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Abstract. In this paper, we consider argumentation frameworks with sets of attacking arguments (SETAFs) due to Nielsen
and Parsons, an extension of Dung’s abstract argumentation frameworks that allow for collective attacks. We first provide a
comprehensive analysis of the expressiveness of SETAFs under conflict-free, naive, stable, complete, admissible, preferred,
semi-stable, and stage semantics. Our analysis shows that SETAFs are strictly more expressive than Dung AFs. Towards a
uniform characterization of SETAFs and Dung AFs we provide general results on expressiveness which take the maximum
degree of the collective attacks into account. Our results show that, for each k > 0, SETAFs that allow for collective attacks of
k + 1 arguments are more expressive than SETAFs that only allow for collective attacks of at most k arguments.
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1. Introduction

Abstract argumentation frameworks (AFs) as introduced by Dung in his seminal paper [6] are a core
formalism in formal argumentation and have been extensively studied in the literature. A popular line
of research investigates extensions of Dung AFs that allow for a richer syntax (see, e.g. [3]). In this
work we consider frameworks with sets of attacking arguments (SETAFs) as introduced by Nielsen
and Parsons [16] which generalize the binary attacks in Dung AFs to collective attacks such that a
set of arguments B attacks another argument a but no proper subset of B attacks a. Figure 1 shows an
example SETAF with three arguments a, b, and c. Each argument is jointly attacked by the two remaining
arguments; in other words, the set {a, b} attacks c, {a, c} attacks b and {b, c} attacks a. Having only these
three attacks indicates that a alone (and likewise b alone) is too weak to attack c, etc.

Standard semantics (i.e., admissible, complete, grounded, stable, preferred) for SETAFs have been
defined in [16]. The crucial step towards these definitions is to fix the notion of conflict for SETAFs.
In our example, S = {a, b} is a conflict-free set since b – although being attacked by {a, c} – is not
attacked by a alone (or by {a, b}), and likewise b is not attacked by a or {a, b}. {a, b, c}, on the other
hand, is conflicting in this example. The definition of the actual semantics is then quite straight forward.
For instance, stable semantics are defined according to the standard definition by Dung, i.e. are given by
conflict-free sets that attack all remaining arguments. In our example, we have that the conflict-free sets
{a, b}, {a, c}, and {b, c} satisfy this requirement and these three sets are indeed the stable extensions of
this example SETAF. Building on the work of [16], Dvořák et al. [11] recently introduced semi-stable
and stage semantics for SETAFs. The semantics as proposed in [11,16] make SETAFs a conservative
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192 W. Dvořák et al. / On the expressive power of collective attacks

Fig. 1. An example SETAF.

generalization of Dung AFs in the sense that a SETAF that has only simple attacks is evaluated the same
way as the corresponding Dung AF.

As illustrated in [16], there are several scenarios where arguments interact and can constitute an attack
on another argument only if these arguments are jointly taken into account. Representing such a situation
in Dung AFs often requires additional artificial arguments to “encode” the conjunction of arguments.
This is also observed in a recent comprehensive investigation on translations between different abstract
argumentation formalisms [17]. There, it is shown that SETAFs allow for more straightforward and
compact encodings of support between arguments than AFs do. Also a recent paper [27] observes that for
particular instantiations, SETAFs provide a more convenient target formalism than Dung AFs. However,
to the best of our knowledge, there has not been a thorough investigation to which extent the concept of
collective attacks increases the expressiveness of SETAFs compared to Dung AFs.

Characterizations and comparisons of the expressiveness of argumentation formalisms (and non-
monotonic formalisms in general) have been identified as a fundamental basis in order to understand
the different capabilities of formalisms [7,8,15,19,20]. A successful notion to compare the expressive-
ness of argumentation formalisms is the notion of the signature [7] of a formalism w.r.t. a semantics σ ,
that is the collection of all sets of σ -extensions that can be expressed with at least one argumentation
framework. There exist exact characterizations for most of the semantics for Dung AFs [7] and Abstract
Dialectical Frameworks (ADFs) [18–20]. As already observed by Polberg [17] collective attacks allow
to enforce certain sets of extensions that cannot be obtained with Dung AFs. This is easily illustrated by
our example SETAF from Fig. 1 for which we already reported its stable extensions being {a, b}, {a, c}
and {b, c}. However, there is no Dung AF that exactly has these three sets as its stable extensions; in
other words, the collection {{a, b}, {a, c}, {b, c}} is not contained in the signature of stable semantics for
Dung AFs. The reason is the limitation of attacks. In order to make {a, b} stable in a Dung AF, we need
to attack the remaining argument c either via attack (a, c) or via attack (b, c). However, with the former
attack {a, c} cannot be stable and with the latter {b, c} cannot be stable in such an AF.

Besides such basic observations, no general characterizations of the signatures for SETAFs have been
presented so far, and thus the precise differences in expressiveness to Dung AFs and ADFs are still
unclear. In particular, we are interested in questions like this: given an arbitrary set S of extensions that
is incomparable (i.e. for each S, S ′ ∈ S, S ⊆ S ′ implies S = S ′), does there exist a SETAF such that its
preferred (naive, stable, semi-stable, stage) extensions are exactly given by S?

In this work we answer such questions by investigating the signatures of SETAFs for conflict-free,
naive, stable, complete, admissible, preferred, semi-stable and stage semantics. Moreover, we investigate
whether the maximum degree of joint attacks (throughout the paper, we refer to the cardinality of the
set of arguments attacking another argument as the degree of the attack) affects the expressiveness of
SETAFs. For this purpose, we also study the classes of k-SETAFs (k � 1) where attacks are restricted
to degree at most k (the example SETAF in Fig. 1 is thus a 2-SETAF but not a 1-SETAF; 1-SETAFs in
fact coincide with Dung AFs).

The main contributions of our work are as follows.
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Fig. 2. Summary of results: the Venn diagrams illustrate the relations between the signatures of the different semantics in AFs
(�1

σ ), SETAFs (�∞
σ ), and SETAFs with attacks of degree at most k (�k

σ ).

• In Section 3 we provide full characterizations of the extension-based signatures of SETAFs for the
semantics under consideration (cf. Main Theorem 1). By that we characterize the exact difference
in expressiveness between Dung AFs and SETAFs when considering extension-based semantics.

• In Section 4 we provide characterizations of signatures for k-SETAFs (cf. Main Theorem 2). Our
results show that the degree of the allowed attacks is crucial for the expressiveness. That is, k-
SETAFs form a strict hierarchy of expressiveness when considering different values for k, with
k = 1 covering the case for Dung AFs and unbounded k the case for general SETAFs.

Our results confirm that the notion of collective attacks is indeed quite powerful. In particular, the
question mentioned above can be positively answered: each incomparable set can be realized by pre-
ferred, naive, stable, semi-stable, and stage semantics, thus showing that the signatures of these five
semantics coincide for SETAFs. However, this only holds if we do not bound the maximum degree
of collective attacks. Another interesting finding is that – in contrast to Dung AFs – the signature of
conflict-free sets is not included in the signature of admissible sets; in other words there exists a set S of
extensions for which we can find a SETAF that has S as its conflict-free sets, but there is no SETAF that
has S as its admissible sets. This observation is already true for 2-SETAFs. These main results are illus-
trated in Fig. 2 where the relation between signatures �k

σ is highlighted, thus comparing the landscape
for AFs (�1

σ ), k-SETAFs for given k � 2 (�k
σ ), and unbounded SETAFs (�∞

σ ).
From a more general perspective, our results clarify the impact of generalizing the concept of attack

in terms of the extensions such formalisms can jointly deliver. We also conclude that the concept of
collective attack already yields a maximal impact in this sense: preferred and other semantics already
are capable of realizing any incomparable set. We believe that results of this kind yield further insight
in the inherent nature of argumentation semantics studied and thus contribute to the fundamentals of
abstract argumentation.

A preliminary version of this paper was presented at COMMA 2018 [10]. Beside giving full proofs,
detailed discussions and examples, the present paper extends the conference version by extending the
results to semi-stable and stage semantics and also incorporates fundamental results on these semantics
that where presented in a workshop paper [11]. Another addition concerns results for the signature for
k-SETAF under complete semantics.
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2. Preliminaries

We first introduce formal definitions of argumentation frameworks following [6,16] and then recall
the relevant work on signatures.

2.1. Argumentation frameworks with collective attacks

Throughout the paper, we assume a countably infinite domain A of possible arguments.

Definition 1. A SETAF is a pair F = (A, R) where A ⊆ A is finite, and R ⊆ (2A \ {∅}) × A is the
attack relation. For an integer k � 1, a k-SETAF is a SETAF (A, R) where for all (S, a) ∈ R, we have
|S| � k. The collection of all SETAFs (resp. k-SETAFs) over A is given as AFA (resp. AFk

A).

We shall call 1-SETAFs, i.e. SETAFs that only allow for binary attacks, Dung argumentation frame-
works (AFs) as they are equivalent to the AFs introduced in [6].

Definition 2. Given a SETAF (A, R), we write S �→R b if there is a set S ′ ⊆ S with (S ′, b) ∈ R.
Moreover, we write S ′ �→R S if S ′ �→R b for some b ∈ S.1 We drop subscript R in �→R if there is no
ambiguity. For S ⊆ A, we use S+

R to denote the set {b | S �→R b} of argument attacked by S (in R), and
define the range of S (w.r.t. R), denoted S⊕

R , as the set S ∪ S+
R .

Example 1. Recall the framework from the introduction, with arguments a, b, c where each pair of
arguments jointly attacks the remaining argument. This is modeled by the SETAF (A, R) with arguments
A = {a, b, c} and attacks R = {({a, b}, c), ({a, c}, b), ({b, c}, a)}. In fact, this SETAF has been already
presented in Fig. 1. Note that we have that {a, b} �→R c but neither {a} �→R c nor {b} �→R c for this
SETAF. On the other hand {a, b, c} �→R c indeed holds.

The notions of conflict and defense naturally generalize to SETAFs.

Definition 3. Given a SETAF F = (A, R), a set S ⊆ A is conflicting in F if S �→R a for some a ∈ S.
A set S ⊆ A is conflict-free in F , if S is not conflicting in F , i.e. if S ′ ∪ {a} � S for each (S ′, a) ∈ R.

Definition 4. Given a SETAF F = (A, R), an argument a ∈ A is defended (in F ) by a set S ⊆ A if for
each B ⊆ A, such that B �→R a, also S �→R B. A set T of arguments is defended (in F ) by S if each
a ∈ T is defended by S (in F ).

The notion of defense can be equivalently characterized as follows: an argument a ∈ A is defended
by a set S ⊆ A if for each (B, a) ∈ R we have S �→R B.

Next, we introduce the semantics we study in this work. Besides conflict-free and admissible sets,
these are the naive, stable, preferred, complete, grounded, stage, and semi-stable semantics, which we
will abbreviate by naive, stb, pref , com, grd, stage, and sem, respectively. All semantics except semi-
stable and stage are defined according to [16], while semi-stable and stage are straight forward gener-
alizations of the according semantics for Dung AFs [4,21], which have been independently proposed in
[11,13]. For a given semantics σ , σ(F ) denotes the set of extensions of F under σ .

1This way of lifting attacks to sets of arguments is characteristic for SETAFs and crucial in the definition of the notion of
defense. The fact that it suffices to attack one argument to attack a set reflects the conjunctive nature of collective attacks.
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Definition 5. Given a SETAF F = (A, R), we denote the set of all conflict-free sets in F as cf (F ).
S ∈ cf (F ) is called admissible in F if S defends itself in F . We denote the set of admissible sets in F

as adm(F ). For a conflict-free set S ∈ cf (F ), we say that

• S ∈ naive(F ), if there is no T ∈ cf (F ) with T ⊃ S,
• S ∈ stb(F ), if S �→ a for all a ∈ A \ S,
• S ∈ pref (F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) s.t. T ⊃ S,
• S ∈ com(F ), if S ∈ adm(F ) and a ∈ S for all a ∈ A defended by S,
• S ∈ grd(F ), if S = ⋂

T ∈com(F ) T ,
• S ∈ stage(F ), if �T ∈ cf (F ) with T ⊕

R ⊃ S⊕
R , and

• S ∈ sem(F ), if S ∈ adm(F ) and �T ∈ adm(F ) s.t. T ⊕
R ⊃ S⊕

R .

As shown in [16], most of the fundamental properties of Dung AFs extend to SETAFs. In particular,
Dung’s fundamental lemma generalizes to SETAFs in the following way.

Lemma 1 ([16]). Given a SETAF F = (A, R), a set B ⊂ A, and arguments a, b ∈ A that are defended
by B in F . Then (a) B ∪ {a} is admissible in F and (b) B ∪ {a} defends b in F .

The following result is in the spirit of Dung’s fundamental lemma and is used later.

Lemma 2. Given a SETAF F = (A, R) and two sets S, T ⊆ A. If both S and T defend itself in F , then
S ∪ T defends itself in F .

Proof. Towards a contradiction assume that S ∪ T does not defend itself, i.e. there exists a set B ⊆ A

with B �→ (S ∪ T ) such that (S ∪ T ) ��→ B. Consider B �→ S. Since (S ∪ T ) ��→ B also S ��→ B and
thus S does not defend itself in F which is a contradiction to the assumption. The case where B �→ T

behaves symmetrically. �

The relationship between stable, preferred, complete, admissible, conflict-free and naive semantics
has already been clarified in [16] and matches with the relations between the semantics for Dung AFs,
i.e. for any SETAF F ,

stb(F ) ⊆ pref (F ) ⊆ com(F ) ⊆ adm(F ) ⊆ cf (F )

and

stb(F ) ⊆ naive(F ) ⊆ cf (F ).

Moreover, the grounded extension is the unique minimal complete extension for any SETAF F .
We quickly clarify the relation of semi-stable and stage semantics to the other semantics; all the proofs

are straightforward adaptations of the corresponding proofs in Dung AFs.

Lemma 3. stb(F ) ⊆ sem(F ), for any SETAF F .

Proof. Consider a SETAF F = (A, R). By the above we have that each stable extension E of F is
also preferred and thus admissible in F . As E is stable we have that E⊕

R = A and thus there cannot be
another admissible set D of F with E⊕

R ⊂ D⊕
R . Hence E ∈ sem(F ). �
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Lemma 4. stb(F ) ⊆ stage(F ), for any SETAF F .

Proof. Consider a SETAF F = (A, R). By definition, we have that each stable extension E is conflict-
free. As E ∈ stb(F ) we have that E⊕

R = A and thus there cannot be another conflict-free set D of F

with E⊕
R ⊂ D⊕

R . Hence E ∈ stage(F ). �

Lemma 5. sem(F ) ⊆ pref (F ), for any SETAF F .

Proof. Consider a SETAF F = (A, R). Towards a contradiction assume there is a semi-stable extension
E of F that is not preferred. Then there is a preferred extension D of F with E ⊂ D. Let x ∈ D such
that x /∈ E and E ��→R x (otherwise there would be a conflict in D). As the range operator ⊕ is monotone
by definition, we have E⊕

R ⊆ D⊕
R and as x /∈ E⊕

R we obtain that E⊕
R ⊂ D⊕

R . Hence, E /∈ sem(F ), a
contradiction to our initial assumption. �

Lemma 6. stage(F ) ⊆ naive(F ), for any SETAF F .

Proof. Consider a SETAF F = (A, R). Towards a contradiction assume there is a stage extension E of
F that is not naive. Then there is a naive extension D with E ⊂ D. Let x ∈ D such that x /∈ E and
E ��→R x. As the range operator ⊕ is monotone by definition we have E⊕

R ⊆ D⊕
R and as x /∈ E⊕

R we
obtain that E⊕

R ⊂ D⊕
R . Hence, E /∈ stage(F ), a contradiction to our initial assumption. �

We are thus able to complete the picture on the relationship between the semantics as follows. For
every SETAF F , we have

stb(F ) ⊆ sem(F ) ⊆ pref (F ) ⊆ com(F ) ⊆ adm(F ) ⊆ cf (F ) (1)

and

stb(F ) ⊆ stage(F ) ⊆ naive(F ) ⊆ cf (F ). (2)

Moreover, the following property carries over from Dung AFs.

Lemma 7. For any SETAF F = (A, R), if stb(F ) �= ∅ then stb(F ) = sem(F ) = stage(F ).

Proof. Consider a SETAF F = (A, R) with stb(F ) �= ∅. First consider stage semantics. As each
stable extension is stage as well (cf. Lemma 4), we have that the range of each stage extension must
be A (by the range maximality condition) and thus each stage extension is a stable extension. Hence,
stb(F ) = stage(F ). Now consider semi-stable semantics. As each stable extension is semi-stable as well
(cf. Lemma 3), we have that the range of each semi-stable extension must be A (by the range maximality
condition) and thus each semi-stable extension is a stable extension. Hence, stb(F ) = sem(F ). �

2.2. Signatures

The concept of signatures of argumentation semantics was introduced in [7] to characterize the ex-
pressiveness of Dung AFs and has been extended to other argumentation frameworks [19,20]. Signatures
characterize all possible sets of extensions, argumentation frameworks can provide for a given semantics.
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Definition 6. Let k � 1 be an integer. The signature �k
σ of a semantics σ for k-SETAFs is defined as

�k
σ = {

σ(F ) | F ∈ AFk
A

}
.

For unrestricted SETAFs we use �∞
σ = {σ(F ) | F ∈ AFA}. For S ∈ �k

σ (resp. S ∈ �∞
σ ) we say that S

can be realized by k-SETAFs (resp. by SETAFs) under σ .

We require some further technical notions.

Definition 7. Given S ⊆ 2A,

• we use ArgsS to denote
⋃

S∈S S, and
• call S an extension-set (over A) if ArgsS is finite.

As only extension-sets can appear in the signature of a semantics we will tacitly assume that all sets S
in our characterizations are extension-sets. Further, the arguments in ArgsS must be part of any SETAF
realizing the extension set S.

For characterizing the signatures we make frequent use of the following concepts.

Definition 8. Given S ⊆ 2A and E ⊆ ArgsS, we define

(a) the downward-closure of S as dcl(S) = {S ′ ⊆ S | S ∈ S};
(b) the set of potential conflicts in S as PAttS = {S ⊆ ArgsS | S /∈ dcl(S)};
(c) the completion-sets of E in S as CS(E) = {S ∈ S | E ⊆ S, �S ′ ∈ S, E ⊆ S ′ ⊂ S}.
The downward-closure considers all subsets of sets in the extension-set. The set PAttS list all attacks

between arguments in ArgsS that do not add a conflicts within sets S ∈ S. As all the semantics under
our considerations are based on conflict-freeness this provides an upper bound on the attacks between
arguments in PAttS we can use in our constructions. Finally, the completion sets for E are the subset
minimal sets S ∈ S that contain E. In particular, if E ∈ S then E itself is the only completion set of E.

Example 2. Let S = {{a, b}, {a, c}, {b, c}}. We have ArgsS = {a, b, c} and dcl(S) = S ∪
{{a}, {b}, {c}, ∅}. Furthermore, we have PAttS = {{a, b, c}}, for E = {a}, CS(E) = {{a, b}, {a, c}},
and for E′ = {a, b, c}, CS(E

′) = ∅.

Definition 9. Let S ⊆ 2A. We call S

• downward-closed if S = dcl(S);
• incomparable if all elements S ∈ S are pairwise incomparable, i.e. for each S, S ′ ∈ S, S ⊆ S ′

implies S = S ′;
• tight if for all S ∈ S and a ∈ ArgsS it holds that if S ∪ {a} /∈ S then there exists an s ∈ S such that

{a, s} ∈ PAttS;
• conflict-sensitive if for each A, B ∈ S such that A ∪ B /∈ S it holds that ∃a, b ∈ A ∪ B : {a, b} ∈

PAttS;
• com-closed if for each T ⊆ S: if {a, b} /∈ PAttS for each a, b ∈ ArgsT, then ArgsT has a unique

completion-set in S, i.e. |CS(ArgsT)| = 1.

Example 3. Let S′ = {{a, b}, {b, c}}. Hence, PAttS′ = {{a, c}, {a, b, c}}. We observe that S′ is incom-
parable; moreover, S′ is tight: for S = {a, b} and argument c, we have a ∈ S and {a, c} ∈ PAttS′ ; for
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Fig. 3. Relations between signatures in Dung AFs (cf. Theorems 1 & 2).

T = {b, c} and argument a, we have c ∈ T and again {a, c} ∈ PAttS′ . Likewise, it can be checked that S′
is conflict-sensitive since a ∈ S, c ∈ T and {a, c} ∈ PAttS′ .

If we extend S′ to S = {{a, b}, {a, c}, {b, c}}, one can check via the properties listed in Example 2 that
S is neither tight nor conflict-sensitive. In anticipating the forthcoming result, this shows that S is not part
of the signature of stable semantics for Dung AFs (the same is true for preferred and other incomparable
semantics); an observation we already sketched in the introduction.

The main results for Dung AFs are summarized in the following theorem.

Theorem 1 ([7]). Characterizations of the signatures for Dung AFs are as follows:

�1
cf = {S �= ∅ | S is downward-closed and tight}

�1
naive = {

S �= ∅ | S is incomparable and dcl(S) is tight
}

�1
stb = {S | S is incomparable and tight}

�1
stage = {S �= ∅ | S is incomparable and tight}

�1
adm = {S �= ∅ | S is conflict-sensitive and contains ∅}

�1
pref = {S �= ∅ | S is incomparable and conflict-sensitive}

�sem = {S �= ∅ | S is incomparable and conflict-sensitive}
�1

grd = {
S | |S| = 1

}

�1
com ⊆

{
S �= ∅ | S is com-closed and

⋂
S ∈ S

}

Note that the result for complete semantics does not yield an exact characterization. We will provide
the exact characterization (which is not relevant for the upcoming section) later in Section 4.

The characterizations of Theorem 1 also allow to investigate the relations between signatures of dif-
ferent semantics. The relations between these signatures are also illustrated in Fig. 3.

Theorem 2 ([7]). The following relations hold

�1
naive ⊂ �1

stage ⊂ �1
pref , �1

cf ⊂ �1
adm ⊂ �1

com{
dcl(S) | S ∈ �1

naive

} = �1
cf , �1

adm ⊃ {
S ∪ {∅} | S ∈ �1

pref

}

�1
adm ∩ �1

pref = {{∅}} �1
com ∩ �1

pref = {{S} | S ⊂ A, |S| < ∞}
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3. Signatures of SETAFs with unrestricted collective attacks

In this section we give full characterizations of the SETAF signatures for the semantics under consid-
eration. First, we consider grounded semantics. Grounded semantics, in SETAFs as well as in AFs, is a
unique status semantics, i.e. it always yields a unique extension. Consequently, grounded semantics can
only realize extension-sets that contain exactly one extension.

Proposition 1. �∞
grd = �k

grd = {S | |S| = 1}, for any integer k � 1.

Proof. The grounded semantics always proposes a unique extension. An extension-set S = {S} can be
realized by the SETAF with arguments S and no attacks, i.e. by the SETAF (S, ∅). �

That is for grounded semantics the signatures for AFs and (k-)SETAFs coincide. We continue with
the signatures of stable and preferred semantics.

3.1. Signatures of stable and preferred semantics

For both semantics we have that an extension cannot be a subset of another extension and thus the
extension-sets of these semantics are incomparable. With the following construction we show that, in
turn, each incomparable extension-set S can be realized under stable and preferred semantics.

Definition 10. Given an incomparable extension-set S containing at least one non-empty set we define
the SETAF F stb

S
= (ArgsS, R

stb
S

) with Rstb
S

= {(S, a) | S ∈ S, a ∈ ArgsS \ S}.
We first prove the desired result for stable semantics.

Proposition 2. �∞
stb = {S | S is incomparable}.

Proof. First, as stb(F ) ⊆ pref (F ) and the latter is incomparable by definition we have that also stb(F )

is incomparable for any SETAF F .
For S = ∅ we can use the SETAF F∅ = ({a}, {({a}, a)}) with stb(F∅) = ∅, and for S = {∅} we can

use the empty SETAF F{∅} = ({}, {}) with stb(F{∅}) = {∅}. Given an incomparable set S containing at
least one non-empty set, we make use of the SETAF F stb

S
, cf. Definition 10, and show that stb(F stb

S
) = S.

stb(F stb
S

) ⊇ S: Consider S ∈ S. For each a ∈ ArgsS \ S, we have (S, a) ∈ Rstb
S

by construction.
Moreover, as S is incomparable, we cannot have (S ′, a) ∈ Rstb

S
with S ′ ⊂ S and a ∈ S. Hence, S is

conflict-free in F stb
S

and thus S ∈ stb(F stb
S

).
stb(F stb

S
) ⊆ S: Consider S ⊆ ArgsS, such that S /∈ S. First, if there is an E ∈ S such that E ⊂ S then

for each argument a ∈ S \ E we have (E, a) ∈ Rstb
S

and thus S attacks itself in F stb
S

. Hence, such an S is
not stable. Alternatively, if there is no E ∈ S such that E ⊆ S then (a) S does not attack any argument
and (b) there is an argument a ∈ E that is not contained in S. Hence, S is not stable in F stb

S
either. �

We continue with preferred semantics. By definition the set of preferred extensions is incomparable.
We show that being incomparable is also sufficient for an extension-set S to be realizable under preferred
semantics.

Proposition 3. �∞
pref = {S �= ∅ | S is incomparable}.
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Proof. First, pref (F ) is incomparable and non-empty by definition (for any SETAF F ).
For realizing S = {∅}, consider the SETAF F{∅} = ({a}, {({a}), a}). We have pref (F{∅}) = {∅} as

required. For realizing an incomparable set S containing at least one non-empty set, we again consider
the SETAF F stb

S
(cf. Definition 10). We show that pref (F stb

S
) = S.

pref (F stb
S

) ⊇ S: Consider S ∈ S. As shown in the proof of Proposition 2, S ∈ stb(F stb
S

). By Rela-
tion (1), S ∈ pref (F stb

S
) follows.

pref (F stb
S

) ⊆ S: Consider S ⊆ ArgsS, such that S /∈ S. First, if there is an E ∈ S such that E ⊂ S,
then there is an argument a ∈ S \ E such that (E, a) ∈ Rstb

S
and thus S attacks itself in F stb

S
. Hence,

S /∈ pref (F stb
S

). Thus let us consider the case where there is no E ∈ S such that E ⊆ S. Then S does not
attack any argument. Notice that by construction all arguments, except those arguments contained in all
sets S ∈ S (we call them skeptically accepted arguments), are attacked by at least one set S ∈ S. If S

contains an argument that is not skeptically accepted, S cannot be admissible in F stb
S

as it is attacked and
has no outgoing attacks. On the other hand side if S only contains skeptically accepted arguments then
it is a strict subset of some set in S and thus cannot be ⊆-maximal among the admissible sets of F stb

S
.

That is, S /∈ pref (F stb
S

). �

The following theorem summarizes the results we have obtained so far.

Theorem 3. We have �∞
stb = {S | S is incomparable} and �∞

pref = �∞
stb \ {∅}.

This characterization shows that SETAFs are strictly more expressible than AFs for stable and pre-
ferred semantics. While for AFs we require the extension-set S to be tight in order to be realizable
under stb and conflict-sensitive to be realizable under pref , we can realize with SETAFs any extension-
set S that is just incomparable. We already have illustrated this fact in Example 3. Note that for
S = {{a, b}, {a, c}, {b, c}}, the SETAF F stb

S
yields exactly the framework in our previous examples.

Remark 1. Interestingly �∞
stb coincides with the stable signature for bipolar abstract dialectical frame-

works (BADF) [19, Thm. 22]. That is, although BADFs allow for strictly more notions of attacks and
even allows for support it does not provide more expressiveness than SETAFs when using stable seman-
tics. It is worth to mention that when realizing an extension-set with the construction of [19, Thm. 22]
one obtains a BADF whose acceptance conditions are all anti-monotonic, i.e., when the condition holds
for a model S ⊆ A then it holds for each model S ′ ⊂ S as well, and one can show that such an BADF
can always be transformed into an equivalent SETAF (a similar observation is made in [26]).

3.2. Signatures of conflict-free and naive semantics

We next consider conflict-free and naive semantics. The characteristics of conflict-free sets is that
each subset is again conflict-free. We will show that this property which is captured by the notion of
downward-closure is also sufficient to realize an extension-set with a SETAF via its conflict-free sets. We
again start by defining a SETAF construction, which is a slight refinement of the one from Definition 10.2

Definition 11. Given a non-empty extension-set S, let F
cf
S

= (ArgsS, R
cf
S

) be the SETAF with R
cf
S

=
{(S, a) | S ∈ S, a ∈ ArgsS, S ∪ {a} ∈ PAttS}.

2We note that for any incomparable extension-set S, F
cf
S

= F stb
S

.
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The conflict-free sets of F
cf
S

enjoy the following property which we will exploit for the characteriza-
tions of the signatures of conflict-free and naive semantics.

Lemma 8. For each extension-set S, it holds that cf (F cf
S

) = dcl(S).

Proof. Let us show first that cf (F cf
S

) ⊇ dcl(S). Pick any S ∈ dcl(S) and any attack (S ′, a) ∈ R
cf
S

. By
construction, we have that (S ′ ∪ {a}) ∈ PAttS, and thus, (S ′ ∪ {a}) � S. That is, S is conflict-free in F

cf
S

and therefore cf (F cf
S

) ⊇ dcl(S).
Let us show now that cf (F cf

S
) ⊆ dcl(S) also holds. Pick S /∈ dcl(S), i.e., S ∈ PAttS, a subset maximal

set S ′ ∈ {E ∈ S | E ⊂ S}, and some argument a ∈ S \ S ′. Then, by construction (S ′, a) ∈ R and, thus,
S is not conflict-free in F

cf
S

. �

Proposition 4. �∞
cf = {S �= ∅ | S is downward-closed}.

Proof. By definition, if a set is conflict-free then all its subsets are conflict-free as well. Thus, we have
that cf (F ) is downward closed for all SETAFs F . This shows the ⊆-relation of the claim. For the ⊇-
relation, let S be a non-empty and downward-closed extension-set. By Lemma 8 we have cf (F cf

S
) =

dcl(S) and thus also cf (F cf
S

) = S. �

Proposition 5. �∞
naive = {S �= ∅ | S is incomparable}.

Proof. For the ⊆-relation of the assertion, recall that, by definition, a set is naive if it is maximal conflict-
free. Thus, we have that naive(F ) is incomparable for all SETAFs F .

For the ⊇-relation, given an incomparable extension-set S, we consider the SETAF F
cf
S

(see Defini-
tion 11). We show that naive(F cf

S
) = S. By Lemma 8 we have cf (F cf

S
) = dcl(S). As S contains exactly

the ⊆-maximal elements of dcl(S) and the naive extension of F
cf
S

are the ⊆-maximal elements of cf (F cf
S

)

we obtain naive(F cf
S

) = S. �

The following theorem summarizes the characterizations of this subsection.

Theorem 4. We have

• �∞
cf = {S �= ∅ | S is downward-closed} and

• �∞
naive = {S �= ∅ | S is incomparable}.

In contrast, for realization with AFs and cf we require S to be tight and downward-closed and for
naive we require that S is incomparable and that dcl(S) is tight.

Example 4. Consider the downward-closed extension-set S′ = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}.
As S′ is not tight there is no AF F with cf (F ) = S′, cf. Theorem 1. It can be checked that the SETAF
({a, b, c}, (({a, b}, c), ({a, c}, b), ({b, c}, a)) of our running example matches F

cf
S′ as specified in Defi-

nition 11, and we have cf (F cf
S′ ) = S′. Also note that for S = {{a, b}, {b, c}, {a, c}}, we have dcl(S) = S′

and naive(F cf
S′ ) = S.
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3.3. Signatures of semi-stable and stage semantics

Semi-stable and stage semantics are both based on the maximality of the range of their extensions. It
thus turns out that we can reuse the construction from Definition 10.

Proposition 6. �∞
sem = {S �= ∅ | S is incomparable}.

Proof. By Lemma 5, sem(F ) ⊆ pref (F ) holds for each SETAF F , we have that each S ∈ �∞
sem is

incomparable. Now consider a non-empty incomparable extension-set S. By Proposition 2 there is a
SETAF F with stb(F ) = S and as S is non-empty, by Lemma 7, we also have sem(F ) = S. �

Proposition 7. �∞
stage = {S �= ∅ | S is incomparable}.

Proof. By Lemma 6, for each SETAF F , stage(F ) ⊆ naive(F ). We thus have that each S ∈ �∞
stage

is incomparable. Now consider a non-empty incomparable extension-set S. By Proposition 2 there is a
SETAF F with stb(F ) = S and as S is non-empty, by Lemma 7, we also have stage(F ) = S. �

The following theorem summarizes these easy results.

Theorem 5. We have �∞
stage = �∞

sem = {S �= ∅ | S is incomparable}.
Together with the previous results, it turns out that for SETAFs the expressibility of naive, preferred,

semi-stable, and stage semantics coincides. Moreover, stable semantics only differs w.r.t. the empty set
of extensions. Hence, for all these semantics SETAFs are strictly more expressible than AFs. In fact,
they are all maximal expressible if we require incomparability of extensions.

It remains to provide the SETAF signatures for admissible and complete semantics. As we will see,
in contrast to AF signatures (where we have �1

cf ⊂ �1
adm) �∞

adm is not a superset of �∞
cf . Moreover, for

complete semantics, we can find a concise characterization by generalizing the notion of com-closed.

3.4. Signature of admissible semantics

In order the characterize the signature of admissible semantics in SETAFs we first generalize the no-
tion of an extension-set being conflict-sensitive (cf. Definition 9) to SETAFs. That is, instead of requiring
that if two sets A, B in the extension-set S whose union A ∪ B does not appear in S allow for a binary
conflict, we now only require that they allow for conflicts (A, b), (B, a) with a ∈ A, b ∈ B.

Definition 12. A set S ⊆ 2A is called set-conflict-sensitive if for each T , U ∈ S such that T ∪ U /∈ S it
holds that ∃u ∈ U : T ∪ {u} ∈ PAttS.

Recall that all extension-sets realizable with the admissible semantics with Dung AFs are conflict-
sensitive (and contain the empty extensions). The next result generalizes this property to SETAFs.

Lemma 9. For any SETAF F , adm(F ) is set-conflict-sensitive and contains ∅.

Proof. Let F = (A, R) be a SETAF. First, notice that the empty set is always admissible in F . Next
assume there are two sets T , U admissible in F such that the set C = T ∪ U is not admissible in F .
By Lemma 2 the set C defends itself against all attackers in F and thus C must be conflicting in F , i.e.
there exists an attack (B, a) ∈ R with S ⊆ C and a ∈ C.



W. Dvořák et al. / On the expressive power of collective attacks 203

• If a ∈ T then, as T is conflict-free in F , B ∩ U �= ∅. Moreover, as T is admissible in F it has to
defend itself against (B, a), i.e. there is an attack (T ′, u) ∈ R with T ′ ⊆ T and u ∈ B ∩ U . Hence,
we have T ′ ∪ {u} ∈ PAttadm(F ) and thus T ∪ {u} ∈ PAttadm(F ).

• If a ∈ U then, as U is conflict-free in F , B ∩ T �= ∅. Moreover, as U is admissible in F it has to
defend itself against (B, a), i.e. there is an attack (U ′, t) ∈ R with U ′ ⊆ U and t ∈ B ∩ T . Now,
as T is admissible in F as well, there is also an attack (T ′, u) ∈ R with T ′ ⊆ T and u ∈ U ′ ⊆ U .
Hence, we have T ′ ∪ {u} ∈ PAttadm(F ) and thus T ∪ {u} ∈ PAttadm(F ).

We obtain that adm(F ) is set-conflict-sensitive. �

Furthermore, it turns out that S being set-conflict-sensitive (and containing the empty set) is also
sufficient for being realizable in SETAFs under admissible semantics. The forthcoming two propositions
give us some hint how to prove this claim: we reuse the conflict-free framework of Definition 11 and
combine it with a framework that realizes the union-closure of the extension-set, as defined next.

Definition 13. A set S ⊆ 2A is said to be union-closed if ∅ ∈ S and each pair A, B ∈ S satisfies
A ∪ B ∈ S. Let us denote by ucl(S) the ⊆-minimal union-closed extension-set such that S ⊆ ucl(S).

Proposition 8. Let S be a set-conflict-sensitive extension-set that contains ∅. Then, we have that S =
dcl(S) ∩ ucl(S).

Proof. Pick any set-conflict-sensitive S and let S′ = dcl(S) and S′′ = ucl(S). By construction, we have
that S′ is downward-closed, that S′′ is union-closed, that ∅ ∈ S′ ∩ S′′ and that S′ ∩ S′′ ⊇ S. Hence, it
only remains to be shown that S′ ∩ S′′ ⊆ S also holds. Suppose for the sake of contradiction that there
is some set C ∈ (S′ ∩ S′′)\S. Since C ∈ S′′ \ S, by construction, C must be of the form C = ⋃

T for
some T ⊆ S. W.l.o.g. we can assume that |T| = 2, i.e., C = S ∪ T with S, T ∈ S. Moreover, since S is
set-conflict-sensitive, C /∈ S implies that there is some b ∈ T such that S ∪ {b} ∈ PAttS. Furthermore,
since C ∈ S′, there is also some S ′ ∈ S such that C ⊆ S ′ and, thus, we have S ∪{b} ⊆ S ∪T ⊆ S ′ which
is a contradiction. Hence, it must be that S′ ∩ S′′ ⊆ S and S′ ∩ S′′ = S hold. �

Proposition 9. Let F1 = (A1, R1) and F2 = (A2, R2) be two SETAFs and let S ⊆ (A1 ∩ A2) be a set of
arguments. Then,

(1) S is conflict-free in F1 ∪ F2 = (A1 ∪ A2, R1 ∪ R2) iff S is conflict-free in both F1 and F2; and
(2) if S is admissible in both F1 and F2, then S is admissible in F1 ∪ F2 = (A1 ∪ A2, R1 ∪ R2).

Proof. (1) Consider some S /∈ cf (F1 ∪ F2), i.e., there is an attack (A, b) ∈ (R1 ∪ R2) with A ∪ {b} ⊆ S.
Hence, (A, b) ∈ Ri for some i ∈ {1, 2} and thus S /∈ cf (Fi). For the reverse direction consider some
S /∈ cf (Fi) for some i ∈ {1, 2}, i.e., there is an attack (A, b) ∈ (Ri) with A ∪ {b} ⊆ S. Then (A, b) ∈
R1 ∪ R2 and thus S /∈ cf (F1 ∪ F2).

(2) First, note that if S is admissible in both F1 and F2, it is also conflict-free in both F1 and F2

and, by (1) this implies that S is conflict-free in F1 ∪ F2. Let us show us that S also defends itself in
F1 ∪ F2. Pick any b ∈ S and (A, b) ∈ (R1 ∪ R2). Hence, (A, b) ∈ Ri for some i ∈ {1, 2} and, since S

is admissible in both F1 and F2, it follows that there is a C ⊆ S and a ∈ A such that (C, a) ∈ Ri . That
is, for every argument b ∈ S and attack (A, b) ∈ (R1 ∪ R2), there is some C ⊆ S and a ∈ A such that
(C, a) ∈ (R1 ∪ R2). Hence, S is admissible in F1 ∪ F2. �
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The next two lemmas analyze the SETAF F
cf
S

from Definition 11 w.r.t. admissible semantics.

Lemma 10. Let S be a set-conflict-sensitive extension-set that contains ∅ and S ⊆ ArgsS be some set of
arguments such that S = ⋃

T for some subset T ⊆ S. Then, we have that S ∈ cf (F cf
S

) implies S ∈ S.

Proof. Consider such a set S = ⋃
T with S ∈ cf (F cf

S
) and pick A ⊆ T such that

⋃
A ∈ S and there

is no A′ ⊆ T such that A ⊂ A′ and
⋃

A′ ∈ S. Note that such A always exists because
⋃ ∅ = ∅ ∈ S.

We also define A = ⋃
A. Towards a contradiction assume that A ⊂ T and pick any B ∈ T\A. Then, by

construction, we have that A, B ∈ S and that (A ∪ B) /∈ S. Furthermore, since S is set-conflict-sensitive,
it follows that there is b ∈ B such that (A ∪ {b}) ∈ PAttS. This implies that there is an attack (A, b) ∈ R

cf
S

and, thus, (A ∪ {b}) /∈ cf (F cf
S

). Finally, since (A∪{b}) ⊆ (A∪B) ⊆ S and cf (F cf
S

) is downward-closed,
this implies S /∈ cf (F cf

S
) which is a contradiction with the assumption that S ∈ cf (F cf

S
). Hence, it must

be that A = T and, thus, that A = S holds. Since A ∈ S by construction, this implies S ∈ S. �

Lemma 11. Let S be a set-conflict-sensitive extension-set that contains ∅. Then, we have that S ⊆
adm(F

cf
S

).

Proof. Pick any set S ∈ S, any argument a ∈ S and any attack (S ′, a) ∈ R
cf
S

. Then, (S ∪ S ′) /∈ S and,
since S, S ′ ∈ S and S is conflict-sensitive, it follows that there is some b ∈ S ′ such that (S∪{b}) ∈ PAttS.
This implies that (S, b) ∈ R

cf
S

and, thus, that S defends a against (S ′, a) in F
cf
S

. Hence, S defends itself
against all attacks in R

cf
S

. �

Finally, we expand F
cf
S

by additional arguments and attacks that ensure that only sets S ∈ S are
admissible in the resulting SETAF F adm

S
. In particular, for each argument a we add an argument xa that

attacks a and itself, and is only attacked by sets S ∈ S that contain a.

Definition 14. Given an extension S set we define F ucl
S

= (Aucl
S

, Rucl
S

) with

Aucl
S

= ArgsS ∪ {xa | a ∈ ArgsS} and

Rucl
S

= {({xa}, a
) | a ∈ ArgsS

} ∪ {({xa}, xa

) | a ∈ ArgsS
} ∪ {

(S, xa) | S ∈ S and a ∈ S
}
.

We then define F adm
S

= (Aadm
S

, Radm
S

) = (F
cf
S

∪ F ucl
S

).

We next illustrate the construction on an example

Example 5. Consider the extension-set S = {∅, {a, b}, {a, c}}. We have ArgsS = {a, b, c} and we
add three additional arguments {xa, xb, xc}, one for each of the existing arguments. That is, Aadm

S
=

{a, b, c, xa, xb, xc}. Now we add attacks between arguments a, b, c following the construction for
conflict-free semantics from Definition 11. That is we add the attacks R

cf
S

= {({a, b}, c), ({a, c}, b)}.
Now we have adm(ArgsS, R

cf
S

) = {∅, {a}, {a, b}, {a, c}}, that is we still have the unwanted extension
{a}. We now use the additional arguments {xa, xb, xc} to avoid such extensions. The arguments xi are
self-attacking, i.e. we have attacks {({xa}, xa), ({xb}, xb), ({xc}, xc)} in Rucl

S
, and attack their correspond-

ing argument i, i.e. we have attacks {({xa}, a), ({xb}, b), ({xc}, c)} in Rucl
S

, and are only attacked by those
sets S ∈ S that contain i, i.e. we have attacks {({a, b}, xa), ({a, b}, xb), ({a, c}, xa), ({a, c}, xc)} in Rucl

S
.
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That is, Radm
S

= {({xa}, xa), ({xb}, xb), ({xc}, xc), ({xa}, a), ({xb}, b), ({xc}, c), ({a, b}, c), ({a, b}, xa),
({a, b}, xb), ({a, c}, b), {a, c}, xa), ({a, c}, xc) and we have adm(Aadm

S
, Radm

S
) = {∅, {a, b}, {a, c}} as

now {a} does not defend it self against the attack ({xa}, a).

With the following lemma we show that F ucl
S

can realize ucl(S).

Lemma 12. For every extension-set S that is set-conflict-sensitive and contains ∅, we have that ucl(S) ⊆
adm(F ucl

S
).

Proof. Let us first show that S ⊆ adm(F ucl). Pick any A ∈ S, a ∈ A and (S, a) ∈ Rucl
S

. Then, by
construction, we have that S = {xa} and, since a ∈ A, that (A, xa) ∈ Rucl

S
, so A also defends itself

against all attacks in Rucl
S

. Hence, we have that S ⊆ adm(F ucl
S

). Pick now A, B ∈ S. We already know that
A, B ∈ adm(F ucl

S
) and, moreover, A∪B defends itself in F ucl

S
(Lemma 2). Furthermore, by construction,

there are no attacks between elements of A ∪ B and thus A ∪ B ∈ adm(F ucl
S

). �

It remains to combine the results for the SETAFs F
cf
S

, F ucl
S

with Proposition 8 to arrive at the desired
characterization result.

Lemma 13. For every extension-set S that is set-conflict-sensitive and contains ∅, we have that
adm(F adm

S
) = S.

Proof. From Proposition 8, we have that S = dcl(S) ∩ ucl(S). Then, from Lemmas 11 and 12, we get
that S ⊆ adm(F

cf
S

) ∩ adm(F ucl
S

). Furthermore, from Proposition 9, this implies that S ⊆ adm(F adm
S

).
Let us show that adm(F adm

S
) ⊆ S also holds. Pick any A ∈ adm(F adm

S
). Then, for every argument a ∈

A, there is an attack ({xa}, a) ∈ Radm
S

by construction, and so there must be an attack (Ta, {xa}) ∈ Radm
S

with Ta ⊆ A. Furthermore, by construction, we also have that Ta ∈ S and a ∈ Ta . Let T = {Ta ⊆
A | a ∈ A} ⊆ S and C = ⋃

T. Then, we have that C = A and, from Lemma 10 and the fact that
A ∈ adm(F adm

S
) ⊆ cf (F adm

S
) ⊆ cf (F cf

S
), it follows that, A ∈ S. �

Now we can give an exact characterization of �∞
adm.

Theorem 6. �∞
adm = {S �= ∅ | S is set-conflict-sensitive and contains ∅}.

Dung AFs require that an extension-set S is conflict-sensitive in order to be realizable under admis-
sible semantics. Being set-conflict-sensitive is a strictly weaker condition as illustrated in the following
example.

Example 6. Consider the extension-set S = {∅, {a, b}, {b, c}, {a, c}}. As {a, b, c} /∈ S but
{a, b}, {b, c} ∈ S (and thus neither {a, c} ∈ PAttS nor {b, c} ∈ PAttS), the set S is not conflict-sensitive.
Thus, there is no Dung AF F with adm(F ) = S. On the other hand, S is set-conflict-sensitive thanks to
{a, b, c} ∈ PAttS. Indeed, one can verify that our running example SETAF F satisfies adm(F ) = S.

On the other hand, the set S′ = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}} ∈ �∞
cf from Example 4 is not

set-conflict-sensitive. Take A = {a} and B = {b, c}. Then A ∪ B /∈ S′ but neither {a, b} ∈ PAttS′ nor
{a, c} ∈ PAttS′ . Hence, by Theorem 6, there is no SETAF F with adm(F ) = S′. This example also shows
that the converse of Proposition 8 does not hold and that satisfying S = dcl(S) ∩ ucl(S) is a necessary,
but not a sufficient condition. Indeed, in our example we have dcl(S′) = S, ucl(S′) = S′ ∪ {{a, b, c}} and
S′ = dcl(S′) ∩ ucl(S′).
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3.5. Signature of complete semantics

Finally, we consider the signature of complete semantics. First, recall that the completion-sets CS(E)

of a set E ⊆ ArgsS in S are the ⊆-minimal sets S ∈ S with E ⊆ S. Next we introduce the notion of an
extension-set to be set-com-closed which generalizes the concept of being com-closed from Definition 8
and allows for an exact characterization of the signature of complete semantics. The intuition is that if
we pick some elements from S then either the union of these sets has a unique completion or we can
draw an attack within this set.

Definition 15. A set S ⊆ 2A is called set-com-closed iff, for each T,U ⊆ S with T = ArgsT, U = ArgsU,

(1) |CS(T ∪ U)| � 1, and
(2) if T , U ∈ dcl(S) and |CS(T ∪U)| = 0, then there is an argument u ∈ U such that T ∪ {u} ∈ PAttS.

Intuitively the set of complete extensions is set-com-closed because whenever the union of some
complete extensions has no conflict, by Lemma 2, then this union is admissible and there is a unique
minimal complete extensions containing this admissible set. Moreover, the grounded extensions is the
intersection of all complete extensions and complete as well.

Lemma 14. For every SETAF F we have that (a) the extension-set com(F ) is set-com-closed and (b)⋂
com(F ) ∈ com(F ).

Proof. First, notice that
⋂

com(F ) = grd(F ) and as the grounded extension is complete we obtain (b).
In order to show (a) consider extension-sets T,U ⊆ com(F ) and sets T = ⋃

T, U = ⋃
U such that

T , U ∈ dcl(com(F )). From T , U ∈ dcl(com(F )), it follows that T , U ∈ cf (F ) and from T = ⋃
T,

U = ⋃
U with T,U ⊆ com(F ) it follows that T and U defend themselves. Hence, we get T , U ∈

adm(F ). If in addition we have T ∪ U ∈ cf (F ), then by Lemma 2 we have that T ∪ U ∈ adm(F ) and
thus by Lemma 1 there is a unique ⊆-minimal complete extension E ∈ com(F ) with T ∪ U ⊆ E, i.e.
|Ccom(F )(T ∪ U)| = 1. If T ∪ U /∈ cf (F ) then there exists an attack (S, a) ∈ R with S ⊆ T ∪ U and
a ∈ T ∪ U .

• If a ∈ T , as T is admissible, there is an attack (T ′, u) with T ′ ⊆ T and u ∈ S \ T ⊆ U . Thus,
T ∪ {u} ∈ PAttcom(F ).

• If a ∈ U , as U is admissible, there is an attack (U ′, s) with U ′ ⊆ U and s ∈ S \ U ⊆ T . Now, as T

is admissible, there is an attack (T ′, u) with T ′ ⊆ T and u ∈ U ′ ⊆ U . Thus T ∪ {u} ∈ PAttcom(F ).

In both cases we have an u ∈ U such that T ∪ {u} ∈ PAttcom(F ) and thus com(F ) is set-com-closed. �

Our realization for complete semantics is based on the construction for the admissible semantics given
in Definition 14. First, given an extension-set S, by reduced(S) = {S\⋂

S | S ∈ S}, we denote a reduced
extension-set whose corresponding ground extension is empty. Let S′ = reduced(S). We then realize
S∗ = dcl(S′) ∩ ucl(S′) = {⋃T | T ⊆ S′,

⋃
T ∈ dcl(S′)} and add further attacks such that each set

E ∈ S∗ defends all arguments of the unique set in CS(E). In the following we use CS(E) to denote the
unique element of CS(E) iff |CS(E)| = 1 and the empty set otherwise.

Definition 16. Given an extension-set S, let S′ = reduced(S) and S∗ = dcl(S′) ∩ ucl(S′). Then, by
F com
S

= (ArgsS∪Aadm
S∗ , Rcom

S
) we denote a SETAF with Rcom

S
= Radm

S∗ ∪R′ and where R′ = {(A∪B, xa) |
A, B ∈ S′ \ {∅}, a ∈ CS′(A ∪ B)}.
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We next illustrate the above construction on an example.

Example 7. Consider the extensions set S = {{d}, {a, d}, {b, d}, {a, b, c, d}}. First we extract the
minimal extension {d} from S and obtain S′ = reduced(S) = {∅, {a}, {b}, {a, b, c}} as well as
S∗ = {∅, {a}, {b}, {a, b}, {a, b, c}}, i.e., S∗ differs from S′ only by the extension {a, b}. In the
next step we build an SETAF that realizes S∗ under admissible semantics. Following the con-
struction of Definition 14 we get arguments Aadm

S∗ = {a, b, c, xa, xb, xc} and attacks Radm
S∗ =

{({xa}, xa), ({xa}, a), ({xb}, xb), ({xb}, b), ({xc}, xc), ({xc}, c)}∪{({a}, xa), ({b}, xb), ({a, b}, xa), ({a, b},
xb), ({a, b, c}, xa), ({a, b, c}, xb), ({a, b, c}, xc)}. We now have that adm(Aadm

S∗ , Radm
S∗ ) = S∗. The only at-

tack added by R′ is ({a, b}, xc), which ensures that {a, b} is not complete as it defends c. Thus we have
com(Aadm

S∗ , Radm
S∗ ∪ R′) = S′. Finally we also add the argument d to the SETAF (without any attacks)

and obtain that F com
S

= ({a, b, c, d, xa, xb, xc}, {({xa}, xa), ({xa}, a), ({xb}, xb), ({xb}, b), ({xc}, xc),
({xc}, c), ({a}, xa), ({b}, xb), ({a, b}, xa), ({a, b}, xb), ({a, b, c}, xa), ({a, b, c}, xb), ({a, b, c}, xc)},
({a, b}, xc))} and com(F com

S
) = S. Finally, by removing redundant attacks, i.e. attacks (S, a)

such that there is an attack (S ′, a) with S ′ ⊂ S, the attack relation of F com
S

simplifies to
{({xa}, xa), ({xa}, a), ({xb}, xb), ({xb}, b), ({xc}, xc), ({xc}, c), ({a}, xa), ({b}, xb), ({a, b}, xc))}.

One can show that this construction realizes extension-sets with complete semantics whenever possi-
ble.

Lemma 15. For every extension-set S that is set-com-closed and satisfies
⋂

S ∈ S, we have that
com(F com

S
) = S.

Proof. Consider the SETAF F com
S

from Definition 16. Let S′ = reduced(S), S∗ = dcl(S′) ∩ ucl(S′) and
let us show first that com(F com

S′ ) = S′. Notice that S′ is still set-com-closed and ∅ ∈ S′.
In order to apply the construction for admissible semantics on S∗ we next show that S∗ is set-conflict-

sensitive. Consider T , U ∈ S∗ such that T ∪ U /∈ S∗. Then, by construction of S∗, we have that T ∪ U /∈
dcl(S′) and thus Ccom(F )(T ∪ U) = ∅. Now as S′ is set-com-closed there is an argument u ∈ U such that
T ∪ {u} ∈ PAttS. That is, for T , U ∈ S∗ such that T ∪ U /∈ S∗ there is an argument u ∈ U such that
T ∪ {u} ∈ PAttS. Hence, the extension-set S∗ is set-conflict-sensitive and, from Lemma 13, it follows
that adm(F adm

S∗ ) = S∗.
Now consider the new attacks in R′ and how they affect the admissibility of sets. Notice that only

auxiliary arguments xa are attacked and thus each set that is admissible in F adm
S∗ is admissible in F com

S′
as well (Proposition 9, condition (2)). That is, we have adm(F adm

S∗ ) ⊆ adm(F com
S′ ). Let us show S′ ⊆

com(F com
S′ ). Consider S ∈ S′ ⊆ S∗. By the above, we have that S ∈ adm(F adm

S∗ ) and it remains to be
shown that S does not defend any a ∈ ArgsS \ S, i.e., does not attack any xa for a ∈ ArgsS \ S. By
construction of F com

S′ the set S only attacks arguments xa with a ∈ S and thus S ∈ com(F com
S′ ) follows.

The other way around, let us show S′ ⊇ com(F com
S′ ). Consider S ∈ adm(F com

S′ ). We next show that if
S /∈ S′ then S /∈ com(F com

S′ ). To this end we consider two cases.

• S ∈ adm(F com
S′ ) \ S∗: Notice that S∗ = adm(F adm

S∗ ). Consider a set S that is admissible in F com
S′ but

not in F adm
S∗ . This can only be because of the attacks introduced with R′. That is, there is some xs

with s ∈ S that prevents that S is admissible in F adm
S∗ and an attack (A ∪ B, xs) ∈ R′ with which

S defends itself against xs in F com
S′ . That is A, B ⊆ S and, by the definition of R′, we have that

there is a unique completion C = CS′(A ∪ B) and s ∈ C (recall that in R′ we only draw attacks for
A ∪ B with a unique completion). As C ∈ S′ ⊆ S∗ and s ∈ C, by construction, there is an attack
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(C, xs) in F adm
S∗ That is, if C ⊆ S then S attacks xs in F adm

S∗ , a contradiction to our initial assumption.
Hence we have C � S. Now we can argue that in F com

S′ , S defends all arguments in C and thus S

is not complete. To this end let c ∈ C \ S. By construction A ∪ B (and thus S) attacks all xa with
a ∈ C. Now consider a set D ∈ S∗ that attacks c. As C is admissible in F adm

S∗ , we have that there
is a d ∈ D such that (C, d) ∈ Radm

S∗ . By construction we have C ∪ {d} ∈ PAtt(S∗) and thus also
A ∪ B ∪ {d} ∈ PAtt(S∗). As A ∪ B ∈ S∗, we then by construction have (A ∪ B, d) ∈ Radm

S∗ . That is
A ∪ B defends c against both possible kinds of attackers and thus defends c.

• S ∈ S∗ \ S′: Then, there is a set T ⊆ S′ such that
⋃

T = S and S ∈ dcl(S′). As S′ is set-com-closed
for each A, B ∈ S′ with A, B ⊆ S, we have a unique completion set CS′(A∪B) (as A∪B ∈ dcl(S′)
we cannot have a conflict in A ∪ B. Towards a contradiction assume that for all A, B ∈ S′ such that
A, B ⊆ S we have CS′(A ∪ B) ⊆ S. Then we can iteratively replace A, B ∈ T by CS′(A ∪ B) and
we end up with a single set in T. But then S ∈ S′, a contradiction. Thus there are two sets A, B ∈ S′
such that A, B ⊆ S and A ∪ B /∈ S′, and there is also a unique set C ∈ CS′(A ∪ B) with C � S. Let
c ∈ C \S, we next argue the S defends c and thus is not complete. By construction A∪B (and thus
S) attacks all xa with a ∈ C. Now consider a set D ∈ S∗ that attacks c. As C is admissible in F adm

S∗
we have that there is a d ∈ D such that (C, d) ∈ Radm

S∗ . By construction we have C ∪{d} ∈ PAtt(S∗)
and thus also A ∪ B ∪ {d} ∈ PAtt(S∗). As A ∪ B ∈ S∗, by construction we have (A ∪ B, d) ∈ Radm

S∗ .
That is A ∪ B defends c against both possible kinds of attackers and thus defends c.

Combining both cases we obtain that if S /∈ S′ then S /∈ com(F com
S′ ). Finally, just note that F com

S
just

adds to F com
S′ the arguments in

⋂
S as unattacked. Hence, S ∈ com(F com

S
) iff (S\⋂

S) ∈ com(F com
S′ )

and, thus, com(F com
S

) = S. �

This now gives a complete characterization of the signature for complete semantics.

Theorem 7. �∞
com = {S �= ∅ | S is set-com-closed and

⋂
S ∈ S}.

Notice that when considering AFs not all extension-sets that are com-closed and satisfy
⋂

S ∈ S are
realizable with the complete semantics and a full characterization of complete semantics has been left
open in [7] and has been resolved only recently [14]. Compared to this rather involved characterization,
which we will review in Section 4.4, the above result provides a natural and easy-to-check characteriza-
tion.

Example 8. Consider the extension-set S = {∅, {a}, {b}, {c}, {a, b, c}, {a, d, e}, {b, d, f }, {x, c}, {x, d}}
which cannot be realized with AFs [7, Example 8]. We next show that S set-com-closed. To this end we
consider set the unions T ∪U of sets with T = ArgsT and U = ArgsU with T,U ⊆ S. The first condition
of S being set-com-closed is verified as follows.

(1) Whenever T ∪ U ∈ S we have |CS(T ∪ U)| = 1 by the definition of CS.
(2) Whenever T ∪ U /∈ dclS then |CS(T ∪ U)| = 0 by the definition of CS.
(3) It only remains to consider T , U ∈ {{a}, {b}, {c}} with T �= U we have that CS({a, b}) =

CS({a, c}) = CS({b, c}) = {{a, b, c}}, i.e. |CS(T ∪ U)| = 1.

For the second condition we are interested in the choices of T , U where T , U ∈ dcl(S), i.e. we have
T , U ∈ S∪ {{a, b}, {a, c}, {b, c}}. We have to show that whenever T ∪ U /∈ dcl(S) then T ∪ {u} ∈ PAttS
for some u ∈ U .
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• Consider T = {a}, then for U = {b, d, f } we have {a, f } ∈ PAttS, and for U ∈ {{x, c}, {x, d}} we
have {a, x} ∈ PAttS.

• Consider T = {b}, then for U = {a, d, e} we have {b, e} ∈ PAttS, for U ∈ {{x, c}, {x, d}} we have
{b, x} ∈ PAttS.

• Consider T = {c}, then for U ∈ {{a, d, e}, {b, d, f }} we have {c, d} ∈ PAttS, and for U = {x, d}
we have {c, d} ∈ PAttS.

• Consider T = {a, b}, then for U = {a, d, e} we have {a, b, e} ∈ PAttS for U = {b, d, f } we have
{a, b, f } ∈ PAttS,and for U ∈ {{x, c}, {x, d}} we have {a, b, x} ∈ PAttS.

• Consider T = {a, c}, then for U = {a, d, e} we have {a, c, d} ∈ PAttS, for U = {b, d, f } we have
{a, c, f } ∈ PAttS, and for U ∈ {{x, c}, {x, d}} we have {a, c, x} ∈ PAttS.

• Consider T = {b, c}, then for U = {a, d, e} we have {b, c, e} ∈ PAttS, for U = {b, d, f } we have
{b, c, d} ∈ PAttS, for U ∈ {{x, c}, {x, d}} we have {b, c, x} ∈ PAttS.

• Consider T = {a, b, c}, then for U = {a, d, e} we have {a, b, c, e} ∈ PAttS, for U = {b, d, f } we
have {a, b, c, d} ∈ PAttS, for U ∈ {{x, c}, {x, d}} we have {a, b, c, x} ∈ PAttS.

• Consider T = {a, d, e}, then for U ∈ {{b}, {a, b}, {b, c}, {a, b, c}, {b, d, f }} we have {a, d, e, b} ∈
PAttS, for U ∈ {{c}, {a, c}, {x, c}} we have {a, d, e, c} ∈ PAttS, and for U = {x, d} we have
{a, d, e, x} ∈ PAttS.

• Consider T = {b, d, f }, then for U ∈ {{a}, {a, b}, {a, c}, {a, b, c}, {a, d, e}} we have {b, d, f, a} ∈
PAttS, for U ∈ {{c}, {b, c}, {x, c}} we have {b, d, f, c} ∈ PAttS, and for U = {x, d} we have
{b, d, f, x} ∈ PAttS.

• Consider T = {x, c}, then for U ∈ {{a}, {a, b}, {a, c}, {a, b, c}, {a, d, e}} we have {x, c, a} ∈ PAttS,
for U ∈ {{b}, {b, c}, {b, d, f }} we have {x, c, b} ∈ PAttS, and for U = {x, d} we have {x, c, d} ∈
PAttS.

• Consider T = {x, d}, then for U ∈ {{a}, {a, b}, {a, c}, {a, b, c}, {a, d, e}} we have {x, d, a} ∈
PAttS, for U ∈ {{b}, {b, c}, {b, d, f }} we have {x, d, b} ∈ PAttS, and for U ∈ {{c}, {x, c}} we have
{x, d, c} ∈ PAttS.

This shows that S is set-com-closed and thus com(F com
S

) = S.

3.6. Discussion of results

Our characterizations of the signatures of different semantics in SETAFs (cf. Theorems 3–7) are sum-
marized in the following theorem.

Main Theorem 1. Characterizations of the signatures for general SETAFs are as follows:

�∞
cf = {S �= ∅ | S is downward-closed}

�∞
naive = {S �= ∅ | S is incomparable}

�∞
stb = {S | S is incomparable}

�∞
adm = {S �= ∅ | S is set-conflict-sensitive and contains ∅}

�∞
pref = {S �= ∅ | S is incomparable}

�∞
com =

{
S �= ∅ | S is set-com-closed and

⋂
S ∈ S

}

�∞
sem = {S �= ∅ | S is incomparable}
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�∞
stage = {S �= ∅ | S is incomparable}

Let us now consider the relations between the signatures of the different semantics. First for the
semantics possessing incomparable extension-sets we have

�∞
naive = �∞

stb \ {∅} = �∞
pref = �∞

sem = �∞
stage.

Hence, compared to Dung AFs, we observe that all I -maximal semantics are equally powerful in terms
of SETAFs (modulo the empty extensions-set).

It remains to investigate the relations between admissible, complete, and conflict-free semantics. First
we show that, as for Dung AFs, every extension-set that is set-conflict-sensitive is also set-com-closed
and thus �∞

adm ⊆ �∞
com.

Proposition 10. Every extension-set S that is set-conflict-sensitive is also set-com-closed.

Proof. Towards a contradiction assume S is not set-com-closed. Consider T,U ⊆ S, T = ArgsT and
U = ArgsU such that one of the two conditions for S being set-com-closed is violated. Let us first
assume condition (1) is violated, i.e. |CS(T ∪ U)| � 2. Then we have that T ∪ U ∈ dcl(S) and thus,
as S is set-conflict-sensitive, T ∪ U ∈ S. The latter implies that CS(T ∪ U) = {T ∪ U} which is in
contradiction to |CS(T ∪ U)| � 2. Let us now assume that condition (2) is violated, i.e. T , U ∈ dcl(S),
|CS(T ∪ U)| = 0, and there is no argument u ∈ U such that T ∪ {u} ∈ PAttS. As T , U ∈ dcl(S) and
S is set-conflict-sensitive, we have that T , U ∈ S. Moreover, as |CS(T ∪ U)| = 0 we have T ∪ U /∈ S,
and thus, as S is set-conflict-sensitive, there is a b ∈ U : T ∪ {b} ∈ PAttS, a contradiction to our initial
assumption. �

Next, we give an example of an extension-set S ∈ �∞
com but S /∈ �∞

adm and thus show �∞
adm ⊂ �∞

com.

Example 9. Consider the extension-set S = {∅, {a}, {b}, {a, b, c}}. The set is not set-conflict sensitive
as the set {a} cannot attack any argument from {b} and {a, b} /∈ S. However, S can be easily verified to
be set-com-closed (as |CS({a, b})| = 1) and thus S ∈ �∞

com.

In contrast to Dung AFs we have that �∞
cf � �∞

adm as we have already seen in Example 6. We next
continue this example to show that also �∞

cf � �∞
com.

Example 10. Reconsider the extension-set S′ = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}} ∈ �∞
cf from Ex-

ample 6, which is not set-com-closed. Take T = {a} and U = {b, c}. Then T ∪ U /∈ dcl(S′) and thus
|CS(T ∪ U)| = 0, but neither {a, b} ∈ PAttS′ nor {a, c} ∈ PAttS′ . Hence, by Theorem 7, there is no
SETAF F with com(F ) = S′.

Likewise, �∞
cf � �∞

adm is easy to see. In Example 6, we have argued that S = {∅, {a, b}, {a, c},
{b, c}} ∈ �∞

adm, but since S is not downward-closed, S /∈ �∞
cf . By Proposition 10, �∞

cf � �∞
com follows,

as well.
Finally, we show that whatever can be realized with cf and com semantics can be also realized with

adm semantics.

Proposition 11. �∞
cf ∩ �∞

com ⊆ �∞
adm.
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Fig. 4. Relations between signatures in SETAFs (cf. Main Theorem 1).

Proof. Consider S ∈ �∞
cf ∩ �∞

com, i.e., a downward-closed and set-com-closed extension-set. Towards
a contradiction assume S is not set-conflict-sensitive. That is, there are A, B ∈ S such that A ∪ B /∈ S
and there is no b ∈ B such that A ∪ {b} ∈ PAttS. As S is downward-closed there is no C ∈ S with
A ∪ B ⊆ C and thus |CS({a, b})| = 0. Now as S is set-com-closed there is an argument b ∈ B such that
A ∪ {b} ∈ PAttS, a contradiction to the above. �

The relations between the signatures of the different semantics in SETAFs are illustrated in Fig. 4.

4. Signatures of SETAFs with collective attacks of bounded degree

We now investigate how the degree of collective attacks affects the expressiveness, i.e. we study the
signatures of k-SETAFs. Notice that in all the constructions of the last section we used attacks of un-
bounded degree, since the actual degree typically depended on the size of the extensions.

We first generalize the properties used in our signatures by adding a parameter k.

Definition 17. The possible conflicts in a k-SETAF w.r.t. an extension-set S are defined as

PAttk
S

= {
S ⊆ ArgsS | |S| � k + 1 and S /∈ dcl(S)

}
.

Example 11. Let S = {{a, b}, {a, c}, {b, c}} and S′ = {{a}, {b}, {c}}. Then, we have PAtt1
S

= ∅ while
PAtt1

S′ = {{a, b}, {a, c}, {b, c}}. Note that elements of PAtt1
S′ has cardinality 2, because a conflict of size

two can be expressed by an attack of degree 1. For instance, the conflict {a, b} can be expressed by the
degree-1 attacks ({a}, b) or ({b}, a). Note also that conflict can be expressed by the degree 2 attacks
({a, b}, b) or ({a, b}, a), but we will only be interested in attacks (S, a) satisfying |S| = 1. Similarly, for
k � 2, we have PAttk

S
= {{a, b, c}}, and PAttk

S′ = {{a, b}, {a, c}, {b, c}, {a, b, c}}. The conflict {a, b, c}
can be expressed by the degree 2 attacks ({a, b}, c) or ({a, c}, b) or ({b, c}, a).

Definition 18. Given an integer k � 1, an extension-set S ⊆ 2A is k-tight if for all S ∈ S and a ∈ ArgsS
it holds that if S ∪ {a} /∈ S then there exists a set S ′ ⊆ S, such that S ′ ∪ {a} ∈ PAttk

S
.

Indeed, for k = 1 the notion of k-tight corresponds to the notion of tight on Dung AFs (see Defi-
nition 9) while for k � ArgsS the notion of k-tight simplifies to: for all S ∈ S and a ∈ ArgsS either
S ∪ {a} ∈ S or there is no S ′ ∈ S with S ∪ {a} ⊆ S ′. Thus, S being ∞-tight is implied by both S being
incomparable or S being downward-closed.
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4.1. Signatures for conflict-free and naive semantics

We start with presenting our results for the signatures for conflict-free and naive semantics. We already
know that conflict-free extension-sets must be downward-closed. In k-SETAFs we additionally have that
they must be k-tight which reflects that if S ∪ {a} is not conflict-free there must be an attack in the set of
degree at most k. The following construction allows us to also realize such extension-sets.

Definition 19. Let F
cf ,k
S

= (ArgsS, R
cf ,k
S

) be the k-SETAF with R
cf ,k
S

= {(S, a) | |S| � k, a ∈ ArgsS, S∪
{a} ∈ PAttk

S
}.

Note that, for given k � 1, F
cf ,k
S

is a k-SETAF since we only have attacks (S, a) with |S| � k. One
can show that for each S that is downward-closed and k-tight we have that cf (F cf ,k

S
) = S.

Proposition 12. �k
cf = {S �= ∅ | S is downward-closed and k-tight}.

Proof. First we show the ⊆-relation, i.e. that cf (F ) is downward-closed and k-tight for every k-SETAF
F = (A, R). If S ∈ cf (F ) then no subset of S can contain a conflict as then S would contain that conflict
as well, i.e. all subsets are conflict-free as well and thus cf (F ) is downward-closed. Now consider an
argument a such that S∪{a} /∈ cf (F ). Then S∪{a} attacks S∪{a}, that is either there is a set S ′ ⊆ S∪{a}
with (S ′, a) ∈ R or there is a set E ⊆ S ∪ {a} with a ∈ E and (E, b) ∈ R for some b ∈ S. In the former
case S ′ ∪ {a} is of size � k +1 and S ′ ∪ {a} /∈ dcl(cf (F )). In the latter case consider S ′ = (E \ {a})∪{b}
which is of size � k (since (E, b) ∈ R) and S ′ ∪ {a} = E ∪ {b} /∈ dcl(cf (F )). In both cases we have
S ′ ∪ {a} ∈ PAttkcf (F ) and thus the condition for cf (F ) being k-tight is satisfied.

For the ⊇-relation, let S be downward-closed and k-tight and consider F
cf ,k
S

from Definition 19. We
prove that cf (F cf ,k

S
) = S.

1) Let us show first that cf (F cf ,k
S

) ⊇ S. Pick any S ∈ S and any attack (S ′, a) ∈ R with S ′ ⊆ S. By
construction, we have that (S ′ ∪ {a}) /∈ dcl(S) and, thus, that (S ′ ∪ {a}) � S. Hence, since S ′ ⊆ S, it
follows that a /∈ S and that S is conflict-free. Hence, we have that cf (F cf ,k

S
) ⊇ S.

2) To show cf (F cf ,k
S

) ⊆ S, pick S ⊆ ArgsS with S /∈ S. As S is downward-closed we have that there is
an S ′ ∈ S such that S ′ ⊆ S, and w.l.o.g. assume that S ′ is a maximal such set. Pick a ∈ S \ S ′. As S is
k-tight there is an attack (B, a) ∈ R for some B ⊆ S ′ and thus S /∈ cf (F cf ,k

S
). �

Next we show that for each S that is incomparable and whose downward-closure is k-tight we have
that naive(F cf ,k

S
) = S.

Proposition 13. �k
naive = {S �= ∅ | S is incomparable and dcl(S) is k-tight}.

Proof. For any k-SETAF F , naive(F ) is incomparable by definition and dcl(naive(F )) = cf (F ) holds.
Thus, by Proposition 12, dcl(naive(F )) is k-tight.

To realize a set S that is incomparable and such that dcl(S) is k-tight consider S′ = dcl(S) and realize
S′ by the construction of Proposition 12. Let F be the resulting SETAF. Then we have that cf (F ) = S′
and by construction S contains exactly the ⊆-maximal elements of S′. Hence, naive(F ) = S. �

The following theorem summarizes the characterizations of this subsection.
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Theorem 8. We have that

• �k
cf = {S �= ∅ | S is downward-closed and k-tight} and

• �k
naive = {S �= ∅ | S is incomparable and dcl(S) is k-tight}.

The following example shows that the expressiveness of conflict-free and naive semantics strictly
increases with the degree k of the attacks.

Example 12. Consider the argument set A = {a1, a2, . . . , ak+1, ak+2} and the extension-sets S = {S ⊆
A | |S| � k + 1} and T = {S ⊆ A | |S| = k + 1}. We have that S is not k-tight, as A /∈ S, but for
S = {a1, a2, . . . , ak+1} we have that every S ′ ⊂ {a1, a2, . . . , ak+1} satisfies S ′ ∪ {ak+2} ∈ S and thus
S ′ ∪ {ak+2} /∈ PAttk

S
. Note that S ∪ {ak+2} /∈ PAttk

S
because |S ∪ {ak+2}| > k + 1. Hence, S cannot be

realized as conflict-free sets of any k-SETAF. However, one can easily verify that S is (k + 1)-tight and
thus can be realized as conflict-free sets of some (k + 1)-SETAF. Moreover, as dcl(T) = S we have that
dcl(T) is not k-tight, i.e. T cannot be realized as naive sets of a k-SETAF. But dcl(T) is (k + 1)-tight;
hence T can be realized as naive sets of a (k + 1)-SETAF.

4.2. Signatures for stable semantics

Next we consider the stable signature for k-SETAFs. Again, the set of stable extensions of a k-SETAF
must be k-tight reflecting the fact that each argument which is not in an extension S must be attacked by
S via a degree k attack. The following construction expands F

cf ,k
S

from Definition 19 by arguments xs

that eliminate unwanted naive extensions of F
cf ,k
S

.

Definition 20. Given an extension-set S that is incomparable and k-tight, we construct the k-SETAF
F

stb,k
S

= (A, R) based on F
cf ,k
S

= (ArgsS, R
cf ,k
S

) as follows:

A = ArgsS ∪ {
xS | S ∈ naive

(
F

cf ,k
S

) \ S}

R = R
cf ,k
S

∪
⋃

S∈naive(F cf ,k
S

)\S

{({a}, xS

)
,
({xS}, xS

) | a ∈ ArgsS \ S
}

One can show that for each S that is incomparable and k-tight we have that stb(F
stb,k
S

) = S by building
on Theorem 8 and using similar arguments as in [7, Prop. 7].

Theorem 9. �k
stb = {S | S is incomparable and k-tight}.

Proof. To prove the ⊆-relation, let F = (A, R) be a k-SETAF. We show that stb(F ) is incomparable
and k-tight. As stb(F ) ⊆ pref (F ), it is clear that stb(F ) is incomparable. Now consider E ∈ stb(F ). By
definition for each argument a /∈ E there is an attack (B, a) with |B| � k. That is there is no E′ ∈ stb(F )

with B ∪ {a} ⊆ E′ and thus B ∪ {a} ∈ PAttkstb(F ). Hence, stb(F ) is also k-tight.
To prove the ⊇-relation of the assertion, let S be an extension-set that is incomparable and k-tight, and

consider the SETAF F
stb,k
S

= (A, R) from Definition 20. We show that stb(F
stb,k
S

) = S.
1) Let us show first that stb(F

stb,k
S

) ⊇ S. Pick any S ∈ S and any attack (S ′, a) ∈ R with S ′ ⊆ S. By
construction, we have that (S ′ ∪ {a}) ∈ PAttk

S
and, thus, that (S ′ ∪ {a}) � S. Now consider a ∈ ArgsS \S.

As S is k-tight there exists B ⊆ S, |B| � k such that B ∪ {a} ∈ PAttk
S

and thus (B, a) ∈ R. Finally,
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consider xE ∈ {xS | S /∈ S and S ⊆-maximal in dcl(S)}. We have that S and E are incomparable and
thus there is an argument a ∈ E such that ({a}, xE) ∈ R. That is, S ∈ stb(F

stb,k
S

).
2) It remains to show stb(F

stb,k
S

) ⊆ S. Let S ⊆ ArgsS with S /∈ S. If S /∈ naive(F stb,k
S

) then it
is not stable in F

stb,k
S

. Thus assume S ∈ naive(F stb,k
S

). Observe that naive(F stb,k
S

) = naive(F cf ,k
S

). By
construction, there is an argument xS ∈ A with xS /∈ S and S not attacking xS . Thus, S /∈ stb(F

stb,k
S

). �

The above theorem gives a strict hierarchy of signatures �k
stb which is illustrated in the following

example.

Example 13. Consider the argument set A = {a1, a2, . . . , ak+1, ak+2} and the extension-set T = {S ⊆
A | |S| = k+1} as in Example 12. Recall that T was not realizable by the naive semantics because dcl(T)

was not k-tight. In fact, T itself is not k-tight either. Note that A /∈ T, but for {a1, a2, . . . , ak+1} ∈ T
we have that any S ⊂ {a1, a2, . . . , ak+1} satisfies S ∪ {ak+2} ∈ dcl(T) and thus S ∪ {ak+2} /∈ PAttk

T
.

Hence, T cannot be realized as stable extensions of a k-SETAF. However, one can easily verify that T is
(k + 1)-tight and thus can be realized as stable extensions of a (k + 1)-SETAF.

Note that, for incomparable S, whenever dcl(S) is k-tight, also S is k-tight. Hence, for k-SETAFs, the
stable semantics is more expressible than the naive semantics. We next show that stable semantics is
indeed strictly more expressive than naive semantics as long as k is bounded; recall that for SETAFs in
general, stable and naive semantics are equally expressible modulo the empty set of extensions (cf. Main
Theorem 1).

Example 14. Consider the sets of arguments X = {x1, . . . , xk+1}, Y = {y1, . . . , yk+1} additional argu-
ments a, b and the extension-set S = {X ∪ {a}} ∪ {{b, yj } ∪ X \ {xj } | 1 � j � k + 1}. The set S is
k-tight as {a, b}, {a, yi}, {yi, yj }, {xi, yi} ∈ PAttk

S
. On the other hand, dcl(S) is not k-tight as for the set

X ∈ dcl(S) there is no X′ ⊆ X such that |X′| � k and X′ ∪ {b} ∈ PAttk
S
. That is, the extension-set S can

be realized with a k-SETAF under stable semantics but not with a k-SETAF under the naive semantics.

As we will see next, for k-SETAFs we also have different signatures for stable and preferred semantics.
For the latter, we first need to understand admissible sets in k-SETAFs. This is also the reason why we
analyse the semantics here in a slightly different order compared to Section 3.

4.3. Signatures of admissible and preferred semantics

We first parameterize the notions of conflict-sensitive and set-conflict-sensitive.

Definition 21. Given an integer k � 1, a set S ⊆ 2A is called k-conflict-sensitive w.r.t. a set PAtt ⊆
{(S, b) | |S| � k, S ∪ {b} ∈ PAttk

S
} if for each A, B ∈ S such that A ∪ B /∈ S, it holds that there is an

argument b ∈ B satisfying (A, b) ∈ PAtt.

It turns out that the above generalization of set-conflict-sensitive is not sufficient to characterize ad-
missible extension-sets in k-SETAFs. We thus introduce the notion of k-defensive, which is tautological
for k = 1 and covered by set-conflict-sensitivity for k = ∞.

Definition 22. A set S ⊆ 2A is called k-defensive w.r.t. a set PAtt ⊆ {(S, b) | |S| � k, S ∪ {b} ∈ PAttk
S
}

if for each A ∈ S, a ∈ A, (B, a) ∈ PAtt there are S ⊆ A, b ∈ B with (S, b) ∈ PAtt.
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Remark 2. Notice that the terminology here has changed when compared to the conference version of
the paper [11]. What was called k-defensive in [11] is now called k-adm-fortable and further split up in
two properties, i.e., k-conflict-sensitivity and k-defensivity. This is due to the new characterization for
complete semantics presented in the forthcoming subsection that shares the property of k-defensivity
with admissible semantics but not k-conflict-sensitivity.

Definition 23. A set S ⊆ 2A is called k-adm-fortable if there exists a set PAtt ⊆ {(S, b) | |S| �
k, S ∪ {b} ∈ PAttk

S
} such that S is k-conflict-sensitive w.r.t PAtt and k-defensive w.r.t. PAtt.

Remark 3. Given an extension-set S, if there exists a set PAtt that meets the conditions of Definition 23
one such set can be computed by a fixed point iteration as follows. In an initial phase, for each S ∈ S
consider all subsets B of size min(k, |S|) and b ∈ ArgsS \ S and add (B, b) to PAtt whenever B ∪
{b} ∈ PAttk

S
. Then iteratively check whether the set is k-defensive and remove attacks that violate the

k-defensive property from PAtt. When the fixed point is reached, i.e. S is k-defensive w.r.t. PAtt, check
whether S is also k-conflict-sensitive w.r.t. PAtt. If so we have found a set PAtt that meets the conditions
of Definition 23, otherwise there is no such set.

Whenever the union of two admissible sets is not admissible then (i) there must be an attack of de-
gree � k in this union and (ii) each admissible set must defend itself against all attacks we introduce to
establish (i), again using only attacks of degree � k.

Lemma 16. For any k-SETAF F we have that adm(F ) is k-adm-fortable and contains ∅.

Proof. First, notice that the empty set is always admissible. Now we consider a k-SETAF F = (A, R),
the set of attacks PAtt = {(S, a) ∈ R | S ⊆ Argsadm(F ), a ∈ Argsadm(F )} of all attacks between arguments
that appear in at least one admissible set and show that it satisfies the two conditions for S being k-adm-
fortable.

1) We first show that S is k-conflict-sensitive w.r.t. PAtt. Assume there are two admissible sets T , U

such that the set C = T ∪ U is not admissible. By Lemma 2 the set C defends itself against all attackers
and thus there must be a conflict in C, i.e. there exists an attack (S, a) ∈ R with S ⊆ C and a ∈ C.

• If a ∈ T then, as T is conflict-free, S ∩ U �= ∅. Moreover, as T is admissible it has to defend
itself against (S, a), i.e. there is an attack (T ′, u) with T ′ ⊆ T and u ∈ S ∩ U . Hence, we have
(T ′, b) ∈ PAtt.

• If a ∈ U then, as U is conflict-free, S ∩ T �= ∅. Moreover, as U is admissible it has to defend itself
against (S, a), i.e. there is an attack (U ′, t) with U ′ ⊆ U and t ∈ S ∩ T . Now, as T is admissible as
well, there is also an attack (T ′, u) with T ′ ⊆ T and u ∈ S ′ ⊆ U . Hence, we have (T ′, b) ∈ PAtt.

2) It remains to show that S is k-defensive w.r.t. PAtt. If (B, a) ∈ PAtt then B attacks a in F . Thus
each set E ∈ adm(F ) with a ∈ E defends itself against B, i.e. for each E ∈ adm(F ) with a ∈ E there is
a pair (S, b) ∈ R with S ⊆ E and b ∈ B. Thus, also (S, b) ∈ PAtt and the second condition is satisfied.
We obtain that adm(F ) is k-defensive w.r.t. PAtt. �

Remark 4. For k = 1, we can make all the elements of PAtt symmetric, i.e. whenever ({a}, b) ∈
PAtt then also ({b}, a) ∈ PAtt, without affecting the 1-conflict-sensitive property. Any extensions S is
trivially k-defensive w.r.t. symmetric attack sets PAtt and thus the notion of 1-adm-fortable reduces to
being conflict-sensitive, cf. Definition 9. For unbounded k, each set (A, b) ∈ PAtt can be replaced by
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{(S, b) | S ∈ S, A ⊂ S} without violating k-conflict-sensitivity or k-defensivity w.r.t PAtt. Given that,
testing whether S is k-conflict-sensitive w.r.t. PAtt reduced to testing whether S is set-conflict-sensitive.
Moreover, whenever a set is set-conflict-sensitive it is also set-defensive w.r.t. PAtt = {(S, a) | S ∈
S, S ∪ A ∈ PAttS}. That is, an extension-set S being ∞-adm-fortable reduces to S being set-conflict-
sensitive.

Similarly as done in Section 3 for SETAFs of unbounded attack degree, we build the k-SETAF for the
admissible semantics with several modules, starting with the module that exploits conflict-freeness.

Definition 24. When given a extension-set S and a set PAtt ⊆ {(S, b) | |S| � k, S ∪ {b} ∈ PAttk
S
} we

define the k-SETAF F
cf ,k
S,PAtt = (ArgsS, PAtt).

We are now able to obtain similar results for this module as for the corresponding module in general
SETAFs.

Lemma 17. Let S be a extension-set that contains ∅ and is k-conflict-sensitive w.r.t. a set PAtt that meets
the conditions of Definition 23, and let S ⊆ ArgsS be some set of arguments such that S = ⋃

T for some
set T ⊆ S. Then, we have that S ∈ cf (F cf ,k

S,PAtt) implies S ∈ S.

Proof. Consider a SETAF F
cf ,k
S,PAtt as given in Definition 24 and a set S = ⋃

T for some subset T ⊆ S

with S ∈ cf (F cf ,k
S,PAtt). Let us consider A ⊆ T such that

⋃
A ∈ S and there is no A′ ⊆ T such that

A ⊂ A′ and
⋃

A′ ∈ S. Note that such A always exists because
⋃ ∅ = ∅ ∈ S. We also define A = ⋃

A.
Towards a contradiction assume A ⊂ T and pick any B ∈ T\A. Then, by construction, we have that
A, B ∈ S, (A ∪ B) ⊆ S and that (A ∪ B) /∈ S. Furthermore, since S is k-conflict-sensitive, it follows
that there are A′ ⊆ A and b ∈ B such that |A′| � k and (A′, b) ∈ PAtt. This implies that there is an
attack (A′, b) ∈ PAtt and, thus, (A′ ∪ {b}) /∈ cf (F cf ,k

S,PAtt). Finally, since (A′ ∪ {b}) ⊆ (A ∪ B) ⊆ S and

cf (F cf ,k
S,PAtt) is downward-closed, this implies S /∈ cf (F cf ,k

S,PAtt) which is a contradiction with the assumption

that S ∈ cf (F cf ,k
S,PAtt). Hence, it must be that A = T and, thus, that A = S holds. Since A ∈ S holds by

construction, this implies S ∈ S. �

Lemma 18. Let S be a extension-set with ∅ ∈ S that is k-defensive w.r.t. PAtt. Then, S ⊆ adm(F
cf ,k
S,PAtt).

Proof. Pick any set S ∈ S. First of all by the choice of the attacks PAtt the set S is conflict-free. Now
consider any argument a ∈ S and any attack (B, a) ∈ PAtt As S is k-defensive w.r.t. PAtt there are some
S ′ ⊆ S, b ∈ B such that (S ′, b) ∈ PAtt. That is, in F

cf ,k
S,PAtt the set S defends a against the attack (S ′, a).

Hence, S defends itself against all attacks in F
cf ,k
S,PAtt. �

Towards our defense module we recall the notion of defense-formulas from [7].

Definition 25 ([7]). Given an extension-set S, the defense-formula DS

a of an argument a ∈ ArgsS in S is
defined as

∨
S∈S s.t. a∈S

∧
s∈S\{a}

s

DS

a given as (a logically equivalent) CNF is called CNF-defense-formula CDS

a of a in S.
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The defense formula DS

a tells us which arguments must be in the extension in order to defend the
argument a. We can exploit this by using the following technical lemma.

Lemma 19 ([7]). Given an extension-set S and an argument a ∈ ArgsS, then for each S ⊆ ArgsS with
a ∈ S: (S \ {a}) is a model of DS

a (resp. CDS

a) iff there exists an S ′ ⊆ S with a ∈ S ′ such that S ′ ∈ S.

For our defense module we adjust the corresponding parts from the canonical defense-argumentation-
framework in [7] to our setting with k-SETAFs.

Definition 26. Given an extension-set S, we call F
def
S

= (A
def
S

, R
def
S

) with

A
def
S

= ArgsS ∪
⋃

a∈ArgsS

{
αaγ | γ ∈ CDS

a

}

R
def
S

=
⋃

a∈ArgsS

{({b}, αaγ

)
,
({αaγ }, αaγ

)
,
({αaγ }, a) | γ ∈ CDS

a, b ∈ γ
}

the defense-argumentation-framework of S, and let F
adm,k
S,PAtt = F

cf ,k
S,PAtt ∪ F

def
S

.

We next show that this defense framework ensures that only sets in S or the union of such sets are
admissible.

Lemma 20. For every extension-set S that contains ∅, we have that S ∈ adm(F
def
S

) iff S = ⋃
T for

some T ⊆ S.

Proof. First notice that there are no conflicts between arguments in ArgsS and all arguments not in ArgsS
are self-attacking. It thus suffices to show that S defends itself in F

def
S

iff S = ⋃
T for some T ⊆ S.

⇒: Let S ∈ adm(F
def
S

) and consider an argument a ∈ S. S attacks all the arguments αaγ that attack a

and by construction this implies that S contains a model M of CDS

a . By Lemma 19 we have M ∪{a} ∈ S.
As this holds for each argument a ∈ S there is a T ⊆ S such that S = ⋃

T.
⇐: Let T ⊆ S and S = ⋃

T. Consider a ∈ S and a set T ∈ T with a ∈ T . By Lemma 19 we have that
T \ {a} is a model of CDS

a and thus attacks all of the arguments αaγ . That is a is defended by S. Hence,
S ∈ adm(F

def
S

). �

When combining the two modules to the SETAF F
adm,k
S,PAtt , Lemmas 17, 18 and Lemma 20 imply that

we get a SETAF that realizes extension-set S with admissible semantics.

Lemma 21. For every extension-set S with {∅} ∈ S and set PAtt ⊆ {(S, b) | |S| � k, S ∪ {b} ∈ PAttk
S
}

such that S is k-conflict-sensitive and k-defensive w.r.t. PAtt we have adm(F
adm,k
S,PAtt ) = S.

Proof. We consider the k-SETAF F
adm,k
S,PAtt = F

cf ,k
S,PAtt ∪ F

def
S

from Definition 26 and show that S =
adm(F

adm,k
S,PAtt ).

• S ⊆ adm(F
adm,k
S,PAtt ): We have that, by Lemma 18, S ⊆ adm(F

cf ,k
S,PAtt), and, by Lemma 20, S ⊆

adm(F
def
S

). Hence, by Proposition 9(2), S ⊆ adm(F adm
S,PAtt).
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• S ⊇ adm(F adm
S,PAtt): Consider S ∈ adm(F adm

S,PAtt) which by definition is conflict-free in F adm
S,PAtt. Notice

that, attacks from F
cf
S,PAtt cannot be used to defend against attacks from F

def
S

and vice versa. Thus,

by Proposition 9(1) and the above observation, S ∈ adm(F
cf
S,PAtt) and S ∈ adm(F

def
S

).
By Lemma 20 we have that S = ⋃

T for some T ⊆ S. Now by Lemma 17 we have that if
S ∈ cf (F cf ,k

S,PAtt) then S ∈ S. As we already know that S ∈ adm(F
cf ,k
S,PAtt) ⊆ S we obtain S ∈ S. �

We now can state the exact characterization of the admissible signature for k-SETAFs.

Proposition 14. �k
adm = {S �= ∅ | S is k-adm-fortable and contains ∅}.

Proof. First, by Lemma 16 we have that any S ∈ �k
adm is k-adm-fortable and contains ∅. Second,

given that an extension-set S is k-adm-fortable and contains ∅, we know that there exists a set PAtt ⊆
{(S, b) | |S| � k, S ∪ {b} ∈ PAttk

S
} such that S is k-conflict-sensitive and k-defensive w.r.t. PAtt. Thus,

by Lemma 21, we have adm(F
adm,k
S,PAtt ) = S and thus S ∈ �k

adm. �

Based on our characterization of admissible semantics we can now also characterize the signature of
preferred semantics.

Proposition 15. �k
pref = {S �= ∅ | S is incomparable and k-adm-fortable}.

Proof. We start with the ⊆-relation. Consider pref (F ) for an arbitrary k-SETAF F = (A, R). The
extension-set pref (F ) is incomparable by the definition of preferred semantics.

Now we consider the set PAtt = {(S, a) ∈ R | S ⊆ Argsadm(F )} and show that S is both (1) k-conflict-
sensitive w.r.t. PAtt and (2) k-defensive w.r.t. PAtt, i.e. we show that S is k-adm-fortable.

1) Consider arbitrary extensions E, T ∈ pref (F ) with E �= T . By the maximality of E and T we have
that E ∪ T /∈ pref (F ), E ∪ T is not contained in any preferred extension, and, by Lemma 2, we know
that E ∪T defends itself against all attackers. That is, there is a conflict (B, a) ∈ R such that B ⊆ E ∪T

and a ∈ E ∪ T .

• If a ∈ E then, as E is conflict-free, B ∩ T �= ∅. Moreover, as E is admissible it has to defend
itself against (B, a), i.e. there is an attack (S, b) with S ⊆ E and b ∈ B ∩ T . Hence, we have
(S, b) ∈ PAtt.

• If a ∈ T then, as T is conflict-free, B ∩ E �= ∅. Moreover, as T is admissible it has to defend itself
against (B, a), i.e. there is an attack (S ′, c) with S ′ ⊆ T and c ∈ B ∩ E. Now, as E is admissible as
well, there is also an attack (S, b) with S ⊆ E and b ∈ S ⊆ T . Hence, we have (S, b) ∈ PAtt.

2) If (S, b) ∈ PAtt then S attacks b in F . Thus each set S ′ ∈ pref (F ) with b ∈ S ′ defends itself against
S, i.e. for each S ′ ∈ pref (F ) with b ∈ S ′ there is a pair (S ′′, a) ∈ R with S ′′ ⊆ S ′ and a ∈ S. Thus, also
(S ′′, a) ∈ PAtt thus pref (F ) is k-defensive

We obtain that pref (F ) is k-adm-fortable.
To prove the ⊇-relation, consider an extension-set S that is incomparable and k-adm-fortable. The

set S′ = S ∪ {∅} is k-adm-fortable and contains the empty set. We thus can apply Proposition 14 and
obtain that there is a k-SETAF F such that adm(F ) = S′. As the preferred extensions are the ⊆-maximal
admissible sets we have pref (F ) = S as desired. �

The results of this subsection are summarized by the following theorem.
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Theorem 10. We have that

• �k
adm = {S �= ∅ | S is k-adm-fortable and contains ∅} and

• �k
pref = {S �= ∅ | S is k-adm-fortable and incomparable}.

Example 15. Reconsider the argument set A = {a1, a2, . . . , ak+1, ak+2} and the extension-set T = {S ⊆
A | |S| = k + 1} from Example 13 as well as U = T ∪ {∅}. We next argue that the extension-sets are
not k-adm-fortable. Notice that PAttk

T
= PAttk

U
= ∅ thus the empty set is the only candidate for the set

PAtt. However, S has to be k-conflict sensitive w.r.t. PAtt. That is, for the sets S1 = {a1, a2, . . . , ak+1},
S2 = {a2, a2, . . . , ak+2}, with S1 ∪ S2 /∈ T we need S ′ ⊂ S1 and t ∈ S2 such that S ′ ∪ {t} ∈ PAtt which
is not true and thus there is no set PAtt such that the extension-sets are k-defensive w.r.t. PAtt. Hence, T
(resp. U) cannot be realized as preferred (resp. admissible) extensions of a k-SETAF. However, one can
verify that T is (k + 1)-adm-fortable and thus T can be realized as preferred extensions of a (k + 1)-
SETAF as well as U can be realized as admissible extensions of a (k + 1)-SETAF. To this end consider
PAtt = {(S, a) | S ⊆ A|S| = k + 1, a ∈ A \ S}. First, the extension-sets are both (k + 1)-conflict-
sensitive w.r.t. PAtt, e.g. for S1 = {a1, a2, . . . , ak+1}, S2 = {a2, a2, . . . , ak+2} with S1 ∪ S2 /∈ T we
have S1 ∪ {ak+2} ∈ PAtt (symmetric arguments work for other pairs of extensions from T). Second, the
extension-sets are both (k + 1)-defensive as for each (S, a) ∈ PAtt and a ∈ S ′ ∈ T there is an attack
(S ′, b) ∈ PAtt with b ∈ S (as a is the only argument not contained in S). That is, T is (k+1)-adm-fortable
and with the same arguments we also get that U is (k + 1)-adm-fortable.

4.4. Signature of complete semantics

This section heavily builds on recent work by Linsbichler [14]. Linsbichler provides an exact char-
acterization for the signature of complete semantics in Dung AFs, i.e. of �1

com in our notation. In this
section, we generalize his characterization and construction to the case of �k

com for k � 1.
In a first step we parametrize the notion of being com-closed by (a) a reference k to the arity of the

attacks and (b) by reference to a subset PAtt of the possible attacks between arguments in ArgsS.

Definition 27. Given an integer k � 1, a set S ⊆ 2A is called k-com-closed w.r.t. a set PAtt ⊆ {(S, b) |
|S| � k, S ∪ {b} ∈ PAttk

S
} iff for each T ⊆ S, T = ⋃

T we have |CS(T )| � 1 and if |CS(T )| = 0 then
there is an attack (S, t) ∈ PAtt such that S ∪ {t} ⊆ T .

We summarize the necessary conditions for S ∈ �k
com that refer to a set PAtt under the term k-com-

fortable. That is, there must be a subset PAtt of the possible attacks between arguments in ArgsS such
that S is k-defensive and k-com-closed w.r.t. PAtt. Additionally we require that, when considering the
SETAF F = (ArgsS, PAtt), whenever CS(T ) = {C} for certain T then when we iteratively adding the
arguments of C defended by T (in F ) to the set T one eventually ends up with the set C.

Definition 28. A set S ⊆ 2A is called k-com-fortable if there exist a set PAtt ⊆ {(S, b) | |S| �
k, S ∪ {b} ∈ PAttk

S
} such that

(1) S is k-defensive w.r.t. PAtt,
(2) S is k-com-closed w.r.t. PAtt, and
(3) for each T ⊆ S and T = ⋃

T, if CS(T ) = {C} then there is an order (c1, . . . ck) of the elements in
C \ T s.t. ∀(S, ci) ∈ PAtt: ∃S ′ ⊆ T ∪ {c1, . . . , ci−1}, d ∈ S : (S ′, d) ∈ PAtt.

Lemma 22. For any k-SETAF F we have that com(F ) is k-comp-fortable and
⋂

com(F ) ∈ com(F ).
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Proof. First of all, we have
⋂

com(F ) = grd(F ) ∈ com(F ) and thus the second property is always
satisfied. In order to show that com(F ) is k-comp-fortable we have to construct a set PAtt satisfying the
three properties. To this end let F = (A, R) and PAtt = R ∩ (Argscom(F ) × Argscom(F )), i.e, we consider
all the attacks between arguments that appear in at least one complete extension. It remains to check the
three properties for being k-comp-fortable.

(1) com(F ) is k-defensive w.r.t. PAtt: Consider a set E ∈ com(F ) an attack (S, e) ∈ PAtt with e ∈ E.
Thus (S, e) ∈ R and as E is admissible there is an attack (E′, s) ∈ R with s ∈ S and E′ ⊆ E.
Then by construction also (E′, s) ∈ PAtt and therefore com(F ) is k-defensive w.r.t. PAtt.

(2) com(F ) is k-com-closed w.r.t. PAtt: Consider a subset of the complete extensions T ⊆ com(F ).
By Lemma 2 we have that T = ⋃

T defends itself. Now either, there is an attack (S, a) ∈ R with
S ∪ {a} ⊂ T and thus (S, a) ∈ PAtt as well, or T is an admissible set and thus there is a unique
minimal complete extension E such that T ⊆ E, i.e., T has a unique completion in com(F ).

(3) Consider a subset of the complete extensions T ⊆ com(F ) such that T = ⋃
T is admissible

and let C be the unique minimal complete extension E such that T ⊆ E. In case T = C all
the conditions are trivially satisfied, thus we consider T ⊂ C. Now to order the arguments in
C ′ = C \ T we use the following procedure: Starting from c1 iteratively select element ci by
picking an arbitrary argument in C ′ \ {c1, . . . , ci−1} that is defended by T ∪ {c1, . . . , ci−1}. If these
procedure succeeds we have found an order satisfying the conditions for being k-comp-fortable.
Thus, towards a contradiction, let us assume the procedure eventually fails in picking an argument
ci . That is, the set Ti−1 = T ∪ {c1, . . . , ci−1} does not defend any argument in C ′ \ {c1, . . . , ci−1}.
Moreover, as T ⊆ C and C is complete we have that Ti−1 does not defend any argument outside
of Ti−1. That is, by Lemma 1, we have that Ti−1 is admissible, the set Ti−1 is a complete extension
with T ⊆ Ti−1 which is in contradiction to the minimality of E. �

In order to realize extension-sets with complete semantics, again we first assume that ∅ ∈ S, and then
extend the construction to the general case. We build the k-SETAF with several modules, starting with
recalling the module that exploits conflict-freeness from Definition 24. For a set PAtt ⊆ {(S, b) | |S| �
k, S ∪ {b} ∈ PAttk

S
} we have the k-SETAF F

cf ,k
S,PAtt = (ArgsS, PAtt).

Lemma 23. Let S be k-com-closed w.r.t. PAtt ⊆ {(S, b) | |S| � k, S ∪ {b} ∈ PAttk
S
} and T ⊆ ArgsS be

some set of arguments such that T = ⋃
T for some subset T ⊆ S. Then, we have that T ∈ cf (F cf ,k

S,PAtt)

implies |CS(T )| = 1.

Proof. Consider T = ⋃
T and assume |CS(T )| = 0. Then, as S is k-com-closed w.r.t. PAtt, there is

an attack (S, t) ∈ PAtt with S ∪ {t} ⊆ T . By the construction of F
cf ,k
S,PAtt, this is in contradiction to

T ∈ cf (F cf ,k
S,PAtt). �

We next adapt the idea of defense-formulas, which we used for admissible semantics, to so-called
extended-defense-formulas. To this end for each argument a ∈ ArgsS we consider all sets T = ArgsT
with T ⊆ S such that |CS(T )| = 1 and a ∈ CS(T ).

Definition 29. Given an extension-set S, the extended-defense-formula EDS

a of an argument a ∈ ArgsS
in S is defined as

∨
T ∈{⋃T|T⊆S} s.t. a∈CS(T )

∧
s∈T

s
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EDS

a given as (a logically equivalent) CNF is called CNF-extended-defense-formula CEDS

a of a in
S.

The extended-defense-formula EDS

a tells us which arguments must be in the extension in order to
defend the argument a. We can exploit this by using the following technical lemma (which is in the
spirit of Lemma 19 for defense-formulas).

Lemma 24. Given an extension-set S and an argument a ∈ ArgsS, then for each S ⊆ ArgsS with a ∈ S:
S is a model of EDS

a (resp. CEDS

a) iff there exists an T ⊆ S, T = ⋃
T with a ∈ CS(T ) and T ⊆ S.

Proof. Notice that our formula EDS

a only contains positive literals.
⇒: If S is a model of EDS

a then it satisfies one of the conjuncts
∧

s∈T , and thus there is a set T ⊆ S

with a ∈ CS(T ) and T = ⋃
T for some T ⊆ S.

⇐: Assume that S has a subset T with a ∈ T and T = ⋃
T for some T ⊆ S. Then consider the

sub-formula
∧

s∈T s. As S is a super-set of T , S satisfies the sub-formula and thus also the disjunction
over all sub-formulas. �

We next extend the concept of defense-argumentation-framework (cf. Definition 26).

Definition 30. Given an extension-set S with ∅ ∈ S, we call F
edef
S

= (A
edef
S

, R
edef
S

) with

A
edef
S

= ArgsS ∪
⋃

a∈ArgsS

{
αaγ | γ ∈ CEDS

a

}

R
edef
S

=
⋃

a∈ArgsS

{({b}, αaγ

)
,
({αaγ }, αaγ

)
,
({αaγ }, a) | γ ∈ CEDS

a, b ∈ γ
}

the extended defense-argumentation-framework of S. Given an extension-set S and S′ = reduced(S) we
define F

com,k
S,PAtt = F

cf ,k
S,PAtt ∪ F

edef
S′ .

We next show that F
com,k
S,PAtt realizes any k-comp-fortable extension-set S with ∅ ∈ S.

Lemma 25. For every extension-set S with ∅ ∈ S that satisfies the three conditions for being k-comp-
fortable w.r.t. a set PAtt ⊆ {(S, b) | |S| � k, S ∪ {b} ∈ PAttk

S
} we have com(F com

S,PAtt) = S.

Proof. com(F com
S,PAtt) ⊆ S: Consider S ∈ F com

S,PAtt. As S is conflict free, by the construction of F
cf ,k
S,PAtt, we

have that there is no attack (S ′, a) ∈ PAtt with S ′ ∪ {a} ⊆ S. Let TS = {T ∈ S | T ⊆ S}. As S defends
each argument in s ∈ S, against attackers αsγ , the set S is a model of EDS

s . Thus, by Lemma 24, for each
s ∈ S there is a set Ts ⊆ TS with Ts = ⋃

Ts ⊆ S and s ∈ CS(Ts). Let TS = ⋃
TS then as TS ⊆ S,

by Lemma 23, it has a unique completion in S w.r.t. PAtt and by the above S ⊆ CS(TS). Next, we show
that each argument s ∈ CS(TS) is defended by S and thus contained in S. Using the third condition of
S being k-comp-fortable we have an order on the arguments CS(TS) \ TS as (c1, c2, . . . , ck) such that
T ∪ {c1, . . . , ci − 1} defends ci against all attacks from PAtt. Moreover, as T is a model of all EDS

c for
c ∈ {c1, . . . , ck}, by the construction of F

edef
S

it defends the arguments c1, . . . , ck against attacks αciγ .
Thus by induction on i all the arguments ci are defended and contained in S. Hence, CS(T ) = S and
hence S ∈ S.
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com(F com
S,PAtt) ⊇ S: Consider S ∈ S. By construction we have that S ∈ cf (F com

S,PAtt). It remains to show
that (i) S defends each of its arguments and (ii) does not defend any argument in ArgsS\S (the arguments
outside of ArgsS are self-attacking anyway).

(i) To show S ∈ adm(F com
S,PAtt) consider an arbitrary argument s ∈ S. There are two kinds of attackers.

First, the arguments αaγ . These arguments are attacked by S as S is a model of the formula CEDS

s

(cf. Lemma 24). Second, the attacks (B, s) ∈ PAtt. As S is k-defensive, there is a set S ′ ⊆ S and
an argument b ∈ B such that (S ′, b) ∈ PAtt. That is, S defends each s ∈ S.

(ii) To show S ∈ com(F com
S,PAtt) consider an arbitrary argument a ∈ ArgsS \ S. As S ∈ S we have that

CS(S) = S and thus neither the set S nor any of its subsets appear in the definition of the formula
CEDS

a , i.e., none of this sets is a model of CEDS

a (cf. Lemma 24). That is, there is an argument αaγ

that is not attacked by S but attacks a (note that, by construction, CEDS

a has at least one clause,
as there is always at least one T ∈ S with a ∈ CS(T )). Thus, S does not defend a. Hence, S is a
complete extension of F com

S,PAtt. �

We now can state the exact characterization of the complete signature in k-SETAFs.

Theorem 11. �k
com = {S �= ∅ | S is k-comp-fortable and

⋂
S ∈ S}.

Proof. The necessity of the conditions is by Lemma 22. To show that the conditions are also sufficient
consider S′ = reduced(S). By Lemma 25 we have an k-SETAF F com

S′,PAtt with com(F com
S′,PAtt) = S′. Thus

with F = F com
S′,PAtt ∪ (ArgsS, ∅) we obtain com(F ) = S. Also notice that F com

S,PAtt = F com
S′,PAtt ∪ (ArgsS, ∅) =

F . �

Example 16. Consider the argument set A = {a1, a2, . . . , ak+1, ak+2} and the extension-set U = {S ⊆
A | |S| = k + 1} ∪ {∅} (cf. Example 15). Recall that PAttk

U
= ∅ and thus the empty set is the only

candidate for the set PAtt. We next show that U is not k-com-closed w.r.t. PAtt. Consider the sets S1 =
{a1, a2, . . . , ak+1}, S2 = {a2, a2, . . . , ak+2}, with S1 ∪ S2 /∈ U and thus |CS(S1 ∪ S2)| = 0. In order to
satisfy the k-com-closed we need an attack (S, t) ∈ PAtt such that S ∪ {t} ⊆ S1 ∪ S2. However, as PAtt
is empty there is no such attack an thus there is no set PAtt such that U is not k-com-closed w.r.t. PAtt.
Hence, U cannot be realized with a k-SETAF and complete semantics. However, one can easily verify
that for the (k + 1)-SETAF F = (A, {(S, a) | S ∈ T, a ∈ A \ S}) we have com(F ) = U.

Exploiting a translation from [12] we can show that �k
adm ⊆ �k

com.

Proposition 16. �k
adm ⊆ �k

com.

Proof. Consider a set S ∈ �k
adm, i.e., there is a SETAF F = (A, R) with adm(F ) = S. Now we apply the

translation from admissible to complete semantics in Dung AFs [12]. That is we construct the SETAF
F ′ = (A′, R′) with

A′ = A ∪ {
a′ | a ∈ A

}

R′ = R ∪ {({
a′}, a′), ({a}, a′), ({a′}, a) | a ∈ A

}

Now it is easy to verify that none of the new arguments can be in an admissible set and moreover as the
new attacks are all symmetric we have adm(F ) = adm(F ′). Finally, as for each a ∈ A, the argument a
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is the only argument attacking a′ and, thus, only sets containing a can defend a. Thus in F ′ admissible
sets and complete extensions coincide, i.e., com(F ′) = adm(F ′) = adm(F ) = S and thus S ∈ �k

com. �

Next, we give an example of an extension-set S ∈ �k
com, but S /∈ �k

adm and thus show �k
adm ⊂ �k

com.

Example 17. Recall Example 9 showing that �∞
adm ⊂ �∞

com. There we had the extension-set S =
{∅, {a}, {b}, {a, b, c}} which is not in �∞

adm and thus also S /∈ �k
adm. However we can realize S with

the 1-SETAF F = (A, R) with

A = {a, b, c} ∪ {xa, xb, xc, yc}
R = {({xi}, xi

)
,
({xi}, i

) | i ∈ {a, b, c}} ∪ {({yc}, yc

)
,
({yc}, c

)}

∪ {({a}, xa

)
, {b}, xb),

({a}, xc

)
, {b}, yc)

}

It can easily verified that com(F ) = S and thus S ∈ �k
com for k � 1.

By the Examples 15, 16, & 17 we have that (a) there are extension-sets that are in �1
com but in no �k

adm

(not even in �∞
adm) and that (b) there are extension-sets in �k+1

adm that are not contained in �k
com.

4.5. Signatures of semi-stable and stage semantics

Finally, we consider the signatures for semi-stable and stage semantics on SETAFs with attacks of
bounded degree. As we will see, it turns out that semi-stable semantics on k-SETAFs is equally ex-
pressible to preferred semantics; and stage semantics is equally expressible (modulo the empty set of
extensions) to stable semantics. This mirrors the behavior for Dung AFs.

We first exploit our results for preferred semantics to characterize the signature of semi-stable seman-
tics.

Proposition 17. �k
sem = {S �= ∅ | S is incomparable and k-adm-fortable}.

Proof. Let F = (A, R) be a k-SETAF. We show that sem(F ) is incomparable and k-adm-fortable.
sem(F ) is incomparable as it is a subset of pref (F ) which is incomparable by definition. Now we can
proceed as in the proof of Proposition 15 and consider the set PAtt = {(S, a) ∈ R | S ⊆ Argsadm(F )}.
As shown there this set satisfies the conditions for S being k-adm-fortable.

Next we argue that �k
pref ⊆ �k

sem. To show this we adapt the translation from preferred to semi-stable
semantics in Dung AFs from [12]. That is given a SETAF F = (A, R) we construct F ′ = (A′, R′) with

A′ = A ∪ {
a′ | a ∈ A

}

R′ = R ∪ {({
a′}, a′), ({a}, a′) | a ∈ A

}

Now it is easy to verify that pref (F ) = pref (F ′) = sem(F ′). That is, for each S ∈ �k
pref we have a

SETAF F with pref (F ) = S and thus a SETAF F ′ with sem(F ) = S, i.e., S ∈ �k
sem. By Proposition 15

we thus have that each non-empty incomparable and k-defensive extension-set S can be realized as a
k-SETAF with semi-stable semantics. �

Next we exploit our results for stable semantics to characterize the signature of stage semantics.
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Proposition 18. �k
stage = {S �= ∅ | S is incomparable and k-tight}.

Proof. First consider stage(F ) for some k-SETAF F . As stb(F ) ⊆ naive(F ), and naive(F ) is incompa-
rable by definition, we have that stb(F ) is incomparable, as well. Now consider E ∈ stage(F ). As each
stage extensions is also a naive extensions for each argument a /∈ E there is an attack (B, b) such that
B ∪ {b} ⊆ E ∪ {a}. That is there is no E′ ∈ stage(F ) with B ∪ {b} ⊆ E′ and thus B ∪ {b} ∈ PAttstage(F ).
That is, the extension-set stage(F ) is k-tight.

Now consider S ∈ �k
stb, i.e., there is an SETAF F with stb(F ) = S. If S is non-empty, by Lemma 7, we

also have stage(F ) = S. Thus, by Theorem 9, each non-empty incomparable and k-tight extension-set
S can be realized as a k-SETAF by stage semantics. �

The results of this subsection are summarized by the following theorem.

Theorem 12. We have that

• �k
stage = {S �= ∅ | S is incomparable and k-tight} and

• �k
sem = {S �= ∅ | S is incomparable and k-adm-fortable}.

4.6. Discussion of results on k-SETAFs

Our results on signatures of k-SETAFs (cf. Theorems 8–12) are summarized as follows.

Main Theorem 2. The signatures for k-SETAFs can be characterized as follows:

�k
cf = {S �= ∅ | S is downward-closed and k-tight}

�k
naive = {

S �= ∅ | S is incomparable and dcl(S) is k-tight
}

�k
stb = {S | S is incomparable and k-tight}

�k
adm = {S �= ∅ | S is k-adm-fortable and contains ∅}

�k
pref = {S �= ∅ | S is incomparable and k-adm-fortable}

�k
com =

{
S �= ∅ | S is k-com-fortable and

⋂
S ∈ S

}

�k
stage = {S �= ∅ | S is incomparable and k-tight}

�k
sem = {S �= ∅ | S is incomparable and k-adm-fortable}

For all semantics σ ∈ {cf , naive, stb, adm, pref , stage, sem} and 2 � k < ∞

�1
σ ⊂ �k

σ ⊂ �k+1
σ ⊂ �∞

σ (3)

The ⊆-relations follow immediately from the fact that AFk
A ⊆ AFk+1

A
and the definition of signatures.

That the relations are strict has been illustrated in Examples 12– 13, 15, and 16.
Next we analyse the relation between signatures of different semantics for fixed k.

Proposition 19. Every k-tight incomparable extension-set is also k-adm-fortable.
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Proof. Consider some k-tight incomparable extension-set S. We define PAtt as the set of pairs (S ′, a)

with S ′ ∪ {a} ∈ PAttk
S

and S ′ ⊆ S ∈ S. We next show that PAtt meets the conditions of Definition 23, i.e.
S is k-conflict-sensitive and k-defensive w.r.t. PAtt.

• S is k-conflict-sensitive w.r.t. PAtt: Consider S, T ∈ S. As S is incomparable we have S ∪ T /∈ S
and for each t ∈ T \ S that S ∪ {t} /∈ S. In particular there exists at least one t ∈ T \ S and as S is
k-tight there is a set S ′ ⊆ S with S ′ ∪ {t} ∈ PAttk

S
. By the construction of PAtt we have (S ′, t) ∈ PAtt

and the condition for being k-conflict-sensitive is satisfied
• S is k-defensive w.r.t. PAtt: Now consider a set T ∈ S that is attacked by (S ′, t) ∈ PAtt, i.e. t ∈ T .

We have that S ′ must contain an argument s such that T ∪ {s} /∈ S otherwise, as S is incomparable,
S ′ ∪ {t} ⊆ T and thus S ′ ∪ {t} /∈ PAttk

S
. Then, as S is tight, there is a pair (T ′, s) ∈ PAtt with T ′ ⊆ T

and hence also the condition for being k-defensive is satisfied.

As S is both k-conflict-sensitive and k-defensive w.r.t. the constructed PAtt we obtain that S is k-adm-
fortable. �

Hence, for k-SETAFs, the preferred semantics is more expressible than stable semantics. We next
show that preferred semantics is indeed strictly more expressible than stable semantics.

Example 18. We consider the argument set A = B ∪ C ∪ {e} with B = {b1, b2, . . . , bk+1}, C =
{c1, c2, . . . , ck+1} and the extension-set S that contains (i) the set B, and (ii) the sets B ∪ {ci, e} \ {bi}
for 1 � i � k + 1. It is easy to verify that S is incomparable. We next argue that the set S is not k-tight.
Consider B ∈ S and the argument e. We have that S ∪ {e} /∈ S but for each S ′ ⊂ S with |S ′| � k

the set S ′ ∪ {e} is contained in one of the sets in S and thus S ′ ∪ {e} /∈ PAttk
S
. That is, S is not k-tight

and cannot be realized with a k-SETAF under stable semantics. However, one can easily verify that S is
conflict-sensitive and thus S can be realized with a 1-SETAF (and thus, by (3), with a k-SETAF for any
k � 1) under preferred semantics.

Moreover, recall that, for incomparable S, whenever S is k-tight, also dcl(S) is k-tight. Hence, �k
naive ⊆

�k
stb \ {∅}. By Example 14, �k

naive ⊂ �k
stb \ {∅}.

We conclude that for any k � 1,

�k
naive ⊂ �k

stb \ {∅} = �k
stage ⊂ �k

pref = �k
sem.

We finally turn to the relation between conflict-free sets, admissible sets and complete extensions.
Recall that Proposition 16 already showed �k

adm ⊆ �k
com. Example 17 in fact shows �k

adm ⊂ �k
com for

k � 1. Inspecting Example 6 and 10 we have an extension-set S′ = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}
with S′ ∈ �2

cf but S′ /∈ �∞
adm and S′ /∈ �∞

com which shows that, for k � 2, �k
cf � �k

adm and �k
cf � �k

com.
Likewise, �k

cf � �k
adm is easy to see (k � 1), e.g. consider S = {∅, {a, b}} with S ∈ �1

adm but, as S is not
downward-closed, S /∈ �∞

cf . By Proposition 16, �k
cf � �k

com follows, as well.
Finally, we show that the result of Proposition 11 carries over to k-SETAFs for any k � 1.

Proposition 20. �k
cf ∩ �k

com ⊆ �k
adm.

Proof. Consider S ∈ �∞
cf ∩ �∞

com, i.e., a non-empty downward-closed, k-tight and k-com-fortable
extension-set. Consider the set PAtt that satisfies the conditions for S being k-com-fortable. We im-
mediately obtain that ∅ ∈ S (S is nonempty and downward-closed) and that S is k-defensive w.r.t. PAtt.
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Fig. 5. Relations between signatures in k-SETAFs (cf. Main Theorem 2).

It remains to show that S is k-conflict-sensitive w.r.t. PAtt. Thus consider arbitrary A, B ∈ S such that
A ∪ B /∈ S. As S is downward closed this implies |CS(A ∪ B)| = 0 and thus, as S is k-com closed
there is (T , u) ∈ PAtt with T ∪ {b} ∈ A ∪ B, w.l.o.g. b ∈ B. As S is k-defensive there is also an attack
(B ′, a) with B ′ ⊂ B, a ∈ T ∩ A and further an attack (A′, b′) with A′ ⊂ A, b′ ∈ B ′. That is, S is also
k-conflict-sensitive. �

The relation between the different signatures for k-SETAFs is depicted in Fig. 5.

5. Discussion and related work

In this paper we studied the expressiveness of SETAFs, a generalization of Dung’s abstract argumen-
tation frameworks due to Nielsen and Parsons that extends the notion of (binary) attacks to collective
attacks. In order to do so we investigated signatures for seven standard semantics. The signature �∞

σ

for a semantics σ is given by the collection of all sets of σ -extensions that can be expressed with at
least one SETAF. Providing characterizations for signatures allows for an easy comparison of different
semantics and we classify a semantics σ as more expressible than a semantics σ ′ if �∞

σ ⊇ �∞
σ ′ . While

�∞
σ concerns the expressibility of SETAFs of arbitrary structure, we also considered the signatures �k

σ

of syntactically restricted SETAFs where the cardinality of attacks (S, a) is bounded by an arbitrary but
fixed constant k, i.e. |S| � k. We call such SETAFs also k-SETAFs. This yields signatures for Dung AFs
as special case, since 1-SETAFs exactly gives this class.

Our main results for unrestricted SETAFs (see Main Theorem 1 and Fig. 4) show that SETAF-
signatures coincide for preferred, naive, semi-stable, stage, and (modulo the empty set of extensions)
stable semantics, i.e. we have proven

�∞
naive = �∞

stb \ {∅} = �∞
stage = �∞

pref = �∞
sem.

The picture changes as soon as we turn to k-SETAFs (see Main Theorem 2 and Fig. 5). Here we get the
same relations as were already known for Dung AFs. That is, we have for any k � 1,

�k
naive ⊂ �k

stb \ {∅} = �k
stage ⊂ �k

pref = �k
sem.

Another interesting finding is that the relation between conflict-free, admissible, and complete seman-
tics differs compared to Dung AFs. In fact, while for Dung AFs we have �1

cf ⊆ �1
adm ⊆ �1

com,
for k � 2 we get �k

cf � �k
com while �k

adm ⊆ �k
com remains valid. Finally, we have shown that

expressibility of SETAFs form a strict hierarchy w.r.t. the attack-cardinality: for all semantics σ ∈
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{cf , naive, stb, adm, pref , stage, sem} and 2 � k < ∞, it holds that

�1
σ ⊂ �k

σ ⊂ �k+1
σ ⊂ �∞

σ

Hence, our results shed additional light on the properties of different argumentation semantics. In partic-
ular, we have analyzed here how expressibility of a semantics changes, if the structural features an ab-
stract argumentation formalism at hand provides are gradually extended. Another important implication
is that for SETAFs, preferred semantics (and likewise, stable, stage, naive, and semi-stable) essentially
have the maximal possible expressive power, if one does not want to give up incomparability. In other
words, since each possible incomparable set of extensions is provided by at least one SETAF, there is no
need to further extend syntactic features of SETAFs to increase the expressibility.

Related work on signatures. The investigations of signatures have been initiated in [7], where the first
characterization for Dung AFs have been introduced. Further analyses include signatures for compact
AFs [1] where, given a semantics σ , one restricts the attention to AFs (A, R) where each argument of
A is contained in at least one σ -extension. Another line of research is provided in [8] where semantics
are coupled together in the concept of signature, i.e. one is interested in all pairs (S, S′) such that there
is a framework with σ -extensions S and σ ′-extensions S′. In our work, we already have related the
signatures for Dung AFs with the signatures for SETAFs. In particular, we have seen that switching from
binary to ternary attacks already yields a higher expressibility. Another interesting observation concerns
compact frameworks. Inspecting our construction (cf. Definition 10) used to characterize signatures �∞

σ

for σ ∈ {stb, stage, pref , sem} shows that every S ∈ �∞
σ can be realized with a SETAF that consists

of arguments from S only. In other words, the signature for compact SETAFs and arbitrary SETAFs
coincide under these semantics, which is not the case for Dung AFs [1].

Signatures have also been intensively studied for abstract dialectical frameworks (ADFs). ADFs spec-
ify the relation between arguments via acceptance conditions which are propositional formulas that are
attached to each argument in the framework. In fact, as for instance clarified in [26], SETAFs can be
understood as a particular subclass of ADFs where each acceptance conditions is given by a CNF over
negative literals. General results on ADF signatures for the 3-valued semantics of ADFs (preferred,
complete, admissible) have been provided by Pührer [18]. For the two-valued stable semantics of ADFs,
similar results were provided by Strass [19]. Interestingly, for the subclass of bipolar ADFs it turns
out that SETAFs and bipolar ADFs are equally expressible under stable semantics, i.e. their signatures
coincide. The work closest to ours is by Linsbichler et al. [15] and by Polberg [17]. The former stud-
ies SETAFs as a sub-class of ADFs with 3-valued semantics. In order to meet the 3-valued setting the
extension-based semantics of SETAFs are redefined as 3-valued semantics and an algorithmic frame-
work is provided that tests whether a given set of 3-valued extensions can be realized as a SETAF. Their
results allow to compare the expressiveness of admissible, complete, preferred, and stable semantics in
AFs, SETAFs, and ADFs, but do not provide an explicit characterization of the sets that can be realized
as SETAFs. Moreover, the setting with 3-valued semantics is more restrictive than the extension-based
view and thus these results do not translate to the original definition of Dung AF and SETAF semantics.
The work of Polberg [17, Section 4.4.1] studies translations between different abstract argumentation
formalisms in the extension-based setting. It already shows that there are certain sets of extensions that
can be realized by SETAFs but cannot be realized with AFs, in order to show that certain translations
are impossible. However, the exact expressiveness of SETAFs is not investigated any further. Finally,
signatures of further ADF subclasses have been investigated in [5]. However, their focus is on particular
classes of symmetric ADFs and thus their results are not directly related to our investigations.
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Further related work. Another measurement for the expressibility of formalisms is provided via com-
plexity analysis. It is worth to notice that recent results [11] show that reasoning in SETAFs has the same
complexity as reasoning in AFs [9]. In fact, this holds for all the semantics we consider here. This shows
that studying and comparing the signatures of these formalisms provides a much more fine-grained pic-
ture concerning their expressibility.

In a recent paper, Flouris and Bikakis [13] investigate semantics of SETAFs and their relations. They
extended semi-stable, stage, ideal and eager semantics to SETAFs, and provide three-valued labeling-
based semantics for SETAFs.3 Moreover, they consider a translation from SETAFs to AFs (similar to
that in [17]) and investigate the relations between extensions of the SETAF and extensions of the cor-
responding AF under the different semantics. While we did not consider ideal and eager semantics in
our work, both semantics always propose a unique extension (for finite SETAFs) and thus we have
�∞

ideal = �k
ideal = �∞

eager = �k
eager = {S | |S| = 1} for all integers k � 1, cf. Proposition 1.

We also would like to mention here some work that considers collective attacks in a different manner
than it is done in SETAFs. Bochman [2], for instance, extends Dung AFs such that sets of arguments
can attack sets of arguments (i.e., it is not a single argument that is attacked). This however, leads to
the development of new semantics and thus a direct application of our results is not possible. Finally,
there is the work by Verheij rooted in dialectical argumentation which introduces several frameworks
that allow for collective attacks [22–25]. Again, all these systems come with there own semantics, i.e.
not generalizing Dung AF semantics, and thus a direct application of our results is not possible.

Future work. One direction of future research is to consider signatures for subclasses of SETAFs.
Besides syntactic restrictions (for instance, generalizations of bipartite or symmetric AFs), we would
like to study the already mentioned concept of compact SETAFs. This includes an analysis for com-
pact SETAFs for admissible and complete semantics, and moreover, the question whether the relations
between signatures for compact AFs as provided by [1] carry over to compact k-SETAFs. Another di-
rection of research is to understand the interplay between semantics in SETAFs. As we have mentioned
above, results for Dung AFs in this respect have been provided in [8] via the concept of 2-dimensional
signatures. It is an interesting question to which extent these results apply to SETAFs as well.
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