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On Service Level Measures in Stochastic

Inventory Control

Roberto Rossi
∗

∗ University of Edinburgh Business School, Edinburgh, EH8 9JS UK
(e-mail: roberto.rossi@ed.ac.uk).

Abstract: We consider the issue of modeling service level measures in stochastic decision
making via chance constraints. More specifically we focus on service level measures in pro-
duction/inventory control under stochastic demand and α service level constraints, which
are constraints enforcing a prescribed non-stockout probability for the system. We introduce
multiple ways of expressing these chance constraints by using conditional probability. Then
we demonstrate that, when these constraints are formulated by using expressions that do not
involve a conditional probability, a base stock policy is optimal for this problem only under
a number of assumptions. To demonstrate this, we discuss a number of examples for simple
cases in which it is possible to find better policies and we also present some analytical results.
In contrast, when our novel measure involving a conditional probability is used, a base stock
policy is optimal under much less restrictive assumptions, although the cost performance of the
system tends to deteriorate.

Keywords: inventory control; stochastic modeling; service level measures; non-stationary
demand; control policies

1. INTRODUCTION

We consider problems of decision making under uncer-
tainty. These problems typically comprise a set of deci-
sion and observation stages. At each stage, one or more
decisions must be made in order to satisfy a number of de-
terministic or stochastic constraints, which are constraints
involving decision and random variables, and in certain
cases to maximize or minimize a given objective function.
In the following discussion, we assume that randomized
decisions at a given stage — i.e. randomized policies —
are forbidden. Each stage, also comprises one or more
random variables, for which a probability distribution is
given. At a given stage, after a decision as been made,
random variables are observed. The observed realizations
may affect subsequent decisions and observations.

Several approaches to decision making under uncertainty
exist in the literature. To gain insights into the issues we
are going to discuss next, we choose to adopt a graphical
depiction of the problem known as “decision trees”. De-
cision trees are commonly used in decision making under
uncertainty and provide a convenient representation of the
problem at hand. In a decision tree, we have decision nodes
and chance forks. Branches originating from decision nodes
(�) represent decisions, each decision is usually indicated
in text above the respective branch. Branches originating
from a chance fork (©) represent realizations for the ran-
dom variables. Associated with a branch originating from a
chance fork there are two numbers, the value taken by the
random variable associated with the chance fork — in our
case the demand in a given period — and the probability
of this event. Note that, in general, this probability is the
conditional probability of the event given the realizations
associated with parent chance forks in the tree. Consider
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Fig. 1. The key elements of a decision tree

for example the decision tree in Fig. 1. It is possible to
observe decisions (Di) at different stages (i = 1, 2). It
is also possible to observe that the probability of events
at stage 2 are conditional probabilities that depend on
random variable (ri) realizations in the previous stages.
The tree comprises a total of 4 scenarios. A scenario is
a possible realization for all the random variables in the
problem.



In this work we are concerned with the issue of “service
level” measures in decision making under uncertainty.
A common service level measure in stochastic decision
making takes the form of a chance constraint. A chance
constraint is a particular type of stochastic constraint that
must be satisfied according to a prescribed probability. For
instance, consider a stochastic constraint D1 − r1 +D2 −
r2 = 0. Assume that r1 and r2 are independent and that
the two values in their support are equally likely to occur.
Under a chance constraint Pr{D1−r1+D2−r2 ≥ 0} ≥ 0.25
the assignment D1 = 2, (D2|r1 = 3, D1) = 2 and (D2|r1 =
2, D1) = 0 is feasible; in fact Pr{D1−r1+D2−r2 ≥ 0} can
be computed as Pr{r1 = 3}Pr{r2 = 1|r1 = 3} = 0.5 · 0.5
since r1 and r2 are independent. In this simple example,
we have conditioned the probability to an event. However,
in general, it is possible to condition on a random variable.
That is, let E be an event, we may write Pr{E|r1}; this
is a function which takes value Pr{E|r1 = i} when r1 = i.
Enforcing a chance constraint such as Pr{E|r1} ≥ αmeans
making sure that this function does not take a value less
than α for each value in the support of r1. In practical
situations chance constraints such as Pr{D1 − r1 +D2 −
r2 ≥ 0|r1} ≥ α may become relevant. Under this chance
constraint, the above assignment would be infeasible, since
when r1 = 3, Pr{D1− r1+D2− r2 ≥ 0|r1 = 3} = Pr{r2 =
1|r1 = 3} = 0.5 however, when r1 = 2, Pr{D1 − r1 +D2 −
r2 ≥ 0|r1 = 2} = 0. In what follows we will discuss why
these service level measures become particularly relevant
in stochastic inventory control.

2. STOCHASTIC PRODUCTION/INVENTORY
PROBLEM UNDER SERVICE LEVEL CONSTRAINTS

We consider the periodic review production/inventory
problem under stochastic demand and service level con-
straints. In a periodic review system inventory is reviewed
only at discrete points in time. We review inventory only
at the beginning and at the end of a period. Orders can be
placed only at the beginning of a period. Demand is a ran-
dom variable d with known distribution. The delivery lead-
time is constant and equal to L periods. Unmet demand
is backordered and fulfilled as soon as a replenishment
arrives. We consider a service level constraint enforcing
a specified probability α of no-stockout per period — α
service level. A holding cost of $h per period is paid for
each unit carried in stock to the next period.

Example 1 We consider a planning horizon comprising
4 periods. In each period we observe a random demand
that follows a discrete distribution. The probability mass
functions for the demand in each period are the following.

pmf(d1) = {18(0.5), 26(0.5)}
pmf(d2) = {52(0.5), 6(0.5)}
pmf(d3) = {9(0.5), 43(0.5)}
pmf(d4) = {20(0.5), 11(0.5)}.

Accordingly, in period 1 we may observe 2 values for the
random demand, 18 and 26, each of which occurs with
probability 0.5. The complete set of scenarios is presented
in Table 1. The delivery lead time is set to 0; therefore
orders placed at the beginning of a period are received
immediately. The holding cost h is set to $10 and it is
charged on items in stock at the end of a period, after
demand has been observed. The prescribed no stockout

Scenario d1 d2 d3 d4 Probability

1 18 52 9 20 0.0625

2 18 52 9 11 0.0625

3 18 52 43 20 0.0625

4 18 52 43 11 0.0625

5 18 6 9 20 0.0625

6 18 6 9 11 0.0625

7 18 6 43 20 0.0625

8 18 6 43 11 0.0625

9 26 52 9 20 0.0625

10 26 52 9 11 0.0625

11 26 52 43 20 0.0625

12 26 52 43 11 0.0625

13 26 6 9 20 0.0625

14 26 6 9 11 0.0625

15 26 6 43 20 0.0625

16 26 6 43 11 0.0625

Table 1. Scenarios for Example 1

probability α is 0.85. The optimal solution to this problem,
obtained by a trivial scenario based MILP model, can be
represented by means of a decision tree. Let It denote the
inventory level — i.e. on hand stock minus backorders— at
the end of period t. If the event of interest is a no stockout
in period t, i.e. It ≥ 0 ↔ It−1 +Qt − dt ≥ 0, then we may
enforce either the constraint Pr{It−1 + Qt ≥ dt} ≥ α or
the constraint Pr{It−1 + Qt ≥ dt|It−1} ≥ α; see Bitran
and Yanasse (1984). We present both the optimal solution
(Fig. 2) under the service level measure

Pr{It ≥ 0} ≥ α (1)

and the optimal solution (Fig. 3) under the service level
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Fig. 2. The optimal policy for Example 1 under the service
level measure in Eq. 1

measure
Pr{It ≥ 0|It−1} ≥ α (2)



Q = 26

0
.5

1
8

0
.5

2
6

Q = 44
0.

5

52

0.5
6

Q = 52
0.

5

52

0.5
6

Q = 43
0.

5

9

0.5
43

Q = 0
0.

5

9

0.5
43

Q = 43
0.

5

9

0.5
43

Q = 0
0.

5

9

0.543 Q = 17

Q = 0 0.5
200.5

11

Q = 20 0.5
200.5

0.5
200.5

11

11

Q = 0 0.5
200.5

11

Q = 17 0.5
200.5

11

Q = 0 0.5
200.5

11

Q = 20 0.5
200.5

11

Q = 0 0.5
200.5

11

Stockout x
Chance fork

Decision node

Expected total cost: 57.75

1 2 3 4

Period

Fig. 3. The optimal policy for Example 1 under the service
level measure in Eq. 2

It should be noted that It−1 is a random variable func-
tionally dependent on our past ordering decisions and
on past demand realizations. Therefore we can write
It−1 = f(dt−1, . . . , d1, Qt−1, . . . , Q1). Since It−1 is given,
this means that all demand realizations and decisions
taken in periods 1, . . . , t − 1 are given. Intuitively, Eq. 2
simply requires that, for each possible subtree at stage t
in the decision tree, a sufficient quantity Qt is ordered so
that the conditional probability of meeting demand over
the next period given all demand realizations and decisions
taken in periods 1, . . . , t − 1 is greater than α. Since we
only consider holding cost, this Q should be the smallest
possible one. Adopting such a measure therefore greatly
simplifies the analysis of the problem, in fact the optimal
policy takes a well-known form called “base stock” policy.
To describe this policy, we must introduce the notion of
inventory position. The inventory position comprises items
in stocks minus backorders plus incoming orders not yet
received. In a base stock policy, an order is placed as soon
as the inventory position drops below the “base stock
level”. In general, this example shows that the optimal
policy under the service measure in Eq. 1 is not a base
stock policy. Instead, for the measure in Eq. 2, a simple
forward analysis of the decision tree immediately leads to
the optimal policy, which in this example takes the form of
a base stock policy with base stock levels 26, 52, 43, 20 in
period 1, 2, 3, and 4, respectively. The expected total cost
is clearly higher under the measure in Eq. 2. However, in
Section 4 we will discuss why such a measure may better
reflect contractual requirements and industrial practices.

3. STATIONARY STOCHASTIC DEMAND

We consider the continuous review production/inventory
problem under stationary stochastic demand and ser-
vice level constraints. In a continuous review produc-
tion/inventory problem inventory is monitored continu-
ously and orders can be placed at each time instant.
Demand — measured in units per period — is a random
variable d with known distribution. The delivery lead-time
is constant and equal to L periods. Unmet demand is back-
ordered and fulfilled as soon as a replenishment arrives.
We consider a service level constraint enforcing a specified
probability α of no-stockout over the replenishment lead
time — α service level. A holding cost of $h per period is
paid for each unit carried in stock.

In the literature, the α service level is generally defined
informally as the “no-stockout probability over the re-
plenishment lead time” or “no-stockout probability per
period”, for the continuous or periodic review case, respec-
tively. Similarly to what discussed in the previous section,
we now aim to to formalize the service level definition for
the continuous review case in mathematical terms.

We denote the inventory position at time t as Ipt . Assuming
that demand is a stationary stochastic process and that
the current time is t, we may express the service level
constraint by using chance constraint Pr{It+L ≥ 0} ≥ α,
where It is a random variable representing the inventory
level, i.e. items in stocks minus backorders, at time t. Let
dL denote the demand distribution over the lead-time.
By exploiting the fact that the inventory position tracks
incoming orders, we can rewrite our service level constraint

Pr{Ipt − dL +Qt ≥ 0} ≥ α (3)

Alternatively, as discussed in the previous section, one
may adopt the following chance constraint to express the
service level constraint

Pr{Ipt − dL +Qt ≥ 0|It} ≥ α (4)

When the service level is formulated as in Eq. 4, since we
condition the event Ipt − dL + Qt ≥ 0 on It, I

p
t becomes

a scalar value and the optimal order quantity can be
immediately obtained by simply inverting the cumulative
distribution function of the demand over lead-time

Qt = min{Q|Ipt +Q ≥ cdf−1
dL

(α)}

where cdf−1
dL

(α) denotes the inverse cumulative distribu-
tion of dL. This shows that, under the cost structure
discussed above and this service level measure, a base stock
policy with base stock level

S = min{s|s ≥ cdf−1
dL

(α)} (5)

becomes optimal regardless of the nature of the demand
distribution, i.e. continuous or discrete, as long as random-
ized policies are forbidden. This optimal policy is directly
related to the classical optimality proof which exploits the
connection with a pure cost oriented formulation of the
problem via the so-called critical fractile solution (see e.g.
van Houtum and Zijm (2000)).

However, as we will see, if the service level is formulated
as in Eq. 3, a base stock policy is not optimal, in general,
when demand follows a discrete distribution; furthermore,
if demand follows a continuous distribution, a base stock
policy is only optimal if specific conditions are met.



3.1 Discrete demand distribution

When demand distribution is discrete, it may not be
possible to find base stock level that guarantees exactly
a service level α as defined in Eq. 3.

Example 2 We consider a Poisson demand with rate
λ = 3 units/period. The lead time for an order is L = 2
periods. Holding cost is h = $4 per unit per period. We
enforce an α service level with α = 0.7. It immediately
follows that the demand over lead-time follows a Poisson
distribution with rate λL and that the optimal base stock
level is S = 7, since this is the minimum base stock level for
which the cumulative distribution of a poisson with rate
λL exceeds α = 0.7 — the actual service level associated
with this base stock level is 0.743. The expected total cost
per period of the optimal base stock policy is $ 9.14.

If the service level is defined as in Eq. 3, when demand is
discrete and there exists no base stock level that satisfies
Eq. 5, a common strategy is to pick the minimum base
stock level that guarantees a service level larger than α.
However, in such a case it is easy to show that a base
stock policy is not optimal. In fact, it is possible to devise
a better control policy by allowing the base stock level to
depend on the demand realizations in previous periods.
For instance, for the problem described in Example 2, we
may adopt a policy which orders up to 7 if demand in the
past L periods has been less or equal to 7, and that orders
up to 6 if demand has been greater than 7. This policy
ensures a no-stockout probability per replenishment cycle
of 0.708, the expected total cost per period is 8.82. In
fact, it is easy to see that also this policy is not optimal
and that if our aim is to guarantee a given no-stockout
probability over the replenishment lead time then there
may be a better “past demand over lead time dependent
policy” which guarantees a service level of exactly 0.7 at
minimum cost. However, as stated below finding such a
policy is NP-hard.

Theorem 1. Under a discrete demand distribution finding
a policy that guarantees exactly a given α service level is
NP-hard.

Proof. Reduction from 0-1 Knapsack (omitted).

3.2 Continuous demand distribution

If demand follows a continuous distribution, a base stock
policy is optimal only if specific conditions are met.

Theorem 2. A base stock policy is optimal for the pro-
duction/inventory problem with continuously distributed
stationary stochastic demand under α service level con-
straints formulated as in Eq. 3 if

α
d cdf−1

dL
(α)

dα
is increasing in α.

Proof. Consider the following function

b(S) =

∫ S

0

(S − i)pdfdL
(i)di

which computes the expected buffer stock associated with
a base stock level S. To prove that a base stock policy

is optimal we must show that a demand or stock level
dependent policy cannot produce a better cost. This can
be shown by considering the following function

h(α) =

∫ cdf−1

dL
(α)

0

(cdf−1
dL

(α)− i)pdfdL
(i)di

that represents the expected buffer stock as a function of
the service level α; and by showing that such a function is
is convex in α.

We apply Leibniz integral rule to compute the derivative
for the above function w.r.t. α and thus obtain

dh(α)

dα
=

∫ cdf−1

dL
(α)

0

∂α

∂
(cdf−1

dL
(α)− i)pdfdL

(i)di

dh(α)

dα
=

∫ cdf−1

dL
(α)

0

(

1

pdfdL
(cdf−1

dL
(α))

)

pdfdL
(i)di

dh(α)

dα
=

(

1

pdfdL
(cdf−1

dL
(α))

)

∫ cdf−1

dL
(α)

0

pdfdL
(i)di

dh(α)

dα
=

(

1

pdfdL
(cdf−1

dL
(α))

)

cdfdL
(cdf−1

dL
(α))

dh(α)

dα
=

α

pdfdL
(cdf−1

dL
(α))

dh(α)

dα
= α

d cdf−1
dL

(α)

dα
Note that to prove that this derivative is increasing we
may want to verify that the second derivative is positive.

If h(α) is convex, we proceed by reductio ad absurdum.
Assume that there exist a demand or stock dependent
policy in which I different demand or stock dependent
order quantities Qi guarantee a service level of exactly α.
Furthermore, let Si be the inventory position — compris-
ing items in stocks minus backorders plus incoming orders
not yet received— immediately after an orderQi is placed.
Let Pr{Si} be the probability of placing an order that will
produce an inventory position Si. In other words, we are
looking for I values for Si such that

I
∑

i=1

Pr{Si}cdfdL
(Si) = α

The cost of this policy is

c(S) =
h

L

[

E[dL]/2 +

I
∑

i=1

Pr{Si}b(Si)

]

where E[·] denotes the expected value and pdfdL
(·) denotes

the probability density function of the demand over the
lead-time. However, if h(α) is convex, by applying Jensen’s
inequality, any of such ordering policies providing a service
level α must incur a higher holding cost than a base stock
policy with base stock level S computed as in Eq. 5. The
extension to the continuous case in which I may be infinite
is immediate. 2

Theorem 3. If demand over leadtime follows an exponen-
tial distribution with parameter λ, h(α) is convex.

Proof.

d2h(α)

d2α
=

d

dα
α
d cdf−1

dL
(α)

dα
=

1

(1− α)λ
+

α

(1 − α)2λ
is positive.



Example 3 We consider a continuous review system in
which the demand follows an Exponential distribution
with parameter λ = 1/3 and thus expected value 1/λ = 3
units/period. The lead time for an order is L = 1 period.
Holding cost is h = $4 per unit per period. We enforce an
α service level with α = 0.7. It immediately follows that
the optimal base stock level is S = 3.61, since this is the
base stock level for which the cumulative distribution of
the demand over lead time is exactly equal to α = 0.7. The
expected total cost per period of the optimal base stock
policy is $ 7.01 per period.

We now provide an example in which h(α) is not convex
and it is possible to find a policy that beats a base stock
policy for a given service level.

Example 4 We consider a continuous review system in
which demand follows a Beta distribution with parameter
α = β = 0.2 and thus expected value α/(α + β) = 0.5
units/period. The lead time for an order is L = 1 periods.
Holding cost is h = $4 per unit per period. We enforce an
α service level with α = 0.7. It immediately follows that
the optimal base stock level is S = 0.94, since this is the
base stock level for which the cumulative distribution of
the demand over lead time is exactly equal to α = 0.7.
The expected total cost per period of the optimal base
stock policy is $ 4.70 per period. However, we now consider
a policy that orders up to S1 = 0.9999 if demand over
lead time has been lower than 0.5 and that orders up to
S2 = 0.4999 if demand over lead time has been greater
than 0.5. This policy ensures a service level of 0.7082, that
is slightly higher than the prescribed one. However, the
expected total cost per period of this policy is $ 4.59.

Finally, it is worth mentioning that under a demand
that follows a continuous distribution and that satisfies
Theorem 2, the service level measures in Eq. 3 and Eq. 4
provide the same cost performance.

4. DISCUSSION

We introduced two possible strategies to capture α service
level constraints in stochastic production/inventory con-
trol. The associated expressions, were presented in Eq. 3
and Eq. 4. Note that these expressions are easily extended
to the case in which demand in non stationary. In this
section we aim to discuss when one or the other measure
is appropriate in practical settings.

First, we consider the case in which demand is stationary.
If demand is truly stationary, as it may be the case for
low-cost consumables (so called type “C” items), and it
has been accurately estimated over a long time span, then
we argue that it may make sense for management to adopt
the service level in Eq. 3. In other words, management
may want to “exploit” the long run properties of the
stationary stochastic process to keep buffer stock as low as
possible. However, in several practical cases a stationary
demand process is only used for modeling convenience
and stationarity does not reflect the actual nature of the
demand. This is typically the case for inventory systems
controlled under a “rolling horizon” strategy and for which
forecast updates are periodically released. Most commer-
cial inventory control packages cannot capture the com-
plexity associated with modeling a non stationary demand

pattern. Therefore, in these packages, demand is typically
approximated as a stationary process. An optimal control
plan is then derived under this assumption, but only the
most contingent ordering decision is implemented; then,
periodically, the demand distribution is modified to reflect
forecast updates received from the forecasting unit. As
soon as forecast updates are received, a new stationary
demand process is derived, which reflects the updated
characteristics of the demand, and the stationary inven-
tory control model is re-optimized in order to obtain a new
plan. After obtaining a new plan, once more, only the most
contingent ordering decision of this plan is implemented.
This approach is known as rolling horizon approach with
forecast updates. If this strategy is in place, we argue that
adopting the service level measure in Eq. 3 makes little
sense. In fact, this service measure tries to exploit long
run “frequentist” characteristics of the demand to reduce
buffer stock. Since we are constantly updating our belief
on the demand process in a Bayesian sense, we should
not rely on past belief, i.e. the distribution of the demand
in past periods, to determine the service level associated
with a given decision. The service level measure in Eq. 4
is thus more appropriate, since this measure decouples the
computation of the service level in a given period from the
demand distribution in previous periods. Similar consider-
ations apply when demand process is non stationary. Also
in this case the service level measure in Eq. 4 appears to be
a more sensible choice. As an example, we may consider the
production planning associated with the launch of a new
product. A decision maker of course should never rely, for
example, on the probability distribution associated with
low demand scenarios during the first release week to lower
the production quantity set at the beginning of the second
week, after a very high demand over the first week has been
observed. In fact, the event “demand over the first week”
is a “one off” event which will never repeat, therefore the
order quantity at the beginning of week two should not be
affected by the probability distribution of this past event.
The service level measure in Eq. 4 ensures this. However,
there are situations in which adopting the service level
measure in Eq. 3 may make sense under a non-stationary
demand process subject to little or no forecast updates.
Consider the case of a supermarket selling a consumable
that presents a fairly well-known non-stationary weekly
trend that repeats every week. For instance, this product
may be delivered every day and have a very high demand
on Monday, and then a demand that progressively decrease
and becomes zero on Sunday, since the shop is closed. In
this case, the non-stationary demand distribution actually
reflects “frequentist” characteristics of the demand pro-
cess, which may be exploited to adjust the order quantity
on Tuesday, Wednesday etc. so that it accounts for low
demand scenarios on previous weekdays.

5. RELATED WORKS

Service level measures are gaining momentum in inventory
literature. Recently, Louly et al. (2012, 2008) discussed
component supply planning in assembly systems under ser-
vice level constraints; Louly and Dolgui (2012) presented
a service level oriented approach to the problem of MRP
offsetting for assembly systems with random component
procurement times.



Despite the fact that service level measures are covered in
most of inventory control textbooks, literature on mathe-
matical formulations of service level measures in inventory
control is quite sparse and service measure definitions are
often presented informally. For instance in Silver et al.
(1998) p. 245, the authors define the cycle or α service
level as “the fraction of cycles in which a stockout does not
occur”, where a “stockout” denotes an occasion in which
the on-hand stock drops to zero level. For an (s,Q) policy,
at p. 258 the authors phrase this measure as

Pr{demand over lead time ≥ reorder point s} (6)

and compute the optimal reorder point s by inverting the
cumulative distribution of the demand over lead time, this
hints to the fact that they implicitly adopt the service
measure in Eq. 4. In fact, under the measure in Eq. 3, for
some distributions (e.g. Poisson) this strategy may result
suboptimal. Also in Axsäter (2006), pp. 94–97, the authors
seem to implicitly adopt the service measure in Eq. 4.

Sethi and Cheng (1995) investigate the optimality of (s,S)
policies for inventory systems with markovian demand. In
Section 5.2 they discuss models under service level con-
straints. The interesting aspect here is to observe that al-
though the measure adopted is similar to the one presented
in Eq. 6, the accompanying text clarifies that the authors
actually refer to the service measure in Eq. 4, in fact the
text clarifies that “given the demand state in a certain
period” the service level measure can be converted into a
simple deterministic equivalent expression by inverting the
conditional density function of the demand.

A substantial literature exists on stochastic inventory con-
trol under non stationary demand and service level con-
straints when the so-called “static-dynamic uncertainty”
policy is adopted. In this policy, inventory is controlled
over a finite horizon comprising N periods. Ordering de-
cisions are fixed at the beginning of the planning horizon,
while decision on the actual order quantity is postponed
until the very last moment. Bookbinder and Tan (1988)
propose a two-stage heuristic for this problem, the first
stage fixes all the order points, then based on this or-
der schedule, the associated order-up-to-levels are deter-
mined in a separate fashion. Tarim and Kingsman (2004)
propose a deterministic equivalent MIP model that can
determine all these decisions at once thus producing an
optimal plan. It is interesting to note that the α ser-
vice level constraint is formulated in both these works as
Pr{end of period inventory level ≥ 0} ≥ α, which corre-
sponds to the measure in Eq. 3. However, the modeling
strategy adopted in both works reveals that the actual
measure adopted is the one in Eq. 4. A solution method
to address the same problem under the measure in Eq. 3
is discussed in Rossi et al. (2008). An extension of this
problem to the case in which a stochastic supplier lead
time is considered is discussed in Rossi et al. (2010).

A discussion on the relation between cost and service level
models in inventory system is presented in van Houtum
and Zijm (2000). The authors point out that the majority
of inventory model adopt penalty cost formulations instead
of service level measures for dealing with stockout events;
and that this is generally justified by a general belief that
there exist one-to-one relationships between cost models
and service level models, that is between the choice of

penalty cost on one hand and that of certain service level
on the other. However, precise formulations and proofs for
these one to one relationships are known only for few sim-
ple inventory systems. The authors then present a number
of such relationships for a number of inventory models.
However their discussion only holds under a demand whose
cumulative distribution function is strictly increasing and
for which it is possible to find an order up to levels that
guarantees exactly a prescribed service level. Our discus-
sion shows that the production/inventory control problem,
both in the continuous and periodic review cases, becomes
considerably more difficult when demand follows a discrete
distribution. Furthermore, theorem 2 shows that there are
also special classes of continuous distributions for which a
base stock policy is not optimal under an α service level.
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