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Maximal Permissive Timed Control for a Class of Hybrid Systems
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Abstract: A timed control synthesis approach isppsed for a class of hybrid systems modeled with
rectangular hybrid automata. The control objeciweo constrain the reachable state spaces by the
addition of control specifications which can bednsistent with the system dynamics. Our approach is
within an automatic control view and is based om tfffline computation of the system new transition
guards determined from the reachable state sp@besapproach is illustrated via a production system

Keywords: control synthesis, rectangular hybrid automatamwérd analysis, reachable state space,
maximal permissive controller.

1. INTRODUCTION special case of a rectangular game, the enablinditbon of
each move is a rectangular region of continuoute stnd
In this paper, we study the timed control of alassystems when time advances, then the derivative of eachiraoous
broadly known as hybrid processes. This type ot@se can variable is governed by a constant differentialision. The
be found in numerous real life automated systems. control problem for hybrid games asks: giving ariylgame
This work belongs to the general framework of tleafadge B and a formulag over the discrete states Bf is there a
and Wonham theory (Ramadge et al, 1987) for thérabof  strategy for player 1 so that all possible outconfebe game
discrete event systems. These systems are modeled satisfy ¢ ?
generators of formal languages; the adjunction abatrol  Spathopoulos (Spathopoulos, 2000) considered thilgmn
structure allows limiting the language generated thg of supervisory control for rectangular hybrid autien and
system by accordingly enabling and disabling eventgstablished a supervisory controller that can désainly

Brandin and Wonham (Brandin et al, 1992) have thegliscrete-event transitions in order to solve thae-bimcking
extended the theory to the timed discrete evertesys by forbidden state problem.
adding discrete timing features to the initial syss.

Maler (Maler et al, 1995) introduced an extensiontie Al these approaches are within a computer sciguuet of
Ramadge and Wonham theory, working in the timegiew. Our work is within an automatic control pooftview,
automaton framework (suggested by Alur and DilluAét and as researchers in this domain, we need to esiathan

al, 1994)) and defining the notion of timed gamkeater, effectively implementable control which requiresalistic
Cassez (Cassez et al, 2005) used this notion todinte an  assumptions.

efficient on-the-fly algorithm for the analysis dfmed

automata. In this article, we present an approach for theetdnsontrol
synthesis of a class of hybrid systems modeledbtangular

Lots of automated systems evolve according to naotis hybrid automata. The control is obtained via theoaaton

sub processes which are started and stopped hew@istate new transition guards modified by the addition @fsided

orders. Therefore, processes have rarely a puistyede or constraints to the system. It is based on the addehstate

continuous behavior but a mixture between both hefnt. spaces computation for any locatiddften, in this research

These dynamical systems with a double behaviorgeld the formal ideas are complex; that is why start this
component are called hybrid systems and can be lewé§ paper with an intuitive presentation.

many tools among which there is the hybrid automato

(Henzinger, 1996). This model can be consideredaasit is organized as follows. In Section 2, we présan
generalization of the timed automaton model (Altrag intuitive example to introduce our main ideas. kctbn 3,
1994), where the continuous evolution is no longeke define the model assumptions and introduceehehable
represented by clocks but by differential equationsthe state spaces. Section 4 develops our approacmubtdThis

continuous variables of the system. . approach will be applied to a production systenséction 5
Henzinger (Henzinger et al, 1999) has studied tetrol and a conclusion will be given in Section 6.

problem of hybrid automata by introducing the hgllgames.
The game proceeds in an infinite sequence of rowmis
produces anrussequence of states. In each round, both players
independently choose enabled moves; the pair oferho
moves either results in a discrete state change,apassage

of time during which the continuous state evolves.the



2. INTUITIVE PRESENTATION

In order to facilitate the presentation of our agmh, we

introduce an intuitive presentation based on a kmmpal In order to satisfy these different specificatidtris necessary
example. to compute new transition guards, this is the astmutrol
We consider a traffic section that can tolerate aximum problem. For example, the commutation between liocat
number of 200 cars (we suppose that the averagendes (o) and €,) will occur at any time so that the number of cars
between two cars is 4 metets;4m). The cars arrive to the is less than 50.

section with an average speed of 36 km/h and lgavith an  However, the specifications are imposed indepeygémmm

average speed of 42 km/h. the dynamics of the system then they may not b&eeable.
The example is shown in Fig .1. A simple indicator can highlight this situation; i the
Pamd? femih < duration of stay in a location which will be negati Then, it

e Mty Traffie seetien oo will be necessary to reduce the commutation guards.

The problem is to find the clock intervals of the
commutations between the different locations of ghstem,
and therefore, to reduce the intervals found instey of the

We suppose that there is a regulation of the trifiat can be uncontrolled behavior. We want consequently the imak
done either by a traffic light or by a policemanwar Permissive behavior.
situations are possible: authorized circulativh=@2 km/h)
and unauthorized circulatioW4= 0). The transition from one 3. PROCESS AND SPECIFICATION MODELING
situation to another can be done at any time, hehee
intervention of a clock, denoted by ‘h’ and expesssn In this section, we first define the model assuomi Then,
minutes. Initially, the number of cars is equaBfb Then, the We introduce the control specifications with thetioo of
example can be represented by the automaton shownf§achable state space and the convexity problen tha
Fig.2., taking as state variabkg the number of cars in the guaranties the convexity of the solution.
section, and considering the flow as given in theression: )
% = Vi-V 3.1 The model assumptions
L

hio 5 s The model chosen here is the Rectangular Hybrid#aton

et Stop b Starr G (RHA) as shown in the intuitive presentation. Timsdel can
PR P be considered as a generalization of the Timed rhaton
B0 model. In the case of the RHA, the continuous eumtuis
represented by differential equations on the cootis
variables of the system. Our model has specifiaraptions;
Fig. 2. The traffic section automaton model its definition is derived from the definition of Heinger

(1998).

Fig. 1. Example of the traffic section

x1:=80

Each automaton location is defined by: the varmieeth),

the dynamics of the variables (ex; = —25) and the Definition 1: The general model

invariants (exx;<200: maximum capacity of the section). A Rectangular Hybrid Automaton (RHA) is defined the
The events Stog and “Start’ are controllable,i.e the tupleH=(Q, XO{h}, 5 T, inv, flux, @, ES™), where:
occurrence of these events can be forced in théstemce . Q={qu,...,q¢ is a finite set of locations representing the
intervals. . o discrete states of the system;

Now, suppose that we need to add a control in aémit . x ¢} is a finite set of real variables ahds a global
for example the number of cars in the section. \Went clock:

consider that a policeman wants that: when theulgtion is « 5 is a set of controllable events:

authorllzed, the section contains at most .the qymitats - TOQx =x Pred (X)x Pred (X)x 2* xQis a finite set of
capacity x:<50), and when the circulation is forbidden, the - citions wherdred (X) being the set of predicates on
number of cars is between 30 and 40<(3840).

All specifications are added to the automaton aswsin

Fig.3 « 0 — h, a clock h is associated with each controllable

event;
« inv: Q- Rect(XO{h}) is a function which associates with
each location §Q a rectangular constraint for any
2504 o = variablex,[0X and for the clock;
7 sx1240oux;< . . . . .
b0 PARICD) @, « flow: Q » Rect(X O{h = 1}) is the function that assign
X, = —25 X%, = 150 . . . A
P to each location a dynamic for the continuous etiariu
120 1 =0 5 x<200 x1<50 120 13,20 ; x<200 | F0Sas40 ° qO IS_ the In_ltl_a_l |O_C3-t|0n; o _
h=0 « E{™ is the initial input space ofjy; E;" is a convex region.
a

Bad State Bad State

x; =80 4 Z
h=1 Stop () h=1

Fig.3. The traffic section constrained automaton



For example, the system shown in Fig 3 is modelgdab The forward analysis is realized using the softweifver
rectangular hybrid automaton, characterized by thgrehse, 2008). This software provides commands for
continuous variable; and the global clock. The example computing reachable sets of states and simulagtations

fully meets Definition 1. plus a number of commands for the manipulation @urtgut
o of data structure. Its language is as user frieadlpossible.
3.2 Control specification The forward analysis of the constrained automaeamd to

) _ _ ) ) the state space reduction and can also lead &terstmoval.
Our goal is to establish a timed control by impgssdome |t means that some states may not be reachabls.cahi be
desired constraints, indicated on the transitioards, on the §ue to the fact that the constraints are stronan tthe
variables of the system. This control must be makimgynamics. The obtained automaton is calleghchable

permissive. . _ . constrained automaton
While imposing certain constraints to the locatithg system

commutes at a certain moment that reduces the sp@iee Remark 1 In order to guarantee the termination of the
(Fig.4.). This behavior joins the idea of forbiddstates, algorithm, we have to add another assumption to the
introduced by Wonham (1987) in the classical sugery constrained RHA. This assumption is expressed ks
control. For any loop, it exists at least one transitign () — (G 1,
<\ Vi) such that we have the assignment over the gkihX
and the clochn, (X, h):=( Xo, ho); ( Xo, hg) is a convex region.

=Ci(X)y oy . e . . .
L S R el These transitions will be called initialized tratitsis.
- e cloc This assumption is often in real life automatedesys.

_ a1 (7)) A GiX)ACHX) . . Gi(X) : Guard on the variahles Y 4
h=1 h=1 |77

'} (X): Control specifications

Iy nv

Fig.4. Specification of the control The state spaces obtained from the_z forward a_lnatyf§ti;|e
Definition 2: Constraint: A constraint is a conjunction of constrained automaton shown in Fig.3. are giverrigs.
] - below. The constraints are shown in bold italic.
polyhedral inequalities ovex of the formewxi+... cxc Lc,  For example, Locatioty) is characterized by the following

wherexy,...x X, ¢, cy,..., Z and~[{<, <, =,2,>}. Itis  inequalities:
called a polyhedral predicate ow¢and is denote@(X). -150n+x,=>-480;%,<200; 2%1+x,=80; 15M-x,=130
Q They express the linear constraints between thiablarx,
and the global clockh. They provide a bijective
Definition 3: Control specification: T—(X—Pred (X)), a characterization of the state space and this fozat&@n will
control specification is a function that assigns @¢ach allow us to compute the values of the control clock
transition a constraint ovex. @)

h=0: (o) -150/+x, 2-480

D 25h+x,=80

x1:=80

o <200
! Stop (1=0) | e Start ( h=0)

=] 25742, =80

xS 50 30Sx, <40

For example in Fig.4. above, a constra@i(X) has been siste
added in the guard between locationg &nd ().

In the sequel, the automaton to which are addediésaed
constraints in the transition guards will be call¢de

15001-x:2130

structural constrained automaton [ dsoremzaio | himo
=200 i

Starr ( 120), 25t

3.3 Reachable state space - w20 ) e
30<x;<40 Stop (F=0) 20

) ) Bi=0: 20 | xiz50 S0

All calculations to be used are starting from foligna 250z 30 o

determining the reachable state spaces by a RHAs Tt 150/- /40 @

determination is based on the forward analysis lé t T @ )

structural constrained automaton Fig.5. Forward analysis of the constrained automato

* Reachable state: A state ¢, v) is calledreachable if it ~ Proposition 1: If the control specification is expressedaas
exists an execution ¢f that joins this state from an initial X < by, then it corresponds at most to an initializationthe
state (o,vo)O Ef". variablex; at the entrance of the successor location.

e Forward analysis. The forward analysis operators are a
used in order to compute all possible trajectoa&she _ ) )
system. This leads to compute the state spacesiatesb Proc_)f: It is obvious that _the foIIowmg_ two schemas are
to the stays of the system in each location ofrtivelel. ~€duivalent. Therefore, having a constraint of tgpe x < b;
One location can be reached with different contirsuo corresponds to affecting othe interval &, bj].
state spaces at its entrance, especially when thdelm [z -5 X = Fy(x) X = F(x)
contains cycles. Consequently, the state spaceiatswb gy OS] o
to a location is equal to the conjunction of thatowous N e o i Be | snin i B
state spaces of all possible visits to the location

o) A G(X) X =FpX)

n

h=1 <<y h=1

a



Remark 2 All the reachable state spaces of the automatn dn the following, we will denote byJ; the initial guard which
convex. In fact, in each state space, we haveioelyualities is the conjunctiorPred(h)0G;(X)0C; (X). The new guard that
and intersections between them. It has been provag compute will be denoted by
(J.Ch.Gilbert, 2007) that the image of a convextsetan The problem is decomposed into two parts. We fisshpute
affine application is convex and that the interigect the control for the initialized transition that Gmpletely
preserves convexity. decoupled from the downstream. Then, we go upstraaan
compute the control transition by transition untieé find
4, COMPUTATION OF THE MAXIMAL PERMISSIVE  again a state initialization.
CONTROL
Proposition 4: Initial control
Finding the maximal permissive controller consistfinding  The guard for the initialized transition\s =E; [ Us.
all maximal guards of commutation that respect bibih a
invariants and the constraints.
Proof:
4.1 New guards Since the initialized transition is completely depted from
the downstream, the new guard in this transitid@gainto

The base of the control computation amounts toesthe ~account only the initial guard and the state spagstream
general problem for a transition between two lagagiof the this transition.

automaton, which model is shown in Fig. 7. a
Bad state Bad state
[ Theorem 1: Upstream control
on s/ The guard from locatiory() is V; such that:
< ) (‘f_:l = ° Case}/iz>0:V1:E1DU1DSUF(E2DU2) (1)
i =yt 2y =1 o Where sup(E,AU,) = Ajq X; < maxy, (E;AUp)
| |wpeeesan | AGAACHD: « Casey2<0:V,=E,0U,0nf(E,0U,) )
-j;:= 1” =1 e Where inf(E;AUz) = Ajzy x; = ming, (E;AU,)
X=X
Iv (Ly) Inv (Ls) a
] U Proof:
£ pa

For a locationdy), we have:
E"= U,0E;, such thatJ; corresponds to the guard associated
to the transitionl(;) = (L,).

It is obvious that in each location, the time dative of any Xi" 0 Ui Ey x;™ is any element of"

variable x, has a constant sign. This characterizatioh®'S compute the duration of stay in the locatigs) for the
corresponds to the behavior of most real-life syste variablex;: , ,

We also suppose that each location has only onpubutX =¥¢.(hi —hi"™) + x;™ where ty —h{"™) is the duration of stay
transition as mentioned in Remark 1. in location @) for the variablex;.

The constraints are defined regardless of the peodehere is (hi - hi") = xi=xi"

then no guarantee on their achievability. In féloty can be ' vl

inconsistent with the dynamic of the location. Thimounts This duration of stay is maximal and is denotgdvhenXx;
to calculate the maximal duration of stay in theakion in Verifies the maximal output guard of the locatiogy)(
question, denoted, for each variable;. This value has to be d:maxxi(EM Up)-xi"

positive, since it is a time value. For a locatiibrgan happen v

that an input value of the constraint variablerisager than its  This duration of stay has to be positive becauss & time
output value, the) <0 in case of a positive flow. This will Value: , A

be the key idea of our controller synthesis apptoac =02 if y? >0:x"< max,, (B, A Up) @VX=1. E", %
As we mentioned in the definition of the RHA, dletevents <max, (E, A U,).

are controllable, this means that we are able tdifypdhe we denote bysup(E) = AL, x; < max,. (E) hence the
value of the associated clock. The case of uncliale | g5tion (1) above. ‘

events will be treated in future work. 2 i : i

We first compute the guard between Locatiomp$ &nd (1), Fotnh]:’ (E; US'_x;Elhe proof s éymmetnc. In this  case,
which is influenced by the behavior imy)( (Fig. 7). The J=———+——" andd>0= x/™> miny, (E; A Uy).
demonstration starts where there is a state raset, Vi

downstream Locationgg) for our case. In fact, we have cut
the problem into parts by resetting the state thdaop, so X o .

that we don't have any link with the downstreameiththe co_nstralned automaton the initial two locationsg(F8). In
computation of the guard simple starting where the state isthls case, we have:
reset. As we mentioned earlier in Remark 2, thesiton V1= Ei 0Ui= {30 <X <40 0 h=0 [ -150+x,2-480 [

where the state is reset is called the initializadsition. 25h+ x>80 [ 15Ch-x,>130}

Fig.7. Computation of the maximal permissive contro

a
For example, let us extract from the traffic sattieachable



* Vo= Eo O U Osup(E1[U4) = {x,<40 Oh>0 025h+x,=800 Remark 5 The solution given above corresponds to the
5h<16} optimal solution, i.e., all the possible trajec#sriof the
reachable constrained automatdhis obvious that in a real-
Remark 3 The boundary; < 50 has been reducedxp< 40. time control, the choice of a commutation value tfoe first
In fact, since the flow increases in Locatian){ the input transition after the state reset will have influenon the
value of the variablg; has to be less than the output one.  downstream control. This amounts to determine &iqudar
Q trajectory among all possible ones.

4.2 Maximal permissive controller 5. EXAMPLE OF A PRODUCTION SYSTEM

It is interesting at this stage to show the systemtroller |n order to apply our approach, we have chosen amo
where commutation clock intervals appear. Thesennals complex system which is a production one compoded o
contain all possible trajectories of the reachatdestrained shared production center that supplies two bufféss
automaton, and correspond to the maximal permissi¥®@nsumption with a maximal capacity of 100 for ehalfer.
controller. Since all the RHA events are contrdialive can  The system is shown in Fig.9.

replace the initial clock values by the computedson

| Shared production center |

In order to compute these intervals, we use thealin  —
programming as follows: [ Buterr | [ Butter2 |
o . . User 1 Ui-l'l
Proposition 5: Clock commutation intervals Fig.9. Production system
The clock commutation interval in the transitionahstream
’Ic_ocat|£)n @) is hi= [Nimin, Nimay, such that: The state variables are the quantities in eactebxffandx,.
. Eimin—_Mmlmum hh with the constraintsy, We assume that, at start, the buffers are half(fg#l x,=50).
imax = Maximum We add to those variables a global clock, denoyeld wvhich

. . . ) determines the delivery dates in a defined interval
V; being the new guard in the transition downstreaaltion (controllable events).

(9), it is chosen depending on whether or not thesit®n i The model has only one loop. The balance flow gawith

initialized (Proposition 4 and Theorem 1). time. The transiton ¢)—(g) occurs following the
Q' controllable eventg. The corresponding automaton (for a

Proof : _ . ~ normal daily behavior), without taking into accoutite

The interval by is never empty because Locatio) (is  expressions in bold, is shown in Fig.10.

reachable in theeachable constrained automaton The state changes are non-deterministic. It leads degree

o ) _ ' of freedom for control. For example, the controiéaévento;
Our objective being to construct the system timedtoller  corresponds to an increase of consumption in buaffevhich
that respects in a maximal permissive way the @@sircan occur for a value ¢iJ[6,8].
constraints, we have to iterate what was estallishterting The statesq), (q;) and () are reserved to the production in

with the initialized transition. The global algdmih has been pyffer 1. The statesqy), (q,) and @) are reserved to the
developed in an internal note (Batis et al, 20H)wever, production in buffer 2.

we have not added it in this paper due to a ladpate. The example meets all hypothesizes.
Remark 4 The structure of the offline controller automatsn
exactly the same as the corresponding RHA. To oltta 2,250, @ @) @
controller, we empty each location of the RHA lemyonly nesor| T e ned
the clockh. v | P2 oy | 2 B
Q =1 L =t 5. 1017 o 0, 5210
0<x <100 0<x; <100;: 0<x <100: M==100
H : . . 10 0y, < 100 0<x,<100: 0<x,<100:
The application of the approach for the traffic teec  |=== B0 =0 hz0 @
example gives the controller shown in Fig.8. = %=1
(qo) (q1) X, =2
' =1 1.6 Shs3.2 h=1 1.6 Shs3.47, fe
h=0: ’
h=0 Stop hz=0 Start 0=x =100:
0<x, <100
h=0
h=0 (q6) (g5) (g4)
% =0 X =-2 = =2
=0 X =10 2 =0 Xp =3
; s : &, h220 051220 s a,
0<h<1.87, h=1 0<h<1.6 h=1 ] het =1 =

#50 =50 15<h<20
0<x <100: 0<x <100; 0<x <100:

- 0= x, < 100: 0<x, <1005 0<%, <100:
@3 (92 h=0 h=0 R0

F|g.&_3. Maximal permissive timed controller of theaffic Fig.10. The production system automaton model
section example

Start h=z0 Stop h=0




We need to impose the following constraints to $lgstem
(added in bold in the automaton model shown in 1Eg.
above):

two transitions in sequence with a state resehénlast one
since they contain the main original ideas. Then hage
presented the way for the generalization of oureggh to

- Transition €,) — (03): We need to stop the the whole automaton.

production in buffer 1 when the

%0[90;100]

level inOur future works consists in a first time in impleming a

complete synthesis algorithm for the whole modedt(B et

- Transition () — (gs): The quantity in the second al, 2012); and in a second time, we want to extend

buffer x,=50
- Transition {s) — (ge): The quantity in the first
buffer x;=50

The other transitions don't have constraints. lmleorto

determine the offline timed controller of this st we

apply our approach developed in Section 4. The dodw
analysis of our automaton gives 7 state spaceh@snsin

Fig.11.

%, =50; (go)

2h+0=50

(g1)
2rx2=50

(g2)
31,256

(g3)
3344

xz =50

» =50 3h+0256 x40 Bt3x+x=340

=0

#20 *=100 ¥€100 | 63 k210 I #2106

g1, 6<h<8 05, 10<h<17

2hs25 -3ht=58 20750 |00< x1< 100 ¥1<100 ; 1:<100

— “Ahr+x=50 358 2Ura=50
x5 =50,

2h+H4x+x>410

505

3l =58
304332302

-Sh+3x1+4x:<334

6h+311=404

3h+3x+3,<380
x,=50
3h+3r,<344
Gh+3x, =404
Ti+33 40,5340
hx=110

;2106
x=50 ki
@ 05, F220

=50

=0 03,1220

<100
15€h<20

~h+x;<62 & N
=50 = =80 | <112

8h=265

h=20 215

(gs) -Ght3x1<119 Shtdxtxa55

Shidydas 34319

(@) 64302347

(gq4)

Fig.11. Forward analysis of the constrained automat

In our automaton, there is only one state reseigwils in the

approach to the case of a RHA containing uncoratnddl
events.
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