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J. Mladenović1,2, J. Frey1,3, M. Bonnet-Save1, J. Mattout2, F. Lotte1

1Inria, Bordeaux, France
2INSERM U1028 - CNRS UMR5292 - University Lyon 1, Lyon, France

3Ullo, La Rochelle, France

E-mail: jelena.mladenovic@inria.fr

ABSTRACT: Major issues in Brain Computer Interfaces
(BCIs) include low usability and poor user performance.
This paper tackles them by ensuring the users to be in a state
of immersion, control and motivation, called state of flow.
Indeed, in various disciplines, being in the state of flow
was shown to improve performances and learning. Hence,
we intended to draw BCI users in a flow state to improve
both their subjective experience and their performances. In
a Motor Imagery BCI game, we manipulated flow in two
ways: 1) by adapting the task difficulty and 2) by using
background music. Results showed that the difficulty adap-
tation induced a higher flow state, however music had no
effect. There was a positive correlation between subjec-
tive flow scores and offline performance, although the flow
factors had no effect (adaptation) or negative effect (mu-
sic) on online performance. Overall, favoring the flow state
seems a promising approach for enhancing users’ satisfac-
tion, although its complexity requires more thorough inves-
tigations.

INTRODUCTION

The Brain Computer Interface (BCI) community today’s
priority is to assure the system robustness and its usability.
It is quite a difficult task, considering the abundant inter and
intra-subject variability. The major obstacle lies in the large
spectrum of sources of variability during BCI usage, rang-
ing from (i) imperfect recording conditions e.g. environ-
mental noise, humidity, static electricity etc. [22] to (ii) the
fluctuations in the user’s psycho-physiological states, due
to e.g., fatigue, motivation or attention [13]. There are yet
more improvements to be done for a system ready to be eas-
ily used in real life conditions [38].
BCI systems showed quite an improvement with adaptive
methods, i.e. adapting the machine to the changeable brain
signals of the user during a BCI task. Currently, adaptation
is mainly done by using different signal processing tech-
niques without including human factors [23]. However, if
the users do not understand how to manipulate a BCI sys-
tem, or are not motivated to make necessary effort for such
manipulation, then they are not able to produce stable and
distinct EEG patterns. In that case, no signal processing al-
gorithm would be able to decode such signals [19]. Thus,
for designing a BCI, ignoring certain information about the
users, e.g. their skills, cognitive abilities and motivations,

may represent one of the major drawbacks for the advance-
ment of BCIs.
A potential improvement in BCI is to acknowledge how dif-
ficult it can be to learn to produce mental commands (a very
atypical skill) without a proper feedback about the progress
one has made. In every discipline, a certain feedback on
ones performance is necessary to enable learning, as shown
in the earliest work about Operant Conditioning and Rein-
forcement Learning [34]. Notably, this question was stud-
ied by behaviorists for decades on animals, using rewards
e.g. food, as extrinsic motivation to promote desired behav-
ior. As humans have more complex cognitive functions, a
more effective way to promote learning is in a social con-
text, with a tutor who would prepare and adapt a task ac-
cording to the student’s competences. The tutor’s feedback
and well organized tasks would lead the disciple to grad-
ually build up knowledge and skills, to feel confident and
to be intrinsically motivated, or to be in the Zone of Prox-
imal Development (ZPD)[36]. Derived from cognitive de-
velopmental theories [36] and refined through instructional
design theories [17, 24], intrinsic motivation is to be a sub-
stantial element for learning. Thus, it is important to care-
fully design the feedback if we want to encourage learning
and optimal performance.
Unfortunately, for long this was not the case in BCI com-
munity, as BCI systems were improved mostly with novel
machine learning techniques [23]. The result of neglecting
the feedback design led to often monotonous and repetitive
content, further discouraging the user, and leading to re-
duced skill and impaired performance [4, 18], thus highly
affecting the system’s accuracy. Potentially, instructional
design theories could add a missing piece for designing op-
timal BCI feedback [19].
There have been extensive literature describing higher BCI
user performance and experience using game-like feedback
[31, 32]. Immersive and game-like environments attract
users’ attention, induce intrinsic motivation, thus promote
learning and performance with less effort and frustration
– for a review see [20]. Even using extrinsic motivation
such as monetary reward can encourage users to perform
better [18]. Some studies showed that user’s belief on their
performance with biased feedback induced motivation and
thus higher performance [2]. Hence, sometimes it is worth
to trade the system’s accuracy to the perceived, subjective
user’s feeling of control.
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Keeping that into account, a way to promote efficiency and
motivation while respecting the principles of instructional
design leads us to the Theory of Flow introduced by Csik-
szentmihalyi in [7]. He was fascinated by the capacity of
artists to be in a state of enjoyment while effortlessly fo-
cused on a task so immersive that one looses the perception
of time, of self and of basic human needs (hunger, sleep
etc.). When in the flow state, people are absorbed in an ac-
tivity, their focused awareness is narrowed, they lose self-
consciousness, and they feel in control of their environment.
As a consequence, they often perform to the best of their ca-
pacity with a sense of automaticity and a high level of con-
fidence. Studies report flow experience in numerous activ-
ities including rock climbing, dancing, chess, reading, etc.
[7, 8].
Another pertinent element which encourages intrinsic mo-
tivation and is showed to be in relation with flow, is music
[6]. Recent studies showed that music has an ergogenic
effect on humans, i.e. physical enhancement while per-
forming a physical activity [1]. In [14] was reported that
Haile Gebrselassie, an athlete who broke 10 000m world
record in 1998, paced his running on music he was lis-
tening to, i.e. synchronous music. There is evidence that
synchronous music, as a strong motivational effect, directly
enhances physical performance [33] while asynchronous
(background) music induces flow when accomplishing a
task [28, 27]. Most of all, background music with medium
tempo (speed) has showed highest impact on flow [15].
To be in the state of flow, a task needs to have the following
requirements:

• To be immersive, with attractive visual/audio stimuli
to maintain the user’s attention. The principle of pre-
serving flow with aesthetically pleasing and ergonomic
content have been researched largely in the context of
human computer interaction [37] and Internet naviga-
tion, e.g. e-learning [9];

• To adapt the task difficulty with the user’s skills, i.e.
an easy task might be boring as a difficult one might be
frustrating, hence finding the golden middle is the way
of feeling in control and keeping the motivation. Such
difficulty adaptations were found in games, to keep the
gamer in flow [3], or during teaching activities [5] to
improve learning and keep the student in the ZPD [36].

• To have clear goals and immediate feedback / re-
wards; aspired for educational purposes [12], so that
learning becomes an enjoying and autotelic (self-
rewarding) process [25].

Therefore, in order to improve BCI users’ performance,
learning, and experience, it seems promising to try to guide
them towards the state of flow. This is what we start to ex-
plore in this paper. In particular, our research question is:
Does flow improve BCI user performance? We chose to
manipulate flow in a ludic BCI environment with 2 factors:
1) Feedback adaptation, i.e. perceived difficulty adaptation
to the user skills, and 2) Asynchronous music to encourage
the user. Thus, our following hypotheses are:

H1. Adapting the feedback improves flow, thus improves
performance.
H2. Asynchronous music improves flow, thus improves
performance.
In consonance with the Flow theory, we presented a motor
imagery (MI) BCI task in an open-source 3D video game
(TuxRacer 1). We investigated the effects of these two flow
factors on user’s flow state as well as on user performance,
i.e. classification accuracy.

MATERIALS AND METHODS

Manipulating Flow: In order to fulfill Flow theory require-
ments, we considered the following:

• An immersive and ludic environment, here the
TuxRacer video game was adjusted for a 2-class Mo-
tor Imagery (MI) BCI. The game depicts a ski course,
in which a virtual penguin, Tux – controlled by the
player – slides through various slopes and has to catch
as much fish as possible. With the BCI adjustments,
Tux was maneuvered with kinesthetic imagination of
either left or right hand, see Figure 1.

• The adaptation of the feedback bias, i.e. users were
made to believe they performed differently from what
they really did, in order to be in the flow state. If they
had poor performances they were positively biased to
a higher degree than if they had fairly good perfor-
mances. However, when the performances were too
good, then the users were slightly negatively biased,
so that the task would not seem too easy. This was
achieved by adaptively increasing or decreasing the
classifier output, i.e. the decoding of MI commands
would seem different from what it was in reality.

• Asynchronous music consisted of 3 songs with
medium tempo (120-160 beats per min), played in the
background during the BCI task. 15 persons voted
on social media for songs which would motivate them
while playing TuxRacer. The selected songs are "Epic"
by Alexey Anisimov (113s), "Confident & Successful"
by MFYM (168s) and "Acoustic Corporation" by OAP
(132s), all available on Jamendo2.

• Clear goals with immediate audio and visual feed-
back, i.e. to collect maximum points by manipulat-
ing Tux to move either left or right to catch fish. The
feedback is clear – once caught, the fish disappears
with a brief audio stimuli stressing that the target was
reached.

Experimental design: We created a 2 (adapt vs no-
adapt) by 2 (music vs no-music) mixed factorial design, i.e.
a between-subject adaptation factor, and a within-subject
background music factor.

Protocol: 28 healthy subjects, naive to BCI, participated
in the ~2 hour-long experiment (5 women, mean age: 25.23

1https://extremetuxracer.sourceforge.io/
2https://www.jamendo.com/
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Figure 1: Participant using MI commands to play TuxRacer, e.g.
imagining right hand movement to catch fish on the right.

years, SD: 2.98). The first 30 minutes consisted of (i) sign-
ing a consent form, (ii) installing of a 32 channels Brain
Product LiveAmp EEG, (iii) instructions given to the user
and preparation, (iv) ~10 minutes system calibration (40 tri-
als of 7s) with the standard 2-class MI BCI (left/right hand)
Graz protocol [29]. In the Graz protocol, the user was pre-
sented with arrows indicating the left or right side, to in-
struct the participant to imagine a left or right hand move-
ment. Afterwards, each participant took part in 2 counter-
balanced conditions of ~20mins each with TuxRacer, (a)
with and (b) without background music. 3 songs were re-
peated to accompany the music condition of 6 runs (1 song
per 2 runs). Each condition comprised of 6 × 3min-runs,
with 22 trials per run (11 for left and 11 for right hand, in
random order), see Figure 2. Each trial consisted in per-
forming left/right hand MI to move Tux in order to catch
fish on the left/right of the ski course, respectively. There
were 7 closely arranged fish per trial, to be caught within
3 seconds. During 5-second long breaks between trials, the
BCI controls were disabled so that Tux would return in a
neutral position (center on the ski course) and participants
could rest. The study was approved by the Inria ethics com-
mittee, COERLE (Comité opérationnel d’évaluation des
risques légaux et éthiques).

Figure 2: The experiment started with ~10min calibration [29],
followed by 2 conditions: either with or without music – 6 runs
of 3 minutes per condition. The adapt group received an adapted
(biased) feedback, contrary to the no-adapt group. Adaptation is
symbolized by the magnet. Both groups were asked to fill Edu-
Flow2 [12] questionnaires for the flow state assessment and BMRI
[16] questionnaire for investigating the quality of music.

Questionnaires: Prior to the experiment, a Swedish

Flow Proneness Questionnaire (SFPQ) [35] was sent to sub-
jects to fill in at home. This 5 points Likert scale question-
naire measures flow proneness – flow as a person’s trait. To
estimate to which extent users were in the state of flow, they
were asked to fill in the EduFlow2 questionnaire [12] after
each condition (music or no-music). The EduFlow2 mea-
sures flow state through 4 dimensions: cognitive control,
immersion, selflessness and autotelism – a self rewarding
experience. To have a measure of the quality and motivation
of the selected music, the participants also filled a dedicated
questionnaire, the Brunel Music Rating Inventory (BMRI)
[16].

Signal processing: The acquired EEG was band-bass
filtered with a Butterworth temporal filter between 8 and
30Hz. We computed the band power using a 1s time win-
dow sliding every 1/16th s. We used a set of Common Spa-
tial Patterns (CSP) spatial filters to reduce the 32 original
channels down to 6 "virtual" channels that maximize the
differences between the two class motor imagery [30]. A
probabilistic SVM (Support Vector Machine) with a linear
kernel was used to classify the data between left and right
classes (regularization parameter C = 1). That way, the out-
put of the SVM between 0 and 1, indicated a class recog-
nized with a certain degree of confidence, e.g. 1 means that
the right- hand class was recognized with high confidence.

Performances: The online performance corresponds to
the peak accuracy of the classifier that controlled the video
game, i.e. the highest classification accuracy over all trials’
time windows. The offline performance was computed af-
terwards with a 4-folds cross validation, i.e. regarding only
the data recorded during the interaction with the video game
for training and testing. In other words, data recorded dur-
ing the Graz protocol was not used to compute offline per-
formances. We used a LDA (Linear Discriminant Analysis)
for the offline classification, since it is less computation-
ally demanding. Both for online and offline analyses, one
accuracy score was computed over the music / no_music
condition (i.e. 6 runs of 22 trials).

Game controls: The TuxRacer game was controlled via
a virtual joystick. When a right hand movement was recog-
nized (SVM output of 1) the virtual joystick was tilted to-
ward the right at its maximum angle, 45 degrees. Inversely,
when a left hand movement was recognized (SVM output
of 0), the virtual joystick was tilted 45 degrees to the left.
Between 0 and 1, the values of the virtual joystick were
mapped linearly (from minus 45 degrees to 45 degrees).
Thanks to this simple virtual joystick, we did not need to
modify the usual input commands to the complex BCI ones
in the game. Basically, the virtual joystick can act as or
replace the usual computer controls, such as keys on the
keyboard. Our freely available source code3 could be used
to control any (linux) joystick-based game with a BCI.

Game modifications: We designed the BCI TuxRacer
game so that its timing and structure mirror that of the Graz
motor imagery BCI protocol [29], but in an immersive and
motivating environment. We modified the shape of the ter-
rain, curving it alike a bobsleigh course. Consequently, by

3https://github.com/conphyture/LSL2joy
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the force of gravity, Tux would slide back to the middle of
the screen between trials, when the commands were deac-
tivated. Between trials, Tux would still be skiing towards
the following trial with constant speed, enabling the users
to see the next fish. We fixed the position of the fish on the
ski course edges, so that the targets were equidistant from
Tux at the beginning of each trial, i.e. same distance from
the center of the ski course. The reason for this is to enable
the user to provide equivalent potential effort for both MI
classes (left/right hand). By assuring a constant speed for
Tux, a race (run) always lasted 3 minutes.

Game adaptation: The no_adapt group was the first
to participate in the experiment. Thanks to the fact that
there was a correlation between the user’s flow state and
the performances in the control group, we empirically cal-
culated a performance level (classifier accuracy) for which
users felt most in flow. We used that value as an attrac-
tor or a quasi-flow value to lure Tux in. At each instant
(1/16thsec sliding window) we would retrieve the classi-
fier output and add to it a value which would push Tux
a half way towards our attractor. This value was deter-
mined intuitively from Flow theory, to keep the difficulty
in the "golden middle". Consequently, when user perfor-
mances were very poor, Tux was boosted to a higher ex-
tent towards the attractor, i.e. in this case users were helped
(positively biased) more than when their performances were
fairly good. However, when the performances were too
good, the perceived performances were deteriorated (feed-
back was negatively biased). The "flow" function would
then be: f(si) = si +

(a−si)
2 , si ∈ [−1, 1], where si stands

for user skill, which is given by the classifier output and
scaled to ease the computation (-1 for left, 1 for right), for
all instants i within 22 trials, (i = 1, ..16Hz × 66s). Fi-
nally, a = 0.79 denotes the attractor for the right class
(a = −0.79 for left class).

RESULTS

The normal distribution of all the data was verified using a
Shapiro-Wilk normality test.

Flow-factor’s influence on EduFlow2: We tested the
effects of our mixed factorial design on each of the 4 di-
mensions measured by the EduFlow2 questionnaires using
a Markov Chain Monte Carlo (MCMC) method [10]. The
MCMC showed a significant difference between adapt and
no-adapt along the 1st dimension (p < 0.01). Participants
in the adapt group reported higher cognitive control (mean:
5.38, SD: 0.84) compared to the no-adapt group (mean:
4.49, SD: 0.83), see Figure 3.
There was no significant difference between groups regard-
ing their flow trait, measured with SFPQ (1-way ANOVA, p
= 0.25). ANCOVA tests showed that it was not a confound-
ing factor for neither EduFlow2 nor performances.
There was no difference between groups regarding BMRI
(1-way ANOVA, p = 0.53). Mean score: 15.80, SD: 4.14 –
maximum score with the questionnaire we distributed: 25.3.
There was no correlation between BMRI scores and flow
(p = 0.54) nor with user performance, online (p = 0.78) or

offline (p = 0.20).
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Figure 3: The EduFlow2 score (7 Likert scale) for the first dimen-
sion (cognitive control) depending on the between-subject factor
adapt and on the within-subject factor music. Users were in higher
cognitive control in the adapt condition (left).

Flow-factor’s influence on performance: The question
whether our conditions could directly improve the online
performances was tested with a 2-way ANOVA. There
was a significant interaction between music and adapta-
tion (p<0.05). Music had a significant effect on the on-
line performance (mean with music: 0.62, SD: 0.09, mean
with no_music: 0.65, SD: 0.11, p<0.05) but adaptation
had not (p=0.08), see Figure 4. A post-hoc Tukey analy-
sis reveals that the one significant interaction occurs in the
no_adapt condition, between music (mean: 0.64, SD: 0.11)
and no_music (mean: 0.68, SD: 0.13) (p<0.001).
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Figure 4: The peak performance during the completion of the
video game depending on the between-subject factor adapt and on
the within-subject factor music. In the no_adapt condition (right),
users had better online performances without music.

Correlation between EduFlow2 & performance:
There was no correlation between flow (mean of all the
EduFlow2 dimensions) and online performance (p=0.12),
however there was a positive correlation between flow and
offline performance (Pearson coefficient: 0.35, p<0.01), see
Figure 5. More precisely, offline performances are signif-
icantly correlated with two dimensions of flow: the 2nd –
immersion (p<0.01, Pearson coefficient: 0.38) and the 4th
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– autotelism, (p<0.05, Pearson coefficient: 0.32). We cor-
rected the p-values for multiple comparisons with false dis-
covery rate [26].

4

5

6

50 60 70 80 90
offline performance

Ed
uF

lo
w

 s
co

re

Figure 5: Positive correlation between EduFLow2 scores (mean
of 4D) and offline performance (Pearson coef:0.35, p<0.01).

DISCUSSION

H1. validated: Adapting the task difficulty to users skill
improved one dimension of flow state, cognitive control.
People who faced a challenge better suited to their skill felt
more in control. Thus, taking into account user’s predispo-
sitions could lead to a greater user experience.
H2. in contradiction: Not only the presence of a back-
ground music had no effect on flow, but it deteriorated the
online performance. Therefore, this result contradicts our
second hypothesis.

Music pace mismatch. As opposed to what we expected,
we could not directly improve performance by manipulating
the flow factors we chose (adaptation and music). The latter
could be explained by the songs we chose, since the moti-
vational qualities of the music (measured with the BMRI
questionnaire) were not very high and not correlated to any
dimension of flow. Instead of picking those songs from the
public domain, users may have been more motivated should
they have chosen their own music. The decrease of perfor-
mance in the music condition might come from the mis-
match between the rhythm of the music and the pace of the
game, i.e. with the pace of the imagined hands movements.
Indeed, some users shared informally that they were imag-
ining playing their musical instrument as MI commands and
that the songs further disturbed their pace.

Different training environment. There was no corre-
lation between flow state (EduFlow2) and online perfor-
mances. That could be due to the differences between
the calibration environment (Graz protocol) and the game,
e.g. the first being minimalistic and the latter a 3D video-
game. Moreover, as the calibration was done without mu-
sic, maybe the performances online were better without it
because the EEG signals might have changed, therefore the
classifier could not recognize them anymore.

Flow increases with performances. These later assump-
tions are strengthened by the fact that there was a posi-

tive correlation between flow and the offline performances,
when only game data was taken into consideration. The
state of flow was then positively correlated with users’ per-
formance: the feeling of immersion and the autotelic expe-
rience (i.e. the completion of the task was self-rewarding)
increased with the offline performance. Hence, not only en-
couraging a state of flow would produce BCIs more pleas-
ing to the users, but it might also benefit the accuracy of the
system. We still have to identify the direction of the corre-
lation though: does flow state increases performances or do
good performances increase flow state?
Overall, the discrepancy in our results could stress that flow
is a complex phenomenon, and however beneficial to ob-
taining better BCI, the emerging interaction between its
components should be more thoroughly investigated.

CONCLUSION

By investigating means to improve BCI user performance
and usability through instructional design theories, we came
across the Flow Theory. This theory, which describes an op-
timal user state, showed to improve performances in many
fields. We hypothesized that the state of flow could benefit
BCIs. In a MI BCI task, we manipulated flow by adapting
the perceived difficulty and by adding a background mu-
sic. We used an immersive environment, a 3D video game,
TuxRacer (the modification can be found online 4).
Our main findings show that the adaptation increases one of
the dimensions of flow – cognitive control, and that user’s
offline performances are positively correlated with flow. In
the future we could attempt to better suit the adaptation of
the task to the users: it could be biased adaptively over time,
across several sessions, following the progress of the user.
We could also try to account for the amount of effort that
the user puts into the completion of the task in order to bet-
ter comprehend such complex phenomena. For example,
measuring workload could facilitate the assessment of the
challenge that users are facing and computationally predict
the state of flow[3].
According to the literature, we chose asynchronous music
with medium tempo to follow the BCI task. Unexpect-
edly, the background music impeded the performances of
the user. This result stresses the importance of the choice
of music to accompany a task. One explanation could lie in
the very BCI paradigm we chose. Indeed, a motor imagery
task might share similarities with actual physical activity,
where it had been shown that synchronous music could ef-
fectively stimulate the sensory-motor cortex[11]. Hence, a
future work would consist in synchronizing music to game’s
cues (e.g. trials sequences) or to user’s motor imagery pace.
Such music, generated in real time, might enhance the flow
state and intrinsic motivation. Concurrently, we should ver-
ify if the user is musically educated, as in some cases users
imagined playing instruments as MI commands, and be-
cause musicians elicit different brain activity in motor ar-
eas[21].

4https://github.com/jelenaLis/tux-modifs)
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Flow is not only a promising research direction to improve
BCI systems, but it raises a new question: should we put all
our efforts in favoring the machine accuracy, or rather the
human subjective experience?
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