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Abstract: A timed control synthesis approach is proposed for a class of hybrid systems modeled with 
rectangular hybrid automata. The control objective is to constrain the reachable state spaces by the 
addition of control specifications which can be inconsistent with the system dynamics. Our approach is 
within an automatic control view and is based on the offline computation of the system new transition 
guards determined from the reachable state spaces. The approach is illustrated via a production system. 
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1. INTRODUCTION 

 
In this paper, we study the timed control of a class of systems 
broadly known as hybrid processes. This type of process can 
be found in numerous real life automated systems. 
This work belongs to the general framework of the Ramadge 
and Wonham theory (Ramadge et al, 1987) for the control of 
discrete event systems. These systems are modeled as 
generators of formal languages; the adjunction of a control 
structure allows limiting the language generated by the 
system by accordingly enabling and disabling events. 
Brandin and Wonham (Brandin et al, 1992) have then 
extended the theory to the timed discrete event systems by 
adding discrete timing features to the initial systems.   
Maler (Maler et al, 1995) introduced an extension to the 
Ramadge and Wonham theory, working in the timed 
automaton framework (suggested by Alur and Dill (Alur et 
al, 1994)) and defining the notion of timed games. Later, 
Cassez (Cassez et al, 2005) used this notion to introduce an 
efficient on-the-fly algorithm for the analysis of timed 
automata.  
 
Lots of automated systems evolve according to continuous 
sub processes which are started and stopped by discrete state 
orders. Therefore, processes have rarely a purely discrete or 
continuous behavior but a mixture between both of them. 
These dynamical systems with a double behavioral 
component are called hybrid systems and can be modeled by 
many tools among which there is the hybrid automaton 
(Henzinger, 1996). This model can be considered as a 
generalization of the timed automaton model (Alur et al, 
1994), where the continuous evolution is no longer 
represented by clocks but by differential equations on the 
continuous variables of the system.  
Henzinger (Henzinger et al, 1999) has studied the control 
problem of hybrid automata by introducing the hybrid games. 
The game proceeds in an infinite sequence of rounds and 
produces an ω-sequence of states. In each round, both players 
independently choose enabled moves; the pair of chosen 
moves either results in a discrete state change, or in a passage 
of time during which the continuous state evolves. In the 

special case of a rectangular game, the enabling condition of 
each move is a rectangular region of continuous state, and 
when time advances, then the derivative of each continuous 
variable is governed by a constant differential inclusion. The 
control problem for hybrid games asks: giving a hybrid game 
B and a formula ϕ over the discrete states of B, is there a 
strategy for player 1 so that all possible outcomes of the game 
satisfy ϕ ? 
Spathopoulos (Spathopoulos, 2000) considered the problem 
of supervisory control for rectangular hybrid automata and 
established a supervisory controller that can disable only 
discrete-event transitions in order to solve the non-blocking 
forbidden state problem. 
 
All these approaches are within a computer science point of 
view. Our work is within an automatic control point of view, 
and as researchers in this domain, we need to synthesize an 
effectively implementable control which requires realistic 
assumptions. 
 
In this article, we present an approach for the timed control 
synthesis of a class of hybrid systems modeled by rectangular 
hybrid automata. The control is obtained via the automaton 
new transition guards modified by the addition of desired 
constraints to the system. It is based on the reachable state 
spaces computation for any location. Often, in this research 
field the formal ideas are complex; that is why we start this 
paper with an intuitive presentation. 
 
It is organized as follows. In Section 2, we present an 
intuitive example to introduce our main ideas. In Section 3, 
we define the model assumptions and introduce the reachable 
state spaces. Section 4 develops our approach of control. This 
approach will be applied to a production system in Section 5 
and a conclusion will be given in Section 6. 

 

 

 



     

2. INTUITIVE PRESENTATION

In order to facilitate the presentation of our approach, we 
introduce an intuitive presentation based on a simple real 
example.  
We consider a traffic section that can tolerate a maximum 
number of 200 cars (we suppose that the average distance 
between two cars is 4 meters, L=4m). The cars arrive to the 
section with an average speed of 36 km/h and leave it with an 
average speed of 42 km/h. 
The example is shown in Fig .1. 

 

Fig. 1. Example of the traffic section 

We suppose that there is a regulation of the traffic that can be 
done either by a traffic light or by a policeman. Two 
situations are possible: authorized circulation (V2=42 km/h) 
and unauthorized circulation (V2= 0). The transition from one 
situation to another can be done at any time, hence the 
intervention of a clock, denoted by ‘h’ and expressed in 
minutes. Initially, the number of cars is equal to 80. Then, the 
example can be represented by the automaton shown in 
Fig.2., taking as state variable x1 the number of cars in the 
section, and considering the flow as given in the expression: 

��� �
�����

	
. 

 
Fig. 2. The traffic section automaton model 
 
Each automaton location is defined by: the variables (x1 et h), 
the dynamics of the variables (ex: ��� � ABC) and the 
invariants (ex: x1≤200: maximum capacity of the section). 
The events “Stop” and “Start” are controllable, i.e the 
occurrence of these events can be forced in their existence 
intervals.  
Now, suppose that we need to add a control in order to limit 
for example the number of cars in the section. We then 
consider that a policeman wants that: when the circulation is 
authorized, the section contains at most the quarter of its 
capacity (x1≤50), and when the circulation is forbidden, the 
number of cars is between 30 and 40 (30≤x1≤40). 
All specifications are added to the automaton as show in 
Fig.3.  

 
Fig.3. The traffic section constrained automaton 

 
In order to satisfy these different specifications it is necessary 
to compute new transition guards, this is the asked control 
problem. For example, the commutation between Locations 
(q0) and (q1) will occur at any time so that the number of cars 
is less than 50. 
However, the specifications are imposed independently from 
the dynamics of the system then they may not be achievable. 
A simple indicator can highlight this situation; it is the 
duration of stay in a location which will be negative. Then, it 
will be necessary to reduce the commutation guards. 
The problem is to find the clock intervals of the 
commutations between the different locations of the system, 
and therefore, to reduce the intervals found in the study of the 
uncontrolled behavior. We want consequently the maximal 
permissive behavior. 
 

3. PROCESS AND SPECIFICATION MODELING 
 
In this section, we first define the model assumptions. Then, 
we introduce the control specifications with the notion of 
reachable state space and the convexity problem that 
guaranties the convexity of the solution. 

3.1 The model assumptions 

The model chosen here is the Rectangular Hybrid Automaton 
(RHA) as shown in the intuitive presentation. This model can 
be considered as a generalization of the Timed Automaton 
model. In the case of the RHA, the continuous evolution is 
represented by differential equations on the continuous 
variables of the system. Our model has specific assumptions; 
its definition is derived from the definition of Henzinger 
(1998). 
 
Definition 1: The general model 
A Rectangular Hybrid Automaton (RHA) is defined by the 
tuple H=(Q, X∪ { h} , Σ, T, inv, flux, q0, DE

F�), where: 
•  Q={q1,…,qk} is a finite set of locations representing the 

discrete states of the system; 
•  X ∪ { h}  is a finite set of real variables and h is a global 

clock; 
•  Σ  is a set of controllable events; 
•  T ⊆  Q × Σ × Pred (X) × Pred (X) × 2X ×Q is a finite set of 

transitions where Pred (X) being the set of predicates on 
X.  

•  σ � h, a clock h is associated with each controllable 
event; 

•  inv: Q→Rect (X∪ { h}) is a function which associates with 
each location q∈ Q a rectangular constraint for any 
variable xi∈ X and for the clock h; 

•  flow: Q → Rect (��� ∪ {�� � �}) is the function that assign 
to each location a dynamic for the continuous evolution.  

•  q0�is the initial location; 
•  DE

F� is the initial input space of  q0; DE
F� is a convex region. 

ܽ  



     

For example, the system shown in Fig 3 is modeled by a 
rectangular hybrid automaton, characterized by the 
continuous variable x1 and the global clock h. The example 
fully meets Definition 1.  

3.2 Control specification 

Our goal is to establish a timed control by imposing some 
desired constraints, indicated on the transition guards, on the 
variables of the system. This control must be maximal 
permissive. 
While imposing certain constraints to the location, the system 
commutes at a certain moment that reduces the state space 
(Fig.4.). This behavior joins the idea of forbidden states, 
introduced by Wonham (1987) in the classical supervisory 
control. 

 
Fig.4. Specification of the control 
Definition 2: Constraint: A constraint is a conjunction of 

polyhedral inequalities over X of the form c1x1+… ck xk ∼  c, 

where x1,…xk ∈ X, c, c1,…, ck∈ ��and �∈ {<, ≤, =, ≥, >}. It is 
called a polyhedral predicate over X and is denoted C(X).  

ܽ 

Definition 3: Control specification: T�(X�Pred (X)), a 
control specification is a function that assigns to each 
transition a constraint over X. 

ܽ 

For example in Fig.4. above, a constraint C1(X) has been 
added in the guard between locations (q1) and (q2). 
In the sequel, the automaton to which are added the desired 
constraints in the transition guards will be called the 
structural constrained automaton. 
 
3.3 Reachable state space 

All calculations to be used are starting from formally 
determining the reachable state spaces by a RHA. This 
determination is based on the forward analysis of the 
structural constrained automaton. 

•  Reachable state: A state (q, v) is called reachable, if it 
exists an execution of H that joins this state from an initial 
state (q0,v0)∈ �DEF�. 

•  Forward analysis: The forward analysis operators are 
used in order to compute all possible trajectories of the 
system. This leads to compute the state spaces associated 
to the stays of the system in each location of the model. 
One location can be reached with different continuous 
state spaces at its entrance, especially when the model 
contains cycles. Consequently, the state space associated 
to a location is equal to the conjunction of the continuous 
state spaces of all possible visits to the location. 

The forward analysis is realized using the software PHAver 
(Frehse, 2008). This software provides commands for 
computing reachable sets of states and simulation relations 
plus a number of commands for the manipulation and output 
of data structure. Its language is as user friendly as possible. 
The forward analysis of the constrained automaton leads to 
the state space reduction and can also lead to a state removal. 
It means that some states may not be reachable. This can be 
due to the fact that the constraints are stronger than the 
dynamics. The obtained automaton is called reachable 
constrained automaton. 
 
Remark 1: In order to guarantee the termination of the 
algorithm, we have to add another assumption to the 
constrained RHA. This assumption is expressed as follows: 
For any loop, it exists at least one transition (qi, vi) � (qi+1, 
vi+1) such that we have the assignment over the global state X 
and the clock h, (X, h):=( X0, h0); ( X0, h0) is a convex region. 
These transitions will be called initialized transitions. 
This assumption is often in real life automated systems. 

ܽ 

The state spaces obtained from the forward analysis of the 
constrained automaton shown in Fig.3. are given in Fig.5. 
below. The constraints are shown in bold italic.  
For example, Location (q1) is characterized by the following 
inequalities:  

-150h+x1≥-480; x1≤200; 25h+x1≥80; 150h-x1≥130 
They express the linear constraints between the variable x1 
and the global clock h. They provide a bijective 
characterization of the state space and this formalization will 
allow us to compute the values of the control clock. 

 
Fig.5. Forward analysis of the constrained automaton 
 
Proposition 1: If the control specification is expressed as ai � 
xi � bi, then it corresponds at most to an initialization for the 
variable xi at the entrance of the successor location. 

ܽ 

Proof: It is obvious that the following two schemas are 
equivalent. Therefore, having a constraint of type ai � xi � bi 
corresponds to affecting to xi the interval [ai, bi]. 

 
ܽ 



     

Remark 2: All the reachable state spaces of the automaton are 
convex. In fact, in each state space, we have only inequalities 
and intersections between them. It has been proved 
(J.Ch.Gilbert, 2007) that the image of a convex set by an 
affine application is convex and that the intersection 
preserves convexity. 
 

4. COMPUTATION OF THE MAXIMAL PERMISSIVE 
CONTROL 

 

Finding the maximal permissive controller consists in finding 
all maximal guards of commutation that respect both the 
invariants and the constraints. 
 

4.1 New guards 
 
The base of the control computation amounts to solve the 
general problem for a transition between two locations of the 
automaton, which model is shown in Fig. 7. 

 
 
Fig.7. Computation of the maximal permissive control 
 
It is obvious that in each location, the time derivative of any 
variable xi has a constant sign. This characterization 
corresponds to the behavior of most real-life systems.  
We also suppose that each location has only one output 
transition as mentioned in Remark 1. 
The constraints are defined regardless of the process. There is 
then no guarantee on their achievability. In fact, they can be 
inconsistent with the dynamic of the location. This amounts 
to calculate the maximal duration of stay in the location in 
question, denoted δi, for each variable xi. This value has to be 
positive, since it is a time value. For a location, it can happen 
that an input value of the constraint variable is greater than its 
output value, then δi <0 in case of a positive flow. This will 
be the key idea of our controller synthesis approach. 
As we mentioned in the definition of the RHA, all the events 
are controllable, this means that we are able to modify the 
value of the associated clock. The case of uncontrollable 
events will be treated in future work. 
We first compute the guard between Locations (q1) and (q2), 
which is influenced by the behavior in (q2) (Fig. 7). The 
demonstration starts where there is a state reset, i.e., 
downstream Location (q2) for our case. In fact, we have cut 
the problem into parts by resetting the state in each loop, so 
that we don’t have any link with the downstream. Then, the 
computation of the guard is simple starting where the state is 
reset. As we mentioned earlier in Remark 2, the transition 
where the state is reset is called the initialized transition. 

In the following, we will denote by Ui the initial guard which 
is the conjunction Predi(h)∧ Gi(X)∧ Ci (X). The new guard that 
we compute will be denoted by Vi. 

The problem is decomposed into two parts. We first compute 
the control for the initialized transition that is completely 
decoupled from the downstream. Then, we go upstream and 
compute the control transition by transition until we find 
again a state initialization. 
 
Proposition 4: Initial control 
The guard for the initialized transition is V2 =E2 ∧  U2. 

ܽ 

Proof: 
Since the initialized transition is completely decoupled from 
the downstream, the new guard in this transition takes into 
account only the initial guard and the state space upstream 
this transition. 

ܽ 

Theorem 1: Upstream control 
The guard from location (q1) is V1 such that: 

•  Case��F
�>0:V1=E1∧ U1∧ sup(E2∧ U2)                                 (1)  

Where   ����D����� � � �F  !"�#$�D�����
�
F%�                                

•  Case��F
�<0:V1=E1∧ U1∧ inf(E2∧ U2)                                  (2) 

Where   &'(�D����� � � �F ) !*+#$�D�����
�
F%�                                   

ܽ 

Proof:  
For a location (q2), we have: 
Ein= U1∧  E1, such that U1 corresponds to the guard associated 
to the transition (L1) � (L2). 
 �F
F�∈  U1∧  E1; �F

F� is any element of Ein 
Let’s compute the duration of stay in the location (q2) for the 
variable xi: 
xi =�F

�.(hi –��F
F�) + �F

F� where (hi –��F
F�) is the  duration of stay 

in location (q2) for the variable xi. 

,���*�- ��F
F�� ��

#$�#$
$.

/$
� �

This duration of stay is maximal and is denoted δi when xi 
verifies the maximal output guard of the location (q2): 

δi=
01#2$

�3���4���#$
$.

/$
�  

This duration of stay has to be positive because it is a time 
value: 
δi � 0 ,��� if �F

�
 >0: �F

F�
� !"�#$�D������� ,5xi(i:=1..n)∈  Ein, xi 

� !"�#$�D�������. 
We denote by ����D� � � �F  !"�#$�D�

�
F%�  hence the 

relation (1) above. 
For �F

�
 < 0, the proof is symmetric. In this case, 

δi=
0F�2$

�3���4���#$
$.

/$
�    and δi � 0 , �F

F�
� !*+#$�D�������.  

ܽ 
For example, let us extract from the traffic section reachable 
constrained automaton the initial two locations (Fig. 5). In 
this case, we have: 

•  V1 = E1 ∧  U1= {30 ≤ x1 ≤ 40 ∧  h�0 ∧  -150h+x1�-480 ∧  
25h+ x1�80 ∧  150h-x1�130} 



     

•  V0= E0 ∧  U0 ∧  sup(E1∧ U1) = {x1≤≤≤≤40 ∧  h�0 ∧  25h+x1=80 ∧  
5h�16} 

Remark 3: The boundary x1 ≤ 50 has been reduced to x1 ≤ 40. 
In fact, since the flow increases in Location (q1), the input 
value of the variable x1 has to be less than the output one.   

ܽ 

4.2 Maximal permissive controller 
 
It is interesting at this stage to show the system controller 
where commutation clock intervals appear. These intervals 
contain all possible trajectories of the reachable constrained 
automaton, and correspond to the maximal permissive 
controller. Since all the RHA events are controllable, we can 
replace the initial clock values by the computed ones. 
In order to compute these intervals, we use the linear 
programming as follows: 
 
Proposition 5: Clock commutation intervals 
The clock commutation interval in the transition downstream 
Location (qi) is hi= [himin; himax], such that: 
* himin = Minimum h    
* himax = Maximum h 
 
Vi being the new guard in the transition downstream Location 
(qi), it is chosen depending on whether or not the transition is 
initialized (Proposition 4 and Theorem 1).   

ܽ 

Proof : 
The interval hi is never empty because Location (qi) is 
reachable in the reachable constrained automaton. 

ܽ 

Our objective being to construct the system timed controller 
that respects in a maximal permissive way the desired 
constraints, we have to iterate what was established starting 
with the initialized transition. The global algorithm has been 
developed in an internal note (Batis et al, 2012). However, 
we have not added it in this paper due to a lack of space. 
Remark 4: The structure of the offline controller automaton is 
exactly the same as the corresponding RHA. To obtain the 
controller, we empty each location of the RHA leaving only 
the clock h.  

ܽ 

The application of the approach for the traffic section 
example gives the controller shown in Fig.8. 

 
Fig.8. Maximal permissive timed controller of the traffic 
section example 
 

Remark 5: The solution given above corresponds to the 
optimal solution, i.e., all the possible trajectories of the 
reachable constrained automaton. It is obvious that in a real-
time control, the choice of a commutation value for the first 
transition after the state reset will have influence in the 
downstream control. This amounts to determine a particular 
trajectory among all possible ones. 
 

5. EXAMPLE OF A PRODUCTION SYSTEM 
 
In order to apply our approach, we have chosen a more 
complex system which is a production one composed of a 
shared production center that supplies two buffers for 
consumption with a maximal capacity of 100 for each buffer. 
The system is shown in Fig.9.  

 
Fig.9. Production system 
 
The state variables are the quantities in each buffer x1 and x2. 
We assume that, at start, the buffers are half full (x1= x2=50). 
We add to those variables a global clock, denoted by h, which 
determines the delivery dates in a defined interval 
(controllable events). 
The model has only one loop. The balance flow varies with 
time. The transition (qi)�(qj) occurs following the 
controllable event σj. The corresponding automaton (for a 
normal daily behavior), without taking into account the 
expressions in bold, is shown in Fig.10.  
The state changes are non-deterministic. It leads to a degree 
of freedom for control. For example, the controllable event σ1 
corresponds to an increase of consumption in buffer 1, which 
can occur for a value of h∈ [6,8]. 
The states (q0), (q1) and (q2) are reserved to the production in 
buffer 1. The states (q3), (q4) and (q5) are reserved to the 
production in buffer 2. 
The example meets all hypothesizes.  
 

 
Fig.10. The production system automaton model 
 

with the constraints: Vi 



     

We need to impose the following constraints to the system 
(added in bold in the automaton model shown in Fig.10. 
above): 

- Transition (q2) � (q3): We need to stop the 
production  in buffer 1 when the  level in 
x1∈ [90;100] 

- Transition (q4) � (q5): The quantity in the second 
buffer x2=50 

- Transition (q5) � (q6): The quantity in the first 
buffer x1=50 

The other transitions don’t have constraints. In order to 
determine the offline timed controller of this system, we 
apply our approach developed in Section 4. The forward 
analysis of our automaton gives 7 state spaces as shown in 
Fig.11. 

 
Fig.11. Forward analysis of the constrained automaton 
 
In our automaton, there is only one state reset, which is in the 
transition σ7. Then, it is considered as our starting point for 
the initial control. After applying our algorithm, we obtain 
the maximal permissive timed controller shown in Fig.12. 

 
Fig.12. Maximal permissive timed controller of the 
production system 
 

6. CONCLUSION 
 
In this article, we have introduced an approach for the control 
of a sub class of hybrid systems modeled by rectangular 
hybrid automata and characterized by a single global clock. 
This sub class is interesting since it can represent a great class 
of real life automated systems. The control is based on the 
computation of the clock commutation intervals respecting 
the specification constraints. They are deduced from the 
reachable spaces of the process and the constrained behavior. 
For the offline control, we have focused our presentation on 

two transitions in sequence with a state reset in the last one 
since they contain the main original ideas. Then we have 
presented the way for the generalization of our approach to 
the whole automaton.  
Our future works consists in a first time in implementing a 
complete synthesis algorithm for the whole model (Batis et 
al, 2012); and in a second time, we want to extend our 
approach to the case of a RHA containing uncontrollable 
events. 
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