigenvalues of λED−AD are mapped to the purely
imaginary eigenvalues of λẼ − Ã. Unfortunately, λẼ − Ã
still has a structure that we cannot exploit. Therefore we
apply an additional drop/add transformation to obtain a
C-type matrix pencil (Xu (2006))

λEC−AC := d
(
Ẽ , Ã

)
=

[
(1− λ)I 0

0 I

](
λẼ − Ã

)[I 0
0 (1− λ)−1I

]
= λ

[
0 G+ F

−GT − FT 0

]
−
[

0 G− F
GT − FT H

]
.

This pencil has even structure and therefore satisfies the
Hamiltonian eigensymmetry. Note that the transformation
is singular if λ = 1,∞. Therefore, the multiplicities of
these eigenvalues may have changed. However, this does
not affect our problem, since we are only interested in
the finite, purely imaginary eigenvalues. Applied to our
problem we obtain the even matrix pencil

H(3)
d (γ) = λ

 0 −AT − ET −CT 0
A+ E 0 0 0
C 0 0 0
0 0 0 0



−


0 −AT + ET −CT 0

−A+ E 0 0 B
−C 0 −γIp D
0 BT DT −γIm

 .
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3.3 Even and skew-Hamiltonian/Hamiltonian Pencils

In this subsection we briefly describe the relations between
even and skew-Hamiltonian/Hamiltonian matrix pencils
and explain how we can get skew-Hamiltonian/Hamiltonian

matrix pencils from H(2)
c (γ) and H(3)

d (γ). Let λS − H ∈
R[λ]2n×2n be an even matrix pencil. Then, it not difficult
to show that λSJ−HJ is skew-Hamiltonian/Hamiltonian.
However, λS−H might also be of odd dimension, whereas
every skew-Hamiltonian/Hamiltonian matrix pencil al-
ways has an even dimension. In this case we have to
inflate the matrix pencil λS − H by one dimension. Of
course, that inflated pencil must be of even structure, too.
Following from these considerations we define the skew-
Hamiltonian/Hamiltonian matrix pencils

Hc(γ) : =

{
H(2)

c (γ)J if m+ p is even,

diag
(
H(2)

c (γ), 1
)
J if m+ p is odd,

Hd(γ) : =

{
H(3)

d (γ)J if m+ p is even,

diag
(
H(3)

d (γ), 1
)
J if m+ p is odd.

In our implementation we use modified versions of Hc(γ)
and Hd(γ) which are slightly different from those pre-
sented in Benner et al. (2012); Benner and Voigt (2011).
Note that the construction of these pencils usually requires
to split some of the matrices from the system realization
into subblocks. There exist other approaches for the infla-
tion where such a splitting is not necessary but this usually
requires a larger extension of the even pencils, see Voigt
(2010). However, if |m − p| is small this is usually still
feasible.

3.4 Structure-Preserving Eigensolver

In this subsection we briefly describe how we determine
the desired, i.e., finite, purely imaginary eigenvalues of the
skew-Hamiltonian/Hamiltonian pencils Hc(γ) and Hd(γ)
in a reliable and accurate way.

Consider a regular skew-Hamiltonian/Hamiltonian matrix
pencil λS − H ∈ R[λ]2n×2n. First, we recall the fact that
transformations of the type

(
JPTJ T

)
(λS − H)P with

nonsingular P preserve the skew-Hamiltonian/Hamiltoni-
an structure (Benner et al. (1999)). Therefore we hope that
we can compute an orthogonal matrix Q such that(
JQTJ T

)
(λS −H)Q = λ

[
S11 S12

0 ST11

]
−
[
H11 H12

0 −HT
11

]
,

with upper triangular S11 and upper quasi triangular
H11. This condensed form is called structured Schur form
(Benner et al. (1999)). Unfortunately, such a structured
Schur form does not always exist, for instance if λS − H
has simple, finite, purely imaginary eigenvalues. This is the
generic situation in our application. However, we can use
an alternative factorization of the matrix pencil which is
called generalized symplectic URV decomposition (Benner
et al. (1999)).

Theorem 3. Let λS − H be a regular skew-Hamiltoni-
an/Hamiltonian matrix pencil. Then there exist orthog-
onal matrices Q1 and Q2 such that

QT1 SJQ1J T =

[
S11 S12

0 ST11

]
,

JQT2 J TSQ2 =

[
T11 T12
0 TT11

]
,

QT1HQ2 =

[
H11 H12

0 H22

]
,

where S11, T11, H11 are upper triangular, and HT
22 is upper

quasi triangular.

The proof of the above theorem is constructive and di-
rectly leads to an algorithm for computing the generalized
symplectic URV decomposition. As shown in Voigt (2010),
the eigenvalues of λS − H are the positive and nega-
tive square roots of the eigenvalues of generalized matrix
product −S−111 H11T

−1
11 H

T
22. In particular, the finite, purely

imaginary eigenvalues of the matrix pencil correspond to
the 1×1 diagonal blocks of the generalized matrix product.
Therefore, when computing purely imaginary eigenvalues
we do not make any error in the real parts, i.e., a ro-
bust and reliable detection of the desired eigenvalues is
achieved. We note that problems might still occur if we
compute finite, purely imaginary eigenvalues which are
very close to each other. Then, under certain conditions
it can happen that they split on the imaginary axis and
form a quadruple of eigenvalues together with their com-
plex conjugate counterparts. This situation typically arises
when γ approaches the true value of the L∞-norm.

4. NUMERICAL RESULTS

This section presents some numerical results, based on
a Fortran implementation of the algorithm — to be in-
cluded in the SLICOT Library 1 — and a correspond-
ing MATLAB MEX-file. The calculations have been per-
formed on a portable Intel Dual Core computer at
2 GHz, with 2 GB RAM, and relative machine pre-
cision ε ≈ 2.22 × 10−16, using Windows XP (Service
Pack 2) operating system, Intel Visual Fortran 11.1 com-
piler, MATLAB 7.13.0.564 (R2011b), and the optimized
LAPACK and BLAS libraries available in MATLAB. Tol-
erances have been set to

√
ε ≈ 10−8. The balancing

(equilibration) option was not activated for the SLICOT
calculations.

Many tests have been performed for random systems with
elements chosen from a uniform distribution in the range
(0, 1) and various dimensions n,m, and p, with nonsingular
(including identity) or singular matrices E. The results
practically coincided with those delivered by the MATLAB
function norm.

Other tests have been performed for linear systems from
the COMPleib collection (Leibfritz and Lipinski (2004)).
This collection contains 124 continuous-time examples
(put in the standard form), with several variations, giving
a total of 168 problems. The matrix D is zero. All but
16 problems (for systems of order larger than 2000, with
matrices in sparse format) have been tried.

To generate descriptor systems with singular matrix E,
we used E = diag(In−1, 0). With this modification, 22
systems (AC9, HE3, JE2, DIS4, BDT2, PAS, NN1, NN2,

1 http://www.slicot.org/
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NN9, NN15, NN16, FS, ROC1-ROC10) became improper,
and therefore, these systems have infinite values for the
L∞-norm and corresponding frequencies. These examples
were excluded from the comparison.

The relative errors between the L∞-norms computed by
the new, structured SLICOT solver and by the MATLAB
function norm usually had values of the order 10−12 or less.
Just two examples (CM5 and CM6) had relative errors of
order 10−6 (the largest relative errors) and two examples
(CM4 and CM6 IS) had relative errors of order 10−7. The
SLICOT solver found a larger value of L∞-norm than norm
for 58 problems, and the same value for 19 problems.

The sum of the CPU (central processing unit) execution
times for SLICOT and MATLAB solvers was 997 and 2280
seconds, respectively, i.e., the SLICOT solver was globally
about 2.3 times faster than the MATLAB solver. Figure 1
presents the ratios of the CPU times needed by norm and
by the new solver.

0 20 40 60 80 100 120
0

100

200

300

400

Problem

S
p

ee
d

-u
p
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ct

or

Fig. 1. SLICOT structured solver versus MATLAB norm
for COMPleib modified examples: speed-up factor
comparison.

Actually, the speed-up has been lower than 1.5 for just
three examples, and lower than 2 for nine examples. Its
mean value was 21. The reason is that the SLICOT
solver exploits the skew-Hamiltonian/Hamiltonian struc-
ture of the matrix pencils involved. Large speed-up factors
have been obtained for small order problems. The largest
CPU time was about 535 seconds (for example NN18, with
n = 1006, m = p = 1), and the corresponding speed-up
factor value was 2.46.

Fig. 2 shows the speed-up factors for the 24 medium-size
problems in the HF2D group (with orders between 256
and 576). These are actually 12 pairs of examples with
smaller and larger order, which explains the zig-zagging
appearance. This figure zooms into the interval with low
speed-ups around the problem numbered 80 in Fig. 1.
Solving these problems needed about one third of the total
execution time.

We have also performed tests with standard systems (E =
In). All COMPleib examples, except those with over 2000
states, have been considered in this case. An improvement,
based on the HAPACK 2 approach, of the solver in Sima
(2006) is used. The new solver found a larger value of L∞-
norm than norm for 55 problems, and the same value for 42
problems. The Euclidean norm of the relative differences

2 http://www.tu-chemnitz.de/mathematik/hapack/

70 75 80 85 90 95
1.5

2

2.5

3

3.5

Problem

S
p

ee
d

-u
p

fa
ct

o
r

Fig. 2. SLICOT structured solver versus MATLAB norm
for COMPleib modified HF2D examples: speed-up
comparison.

between the finite L∞-norms computed by the two solvers
was of the order of 10−10.

The SLICOT solver has been significantly faster than
the MATLAB function norm. The speed-up factor can be
impressive even for large problems (e.g., 3.8 for example
NN18). Actually, the speed-up has been lower than 3 for
just two examples, and lower than 4 for four examples.
Its mean value was about 44. The ratio of the sum of the
CPU times needed by norm and by the SLICOT solver was
about 4.7.

Figure 3 presents the ratios of the CPU times needed by
norm and by the new solver.
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Fig. 3. SLICOT structured solver versus MATLAB norm
for COMPleib examples: speed-up factor comparison.

Fig. 4 shows the speed-up factors for the medium-size
problems in the HF2D group.
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Fig. 4. SLICOT structured solver versus MATLAB norm
for COMPleib HF2D examples: speed-up comparison.
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5. CONCLUSIONS

We have presented algorithms for computing the L∞-norm
of transfer functions related to LTI descriptor systems.
The crucial step of the algorithms is the computation of
the eigenvalues of certain structured matrix pencils. We
have shown how one can transform these matrix pencils to
more convenient structures in order to improve accuracy,
reliability and efficiency of the eigenvalue computation.
Finally, our theoretical considerations have been verified
by performing a large test sequence with both random and
COMPleib benchmark examples.
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