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ABSTRACT: In the field of Brain-Computer Interfaces
(BCIs), Electroencephalography (EEG) is a widely used,
but very noisy method. To improve signal-to-noise ratio
(SNR) of the recorded signals, spatial filtering is com-
monly applied. This paper concentrates on spatial filter-
ing methods to enhance the SNR of evoked- or event-
related potentials (ERPs). While methods like Canoni-
cal Correlation Analysis (CCA) or xDAWN have been
shown to provide good spatial filters, this paper intro-
duces an alternative view on spatial filtering, showing
that spatial filtering can be seen as a regression problem.
It is shown how regression methods can be used to con-
struct spatial filters and their use is evaluated on an EEG
dataset containing error-related potentials (ErrPs), show-
ing that classification accuracy is significantly improved
using regression-based spatial filtering. As arbitrary re-
gression methods can be used for construction of spatial
filters, non-linear spatial filters can be constructed and
new approaches, like deep learning, can be used for spa-
tial filtering.

INTRODUCTION

A Brain-Computer Interface (BCI) allows a person to con-
trol a computer by using only his brain activity, without
the need for muscle control [1]. While its main goal is to
enable communication in paralyzed patients [2], it is also
used in other fields like rehabilitation of stroke patients or
the detection of mental states. As Electroencephalogra-
phy (EEG) is a relatively cheap and non-invasive method,
it is commonly used to measure the brain activity for the
use with BCI. However, EEG is a rather noisy technique,
which makes it difficult to correctly interpret the recorded
brain signals.
One commonly used method to improve the signal-to-
noise-ratio (SNR) of EEG, is the use of spatial filters.
Spatial filters can be seens as mathematical operation,
which mixes the signal from the EEG electrodes in a
way that the signal of interest is enhanced, while noise or
artifactual components are reduced. This can be imple-
mented by a linear transformation matrix Ws that trans-
forms the raw input signal Xr into the spatially filtered
signal Xs.

Xs = Ws ·Xr (1)

The general question is, how to find an optimal Ws that
enhances the signal while reducing the noise.

There are basic spatial filters like common average refer-
encing (CAR) or Laplacian spatial filters [3], which can
be applied for any type of EEG signal and whithout any
training process. There are also more sophisticated, data-
driven methods for the creation of spatial filters like com-
mon spatial patterns (CSP) [4], whitening [5], xDAWN [6]
or canonical correlation analysis (CCA) [7], which are
optimized on a specific dataset and therefore need data
to be trained. Depending on the type of BCI, different
spatial filtering methods can be applied. For BCIs in
which classification is done in the frequency domain, e.g.,
motor-imagery BCIs, CSP can be used to improve the
SNR of selected oscillations. If classification is done in
the time domain, to detect evoked- or event related po-
tentials like in the popular P300 speller [8], methods like
whitening, xDAWN or CCA can be used. It should be
noted that CCA is also often used in SSVEP and c-VEP
BCIs, where it is used as a method for combined spatial
filtering and classification [9, 10] or used solely for spa-
tial filtering in combination with a different method for
classification [11].
In the course of this paper, only spatial filter for time-
domain classification will be considered. Unsurprisingly,
data-driven spatial filter work better than basic spatial fil-
ters [7], but a clear comparison of the three methods is
missing. In [7] whitening and CCA were compared on
five different datasets with CCA yielding the better re-
sults on average, although whitening performed exactly
the same on some datasets. Roy and colleagues [12] found
that CCA performed slightly better than xDAWN in a test
on workload EEG data, but the difference was not sig-
nificant. Iwane and colleagues [13] compared CCA and
xDAWN of data containing error-related potentials, and
also showed CCA to have better results, but again, the
difference was not significant.
As an alternative to the previously mentioned methods,
this paper describes how spatial filtering can be seen as a
regression problem and how arbitrary regression methods
can be used to construct spatial filters. As all previously
used spatial filtering methods create linear filters, it is of
special interest that the use of regression methods also
allows the construction of non-linear spatial filters.

METHODS

In this section, it is explained first, how Canonical Cor-
relation Analysis (CCA) can be used for spatial filtering.
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Based on this method, it is shown how spatial filtering can
be seen as regression problem and how regression meth-
ods can be used to design spatial filters. At last, different
spatial filtering methods are evaluated on an EEG dataset
containing error-related potentials (ErrPs).

CCA for spatial filtering
CCA is a multivariate statistical method developed by H.
Hotelling [14]. When having two datasets, which may
have some underlying correlations, CCA can be used to
find linear transformations for these two datasets, which
maximize the correlation between the transformed datasets.
Assuming there are two multidimensional datasetsX and
Y and their transformed datasets x = WT

x X and y =
WT

y Y , CCA can be used to find the two transformations
Wx and Wy , which maximize the correlation between x
and y by solving

max
Wx,Wy

ρ(x, y) =
WT

x XY
TWy√

WT
x XX

TWx ·WT
y Y Y

TWy

(2)

The process of using CCA for spatial filtering was pre-
viously described in [7]. To use CCA for spatial filter-
ing, one needs to make a distinction between one-class
problems and two-class problems, because the process of
creating a spatial filter is slightly different in both cases.
For one-class problems (e.g. c-VEPs or SSVEPs), the
classification is based on properties of the potential, like
the time delay (c-VEP) or the frequency (SSVEP). For
two-class problems (e.g. P300 or ErrP), the presence of
such a potential is classified, if such a potential is found
or not.
As signal-to-noise ratio (SNR) of single-trial EEG data is
usually low, a common method to improve SNR is to av-
erage over multiple trials. The idea behind using CCA for
spatial filtering is to find a linear transformation that max-
imizes the correlation between the recorded signal and
the average evoked response, thereby improving the SNR
of the transformed signal on a single-trial basis.
For the application of CCA, X is the raw EEG data and
Y is the waveform of the average evoked response. CCA
is then applied to find Wx and Wy , with Wx being used
as spatial filter.
In the case of a one-class problem, we have k trials with
EEG data, each consisting of a n×mmatrix with n being
the number of channels and m being the number of sam-
ples. For the application of CCA, all trials are concate-
nated to a new matrixX with new dimensions n×(k ·m).
To obtain Y , first the average waveform of the evoked po-
tential R is generated by averaging over all k trials, then
R is replicated k times, to obtain a n × (k · m) matrix
Y = [RR . . . R]. Since R does not necessarily has to
contain all n channels, also a subset of ns ≤ n chan-
nels can be used, so that Y has dimensions ns × (k ·m).
Regardless of the channelsubset used in R and Y , re-
spectively, all n channels should be used in X , since this
achieved better performance in previous, unpublished of-
fline experiments.

For two-class problems, CCA is used similarly. Assume
we have the EEG data X1 containing all trials without
the evoked potential and X2 containing all trials with the
evoked potential. For X1 and X2, Y1 and Y2 are obtained
in the same way as for a one-class problem. Then X
and Y are generated by concatenating X = [X1X2] and
Y = [Y1Y2] and CCA is applied onX and Y to findWX ,
which can be used as a spatial filter.

Regression for spatial filtering
A regression tries to predict a variable yi based on a vec-
tor xi, with xi having n dimensions. In the case of a
least-squares regression, the squared difference between
the actual variable yi and the prediction ŷi is minimized

min
w

m∑
i=1

(yi − ŷi)2 (3)

For an optimal prediction, the goal is to find a set of
weights w which minimize the above equation.

ŷi =
n∑

j=1

xijwj (4)

Regarding the use of regression for spatial filtering, it
should be noted that the raw EEG signal consists of the
ERP signal plus a lot of noise. A good spatial filter trans-
forms the raw EEG signal in a way that the noise is re-
duced while keeping the ERP signal. As the averaged
EEG signal contains the (nearly) noise-free ERP signal,
we want to find a transformation, so that the transformed
signal is very similar to the noise-free ERP signal. Using
the notation of the regression described above, we want
to find a set of weightsw, which minimizes the difference
between the noise-free ERP signal y and the spatially fil-
tered EEG signal ŷ.
When applying a regression to find a spatial filter matrix
W , the first step is the same step as for CCA, where X
is created as a concatenation of the single-trial EEG data
and Y is the concatenation of the (noise-free) averaged
potentials, with Yc being a vector containing a concate-
nation of the averaged potential at EEG channel c andXc

being the concatenation of the raw signal at channel c.
After that, a regression method is used for each channel
c to find a transformation wc that minimizes the distance
between the spatially filtered signal Ŷc and the average
potential Yc.

min
wc

||Yc − Ŷc|| (5)

min
wc

||Yc − wcX|| (6)

By concatenating the wc of all channels, a quadratic fil-
ter matrix W can be obtained, which can be multiplied
with the raw EEG signal to obtain a spatially filtered sig-
nal. Essentially, arbitrary regression methods can be used
to find the spatial filter weights wc for each channel c.
As the above formulation only considers linear regres-
sion methods, it is important to note, that also non-linear
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methods can be used in which wc is not a vector, but a
function that is optimized.

min
wc

||Yc − wc(X)|| (7)

Thereby also kernel methods or deep learning methods
could be applied to find an optimal spatial filter function.

Evaluation on EEG dataset
To test the spatial filtering methods, we used data col-
lected in a previous study [15], which contained error-
related potentials (ErrPs). The subjects had to use a P300
speller [8] and if the BCI detected the wrong letter, the
user should recognize the error and an ErrP should be
elicited by the erroneous feedback. By detecting the ErrP,
the wrong letter could be deleted and thereby the detec-
tion of ErrPs serves as an error correction system. EEG
was recorded from electrodes F3, Fz, F4, T7, C3, Cz,
C4,T8, CP3, CP4, P3, Pz, P4, PO7, PO8, Oz with a
g.USBamp amplifier (an internal 0.5-30 Hz order eight
Chebyschev bandpass filter was active) and digitised at
256 Hz. Ground and reference electrodes were placed
at the left and right mastoid, respectively. We kept the
impedance of all electrodes below 10 kΩ , in most cases
below 5 kΩ. Impedance was measured before and after
every session.
The 23 participating subjects were split into 3 different
groups. H1 was drawn from the student population (N =
9, four female, mean age = 24.6 (SD ±2.3), range 20 −
28), all right-handed). H2 comprised a second group of
elderly subjects age-matched to the group of participants
with motor impairment(N = 8, two female, mean age = 45
(SD±5.2), range 39−52). Group A2 (N = 6, one female,
mean age = 51.2, SD ±10.2, range 36 − 63) includes 5
individuals diagnosed with ALS and one individual with
Duchenne muscular dystrophy (participant A2u).
To evaluate the benefit of the different spatial filtering
methods, we used the ErrP data from the above men-
tioned study, which consisted of 2 sessions per subject.
To simulated the online case, we used the same data for
training and testing the classifier as was used online. The
training data consisted on average of 294 trials per subject
(SD±45), while the test data consisted on average of 217
trials per subject (SD ±78). After the display of the let-
ter (at t=0 ms), the interval t=100-800ms was used as in-
put for classification. After spatial filtering the raw EEG
data, the data was bandpass filtered in the range of 0.5-
16 Hz (by fast Fourier transform (FFT), removal of un-
wanted frequency bands, followed by inverse FFT). Sub-
sequently the data was downsampled to 32 Hz. There-
after, linear trends were removed from the EEG data and
the data was scaled by centering and mapping the abso-
lute maximum value to ±1. All 16 channels were used
as input for classification. As classifier we used a Sup-
port Vector Machine (SVM) with the LibSVM [16] im-
plementation (RBF-Kernel with default parameters γ =
1/(2σ) andC = 1). Due to the imbalanced classes (more
correct trials than erroneus ones), we used a weighted
SVM [17] with w−1 = 0.3.

Table 1: Classification accuracies on the ErrP
dataset using different methods for spatial filter-
ing: no spatial filtering (none), canonical correla-
tion analysis (CCA), ridge regression (RR), linear
support vector regression (lSVR) and support vec-
tor regression with an RBF-kernel (rSVR)
Subj. none CCA RR lSVR rSVR
H1a 79.2 % 84.0 % 82.2 % 79.5 % 78.9 %
H1b 81.8 % 89.5 % 87.7 % 86.8 % 81.8 %
H1c 82.8 % 93.6 % 91.7 % 88.7 % 84.4 %
H1d 64.3 % 75.9 % 73.8 % 69.7 % 67.0 %
H1e 66.7 % 79.3 % 78.4 % 78.7 % 65.8 %
H1f 77.6 % 87.1 % 79.7 % 87.0 % 74.6 %
H1g 77.1 % 87.0 % 82.3 % 86.7 % 74.0 %
H1h 65.0 % 80.8 % 80.3 % 73.4 % 61.1 %
H1i 62.4 % 81.0 % 77.0 % 73.0 % 71.2 %

mean 73.0 % 84.2 % 81.5 % 80.5 % 73.2 %

H2j 76.4 % 100 % 100 % 100 % 100 %
H2k 60.4 % 68.9 % 59.5 % 60.4 % 59.5 %
H2l 93.4 % 93.4 % 92.9 % 82.5 % 81.5 %

H2m 75.6 % 100 % 100 % 100 % 100 %
H2n 81.6 % 84.0 % 84.4 % 86.0 % 80.8 %
H2o 78.0 % 87.0 % 85.3 % 79.1 % 72.9 %
H2p 62.1 % 80.3 % 76.8 % 74.2 % 59.6 %
H2q 79.6 % 84.1 % 76.6 % 76.6 % 76.6 %

mean 75.9 % 87.2 % 84.4 % 82.3 % 78.9 %

A2s 63.8 % 81.5 % 82.3 % 66.9 % 61.5 %
A2t 80.0 % 92.0 % 91.5 % 93.0 % 84.5 %
A2u 76.6 % 87.3 % 78.5 % 78.5 % 78.5 %
A2v 75.0 % 78.6 % 79.7 % 79.7 % 79.7 %
A2w 82.4 % 80.7 % 77.3 % 79.8 % 74.0 %
A2x 63.7 % 78.3 % 78.3 % 73.3 % 72.0 %

mean 73.6 % 83.1 % 81.3 % 78.5 % 75.0 %
mean 74.2 % 85.0 % 82.5 % 80.6 % 75.6 %

For the different spatial filter methods, we evaluated clas-
sification accuracy without any spatial filter, when using
CCA for spatial filtering and when using three different
regression methods. We usedthe MATLAB implementa-
tion of a ridge regression with a regularization parameter
of λ = 0.0001 and a support vector regression with de-
fault paramters. To also test a non-linear regression, we
evaluated the support vector regression with an RBF ker-
nel using the LibSVM [16] implementation with default
parameters.

RESULTS

The detailed results for the classification accuracy on the
ErrP dataset with different spatial filtering methods can
be seen in Table 1. While the average accuracy without
spatial filtering is 74.2 %, it could be improved to 85.0 %
by using CCA for spatial filtering, which is significantly
better (p < 0.001, Wilcoxon ranksum test). Using ridge
regression for the creation of a spatial filter resulted in
an average accuracy of 82.5 %, which is not significantly
lower than CCA (p > 0.05). Using support vector regres-
sion for spatial filter creation results in an average accu-
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racy of 80.6 % when using a linear kernel and 75.6 %
with an RBF kernel. Results with linear kernel are not
signficantly different to CCA(p > 0.05), but results with
RBF kernel are significantly worse (p < 0.005).

DISCUSSION AND CONCLUSION

In this paper, it was described how spatial filtering of
EEG can be seen as regression problem and how arbi-
trary regression methods can be used for the construction
of spatial filters. Three different regression methods were
tested and compared to CCA on an EEG dataset contain-
ing error-related potentials. Classification accuracy was
highest when using CCA for the construction of spatial
filters, but performance with linear regression methods
was not significantly worse. Using a non-linear support
vector regression with an RBF-kernel resulted in signifi-
cantly lower performance.
Based on the presented results it should be discussed what
the benefits of using a regression method for spatial filter-
ing are, or if there are any at all. Although performance
difference to CCA was not significant, the results give
a hint that when in doubt, better use CCA. Also from
a theoretical standpoint, CCA seems to be better suited.
As CCA uses two transformation matrices Wx and Wy ,
Wx is used as spatial filter and Wy transforms the av-
eraged potential to a subspace containing different ERP
components. With this last step, CCA bears similarity
to principal component analysis (PCA). The spatial filter
generated by CCA thereby does not try to increase the
SNR on EEG sensor level, but separates the average ERP
into (uncorrelated) components and improve the SNR for
those components. On the other hand, regression tries to
increase SNR on EEG sensor level. As neighboring sen-
sors are correlated, regression-based spatial filters deliver
some redundant information and thereby the spatial fil-
ter created by CCA might be better for classification as
components are uncorrelated and thereby contain less re-
dundant information.
The most interesting thing about using regression meth-
ods for spatial filtering is the possibility to use non-linear
methods. So far, all spatial filtering methods used in
EEG signal processing are linear methods. Being able
to use arbitrary regression methods for spatial filtering
means that also kernel methods or artificial neural net-
works and deep learning can be used for the creation of
spatial filters. But why should non-linear spatial filters
be superior to linear filters, as the results in this paper
rather point in the other direction? The signal recorded
at the EEG sensors is generally considered to be a lin-
ear mixture of electrical sources in the brain and arte-
factual/noise sources [18]. As spatial filters are trying
to eliminate noise sources, it is basically a reversal of
this mixture process and if the mixture is a linear pro-
cess, a linear spatial filter should be able to yield opti-
mal results. However, this is only true under certain as-
sumptions: that all sources are stationary and that there
are equal or less sources than we have channels. If a

source is moving, the influence of the source on the sen-
sors depends non-linearly on its position and therefore
non-linear filters might be better to remove those sources.
If there are more sources than sensors (and assuming some
independence between the sources) the sources can not
be perfectly reconstructed and hence, non-linear methods
might achieve better results in reconstructing and remov-
ing these sources. So, it depends on the assumptions one
makes about EEG if non-linear spatial filter can provide
better results than linear filters.
A further argument that questions the use of non-linear
spatial filters (or spatial filtering in general) is that clas-
sifiers can also integrate spatial filtering. Assuming an
optimal spatial filter function s(x), the raw EEG data xr
and a classification method that always finds an optimal
classifier. If this method is trained on the spatially filtered
data xs = s(xr) it would return a function g(x), so that
g(xs) is the optimal classification result. But as the clas-
sification method always finds the optimal classifier, it
would return the function f(x) = g(s(x)) if it is trained
on the raw EEG data. Thereby, if one has a classification
method that always gives the optimal classifier, spatial fil-
tering is obsolete and a non-linear classifier would be able
to also learn a non-linear spatial filtering. However, this is
a rather theoretical remark. As this and previous papers
[5, 6, 7, 12, 13] have shown, for classifiers commonly
used in BCI applications spatial filtering always improves
results. It should also be noted that an optimal classifier is
only able to learn spatial filtering when trained on the raw
EEG data, i.e. time-domain features. If there is a feature
extraction step, like power spectrum estimation, an opti-
mal classifier can not learn the spatial filtering anymore.
While SSVEP is a good example where evoked potentials
are often classified in the frequency domain, a classifica-
tion of event-related potentials in the frequency domain
can also be used if there is no clear stimulus onset, as it
was shown for such asynchronous classification that Er-
rPs [19] and P300s [20] can be reliably detected based
on power spectral features. In these cases a spatial fil-
ter could be trained on ERP data and then applied before
power spectral estimation.
Coming back to the question if non-linear spatial filtering
can improve results compared to linear spatial filtering,
the results presented in this paper should be seen merely
as a proof-of-concept to demonstrate that non-linear spa-
tial filtering is possible. In future work, different non-
linear methods like neural networks should be tested to
evaluate if non-linear spatial filtering can improve results
compared to what linear spatial filters can offer. As linear
regression did not provide better results than CCA, CCA
is still being recommended for the creation of spatial fil-
ters as it is easy to use and already implemented in all
major frameworks like R, Python or MATLAB.
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