
Argument & Computation 13 (2022) 3–47 3
DOI 10.3233/AAC-200536
IOS Press

A logic of defeasible argumentation:
Constructing arguments in justification logic

Stipe Pandžić
Department of Theoretical Philosophy, Faculty of Philosophy & Bernoulli Institute for Mathematics,
Computer Science and Artificial Intelligence, Faculty of Science and Engineering, University of
Groningen, The Netherlands
E-mail: stipepandzic@yahoo.com

Abstract. In the 1980s, Pollock’s work on default reasons started the quest in the AI community for a formal system of
defeasible argumentation. The main goal of this paper is to provide a logic of structured defeasible arguments using the language
of justification logic. In this logic, we introduce defeasible justification assertions of the type t : F that read as “t is a defeasible
reason that justifies F ”. Such formulas are then interpreted as arguments and their acceptance semantics is given in analogy
to Dung’s abstract argumentation framework semantics. We show that a large subclass of Dung’s frameworks that we call
“warranted” frameworks is a special case of our logic in the sense that (1) Dung’s frameworks can be obtained from justification
logic-based theories by focusing on a single aspect of attacks among justification logic arguments and (2) Dung’s warranted
frameworks always have multiple justification logic instantiations called “realizations”.

We first define a new justification logic that relies on operational semantics for default logic. One of the key features that is
absent in standard justification logics is the possibility to weigh different epistemic reasons or pieces of evidence that might
conflict with one another. To amend this, we develop a semantics for “defeaters”: conflicting reasons forming a basis to doubt
the original conclusion or to believe an opposite statement. This enables us to formalize non-monotonic justifications that
prompt extension revision already for normal default theories.

Then we present our logic as a system for abstract argumentation with structured arguments. The format of conflicting
reasons overlaps with the idea of attacks between arguments to the extent that it is possible to define all the standard notions of
argumentation framework extensions. Using the definitions of extensions, we establish formal correspondence between Dung’s
original argumentation semantics and our operational semantics for default theories. One of the results shows that the notorious
attack cycles from abstract argumentation cannot always be realized as justification logic default theories.

Keywords: Abstract argumentation, structured argumentation, Dung’s framework, justification logic, default reasoning

1. Introduction

Defeasible reasoning is a key concept in the development of computational models of argument. De-
feasible reasons became a topic of interest for AI researchers largely due to Pollock’s work [63], which
brought closer together the ideas of non-monotonic reasoning from AI and defeasible reasoning from
philosophy. To highlight the importance of defeasibility for the study of reasoning, we use a variant
of Pollock’s “red-looking table” vignette [63], previously discussed by Chisholm [28]. Suppose you are
standing in a room where you see red objects in front of you. This can lead you to infer that a red-looking
table in front of you is in fact red. However, the reason that you have for your conclusion is defeasible.
For a typical defeat scenario, suppose you learn that the room you are standing in is illuminated with
red light. This gives you a reason to doubt your initial reason to conclude that the table is red, though it
would not give you a reason to believe that it is not red. However, if you were to learn, instead, that the

1946-2166 © 2022 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:stipepandzic@yahoo.com
https://creativecommons.org/licenses/by-nc/4.0/

4 S. Pandžić / Logic of defeasible argumentation

undercut

rebuttal
CLAIM

Fig. 1. The types of defeat: undercut and rebuttal.

original factory color of the table is white, then you would also have a reason to believe the denial of the
claim that the table is red.

The example specifies two different ways in which reasons defeat other reasons: the former is known
as undercut and the latter as rebuttal, according to Pollock’s [63] terminology. Learning additional in-
formation about the light conditions incurs suspending the applicability of your initial reason to believe
that the table is red. In contrast, learning that there is a separate reason to consider that the table is not
red will not directly compromise your initial reason itself. The differences between undercutting and
rebutting reasons are illustrated in Fig. 1.

An argument relying on default reasons is itself regarded as defeasible. The formal study of defeasible
arguments is already well-developed, most prominently in the frameworks for structured argumentation
represented in the 2014 special issue of this journal (vol. 5, issue 1): ABA [76], ASPIC+ [57], DeLP
[42] and deductive argumentation [20].1 These frameworks differ in the way they formalize argument
structures and their defeasibility. Importantly, although all these frameworks use logic as a part of their
formalization, none of them can be characterized as a logic of defeasible arguments. This is what will
be done in the current paper. It presents a logic of defeasible arguments using the language of justifica-
tion logic introduced by Artemov [5,6]. Among many advantages of formalizing arguments in a logical
system, for now we will point out only a couple of the more obvious ones. First, our logic of arguments
is a full-fledged normative system with definition(s) of logical consequence, which ipso facto enables
satisfaction of structured argumentation postulates without needing to further constrain the system’s be-
haviour. We will show this in Section 5. Secondly, our logic is not a framework for specifying other
systems and it does not use any meta-level rules from an unspecified system. Instead, we formalize ar-
guments using exclusively object level formulas and inference rules. From a computational perspective,
such system is desirable as a way to manipulate arguments at a purely symbolic level.

The idea of finding a logical system with arguments as object-level formulas has already influenced the
formal argumentation community. One especially interesting contribution in this direction is the logic
of argumentation (LA) by Krause, Ambler, Gøransson and Fox [51]. These authors present a system in
which inference rules manipulate labelled formulas interpreted as pairs of arguments and formulas2

arg : formula.

Our logic advances the search for the logic of arguments and builds on the take-away message from
[51, p. 129] that we should take arguments “to be first class objects themselves”. By refining the way

1The acronyms ABA, ASPIC and DeLP refer to “Assumption Based Argumentation”, “Argumentation Service Platform with
Integrated Components” and “Defeasible Logic Programming”, respectively.

2The system has been used to develop applications that support medical diagnosis [31,40]. In LA, labels arg are interpreted
as terms in the typed λ-calculus [14]. Thanks to Artemov [6, p. 7], we know that justification logic advances typed combinatory
logic and typed λ-calculus allowing for e.g. iteration of type assignments and types that depend on terms.

S. Pandžić / Logic of defeasible argumentation 5

in which we handle defeat among arguments, we make it possible to determine argument acceptance at
a purely symbolic level and without using any measures of acceptability extraneous to the logic itself.
This is one of the desiderata that the LA authors left open [51, § 6].

In order to formalize arguments, we embrace the strategy of using a formal language with labelled
formulas. In justification logic, such labelled formulas represent pairs of reasons and claims. They are
written as the so called “justification assertions” t : F that read as “t is a reason that justifies formula
F ”. The first justification logic was developed as a logic of proofs in arithmetic (logic of proofs, LP) by
Artemov [6].3 On the original reading of pairs t : F , the term t encodes some Peano arithmetic derivation
for the statement F . Thus, the original logic of proofs does in fact give one particular formalization
of arguments, namely a formalization of non-defeasible arguments. Accordingly, subsequent epistemic
interpretations of justification logics provided a formal framework to deal with justifications and reasons,
albeit non-defeasible ones. Even so, the underlying language of justification logic offers a powerful
formal tool to model reasons as objects with operations. In this paper, the language of justifications is
used to study defeasible reasons.

In Section 3, we will present the benefits of using this logical language when justification assertions
are given with argumentation semantics. The language of justifications is expressive enough to combine
desirable features of the mentioned structured argumentation frameworks in a single system. Here are
some outcomes that a reader can expect from our approach:

• We show that default justification logic fulfills Pollock’s project of defining a single formal system
with strict and defeasible rules reified through deductive and default reasons. The four mentioned
approaches dealing with structured argumentation are useful generalizations on how to understand
arguments, but the problem we address here is how to unify their meta-analysis into a logical theory
of undercut and rebuttal.

• Our system abstracts from the content of arguments, but, unlike ASPIC+ or ABA, represents ar-
guments in the object language with default reasons. Compared to the level of abstraction in our
logic, frameworks like ASPIC+ and ABA could be justly considered as meta-approaches to argu-
mentation. As a most important contribution, our logic does not abstract from reasons. Reasons are
represented as separate terms alongside the usual representation of statements and inference rules.

• Although ABA, ASPIC+ and deductive argumentation can generate Dung’s frameworks, they can-
not be said to provide a logical realization of Dung’s frameworks because they do not define a
specific logical system. In default justification logic, Dung’s attack graphs, whose nodes can be
interpreted as existential statements of the type “There is some argument”, are realized with an
explicit logical formula t : F ascribed to each node of an attack graph. Determining acceptability
of arguments through a normative system with logical consequence promises improvements in the
area of computational argumentation.

• The logic we present here is capable of capturing all the components of Toulmin’s six-fold ar-
gumentation scheme, with the exception of what he calls “qualifiers”. The presence of elements
like “warrant” and “backing” leads to a multi-layered understanding of an argument.4 None of the
mentioned structured argumentation frameworks gives a formalization of the added components

3The idea of explicit proof terms as a way to find the semantics for the provability calculus S4 dates to 1938 and Gödel’s
lecture published in 1995 [43].

4Toulmin’s book The Uses of Argument [77] is an acclaimed anti-formalistic argumentation monograph that separates logical
methods and argumentation theory [81, p. 219]. Toulmin himself stated [77, p. vii] that the aim of his book was “to criticize the
assumption, made by most Anglo-American academic philosophers, that any significant argument can be put in formal terms”.
One of the aims of this paper is to reunite logical methods and argumentation theory.

6 S. Pandžić / Logic of defeasible argumentation

of arguments such as warrants and backings. In contrast, our logic represents three layers of argu-
ments which are codified in reason terms t justifying formulas F that are not necessarily explicitly
represented at every stage of manipulating the formula t : F in the semantics. 5

• Justification logic enables us to integrate default logic and argumentation theory. Our logic remedies
an important limitation of constructing arguments as Reiter’s defaults [81, p. 227]: Reiter’s defaults
are givens and it is not possible to provide reasons for why they hold. Introducing justification logic
as the basic language of default rules supplies them with a formal version of Toulmin’s warrants
and provides a way to further reason about the acceptability of rules. In this way, default logic with
warrants is able to subsume formal argumentation semantics.6

The rest of this article is structured as follows. The next section introduces the basic justification logic
system for reasoning with certain information. Then we use this formal system to introduce default
justifications based on default rules with justification formulas. The “red table” example will be used
as a running example that illustrates the use of such default rules. A preliminary survey of this system
was carried out in [60]. The system enables us to interpret formulas of the type t : F as structured
arguments with mutual attacks and to define the extension notions of Dung’s framework in justification
logic. We show that, by abstracting from the structure of arguments, we can obtain Dung’s frameworks
from the logic of default justifications and, vice versa, our logic provides realization procedures for
Dung’s frameworks that assign justification formulas to Dung’s arguments. Finally, we discuss how our
logic complies with the rationality postulates for structured argumentation frameworks proposed in [1].

2. Justification logic

Soon after Artemov developed the logic of proofs (LP) in [6], a possible worlds semantics for this
logic was proposed by Fitting [33,34] in order to align justification logics within the family of modal
logics. Syntactic objects that represent mathematical proofs in the logic of proofs LP are then more
broadly interpreted as epistemic or doxastic reasons by Fitting [33,34] and Artemov [11]. A distinctive
feature of justification logic taken as epistemic logic is replacing belief and knowledge modal operators
that precede propositions (�F for “F is known”) by proof terms or, in a generalized epistemic context,
justification terms. On top of the usual possible world condition for the truth of t : F that F is true in all
accessible alternatives, Fitting’s semantics requires that the reason t is admissible for formula F .

Although justification logic introduced the notions of justification and reason into epistemic logic, it
does not formally study the ways of defeat among reasons and it takes admissibility of reasons as a
primitive notion. Given the pervasiveness of commonsense reasoning, we know that only a restricted
group of epistemic reasons may be treated as completely immune to defeaters: mathematical proofs.
But mathematical reasons form only a small part of possible reasons to accept a statement and, being a
highly-idealized group of reasons, they have rarely been referred to as reasons. Fitting’s possible worlds
semantics for justification logics was meant to model not only mathematical and logical truths, but also

5With the help of these distinctions, we are able to verify apparently conflicting claims about the nature of defeat in the
literature. For example, ASPIC+ correctly models undercut by referring to the exclusion of a rule that does not apply in a
given context. However, at the “lower” level of the argument backing, undercut eliminates an assumption made in justifying
that rule — which suggests that this type of attack might be reduced to an assumption attack, as claimed in e.g. ABA. Such
meta-disagreements on the nature of defeasibility can be reconciled in a fine-grained account of arguments.

6Relations between Reiter’s default logic [72] and argumentation are explored in Dung’s seminal paper [30], but the idea of
modelling arguments in default logic has been initiated earlier in the AI literature e.g. by [67].

S. Pandžić / Logic of defeasible argumentation 7

facts of the world or “inputs from outside the structure” [36, p. 111]. Yet the original intent of the
first justification logic LP to deal with mathematical proofs, together with the fact that mathematics is
cumulative, is reflected in its epistemic generalizations. Accordingly, reasons that justify facts of the
world were left encapsulated within a framework for non-defeasible mathematical proofs.7

Non-mathematical reasons and justifications are commonly held to depend on each other in acquiring
their status of “good” reasons and justifications. Still, the questions related to non-ideal reasons have
only recently been raised in the justification logic literature.8 In the present paper we develop a non-
monotonic justification logic with justification terms such that (1) their defeasibility can be tracked from
the term structure and (2) other justifications can defeat them by means of an undercut or a rebuttal. Our
logic combines techniques from default logic, justification logic and formal argumentation to represent
conflicts of reasons produced in less-than-ideal ways.

2.1. The logic of non-defeasible reasons JT

Justification logics with modal semantics opened up a possibility to study formal systems for non-
defeasible epistemic reasons. These systems include an explicit counterpart to the modal Truth axiom:
�F → F , read as “If F is known, then F ”.9 In order to introduce our system of default reasons, we
build upon the existing systems for non-defeasible reasons. In this respect, one can see our strategy as
being analogous to the standard default logic approach [3,72] where agents reason from known or certain
information. This section gives preliminaries on one of the logics of non-defeasible reasons.

What are the formal ingredients of justification logics? The language of justifications builds on the
language of propositional logic, which is augmented by formulas labelled with reason terms (t : F)
and a grammar of operations on such terms. Reason terms are constructed from constants and variables,
combined with the use of operations on terms. Intuitively, constants justify logical postulates and vari-
ables justify contingent facts or inputs outside the structure. The basic operation of standard justification
logics is application. Intuitively, application produces a reason term (u · t) for a formula G which is
a syntactic “imprint” of the modus ponens step from F → G and F to G for some labelled formulas
u : (F → G) and t : F . We say that the term u has been applied to the term t to obtain the term (u·t). As
a distinctive feature of justification terms, the history of reasoning steps taken in producing such terms
is recorded in their structure.

Another common operation on justification terms is sum. Intuitively, if one takes that a reason term t

justifies some formula F , then one is allowed to affix any other reason u term by the use of sum so that the
new reason term (t +u) still justifies F . On an epistemic interpretation, this operation can be informally
motivated as follows [9, Section 2.2]: t and u might be thought of as two volumes of an encyclopedia that
are used as evidence for some statement F . If one volume justifies F , then adding the other volume to
the corpus of evidence does not compromise the justification for F . The axioms regulating the sum and
application operations are formally described in this section, following the definition of the language.

7See [17, p. 620] for a discussion on the difference between mathematical proofs and persuasive arguments. For a more
encompassing overview of standard justification logics see [10] or [53].

8The first proposed formalism that includes the idea of evidence elimination specific to a multi-agent setting is by Renne [73].
Baltag, Renne and Smets [12,13] bring together ideas from belief revision and dynamic epistemic logic and offer an account of
good and conclusive evidence. Several approaches ([48,49,55,59]) start from the idea of merging probabilistic degrees of belief
with justification logic, while [32] and [74] develop a possibilistic justification logic. In [39], Fitting introduces a paraconsistent
formal system with justification assertions where contradictions can be interpreted as conflicting evidence.

9In fact, in [35, p. 156] we find three different truth axiom schemes. Varieties of systems with the truth axiom have been
extensively studied and described in e.g. [35] and [52].

8 S. Pandžić / Logic of defeasible argumentation

Since we assume in the next section that an agent starts to reason from indefeasible information,
we want our underlying logic to represent “factive” or “truth-inducing” reasons. However, additional
constraints on the system are not necessarily needed to introduce the system of default reasons. For
the sake of formal clarity, we leave out standard axioms and operations that ensure positive or negative
introspection, although these can be easily added. Accordingly, an adequate logical account of factive
justifications is the logic JT, a justification logic with the axiom schemes that are explicit analogues of
the axiom schemes for the modal logic T.10 Intuitively, a reader can think of the JT logic as modelling
an idealized arguer whose arguments fully exhaust all the possible information regarding claims and
who, therefore, gives indisputable reasons for those claims. Note that there are also weaker variants
of justification logic that do not assume factivity of reasons. These systems are not adequate for our
purposes since we want to build defeasible arguments from a base of fact-inducing reasons — just as in
standard default logic where reasoning starts from non-defeasible information or facts [3, p. 19]. After
we define the underlying logic that represents non-defeasible argumentation, we develop our novel non-
monotonic approach to reasons and provide this logic with the semantics for defeasible argumentation.

2.1.1. Syntax
Syntactically, knowledge operators take the form of justification terms preceding formulas: t : F .

Given that “t” is a justification term and that “F ” is a formula, we write “t : F ”, where t is informally
interpreted as a reason or justification for F . We define the set T m that consists of exactly all justifica-
tion terms, constructed from variables x1, . . . , xn, . . . and proof constants c1, . . . , cn, . . . by means of
operations · and +. The grammar of justification terms is as follows:

t ::= x | c | (t · t) | (t + t)

where x is a variable denoting an unspecified justification and c is a proof constant. Proof constant c is
atomic within the system. For a justification term t , a set of subterms Sub(t) is defined by induction on
the construction of t . Formulas of JT are defined by the following Backus-Naur form:

F ::= � | P | (F → F) | (F ∨ F) | (F ∧ F) | ¬F | t : F

where P ∈ P and P is a countable set of atomic propositional formulas and t ∈ T m. The set Fm

consists of exactly all formulas.

2.1.2. Axioms and rules of JT
We can now define the logic of non-defeasible reasons JT. The logic JT is the weakest logic with

“truth inducing” justifications containing axiom schemes for the two basic operations · and +.11 These
are the axioms and rules of JT:

A0 All the instances of propositional logic tautologies from Fm

A1 t : (F → G) → (u : F → (t · u) : G) (Application)
A2 t : F → (t + u) : F ; u : F → (t + u) : F (Sum)
A3 t : F → F (Factivity)

10Justification logic JT was first introduced by [21]. Justification logics with equivalent axiom schemes to the logic we define
in this section are also defined and investigated in [52] and [35].

11As Fitting [34,35] shows, we can also technically consider dropping the operator + from our language. In this way we
obtain the logic that he calls LP−(T) [35, p. 162].

S. Pandžić / Logic of defeasible argumentation 9

R0 From F and F → G infer G (Modus ponens)
R1 If F is an axiom instance of A0-A3 and cn, cn−1, . . . , c1 proof constants, then infer cn : cn−1 : · · · :

c1 : F (Iterated axiom necessitation)

Proof constants are justifications of basic logic axioms. In justification logics, basic logic axioms
are taken to be justified by virtue of their status within a system and their justifications are not further
analyzed. Moreover, all the justification assertions of the format c : F are themselves postulated to be
justified by a constant, where proof constants can be nested at any depth.12 A set of instances of all such
canonical formulas in justification logic is called a Constant Specification (CS) set:

Definition 1 (Constant specification). The Constant Specification set is the set of instances of rule R1.

CS = {cn : cn−1 : · · · : c1 : F | F is an axiom instance of A0–A3,

cn, cn−1, . . . , c1 are proof constants and n ∈ N}
The use of constants in R1 above is unrestricted. In such format, the rule generates a set of formulas

where each axiom is justified by any constant at any depth. The set of formulas obtained in this way is
called the Total Constant Specification (T CS) set. A more appropriate name for the logic above would
therefore be JTTCS. It is possible to put restrictions on the use of constants in rule R1 in order to consider
a limited class of CS-sets. We restrict the constant specification set CS following a simple requirement
that each axiom instance has its own proof constant.13

Restriction 2. CS is

• Axiomatically appropriate: for each axiom instance A, there is a constant c such that c : A ∈ CS
and for each formula cn : cn−1 : · · · : c1 : A ∈ CS such that n � 1, there is a constant cn+1 such that
cn+1 : cn : cn−1 : · · · : c1 : A ∈ CS;

• Injective: each proof constant c justifies at most one formula.

The logic JTCS is defined by replacing the iterated axiom necessitation rule of JTTCS with the follow-
ing rule dependent on Restriction 2:

R1* If F is an axiom instance of A0-A3 and cn, cn−1, . . . , c1 proof constants such that cn : cn−1 : · · · :
c1 : F ∈ CS , then infer cn : cn−1 : · · · : c1 : F

We say that the formula F is JTCS-provable (JTCS � F) if F can be derived using the axioms A0-A3
and rules R0 and R1*.

2.1.3. Semantics
The semantics for JTCS is an adapted version of the semantics for the logic of proofs (LP) given by

[56].14 Intuitively, the semantics extends that of propositional logic with a function that ascribes reason

12This is required to ensure that standard properties as Internalization [6] hold.
13For example, one such constant specification is defined by Artemov [8, p. 31]: “cn : A ∈ CS iff A is an axiom and n is the

Gödel number of A”. The choice of CS is not trivial. If we define an empty CS , that is, JT∅, we eliminate logical awareness
for agents, while defining an infinite CS imposes logical omniscience. Moreover, different restrictions could affect complexity
results, as discussed in e.g. [54].

14The condition for justifications of the type ‘!t’ are not needed in the JTCS semantics. Mkrtychev’s model can be thought of
as a single world justification model. Since the notion of defeasibility introduced in the next section turns on the incompleteness
of available reasons, our system eliminates worries about the trivialization of justification assertions that otherwise arise from
considering justifications as modalities in a single-world model.

10 S. Pandžić / Logic of defeasible argumentation

terms to formulas in such a way that it respects the sum and application axioms and some constant
specification CS that satisfies Restriction 2.

Definition 3 (JTCS model). We define a function reason assignment based on CS , ∗(·) : T m → 2Fm,
a function mapping each term to a set of formulas from Fm. We assume that it satisfies the following
conditions:

(1) If F → G ∈ ∗(t) and F ∈ ∗(u), then G ∈ ∗(t · u)

(2) ∗(t) ∪ ∗(u) ⊆ ∗(t + u)

(3) If c : F ∈ CS, then F ∈ ∗(c)

A truth assignment v : P → {True, False} is a function assigning truth values to propositional formulas
in P . We define the interpretation I as a pair (v, ∗). For an interpretation I, |= is a truth relation on the
set of formulas of JTCS.

For any formula F ∈ Fm, I |= F iff

• For any P ∈ P , I |= P iff v(P) = True
• I |= ¬F iff I �|= F

• I |= F → G iff I �|= F or I |= G

• I |= F ∨ G iff I |= F or I |= G

• I |= F ∧ G iff I |= F and I |= G

• I |= t : F iff F ∈ ∗(t)

An interpretation I is reflexive iff the truth relation for I fulfills the following condition:

• For any term t and any formula F , if F ∈ ∗(t), then I |= F .

In the absence of the reflexivity condition, it is possible that I |= t : F and I |= ¬F . While reasons
in reflexive models can be taken as conclusive or factive, without the reflexivity condition reasons are
interpreted as being only admissible. In possible worlds semantics, the admissibility condition F ∈ ∗(t)

for the truth of t : F is supplemented with the condition that F holds in all accessible alternatives [34,
p. 4]. The consequence relation of the logic of factive reasons JTCS is defined on reflexive interpretations:

Definition 4 (JTCS consequence relation). � |= F iff for all reflexive interpretations I, if I |= B for all
B ∈ �, then I |= F .

Due to Restriction 2, the consequence relation for JTCS is weaker than the JTTCS consequence rela-
tion.

Definition 5 (JTCS closure). JTCS closure is given by ThJTCS(�) = {F |� |= F }, for a set of formulas
� ⊆ Fm and the JTCS consequence relation |= defined above.

For any closure ThJTCS(�), it follows that CS ⊆ ThJTCS(�). Later, we also make use of a weaker closure
Th− for which a reason assignment function ∗(·) does not satisfy condition (2) and CS is relativized to
its subset CS− such that CS− does not contain any formula cn : cn−1 : · · · : c1 : F , where F is an
instance of A2 (cf. [34]).

We can prove that the compactness theorem holds for the JTCS semantics.15 Compactness turns out
to be a useful result in defining the operational semantics of default reason terms. We first say that a set

15A compactness proof for LP satisfiability in possible world semantics is given in [34]. A similar proof is given for JTCS
in the Appendix to provide a self-contained introduction to JTCS in this paper.

S. Pandžić / Logic of defeasible argumentation 11

of formulas � is JTCS satisfiable iff there is an interpretation I that meets CS (via the third condition of
Def. 3) for which all the members of � are true. A set � is JTCS-finitely satisfiable if every finite subset
�′ of � is JTCS satisfiable.

Theorem 6 (Compactness). A set of formulas is JTCS satisfiable iff it is JTCS-finitely satisfiable.

Proof. See the Appendix. �

3. A logic of default justifications

In this section, we develop a system based on JTCS, in which an agent forms default justifications rea-
soning from incomplete information. Justification logic JTCS is capable of representing the construction
of a new piece of evidence out of existing ones by application (“·”) or sum (“+”) operation. However, to
extend an incomplete JTCS theory, we need to import reasons that are defeasible. We come up with both
a way in which such reasons are imported and a way in which they might get defeated. These possibili-
ties are opened up by introducing concepts familiar from defeasible reasoning literature into justification
logic.

We start from the above-defined language of the logic JTCS and develop a new variant of justification
logic JTCS that enables us to formalize the import of reasons outside the structure as well as to formalize
defeaters or reasons that question the plausibility of other reasons.

Our logical framework of defeasible reasons represents both factive reasons produced via the axioms
and rules of JTCS and plausible reasons based on default assumptions that “usually” or “typically” hold
for a restricted context. We follow the standard way [72] of formalizing default reasoning through default
theories to extend the logic of factive reasons with defeasible reasons. Building on the syntax of JTCS,
we introduce the definition of the default theory:

Definition 7 (Default Theory). A default theory T is defined as a pair (W, D), where the set W is a
finite set of JTCS formulas and D is a countable set of default rules.

Each default rule is of the following form:

δ = t : F :: (u · t) : G

(u · t) : G
.

The informal reading of the default δ is: “If t is a reason justifying F , and it is consistent to assume that
(u · t) is a reason justifying G, then (u · t) is a defeasible reason justifying G”. The formula t : F is
called the prerequisite and (u · t) : G is both the consistency requirement16 and the consequent of the
default rule δ. We refer to each of the respective formulas as pre(δ), req(δ) and cons(δ). For the set of
all consequents from the entire set of defaults D, we use cons(D) = {cons(δ) | δ ∈ D}. The default rule
δ introduces a unique reason term u, which means that, for a default theory T , the following holds:

(1) For any formula v : H ∈ ThJTCS(W), u �= v;
(2) For any formula H ∈ W , u : (F → G) is not a subformula of H and
(3) For any default rule δ′ ∈ D such that δ′ = t ′:F ′::(u′·t ′):G′

(u′·t ′):G′ , if u = u′, then F = F ′ and G = G′.

16In order to avoid any misunderstanding, we avoid the name justification for the formula req(δ) since justification logic
terms are commonly known as justifications.

12 S. Pandžić / Logic of defeasible argumentation

Note that the term u does not need to be fresh in the sense that it cannot appear in two different de-
faults’ consequents.17 Default reasons may refer to other default reasons and this possibility is crucial to
represent interactions among defaults. The unique reason term u witnesses the defeasibility of the prima
facie reason (u · t) for G. Whether a reason actually becomes defeated or not depends on other default-
reason formulas from cons(D). Other defaults might question both the plausibility of the reasoning that
u codifies and the plausibility of the proposition G. Section 3.1 gives an example of a concrete JTCS

derivation that instantiates unique reason terms.
A formal way of looking at a default reason of this kind is that (u · t) codifies the default step we

apply on the basis of the known reason t . A distinctive feature of such rules is generating justification
terms as if it were the case that cons(δ) was inferred by using an instance of the application axiom:
u : (F → G) → (t : F → (u · t) : G). The difference is that an agent cannot ascertain that an available
reason justifies applying the conditional F → G without restrictions. Still, sometimes a conclusion
must be drawn without being able to remove all of the uncertainty as to whether the relevant conditional
actually applies or not. In such cases, an agent turns to a plausible assumption of a justified “defeasible”
conditional F → G that holds only in the absence of any information to the contrary. While the internal
structure of the default reason (u · t) indicates that it is formed on the basis of the formula u : (F → G),
the defeasibility of (u · t) lies in the fact that the formula u : (F → G) is not a part of the same evidence
base as (u · t) : G.

One can think of our use of the operation “·” in default rules as the same operation that is used in
the axiom A1, only being applied on an incomplete JTCS theory. Similarly, we can follow Reiter [72,
p. 82] and Antoniou [3, p. 21] in thinking of a standard default rule such as A:B

B
as merely saying that an

implication A ∧ ¬C ∧ ¬D · · · → B holds, provided that we can establish that a number of exceptions
C, D, . . . does not hold. However, if the rule application context is defined sufficiently narrowly, the rule
is classically represented as an implication A → B. Generalizing on such interpretation of defeasibility,
our defaults with justification assertions can be represented as instantiations of the axiom A1 applied in
a sufficiently narrow application context.

Analogous to standard default theories, we take the set of facts W to be underspecified with respect
to a number of facts that would otherwise be specified for a complete JTCS interpretation. Besides
simple facts, our underlying logic contains justification assertions. To deal with justification assertions,
a complete JTCS interpretation would also further specify whether a reason is acceptable as a justification
for some formula. Therefore, except the usual incomplete specification of known propositions, default
justification theories are also incomplete with respect to the actual specification of the reason assignment
function. For our default theory, this means that, except the valuation v, default rules need to approximate
an actual reason-assignment function ∗(·).

Let us again consider the red-looking-table example from the Introduction to see how prima facie
reasons and their defeaters are imported through default rules.

Example 8. Let R be the proposition “the table is red-looking” and let T be the proposition “the table
is red”. Take ta and ua to be some specific individual justifications. The reasoning whereby one accepts
the default reason (ua · ta) might be described by the following default rule:

δa = ta : R :: (ua · ta) : T

(ua · ta) : T
.

17Compare Artemov’s [8, p. 30] introduces “single-conclusion” (or “pointed”) justifications that enable handling “justifica-
tions as objects rather than as justification assertions”.

S. Pandžić / Logic of defeasible argumentation 13

We can informally read the default as follows: “If ta is a reason justifying that a table is red looking and
it is consistent for you to assume that this gives you a reason (ua · ta) justifying that the table is red, then
you have a defeasible reason (ua · ta) justifying that the table is red”. Suppose you then get to a belief
that “the room you are standing in is illuminated with red light”, a proposition denoted by L. For some
specific justifications tb and ub, the following rule gives you an undercutting reason for (ua · ta):

δb = tb : L :: (ub · tb) : ¬[ua : (R → T)]
(ub · tb) : ¬[ua : (R → T)] ,

where the rule is read as “If tb is a reason justifying that the lighting is red and it is consistent for you
to assume that this gives you a reason (ub · tb) denying that the reason ua justifies that if the table is
red-looking, then it is red, then you have a defeasible reason (ub · tb) denying that the reason ua justifies
that if the table is red-looking, then it is red”. The formula cons(δb) denies your reason to conclude
cons(δa), although note that it is not directly inconsistent with cons(δa). In Section 3.2, we define what
undercutting defeaters are semantically.

Suppose that instead of learning about the light conditions in the room as in δb, you learn that the
original factory color of the table is white. This would also prompt a rebutting defeater – a separate
reason to believe the contradicting proposition ¬T . Let W denote the proposition “the table is originally
white” and let tc and uc be some specific justifications. We have the following rule:

δc = tc : W :: (uc · tc) : ¬T

(uc · tc) : ¬T
.

The rule reads as “If tc is a reason justifying that the table is originally white and it is consistent for
you to assume that this gives you a reason (uc · tc) justifying that the table is not red, then you have a
defeasible reason (uc · tc) justifying that the table is not red”. Note that the formula cons(δc) does not
directly mention any of the subterms of (ua · ta). The defeat among the reasons (ua · ta) and (uc · tc)

comes from the fact that they cannot together consistently extend an incomplete JTCS theory.
The entire example can be described by the following default theory T0 = (W0, D0), where W0 =

{ta : R, tb : L, tc : W } and D0 = {δa, δb, δc}.
Each defeater above is itself defeasible and considered to be a prima facie reason. The way in which

prima facie reasons interact is further specified through their role in the operational semantics. By the
end of this section, we explain the workings of the operational semantics that determines the acceptable
reasons given a definition of a default theory.

3.1. Operational semantics of default justifications

The logic of default justifications we develop here relies on the idea of operational semantics for stan-
dard default logics presented in [3]. Let us informally describe the role of the steps of operational se-
mantics in determining acceptable reasons. First, in the operational part of the semantics, default reasons
are taken into consideration at face value. Then we check dependencies among default reasons in order
to find out what are the non-defeated reasons. Finally, a rational agent includes in its knowledge base
only acceptable pieces of information that are based on those reasons that are ultimately non-defeated.
An important part of the latter step is an acceptance semantics analogous to the argument acceptance
semantics of formal argumentation frameworks.

14 S. Pandžić / Logic of defeasible argumentation

The basis of operational semantics for a default theory T = (W, D) is the procedure of collecting
new, reason-based information from the available defaults. A sequence of default rules � = (δ0, δ1, . . .)

is a possible order in which a list of default rules without multiple occurrences from D is applied (� is
possibly empty). Applicability of defaults is determined in the following way:

Definition 9 (Applicability of Default Rules). For a set of JTCS-closed formulas � we say that a default
rule δ = t :F ::(u·t):G

(u·t):G is applicable to � iff

• t : F ∈ � and
• ¬(u · t) : G /∈ �.18

Reasons are brought together in the set of JTCS formulas that represents the current evidence base:

Definition 10. In(�) = ThJTCS(W ∪ {cons(δ) | δ occurs in �}).
The set In(�) collects reason-based information that is yet to be determined as acceptable or unac-

ceptable depending on the acceptability of reasons and counter-reasons for formulas.
We need to further specify sequences of defaults that are significant for a default theory T : default

processes. For a sequence �, the initial segment of the sequence is denoted as �[k], where k stands for
the number of elements contained in that segment of the sequence and where k is a minimal number of
defaults for the sequence �. Any segment �[k] is also a sequence. Intuitively, the set of formulas In(�)

represents an update of the incomplete evidence base W where the new information is not yet taken to
be granted. Using the notions defined above, we can now get clear on what a default process is:

Definition 11 (Process). A sequence of default rules � is a process of a default theory T = (W, D) iff
every k such that δk ∈ � is applicable to the set In(�[k]), where �[k] = (δ0, . . . δk−1).

The kind of process that we are focusing on here is called closed process and we say that a process
� is closed iff every δ ∈ D that is applicable to In(�) is already in �. For default theories with a finite
number of defaults, closure for any process � is obviously guaranteed by the applicability conditions.
However, if a set of defaults is infinite, then this is less-obvious.

Lemma 12 (Infinite Closed Process). For a theory T = (W, D) and infinitely many k’s, an infinite
process � is closed iff for every default rule δk applicable to the set In(�[k]), δk ∈ �.

Proof. From the compactness of JTCS semantics we have that if a set In(�[k]) ∪ {req(δ)} is satisfiable
for all the finite k’s, it is also satisfiable for infinitely many k’s. Therefore the applicability conditions
for a rule δ are equivalent to the finite case. �

To illustrate how the basic notions of the operational semantics work, Fig. 2 shows the process tree
for the default theory T0 from our running Example 8.

The figure shows that T0 has four closed processes: �1 = (δa, δb), �2 = (δb, δa), �3 = (δb, δc) and
�4 = (δc, δb). The In-sets In(�1) and In(�2) are equal and JTCS-inconsistent with In(�3) and In(�4),
which are also equal. Whenever two sets In(�) and In(�′) are not equal, they are JTCS-inconsistent.
We can already see that JTCS-inconsistent In-sets capture the idea of rebuttal in our semantics, as intro-
duced informally in Example 8. For example, JTCS-inconsistent In-sets In(�1) and In(�4) reflect the

18We follow the convention of omitting parentheses around the expression (u · t) : G and interpret the negation as binding
the entire expression (u · t) : G. The convention is also familiar from modal logics.

S. Pandžić / Logic of defeasible argumentation 15

ThJTCS ({ta : R, tb : L, tc : W })

(ua · ta) : T (ub · tb) : ¬[ua : (R → T)]

(uc · tc) : ¬T
(ua · ta) : T

(uc · tc) : ¬T

(ub · tb) : ¬[ua : (R → T)]
(ub · tb) : ¬[ua : (R → T)]

δb

δcδa

δa δc

δb δb

Fig. 2. The process tree of T0 from Example 8.

opposition between the reasons (ua · ta) and (uc · tc). At the level of process trees, however, we are not
yet able to explain the attack on (ua · ta) by the undercutting reason (ub · tb). To do so, we need to move
further from the semantics of collecting new information.

We have already discussed the key components of our operational semantics that bear some similarity
to standard default theories. Now we develop our new argument semantics that builds on the expressiv-
ity of the justification logic language. We show that the default variant of the application operation is
essential to the way in which we represent arguments and their mutual attacks in justification logic.

3.2. Argumentative schemes and argumentative attacks in justification logic

In a complete specification of I, acceptability of reasons for a formula is determined ex officio by
assigning formulas to reasons through the function ∗(·). In contrast, in reasoning from an incomplete
evidence base W , a closure ThJTCS(W) is typically underspecified as to whether a reason t is acceptable
for a formula F . In “guessing” what a true interpretation is, every default rule introduces a reason
term whose structure codifies an application operation step from an unknown justified conditional. For
example, in rule δ above, we rely on the justified conditional u : (F → G). Even though this justified
conditional is not a part of the rule δ itself, it is the underlying assumption on the basis of which we
are able to extend an incomplete evidence base. The propositions of this kind are in one sense taken
as rules allowing for default steps, but they are also specific justification logic formulas. They will be
referred to as “warrants”, because their twofold role in our system corresponds to Toulmin’s concept
of argument warrants.19 Justification logic defaults give a formal meaning to Toulmin’s philosophical
idea that warrants are formulated as statements, even though they function as rules of inference within
arguments. Each underlying formula of this kind can be made explicit by means of a function warrant
assignment: #(·) : D → Fm. The function maps each default rule to a specific justified conditional as
follows:

#(δ) = u : (F → G),

19Toulmin explains [77, p. 91] inference-licensing warrants as follows: “...taking these data as a starting point, the step to
the original claim or conclusion is an appropriate and legitimate one. At this point, therefore, what are needed are general,
hypothetical statements, which can act as bridges, and authorise the sort of step to which our particular argument commits us.”

16 S. Pandžić / Logic of defeasible argumentation

where δ ∈ D and

δ = t : F :: (u · t) : G

(u · t) : G
,

for some reason term t , a unique reason term u and some formulas F and G.
A set of all such underlying warrants of default rules is called Warrant Specification (WS) set.

Definition 13 (Warrant specification). For a default theory T = (W, D), justified defeasible conditionals
are given by the Warrant Specification set:

WST = #(D) = {
#(δ) | δ ∈ D

}
.

We will use warrant specification sets that are relativized to default processes:

WS� = {
#(δ) | δ ∈ �

}
.

In reasoning from incomplete information, defeasible justification assertions from WST are the only
available resource to approximate a reason assignment function that actually holds. Moreover, the use of
underlying assumptions from WST is responsible for the non-monotonic character of default reasons.
Thus our default rules are in contrast with the standard application operation represented by the axiom
A1. The extended meaning of the application operation via default rules will be referred to as default
application. Importantly, default application extends the standard idea of “proof terms” in justification
logic so as to include reason terms that codify inference steps from assumptions to warrant formulas as
conclusions dependent on those assumptions. We briefly explain this idea after we specify how warrants
and default application are decisive for the semantics of attacks between arguments.

The extension of the application operation to its defeasible variant opens new possibilities for a se-
mantics of justifications. In particular, it enables reasoning that is not regimented by the standard axioms
A1 and A2 of basic justification logic [7, p. 482]. For instance, if a set of JTCS formulas contains both
a prima facie reason t and its defeater u, then the set containing a conflict of justifications does not
support concatenation of reasons by which t : F → (t +u) : F holds for any two terms t and u. In other
words, the possibility of a conflict between reasons eliminates the monotonicity property of justifications
assumed in the sum axioms (A2).

In explaining the basics of the operational semantics, we qualified the semantics of rebutting attacks
as being straightforward. Rebuttal is already captured in the mechanism of multiple extensions known
from standard default theories. What requires additional explanation is the semantics of undercutting
defeaters. Notice that each formula #(δ) has the format of a justified material conditional. This formula
is not a part of a default inference δ itself, but the default application described by δ depends on a
conjecture that the conditional holds and the justification assertion cons(δ) encodes this conjecture in
the internal structure of the resulting reason term. This brings to attention the following possibility:
an evidence base may at the same time contain justified formulas of the type t : F , (u · t) : G and
v : ¬[u : (F → G)], without the evidence base being JTCS-inconsistent.

Although the application axiom A1 does not say that t : F and (u · t) : G together entail the formula
u : (F → G), there is, intuitively, something wrong with the reason (u·t) justifying the formula G, taken
together with t justifying F and v justifying ¬u : (F → G). This new type of opposition among reasons
explains why we need to refer to warrant formulas. The co-occurrence of the formulas t : F , (u · t) : G

S. Pandžić / Logic of defeasible argumentation 17

and v : ¬[u : (F → G)] together is not significant in standard justification logic where reasoning is
exclusively regulated by the standard axioms for idealized reasons, such as the axioms of the basic JTCS

logic. It only becomes significant with default application.20 We will now use the presented “reverse
engineering” of axiom A1 to model undercut.21

We have already discussed why the semantics of undercut cannot be reduced to the existence of
multiple inconsistent extensions. Nevertheless, JTCS inconsistency is important for undercutting at-
tacks.22 Notice that adding arbitrary warrants from WST to an evidence base In(�) could lead to an
inconsistent set of JTCS formulas. In Example 8, if we start from any evidence base of T0 and add
the warrant ua : (R → T) of δa to it, the union becomes JTCS-inconsistent with both the warrant
ub : (L → ¬[ua : (R → T)]) of δb and the warrant uc : (W → ¬T) of δc. This means that the
three warrants are jointly incompatible in the context of default reasoning defined by T0. An agent needs
to find out which warrants and, thereby, which reasons prevail in a conflicting set of warrants. This
procedure relies on the following definition that captures the above-discussed intuition behind undercut:

Definition 14 (Undercut). A reason u undercuts reason t being a reason for a formula F in a set of JTCS

formulas � ⊆ In(�[k]) iff
∨

(v)∈Sub(t) u : ¬[v : (G → H)] ∈ ThJTCS(�) and there is a process �′ of T

such that v : (G → H) ∈ WS�′
.

We will also specify the way in which sets of JTCS formulas undercut some default reason. This
definition will be used in defining different variants of default theory extensions. Sets of justification
logic formulas are said to undercut reasons according to the following definition:

Definition 15. A set of JTCS formulas � ⊆ In(�[k]) undercuts reason t being a reason for a formula F

iff
∨

(v)∈Sub(t) ¬[v : (G → H)] ∈ ThJTCS(�) and there is a process �′ of T such that v : (G → H) ∈
WS�′

.

One can think of � as a set of reasons against which the reason t is tested as a reason that justifies
the formula F . This is further elaborated in the semantics of acceptability of reasons. By introducing
default reasons through default application and considering rebuttal and undercut among such reasons,
it is possible to take an argumentation perspective to justification logic formulas. For example, Fig. 3
provides an intuitive Toulminian interpretation of the default reasoning steps with justification formulas
in Example 8, where each step can be associated with a corresponding step in the Toulminian argument
scheme.23

Note that the formula (uc · tc) : ¬T is captioned as a rebuttal of the formula (ua · ta) : T , but
(ua · ta) : T also rebuts (uc · tc) : ¬T . Their rebuttal relation is symmetric because the two conclusions

20Notice that a (JTCS-closed) evidence base that contains the formulas t : F and (u · t) : G, also contains the formula
((c · t) · (u · t)) : (F → G), assuming that the constant c justifies the axiom F → (G → (F → G)). This is so regardless of
whether u : (F → G) is also in the evidence base or not.

21One way to model exclusionary reasons and undercutters in default logic is to use non-normal defaults. However, with the
use of non-normal defaults, many desirable features of default logics are lost, and this holds already for semi-normal defaults
[3, Chapter 6]. Besides that, the use of justification logic warrants provides an elegant way to subsume argumentation semantics
in default logic. For a more extensive discussion on the benefits of warrants over non-normal defaults see [61].

22Later, in Lemma 24, we characterize the relation between rebuttal and undercut formally.
23A reader should take the following two provisos into account here. Firstly, Toulmin does not use the term “undercutter”.

Instead, Toulmin uses rebuttal as an ambiguous concept that, among other kinds of defeat, covers for circumstances in which
the general authority of the warrant would have to be set aside [81, p. 235]. Secondly, our scheme does not include “qualifiers”
[77, p. 94] that indicate the strength of the step from grounds to claim.

18 S. Pandžić / Logic of defeasible argumentation

Fig. 3. Toulminian layout of arguments in Example 8.

T and ¬T of the default reasons (ua · ta) and (uc · tc) are contradictory, which means that applying ei-
ther of the default rules δa and δc blocks the application of the other default rule. Moreover, in Toulmin’s
scheme of argumentation, backing is understood as a certification or evidence for the use of a warrant
to introduce some conclusion. In justification logic, backing naturally translates into a JTCS derivation
(with undischarged assumptions) of a default conditional, and the steps of that derivation are codified
in the reason term ua that justifies the conditional R → T . Consider a simple backing for δa from
Example 8:

1 x : (¬T → ¬R) (Assumption)

2 (¬T → ¬R) → (R → T) (A0)

3 c : [
(¬T → ¬R) → (R → T)

]
(R1)

4 (c · x) : (R → T) (1,3 A1)

By taking that ua = (c · x), one can recover the underlying structure of reasoning for the warrant
ua : (R → T), which corresponds to the idea of backing. Informally, the backing (c · x) describes rea-
soning when one assumes that if the table was not actually red, then it would not look red. This is a
simple backing example, but, in general, such reasoning structures can become more complex. For ex-
ample, assumptions made in deriving a warrant formula may include literals that are not subformulas
of the warrant itself, as Example 26 later illustrates. In general, representative cases of warrants cannot
be derived from a knowledge base W , without using (undischarged) assumptions. This is also the case
in our Example 8, where the warrant formula ua : (R → T) is not contained in the knowledge base
closure ThJTCS(W). Clearly, proof terms are thus interpreted more broadly than in standard justification
logics.

A reader may notice here that the self-referential mechanism in which the language of justification
logic treats its own reasoning steps within the language gives a three-layered understanding of argu-
ments. The first layer is an argument seen as a pair of reason terms and formulas, e.g. the formula
(ua · ta) : T , resulting from the default δa = ta :R::(ua ·ta):T

(ua ·ta):T . In argumentative terms, this layer includes
the formula ta : R that represents Toulminian grounds or data. Since the term (ua · ta) formally realizes
the default application step of δa , the formula (ua · ta) : T will always be explicitly featured in the
semantic treatment of the acceptability of the reasoning steps codified by the term (ua · ta). Argumenta-
tion semantics for such formulas will be presented in the next section. The second layer gives a wider
understanding of the argument. It includes the rule δa together with its warrant formula ua : (R → T).

S. Pandžić / Logic of defeasible argumentation 19

This layer explains the reasoning step from the grounds ta : R to the claim T . It provides an answer to
Toulmin’s question [77, p. 90] “How did you get there?”, that is, how to justify that some claim follows
from the available data or grounds. Finally, the third layer of the argument for T additionally includes
the backing or the unfolded formal structure of the reasoning steps represented by ua that are given in
support of the use of the warrant ua : (R → T). Analogously to Toulmin’s argument scheme [77, p. 92],
the warrant makes explicit the connection between the grounds and the claim, while the backing ex-
plains why the warrant counts as a justified one. Argument warrant can themselves become a part of the
reasoning process, especially upon questioning their authority. This is illustrated by the default rule δb

in the running example.

3.3. Argument acceptance in justification logic

By introducing default reasons in justification logic it becomes possible not only to use argumentation
terminology in talking about formulas of the type t : F but also to give standard abstract argumentation
theory conditions of argument acceptance of such formulas. The idea of conflicting default reasons
overlaps with abstract argumentation frameworks that treat conflicts between arguments. This section
shows that all the formal conditions of argument acceptance as defined in Dung’s framework [30] can
be defined for default justifications introduced here. In Section 4, this is used to prove that the logic of
default justifications generalizes Dung’s frameworks.

The semantics of reason acceptance starts from characterizing conflict-free sets of JTCS formulas.
Note that by introducing default justification, conflicts are not only defined in terms of JTCS inconsis-
tency, but also in terms of undercut from Def 14. The following definition gives conditions for conflict-
free sets with respect to undercut:

Definition 16 (Conflict-free sets). A set of JTCS formulas � is conflict-free iff ThJTCS(�) does not
undercut a formula t : F such that t : F ∈ Th−(�).

Note that, if a set of formulas In(�) for any process � is conflict-free according to Def. 16, then it is
also free from rebuttal for a consistent set of formulas W . To see why, first consider that rebuttal occurs
between formulas that are contained in inconsistent evidence bases. Since we know that the conditions
under which a default can be applied to an evidence base preserve consistency of each segment In(�[k])
of In(�), we also know that In(�) is rebuttal-free. Consistency preservation of extended evidence bases
is established in the following theorem:

Theorem 17. For a theory T = (W, D) and a process � of T , if the set of formulas W is JTCS

consistent, then any conflict-free set of formulas In(�) is also JTCS consistent.

Proof. The property of JTCS consistency for a set of formulas In(�) follows from the applicability
conditions for any default rule δ ∈ � of the form t :F ::(u·t):G

(u·t):G and the fact that W is JTCS consistent. �

The theorem ensures that, for any non-empty process �, a set of conflict-free formulas In(�) that an
agent could eventually accept is free from any possible conflict.

As stated before, the set W contains certain information and this means that any information from W

is always acceptable regardless of what has been collected later on. Therefore, any set of formulas � that
extends the initial information contains W . To decide whether a consequent of a default δ is acceptable,
an agent looks at those sets of reasons that can be defended against all the available counter-reasons. For
any set of JTCS formulas �, we define the notion of acceptability of a justified formula t : F :

20 S. Pandžić / Logic of defeasible argumentation

Definition 18 (Acceptability). For a default theory T = (W, D), a formula t : F ∈ cons(�) is accept-
able w.r.t. a set of JTCS formulas � ⊂ In(�[k]) iff for each undercutting reason u for t being a reason
for F such that u : G ∈ In(�[k]), � undercuts u being a reason for G.

An agent looks at finding a defensible set of arguments in the space of all possible arguments defined
by all certain information taken together with the consequents of applicable defaults. Accordingly, for a
default theory T = (W, D), an agent considers potential extension sets of JTCS formulas that meet the
following conditions:

(1) W ⊆ � and
(2) � ⊆ W ∪ {cons(�) | � is some process of T }.

Informally, an agent has yet to test any potential extension against all the other available reasons before
it can be considered as an admissible extension of the evidence base.

Definition 19 (JTCS-Admissible Extension). A potential extension set of JTCS formulas � ⊂ In(�) is a
JTCS-admissible extension of a default theory T = (W, D) iff � is conflict-free, each formula t : F ∈ �

is acceptable w.r.t. � and � is closed.

After considering all the available reasons, an agent accepts only those defeasible statements that can
be defended against all the available reasons against these statements.

The two latter definitions introduce the idea of “external stability” of knowledge bases [30, p. 323] into
default logic by taking into account that only those reasons that are able to defend themselves against the
reasons that question their plausibility eventually become accepted. In addition to that, our operational
semantics prompts an implicit revision procedure. Any new default rule that is applicable to the set of
formulas In(�[k]) potentially makes changes to what an agent considered to be acceptable relying on the
set of formulas In(�[k − 1]). Before we show this on the formalized example from the beginning of this
section, we introduce the idea of default extension for a default theory T . Extension is the fundamental
concept in defining logical consequence in standard default theories. We think of preferred extensions
as maximal plausible world views based on the acceptability of reasons:

Definition 20 (JTCS-Preferred Extension). For a default theory T = (W, D), a closure ThJTCS(�) of
a JTCS-admissible extension � is a JTCS-preferred extension of T iff for any other JTCS-admissible
extension �′, � �⊂ �′.

In other words, JTCS-preferred extensions are maximal JTCS-admissible extensions with respect to
set inclusion. The existence of JTCS-preferred extensions is universally defined for default theories. To
ensure that this result also holds for the case of an infinite number of default rules and infinite closed
processes, we make use of Zorn’s lemma and restate it as follows:

Lemma 21 (Zorn [83]). For every partially ordered set A, if every chain of (totally ordered subset of)
B has an upper bound, then A has a maximal element.

Theorem 22 (Existence of JTCS-Preferred Extension). Every default theory T = (W, D) has at least
one JTCS-preferred extension.

S. Pandžić / Logic of defeasible argumentation 21

Proof. If W is inconsistent, then for any default δ, negation of the consistency requirement req(δ) is
contained in ThJTCS(W) and the only closed process � is the empty sequence. Therefore, the only poten-
tial and JTCS-admissible extension is W itself and T has a unique JTCS-preferred extension ThJTCS(W)

containing all the formulas of JTCS.
Assume that W is consistent. In general, if there is a finite number of default rules in D, any closed

process � of T is also finite. JTCS-admissible extensions obtained from closed processes form a com-
plete partial order with respect to ⊆. Since there are only finitely many JTCS-admissible sets, any JTCS-
admissible set � has a maximum �′ within a totally ordered subset of a set of all JTCS-admissible sets.
Therefore, � ⊆ �′ and ThJTCS(�′) is a JTCS-preferred extension of T .

For the case where D is infinite and closed processes �1, �2, . . . are infinite, there is again a com-
plete partial order formed from a set of all JTCS-admissible sets. The argument for finite processes
does not account for the case where �′, the union of JTCS-admissible sets �1, �2, . . . , could be con-
tained in some �′′ for an ever increasing sequence �1, �2, We first state that �′, the union of an
ever increasing sequence of JTCS-admissible sets �1, �2, . . . , is also a JTCS-admissible set. To ensure
this, we turn to its subsets. That is, if �′ was not admissible, then some of its subsets �n for n � 1
would not be conflict-free or would contain a formula that is not acceptable, but this contradicts the
assumption that �n is JTCS-admissible. Now, for the set of all JTCS-admissible sets ordered by ⊆, any
chain (totally ordered subset) has an upper bound, that is, the union of its members �′ = ⋃∞

n=1 �n.
According to Lemma 21, there exists a maximal element and, therefore a JTCS-preferred extension
of T . �

The semantics of defeasible reasons enables us to define additional types of extensions that are not
necessarily based on the admissibility of reasons. One of them is the stable extension familiar from
formal argumentation theory [30]:

Definition 23 (JTCS-Stable Extension). For a default theory T = (W, D), a conflict-free closure
ThJTCS(�) of a potential extension � is a JTCS-stable extension of T iff for any process � of T , �

undercuts all the formulas t : F ∈ cons(�) outside ThJTCS(�).

The intuition behind the definition is that every reason left outside the accepted set of reasons is at-
tacked. To understand the process semantics workings of the stable extension definition, we can parse
this definition into two components. First, it is clear that a stable extension ThJTCS(�) undercuts each
default reason t for every cons(δ) = t : F such that t : F is not contained in �, but δ occurs in a
closed process � of T for which it holds that � is a subset of the evidence base In(�). Intuitively,
from those reasons that are applicable within a closed default process, only the reasons that are under-
cut by ThJTCS(�) are left outside. But notice that, secondly, for each default reason u and a formula
cons(δ′) = u : G such that � and u : G do not co-occur in any potential extension of T , but u : G is
included in some potential extension of T , it holds that u also has to be undercut. This means that if δ′
cannot be applied to the default process � and δ′ occurs in some other closed process �′, then � under-
cuts u. To see why, take for example the justification assertions t : F = cons(δ) and v : ¬F = cons(δ′′).
For any potential extension � ⊂ In(�) such that δ ∈ � and δ′′ is not applicable to � due to the
inconsistency of the formula req(δ′′), ThJTCS(�) contains an undercutter for the reason v. In fact, if
t : F ∈ �, then ThJTCS(�) entails a formula ¬r : (J → ¬F) for any formula J ∈ In(�) and any
reason r . Therefore, it also contains some reason term s that undercuts the warrant of the default rule

22 S. Pandžić / Logic of defeasible argumentation

cons(δ′′). This means that inconsistent justification assertions responsible for rebuttal indirectly undercut
rebutted reasons. This undercut is further inherited by all the potential default reasons that are inferred
from inconsistent default reasons, even if these are not involved in any rebuttal induced by JTCS in-
consistency. The following lemma generalizes this observation on the dependence between rebuttal and
undercut:

Lemma 24. For a default theory T = (W, D) and its closed processes � and �′, if some rule
δ = t :F ::(u·t):G

(u·t):G from �′ is inapplicable to In(�) and t : F ∈ In(�), then there is a potential extension
� ⊂ In(�) that undercuts (u · t) being a reason for G.

Proof. By Theorem 6, we know that there is some segment In(�[k]) that contains the formula t : F and,
by assumption, that δ is inapplicable to In(�[k]). Therefore, In(�[k]) contains the formula ¬(u · t) : G.
According to axiom A1 and propositional reasoning, if the JTCS closure In(�[k]) contains t : F and
¬(u · t) : G, then it also contains the formula ¬[u : (F → G)]. By the definition of an In-set (Def. 10)
and the way in which potential extensions are built for T , there is some potential extension � ⊂ In(�[k])
such that ThJTCS(�) contains ¬[u : (F → G)]. Since #(δ) = u : (F → G) and u : (F → G) ∈ WS�′

,
� undercuts (u · t) being a reason for G by Definition 15. �

If a potential extension � of T undercuts all the formulas left outside, then � also has to maximize
admissibility with respect to set inclusion. This straightforwardly leads to the following lemma:

Lemma 25. Every JTCS-stable extension of a default theory T = (W, D) is also a JTCS-preferred
extension of T .

We can check that in the red-looking-table example, JTCS-stable and JTCS-preferred extension
coincide. Formally, theory T0 has a unique JTCS-stable and JTCS-preferred extension ThJTCS(W0 ∪
{cons(δb), cons(δc)}). Moreover, note that the process �1 = (δa, δb) includes revising the result-
ing set of acceptable reasons, since the reason (ub · tb) undercuts (ua · ta) being a reason for for-
mula T .

However, JTCS-stable extensions are not universally defined for any default theory T . To show this,
we will formalize Pollock’s “pink elephant” example [64, pp. 119–120, 66, pp. 181–182]. This example
is an instance of defeasible reasoning with a self-defeating argument. The concept of self-defeat is noto-
rious in argumentation theory. Firstly, suppose that Robert says that the elephant beside him looks pink.
Normally, we would take Robert’s testimony to support the conclusion that the elephant is pink. How-
ever, Robert suffers from what is known as “pink-elephant phobia”. People in this condition “become
strangely disoriented so that their statements about their surroundings cease to be reliable” [66, p. 181].
Therefore, it seems that “if it were true that the elephant beside Robert is pink, we could not rely upon
his report to conclude that it is” [66, p. 181].

Example 26. Let P be the proposition “The elephant looks pink”, let E be the proposition “The elephant
is pink”, and let H be the proposition “Robert suffers from pink-elephant phobia”. The pink elephant
example is then described by the default theory T1 = (W1, D1), where W1 = {k : H, l : P } and D1

S. Pandžić / Logic of defeasible argumentation 23

consists of the default rules24

δ1 = l : P :: (m · l) : E

(m · l) : E
and

δ2 = (m · l) : E :: (n · (m · l)) : ¬[m : (P → E)]
(n · (m · l)) : ¬[m : (P → E)] .

While the structure of the backing for δ1 resembles that of δa from Example 8, the backing for the default
rule δ2 has a more intricate structure:

1 x : [
m : (P → E) → ¬(E ∧ H)

]
(Assumption)

2 k : H (Assumption)

3
[
m : (P → E) → ¬(E ∧ H)

] → [
(H → (

E → ¬[
m : (P → E)

])]
(A0)

4 c : (
[
m : (P → E) → ¬(E ∧ H)

] → [(
H → (

E → ¬[
m : (P → E)

])])
(R1)

5 (c · x) : [
(H → (

E → ¬[
m : (P → E)

])]
(1,4 A1)

6
(
(c · x) · k

) : (
E → ¬[

m : (P → E)
])

(2,5 A1)

Let n = ((c · x) · k). The above inference steps in JTCS formalize the backing for the warrant
n : (E → ¬[m : (P → E)]) of δ2. Notice that, in the formalization of its backing, the warrant of δ2

is supported by appeal to the presupposed information about the phobia that Robert suffers from, that is,
to the justification assertion k : H .

The theory T1 has a JTCS-preferred extension ThJTCS(W1). However, it has no JTCS-stable extension,
because the available reasons cannot form a conflict-free set that attacks all the reasons outside that set.
This result conforms to similar results about preferred and stable semantics in abstract argumentation
frameworks [30, p. 328]. By the end of the section, we define the theory T3 that shows the same type of
a self-defeating argument alongside other arguments. In our default theories, self-defeating arguments
do not influence other independent arguments, except in the above-illustrated sense of affecting the
existence of stable semantics.

In addition, we can easily define other significant notions of extensions in formal argumentation. In
particular, we can define variants of Dung’s [30, p. 329] complete and grounded extension:

24Notice that in the original formulation of his pink elephant example, Pollock introduces [64, p. 120] an intermediate
inference between the rules δ1 and δ2. Namely, he thinks that there is an inference from Robert’s saying (reason term l) that
the elephant looks pink to him, to the conclusion that it does look pink. We follow a version of the example that does not take
the intermediate step as a separate inference, taken from [50, §4.1]. There are two reasons for this decision. Firstly, Pollock’s
red table example that we formalized in Example 8 has the same structure of inference that starts from seeing a red-looking
table to conclude that the table is red. There is no mention of the table looking red independently of an agent’s report that it
does. It is not clear why to think that Robert’s unreliability in the presence of pink elephants would question the fact that the
elephant does look pink, even if Robert himself realizes that he suffers from the phobia. It is also not clear what would it mean
for an object to look pink, regardless of being perceived as pink by some agent. Secondly, a report of another agent to whom
the elephant does not look pink would be treated differently in justification logic. Such report would undermine Robert’s own
report and the subject matter of undermining attacks is dealt with in another paper [62], together with the topic of how to model
testimonies. In any case, an intermediate default rule could formally be added without affecting the significance of the example
for the discussion.

24 S. Pandžić / Logic of defeasible argumentation

Definition 27 (JTCS-Complete Extension). For a default theory T = (W, D), a closure ThJTCS(�) of
a JTCS-admissible extension � is a JTCS-complete extension of T iff for each closed process � of T

such that there is a JTCS-admissible extension �′ in In(�) and � ⊂ �′, if a formula t : F ∈ cons(D) is
acceptable w.r.t. � in In(�), then t : F belongs to �.

Definition 28 (JTCS-Grounded Extension). For a default theory T = (W, D), a JTCS-complete ex-
tension ThJTCS(�) is the unique JTCS-grounded extension if � is the smallest potential extension with
respect to set inclusion such that ThJTCS(�) is a JTCS-complete extension of T .25

Unsurprisingly, the results for different types of extensions from [30] are valid for our default theory
extensions.

Lemma 29. Every JTCS-preferred extension of a default theory T = (W, D) is also a JTCS-complete
extension of T .

Proof. Assume that ThJTCS(�) is a JTCS-preferred extension of T for some potential extension �.
Assume towards contradiction that for some closed process � such that � ⊂ In(�) and � is JTCS-
admissible there exists a formula cons(δ), where δ ∈ �, acceptable with respect to �, but not included
in �. According to Def. 19, there is a JTCS-admissible extension �′ for which it holds that � ⊂ �′. But
this contradicts the assumption that ThJTCS(�) is a JTCS-preferred extension. Therefore, for any closed
process �′ for which � is JTCS-admissible and for any formula cons(δ′) such that δ′ ∈ �′, if cons(δ′) is
acceptable with respect to �, then cons(δ′) is included in �. �

It does not hold, however, that every JTCS-complete extension is also JTCS-preferred. The following
theory T2 is a counterexample. Let the theory be defined as T2 = (W2, D2), where W2 = {p : K, q : L}
and D2 consists of the default rules

δ3 = p : K :: (r · p) : M

(r · p) : M
and

δ4 = q : L :: (s · q) : ¬M

(s · q) : ¬M
.

One of the JTCS-complete extensions of T2 is ThJTCS(W2), as a result of the fact that none of the available
default reasons is acceptable with respect to the potential extension W2. However, ThJTCS(W2) is not one
of JTCS-preferred extensions for T2. The theory has two JTCS-preferred extensions such that one of
them contains cons(δ3), while the other contains cons(δ4).

Considering some proposition as justified might be seen as a function of interacting reasons. Each
of the presented JTCS extensions is a method to compute extensions with justified formulas. Moreover,
each of the JTCS extension definitions can be used as a way to define a corresponding characterization
of logical consequence. Given a particular JTCS extension of a theory T , the formulas contained in that
extension are valid formulas for T under that specific JTCS semantics. There are some analogies with

25Note here that the we know that there is the smallest potential extension which is JTCS-complete since we can represent
JTCS-admissible extensions as forming a complete partial order w.r.t. set inclusion. Ordered extensions lend themselves to a
fixed-point reformulation of all admissibility-based extensions and a possibility of guaranteeing the existence of the smallest
potential extension by the application of the Knaster-Tarski theorem [75].

S. Pandžić / Logic of defeasible argumentation 25

the traditional notions of non-monotonic consequence relations. For example, JTCS-grounded exten-
sions correspond to cautious consequence relations describing what a skeptical reasoner would accept
for some default theory. In a similar way, JTCS-preferred semantics describes a credulous inference re-
lation. The consequence relation defined by JTCS-stable extension is an interesting case in this context.
Although for many default theories JTCS-stable and JTCS-preferred semantics coincides, there are some
intuitive grounds to consider JTCS-stable extensions as skeptical in nature. This specifically relates to the
demand that the existence of JTCS-stable extensions depends on whether a set of JTCS formulas is able
to defeat all other reasons outside that set or not. Such excessive demands on the validity of formulas do
not comply to our ordinary intuitions about credulous consequence relations.

To illustrate the differences among the above defined semantics, we will elaborate on an example of a
single default theory whose JTCS-grounded, JTCS-complete, JTCS-preferred and JTCS-stable extensions
do not coincide, although each of them exists. We define the default theory T3 = (W3, D3) with W3 =
{t1 : F, t2 : H, t3 : I } and D3 = {δ5, δ6, δ7, δ8}, where δ5, δ6, δ7 and δ8 are defined as follows:

δ5 = t1 : F :: (u1 · t1) : G

(u1 · t1) : G
,

δ6 = (u1 · t1) : G :: (u2 · (u1 · t1)) : ¬[u1 : (F → G)]
(u2 · (u1 · t1)) : ¬[u1 : (F → G)] ,

δ7 = t2 : H :: (u3 · t2) : (J ∧ ¬[u2 : (G → ¬[u1 : (F → G)])])
(u3 · t2) : (J ∧ ¬[u2 : (G → ¬[u1 : (F → G)])]) and

δ8 = t3 : I :: (u4 · t3) : ¬J

(u4 · t3) : ¬J
.

Any evidence base In(�) of T3 containing the formula cons(δ7) will also contain the formula
(c1 · (u3 · t2)) : ¬[u2 : (G → ¬[u1 : (F → G)])], which represents the reasoning behind an argument
that questions the warrant of the self-defeating argument given in δ6 by undercutting (u2 · (u1 · t1)). The
undercutter (c1 · (u3 · t2)) can be derived from cons(δ7) with some propositional reasoning combined
with the use of axiom A1 and rule R1*. Moreover, default δ7 provides an argument that rebuts the rea-
son (u4 · t3) for ¬J , for any extension that contains cons(δ7). This argument is codified within the term
(c2 · (u3 · t2)) justifying the formula J , again assuming some propositional reasoning, axiom A1 and rule
R1*. Accordingly, the rules δ7 and δ8 cannot occur together in any default process of T3.

In total, the theory T3 has six closed processes, as shown in the process tree of T3 displayed in Fig. 4.
Building a process tree for our default theories proceeds in the following way: each node of the process
tree is labeled with an In-set after a default rule (connecting edges) has been applied. Note that, for
each node of the process tree in Fig. 4 and a closed process � of T3, if a node corresponds to some
segment �[k] of � we indicate only the formula that has been added to In(�[k]) as a result of applying
an available default rule to In(�([k − 1]). The process tree helps us to check the status of JTCS ex-
tensions for T3. The theory has two preferred extensions, namely ThJTCS(W3 ∪ {cons(δ5), cons(δ7)}) and
ThJTCS(W3 ∪ {cons(δ8)}. Of the two JTCS-preferred extensions, only ThJTCS(W3∪{cons(δ5), cons(δ7)}) is
also JTCS-stable. A skeptical reasoner will only accept ThJTCS(W3), the unique JTCS-grounded extension
of T3. Finally, all the three mentioned JTCS closures are JTCS-complete for T3.

It is possible to specify conditions under which different JTCS extension notions above coincide.
Sufficient conditions need to eliminate the possibility of attack cycles. We first define the cycle of asym-
metrical attacks:

26 S. Pandžić / Logic of defeasible argumentation

ThJTCS ({t1 : F, t2 : H, t3 : I })

(u1 · t1) : G

(u3 · t2) : (J ∧ ¬[u2 : (G → ¬[u1 : (F → G)])])

(u2 · (u1 · t1)) : ¬[u1 : (F → G)]

(u2 · (u1 · t1)) : ¬[u1 : (F → G)]

(u4 · t3) : ¬J

(u3 · t2) : (J ∧ ¬[u2 : (G → ¬[u1 : (F → G)])])

(u4 · t3) : ¬J

(u2 · (u1 · t1)) : ¬[u1 : (F → G)]

(u3 · t2) : (J ∧ ¬[u2 : (G → ¬[u1 : (F → G)])])

(u1 · t1) : G

(u2 · (u1 · t1)) : ¬[u1 : (F → G)]

(u4 · t3) : ¬J

(u1 · t1) : G

(u2 · (u1 · t1)) : ¬[u1 : (F → G)]

δ7δ5

δ5

δ6

δ6

δ8δ7

δ7
δ8

δ6

δ6

δ8

δ5

δ6

Fig. 4. The process tree of T3.

Definition 30 (Undercut Cycle). A cycle of undercuts is an infinite periodic sequence of JTCS formulas
t1 : F1, . . . , tn : Fn, t1 : F1, . . . , tn : Fn, t1 : F1, . . . , for some number of formulas n � 1, such that
each reason ti undercuts tk being a reason for the formula Fk according to Def. 14 and ti : Fi is the
predecessor of the formula tk : Fk in the sequence.

Rebuttals among formulas ultimately derive from the property of JTCS inconsistency. They are thus
symmetric and can be traced through the process semantics and existence of different evidence bases
In(�′) and In(�′′) for some closed processes � and �′. Therefore, we do not need to define rebuttal
separately, but only provide a condition that excludes attacks induced by JTCS inconsistency.

We are ready now to give the conditions for the coincidence of JTCS extensions in well-founded
default theories. A default theory T = (W, D) is called well-founded if for all closed processes � and
�′ of T it holds that:

(1) In(�) = In(�′) and
(2) There are no sets of JTCS formulas � ∈ In(�) forming a cycle of undercuts.

The following theorem shows that JTCS extensions of well-founded default theories coincide.26

Theorem 31. Every well-founded default theory T = (W, D) has a unique JTCS-complete extension
ThJTCS(�) which is JTCS-grounded, JTCS-preferred and JTCS-stable.

26Compare [30, p. 331] for well-foundedness of abstract argumentation frameworks. Here we adapt the proof idea for the
coincidence of extensions of well-founded abstract argumentation frameworks that can be found there.

S. Pandžić / Logic of defeasible argumentation 27

Proof. Firstly, if a JTCS-grounded extension is also a JTCS-stable extension of a default theory T =
(W, D), then it is also JTCS-preferred and the unique JTCS-complete extension of T . Therefore, it is
sufficient to focus on the proof that each JTCS-grounded extension is JTCS-stable for a well-founded
theory.

Assume that a well-founded theory T has a JTCS-grounded extension ThJTCS(�) that is not JTCS-
stable. The set � ⊂ In(�) is the smallest potential extension such that ThJTCS(�) is a JTCS-complete
extension of T . Moreover, there is at least one formula t : F ∈ cons(δ) from the set of consequents
cons(D) such that t : F /∈ ThJTCS(�), but, since ThJTCS(�) is not JTCS-stable, ThJTCS(�) does not
undercut t being a reason for F . Now we have to show that unless ThJTCS(�) undercuts t being a reason
for F , at least one of the following statements has to hold about T :

(1) t : F is acceptable w.r.t. � in In(�), but � is a subset of In(�′) for some other closed process
�′ and t : F is not acceptable w.r.t. � in In(�′). But this means that the sets In(�) and In(�′),
which, in turn, means that T is not well-founded according to condition (1) on well-founded
default theories;

(2) t : F is not acceptable w.r.t. � in In(�) and there is some formula v : G ∈ In(�) such that
v undercuts t being a reason for F , but ThJTCS(�) does not undercut v being a reason for G.
However, v : G is not contained in �, since we assumed that � is not JTCS-stable and that � does
not undercut t being a reason for F . But this means that there exists an infinite periodic sequence
of JTCS formulas t1 : F1, . . . , tn : Fn, t1 : F1, . . . , tn : Fn, t1 : F1, . . . forming an undercut cycle
according to Def. 30. This means that T is not well-founded according to condition (2).

Therefore, since T is well-founded, it has a unique JTCS-complete extension ThJTCS(�) which is JTCS-
grounded, JTCS-preferred and JTCS-stable. �

4. Relations of the logic of default justifications to abstract argumentation frameworks:
Realizing Dung’s frameworks in justification logic

Abstract argumentation frameworks (AF) inquire into the problem of the acceptability of arguments
based on their mutual conflicts. More precisely, an argumentation framework is a pair of a set of ar-
guments, and a binary relation representing the attack-relationship (defeat) between arguments. These
frameworks are abstract in at least two ways: they neither represent the structure of arguments nor do
they specify the exact nature of attacks between them. The study of abstract arguments was initiated
in [30]. From then on, there have been many attempts to develop frameworks where the structure of
arguments is included, most notably in the ASPIC+ framework [68].

In this section we examine connections between abstract argumentation frameworks and our logic.
The semantics of justification formulas t : F we introduced can be naturally related to the concepts of
argumentation semantics. Any justification formula can be plausibly regarded as an argument where t

codifies premises and F is a conclusion of an argument.27 However, the expressiveness of the language
JTCS enables us to construct complex argument structures resulting from logical operations on formulas.
As expected, abstract argumentation frameworks are not able to capture all the subtleties of more com-
plex default reasons. Interestingly, it turns out that there are also AF structures that cannot be translated
into default theories.

27We can say this also about the formula c : F , where c is a proof constant, but in this case the attack relation will be empty.

28 S. Pandžić / Logic of defeasible argumentation

We first focus on the possibility of mapping from default theories to AFs. To establish the connection
between default reasons semantics and AF semantics, we need to restrict our attention to a subclass of
our default theories. Since our logic is more expressive with respect to attack relations, we focus on
non-complex default theories where attack relations are defined only by looking at the union of logical
consequences of each consequent of a default rule. In this way, each default rule is taken separately
as a self-contained argument. To achieve this, we first specify what it means for two default rules to
block each other’s applicability. For a process � of T = (W, D), the rules δ and δ′ from D block each
other in � iff for some segment �[k] such that both δ and δ′ are applicable to In(�[k]), if either of the
two defaults has been applied, the other default becomes inapplicable to In(�[k + 1]). A default theory
T = (W, D) is non-complex if it fulfills the following two conditions:

(1) If two defaults δ and δ′ from D block each other in a process � of T , then for each process �′ with
a segment �′[k] such that either δ or δ′ has been applied to In(�′[k]) it holds that the default that
has not been applied to In(�′[k]) is inapplicable to In(�′[k +n]) for any segment �′[k +n] of �′;

(2) For a process � of T , a reason t such that t : F ∈ In(�) and any undercutter u for t such that
u : ¬[v : (G → H)] ∈ In(�) for some v ∈ Sub(t), there exists a reason w ∈ Sub(u) such that
w : ¬[v : (G → H)] ∈ ThJTCS(cons(δ)) for a default rule δ ∈ �.

In other words, we require for any defeat that occurs in a theory T to be derivable only from a consequent
of a default rule because joint attacks cannot be represented in Dung’s [30] framework.

Using default justifications, one can look into the details of arguments’ structure, including grounds,
warrants, backings and different ways of attack, while Dung’s framework treats arguments abstracting
from their contents. This means that any translation from default theories with justification terms to
Dung’s framework has to “forget” information about arguments’ structure. Having restricted our target
theories to non-complex theories, we can now describe a mapping “=⇒” called Forgetful projection.
Forgetful projection converts each formula cons(δ) such that δ occurs in some process of a given default
theory into a corresponding argument of a Dung’s framework and it converts each attack among default
reasons into a corresponding attack relation between Dung’s arguments. A mapping =⇒ from a non-
complex default theory T = (W, D) to an abstract argumentation framework Af = (Arg, Att), where
Arg is a set of arguments A1, A2, . . . and Att is a a binary attack relation, is defined as follows:

• δn ∈ � for a process � =⇒ An ∈ Arg
• δm ∈ �′ & δn ∈ �′′ for some processes �′ & �′′ such that δm & δn do not occur together in any

process � =⇒ (Am, An) ∈ Att & (An, Am) ∈ Att
• t : ¬[u : (F → G)] ∈ ThJTCS(cons(δm)), v : H = cons(δn) such that u ∈ Sub(v) &

u : (F → G) ∈ WS� and δm ∈ � & δn ∈ � =⇒ (Am, An) ∈ Att

Recall the theory T0 described in Example 8. The theory T0 has its forgetful projection AF0 that preserves
the direction of the attacks from the original example. Consider that each of the rules δa , δb and δc is
applicable to at least one process. This means that we can map all three defaults to the arguments Aa ,
Ab and Ac in Arg0. Given that δa and δc cannot be applied to the same process of T0 and given the fact
that they are applicable to some processes, both (Aa, Ac) ∈ Att0 and (Ac, Aa) are in Att0. Finally, notice
that the rules δb and δa can be applied together in a default process and that the reason (ub · tb) undercuts
(ua · ta) via justifying the denial of the warrant ua : (R → T) of δa . Forgetful projection maps this
relation between cons(δb) and cons(δa) into an additional attack (Ab, Aa) in Att0.

Since forgetful projection does preserve the structure of conflicts among groups of arguments, it is
possible to compare JTCS extensions of default theories with extensions of the obtained Dung’s frame-
works. It is not difficult to check that the following extension-correspondence statement holds:

S. Pandžić / Logic of defeasible argumentation 29

Proposition 32. For a formula t : F = cons(δn) such that δn ∈ D for a non-complex default theory T =
(W, D) and its JTCS-complete, JTCS-grounded, JTCS-preferred or JTCS-stable extension ThJTCS(�), it
holds that t : F ∈ ThJTCS(�) iff an argument An is contained in the corresponding complete, grounded,
preferred or stable extension sets for a forgetful projection Af = (Arg, Att) of T .

Proof. See the Appendix for a proof sketch. �

Intuitively, forgetful projections of justification logic arguments outline a single perspective on ar-
gumentation, namely that of opposition among arguments. Note that there are extensions of Dung’s
framework that formalize joint attacks from sets of arguments such as [58]. In a framework with joint
attacks, Proposition 32 can be generalized to any default theory with justification formulas.

One may also ask whether the other direction of translating from argumentation frameworks to default
theories always works. Since the content of arguments is not specified in Dung’s framework, it is only
possible to retrieve incomplete information about justification logic counterparts of Dung’s frameworks.
For any argument in Dung’s framework, there are many justification logic realizations. Starting from
a directed graph obtained from a framework Af = (Arg, Att), each node A1, . . . , An is paired with a
corresponding formula t1 : F1, . . . , tn : Fn, where each ti : Fi is a consequent of some rule δi such that
δi occurs in at least one process of a theory T = (W, D) that realizes Af . Moreover, each node Ai is
paired with a warrant ui : (Gi → Fi).

The algorithm treats every single arrow in Dung’s graph as a specification of JTCS entailments that
hold for default consequents paired with the nodes of a graph. Accordingly, we determine the structure
of attacks among the obtained formulas. More specifically, a pointed arrow without an inverted arrow
specifies that a default consequent formula, which realizes a direct predecessor for the arrow, entails an
undercut formula for the consequent formula via entailing the negation of a warrant that realizes the
successor node. An arrow with an inverted arrow specifies inconsistency for consequent formulas paired
with the connected nodes, that is, a rebuttal between the two formulas.28 Using this algorithm, we would
get information on which formulas should a default consequent formula entail with respect to other
default consequents, provided the definition of attack relations among arguments in Arg. However, the
algorithm fails as the following example shows. Take a simple framework Af ∗ = (Arg, Att) with A as its
only argument and (A, A) ∈ Att. It turns out that it is not possible to realize A as a single consequent of
a default rule.

The problem can be generalized to a class of unwarranted argumentation frameworks. An argumen-
tation framework Af = (Arg, Att) is said to be unwarranted iff:

(1) There is an infinite sequence A1, A2, . . . , An, . . . such that for each i, Ai+1 attacks Ai ;
(2) For any two distinct arguments A = Ak and B = Ak+1 such that Ak and Ak+1 are adjacent members

of the A1, A2, . . . , An, . . . sequence, it does not hold that (A, B) ∈ Att and (B, A) ∈ Att;
(3) There exists no argument C outside the sequence such that:

(a) for some A from the sequence A1, A2, . . . , An, . . . it holds that (A, C) ∈ Att;
(b) C is not a member of an infinite sequence B1, B2, . . . , Bn, . . . such that for each i, Bi+1 attacks

Bi ;
(c) for no two distinct arguments D and E from Arg it holds that (D, C) ∈ Att and (E, C) ∈ Att.

28It is possible that an obtained formula has a complex structure and, for example, entails both a rebutting and an undercutting
reason for some formulas.

30 S. Pandžić / Logic of defeasible argumentation

A

B C

A

Af ∗∗
Af ∗

Fig. 5. Unwarranted argumentation framework examples.

The conditions above eliminate realizations of a small subclass of graphs with “floating” cycles, but they
do not eliminate the possibility to realize cycles of attacks in general. In the abstract argumentation [16]
and defeasible reasoning [65] literature, only the semantics of odd-length cycles of attacks (or of defeats)
is notorious for undesirable properties that odd-length cycles entail for different types of extensions. In
our default reason theory, both odd- and even-length “floating-attack” cycles have no direct counterparts.
This will be explained below in details.

Informally, we can say that such unwarranted frameworks violate the following postulate for structured
argumentation frameworks:

• Prior to any challenge there must be at least one reasoned claim.

From the perspective of our default theory, the frameworks Af ∗ and Af ∗∗ represented in Fig. 5 are impos-
sible. If precisely assessed, their status of argumentation frameworks can be attributed to the possibility
to abstract from argument structure in Dung’s model.

Once additional argument features are considered, and in particular arguments’ warrants, the struc-
tures from Fig. 5 can be proved to be impossible. The following theorem shows that, in our default
theories, floating-attack cycles without at least one outgoing edge to an argument outside the cycle are
not possible.

Theorem 33. For a sequence In(�)[k] of a default theory T = (W, D) and a set of formulas
{t1 : F1, . . . , tn : Fn} ∈ In(�)[k], a cycle of undercuts among the reasons t1, . . . , tn is possible only
if (1) there is a reason ti for a formula Fi , where 1 � i � n, such that one of its subterms p ∈ Sub(ti)

for a warrant p : (B → C) ∈ WS�[k] is not undercut by any of the reasons from the cycle t1, . . . tn and
(2) there is a warrant r : (D → E) ∈ WS�[k], such that r ∈ Sub(ti) and r is undercut by some reason
from the cycle t1, . . . tn, but none of the other warrants from WS�[k] is a subformula of E.

Proof. Assume that there is a cycle of undercuts in a set of formulas In(�)[k] among reasons t1, . . . , tn,
such that each ti , where 2 � i � n, is undercut by ti−1 as a reason for Fi and that t1 is undercut by tn
as a reason for F1. By Definition 14, for each reason ti and each formula ti : Fi from a set of formulas
{t2 : F1, . . . , tn : Fn} ∈ In(�)[k], there is a subterm s ∈ Sub(ti) such that ti−1 : ¬[s : (G → H)] and
for the formula t1 : F1 ∈ In(�)[k] and a subterm u ∈ Sub(t1), it holds that tn : ¬[u : (I → J)]. Then
assume that each reason term from the set {v | v ∈ ⋃n

j=1 Sub(tj) and v : (K → L) ∈ WS�[k]}, is
undercut in the cycle of undercuts t1, . . . tn. This means that each warrant v : (K → L) for v ∈ Sub(tk)

and 2 � k � n would have to be a proper subformula of a formula tk−1 : Fk−1 from the cycle such that
tk−1 : ¬[v : (K → L)] and, thereby, tk−1 undercuts tk being a reason for formula Fk. Additionally, the
warrant w : (M → N) for w ∈ Sub(t1) would have to be a proper subformula of the formula tn : Fn

S. Pandžić / Logic of defeasible argumentation 31

such that tn : ¬[w : (M → N)] and, thereby, tn undercuts t1 being a reason for formula F1. But this is
not possible since no formula is a proper subformula of itself. Therefore, at least one reason tk from the
cycle of undercuts t1, . . . , tn has to attack a warrant r : (O → P) ∈ WS�[k], where r ∈ Sub(tk) and
1 � k � n, such that none of the other warrants from WS�[k] is a subformula of P . �

The theorem ensures that cycles of asymmetrical attacks among arguments are possible only if there
is an outlying argument and this argument is attacked by an argument in the cycle. Although our justifi-
cation logic cannot realize the subclass of unwarranted frameworks, this result does not exclude circular
argumentation from it in general. However, the result does show that there are constraints on interpreting
directed graphs as argumentation frameworks and these constraints are due to the inclusion of additional
argument features into our system.

In the literature about abstract argumentation frameworks, there are attempts to provide frameworks
Af ∗ and Af ∗∗ with intuitive interpretations. For example, [79, p. 630] give the following sports situation
as an informal interpretation of Af ∗∗. Imagine that Ajax has recently won matches against Feyenoord.
We have a reason to think that Ajax is the best Dutch football club (argument A). But assume that it is
also the case that Feyenoord has won recent matches against PSV and that PSV has won recent matches
against Ajax. Then we have a reason to think that Feyenoord is the best Dutch club (argument B) and
that PSV is the best Dutch club (argument C). The available arguments leave us with no answer to the
question which football club is the best.

By fleshing out the content of these arguments in our default theory, it becomes clear that there is more
to this example than the cycle of three attacks is able to show. There are two kinds of arguments involved
in resolving the conflict among the claims to the status of the best club. First, the fact that Ajax has won
recent matches against Feyenoord, provides a reason to claim that Ajax is the best club. Secondly, the
same fact provides grounds to question the claim that Feyenoord is the best club. The first argument can
be an attacker only as a rebuttal, while the second argument is an undercutter. Analogously, arguments
can be provided with reference to Feyenoord and PSV, as we will formalize below.

Example 34. Let T4 = (W4, D4), be the default theory describing the conflict of football clubs. The
set of facts is defined by W4 = {t1 : A1, t2 : F1, t3 : P1, t4 : [¬(A2 ∧ F2) ∧ ¬(A2 ∧ P2) ∧ ¬(F2 ∧ P2)]},
where A1, F1 and P1 are the propositions “Ajax/Feyenoord/PSV has won recent matches against Feyeno-
ord/PSV/Ajax” and A2, F2 and P2 are the propositions “Ajax/Feyenoord/PSV is the best Dutch football
club”. Notice that the set of facts contains a formula which corresponds to the background knowledge
that only one club can be the best club. Finally, D4 = {δ9, δ10, δ11, δ12, δ13, δ14} is the set of defaults,
where

δ9 = t1 : A1 :: (u1 · t1) : A2

(u1 · t1) : A2
, δ10 = t2 : F1 :: (u2 · t2) : F2

(u2 · t2) : F2
,

δ11 = t3 : P1 :: (u3 · t3) : P2

(u3 · t3) : P2
, δ12 = t1 : A1 :: (u4 · t1) : ¬[u2 : (F1 → F2)]

(u4 · t1) : ¬[u2 : (F1 → F2)] ,

δ13 = t2 : F1 :: (u5 · t2) : ¬[u3 : (P1 → P2)]
(u5 · t2) : ¬[u3 : (P1 → P2)] and

δ14 = t3 : P1 :: (u6 · t3) : ¬[u1 : (A1 → A2)]
(u6 · t3) : ¬[u1 : (A1 → A2)] .

32 S. Pandžić / Logic of defeasible argumentation

A
A′

B

B ′

C

C ′

Fig. 6. Abstract attack structure of Example 34.

It is easy to check that theory T4 has a unique JTCS-stable and JTCS-preferred extension ThJTCS(W4 ∪
{cons(δ12), cons(δ13), cons(δ14)}). Therefore, the conflict between Dutch football clubs results in accept-
ing that the available reasons do not sanction any of the three Dutch football clubs to claim the title of
the best club.

Theory T4 shows that Af ∗∗ misrepresents the conflict of Dutch football clubs. A more faithful abstract
argumentation framework should include additional arguments and attack relations as Fig. 6 shows. The
only accepted arguments are the additional arguments A′, B ′ and C ′ that are not featured in Af ∗∗. These
three arguments ensure that none of the unjustified claims to the title of the best Dutch football club
goes through. Note how the arguments that are eventually accepted as winning are those indicating the
inability of reasons and warrants to justify claims – this layer of argumentation has been so far elusive
to a strict logical formalization.

By excluding unwarranted Dung’s frameworks, it is possible to formalize the Realization procedure
(“−→−→−→”) of warranted Dung’s frameworks in justification logic. For a warranted abstract argumentation
framework Af = (Arg, Att), there is a default theory T = (W, D) such that:

• A ∈ Arg −→−→−→ t : F = cons(δ) and u : (G → F) ∈ WS� s. t. δ ∈ � for a process � of T

• (Am, An) ∈ Att & (An, Am) ∈ Att −→−→−→ t : P ∈ ThJTCS(cons(δm)) and u : ¬P ∈ ThJTCS(cons(δn)) s.
t. P is a fresh propositional variable and, for some processes �′ and �′′ of T , δm ∈ �′ and δn ∈ �′′

• (Am, An) ∈ Att & (An, Am) /∈ Att −→−→−→ ¬[u : (G → F)] ∈ ThJTCS(cons(δm)) and
u : (G → F) ∈ WS� for a term u ∈ Sub(t) s. t. t : F = cons(δn) and, for a process � of T ,
δm ∈ � and δn ∈ �

The following proposition characterizes realizations of warranted Af ’s:

Proposition 35. An argument An is contained in a complete, grounded, preferred or stable extension
of a warranted Dung’s framework Af = (Arg, Att) iff a formula t : F = cons(δn) such that δn ∈ D

for a default theory T = (W, D) is contained in the corresponding JTCS-complete, JTCS-grounded,
JTCS-preferred or JTCS-stable extension ThJTCS(�) for a realization T of Af .

Proof. See the Appendix for a proof sketch. �

In Dung’s framework arguments are only implicit and one can consider each argument A as a statement
of the following type “There is an argument A”. When realized in justification logic, each of these
existential statements can be instantiated with an explicit argument structure t : F .

S. Pandžić / Logic of defeasible argumentation 33

One may wonder what is the significance of (un)warranted abstract argumentation frameworks for
formal argumentation in general. We will conclude this section by pointing out what could the realiza-
tion results from justification logic contribute to our understanding of arguments. The most important
insight given by the justification logic realization of AFs is that once we include reason terms into our
formal language, we bring forward the requirements on the logical language that are only implicit in
representing arguments as graph nodes. One of these requirements is that the reasoning structure that we
call “backing” in this paper has to be built according to the axioms and rules of the underlying calculus
of reason terms. According to it, it is impossible to build a “proof term” or a reason term that would sup-
port and undercut one and the same conclusion, which is the result obtained in Theorem 33. However,
an isolated AF cycle requires a possibility to have a default reason term, without other default reasons
as its subterms, that supports and undercuts a conclusion introduced in a single consequent formula of a
default rule.

Such loops and cycles that correspond to attack relations in AFs cannot easily be exemplified in
natural language either. Even self-defeating argument that require more than a single default inference
are difficult to exemplify, as Pollock’s pink elephant example witnesses. Starting with the work in [22],
it has been argued that attack loops could be exemplified with the statement “I am unreliable” or, using
the third-person perspective, “An agent says that the agent is unreliable”. In the same vein, the above
discussed three-node cycle of attacks has been exemplified [24] by a scenario featuring agents who
question one another’s reliability in the following way.29 Suppose that there are three agents, namely
Bert, Ernie and Elmo. If Bert says that Ernie is unreliable, then everything that Ernie says cannot be
relied on. If Ernie says that Elmo is unreliable, then everything that Elmo says cannot be relied on.
Finally, If Elmo says that Bert is unreliable, then everything that Bert says cannot be relied on. This
creates a cycle of attacks among Bert, Ernie and Elmo.

It is in such borderline examples of arguments that we can value the precision of the justification
logic language. Natural language allows the type of self-referentiality featured in the sentence “I am
unreliable”. With the use of the justification logic language, we can see that such examples belong to a
special group of statements that require the logical machinery of propositional quantification or that of
quantification into sentential position [78, §3.5]. In an extended language with propositonal quantifiers,
we could represent the statement “I am unreliable” with the following formula

t : ∀p(¬t : p),

where p is a propositional variable. The Bert-Ernie-Elmo attack cycle would be just an extended version
of the loop example. Take

t1 : ∀p(¬t2 : p), t2 : ∀q(¬t3 : q) and t3 : ∀r(¬t1 : r)

to realize the attack structure of the conflicting testimonies of unreliability among the three agents, where
p, q and r are propositional variables. Recall from the Introduction that the basic informal reading of
justificiation assertions t : F is that “t is a reason justifying F ”. This means that the following informal
reading applies to the formula t1 : ∀p(¬t2 : p): “Bert’s testimony (or statement) is a reason justifying
that, for everything that Ernie says, Ernie’s testimony (or statement) is not a reason justifying what is
being said”. Bert’s testimony is thus understood as a source of information undermining another source
of information, namely, Ernie’s testimony.

29Similar examples are discussed in [66] and [69].

34 S. Pandžić / Logic of defeasible argumentation

There are two findings related to the above examples that deserve our attention in the context of mod-
elling arguments. Firstly, if the above examples are to be taken as arguments on a par with arguments
that do not require such strong logical machinery, they should not be considered as a part of the default
reasoning paradigm of argumentation. Such examples of argumentative attack belong to the plausible
reasoning paradigm. In the default reasoning paradigm, which is the paradigm we investigate in this
paper, argumentative attacks result from attacking defeasible inferences, as illustrated by rebutting and
undercutting attacks form Example 8. In the plausible reasoning paradigm, argumentative attacks result
from adding new information that questions old information and, thereby, it might question old conclu-
sions. Notice that undercutting and rebutting attacks do not question the reliability of old information.
For example, concluding that the table is white, rather than red, cannot question the fact that the table
looks red under the red lighting. On the other hand, if you question the old information that the table
is red looking, then you compromise both old information and any default conclusions that may fol-
low from old information. This type of attack is called “undermining” and it is defined as an attack on
premises of an argument [79, p. 626]. In the Bert-Ernie-Elmo attack cycle, the three sources of informa-
tion are undermined in such a way that the testimonies of the three agents question one another in the
proposed order. This differs from the attacks induced by default inferences, where some default step is
being questioned, rather than the credibility of information sources.

Secondly, default justification logic shows that argumentation frameworks that include such arguments
on a par with other defeasible arguments do not consider the paradoxical nature of the mentioned ex-
ample. In an important sense, ASPIC+ is still too abstract to capture the intensional paradox created
by adding propositional quantification in the justification logic representation of attack cycles.30 Notice
that the reason term t in the statement t : ∀p(¬t : p) justifies that it cannot justify any proposition.
To assess if such reason terms could ever be acceptable, we would first need to resolve what it is that t

justifies. Following, for example, Prior’s explanation [71] of the intensional version of the Liar paradox,
there have to be at least two statements justified by the operator t . The issues that t : ∀p(¬t : p) raises
are fundamental to our understanding of arguments, but they cannot be further developed here. For now,
we are able to conclude that AFs, as well as structured argumentation frameworks, are not capable of
capturing the paradoxical nature and the exact logical structure of the examples discussed above. Struc-
tured argumentation frameworks may be more expressive in the sense that they allow such arguments
with their definitions of arguments. However, their expressivity rests on the fact that they do not spec-
ify a logical system expressive enough neither to logically represent reasons nor to logically represent
arguments. Once we have a precise language with reason terms, we are able to talk about the issues of
whether to include paradoxical propositions of the type t : ∀p(¬t : p) on a par with other arguments or
not. More importantly, we are in a position to discuss what is required to logically represent notorious
cycles of attacks in formal argumentation.

5. Rationality postulates for structured argumentation

Section 3.1 shows that default rules with justification formulas are expressive enough to model ele-
ments of arguments that are traditionally seen as extra-logical, such as warrants and backings. The results
from Section 4 establish the logic of default justifications as a system that explicitly features the struc-
ture of arguments and uses Dung’s methods for argument evaluation. The JTCS variants of admissible,

30See [70] for a discussion about intensional paradoxes. Intensional paradoxes belong to a “class of paradoxes of self-
reference whose members involve intensional notions such as knowing that, saying that, etc.” [70, p. 193].

S. Pandžić / Logic of defeasible argumentation 35

complete, grounded, preferred and stable extensions preserve reasonable outputs of the corresponding
Dung’s extensions. An additional question that may be asked is whether our logic also behaves reason-
ably with respect to “rationality postulates” that are set for structured argumentation frameworks in the
literature [1,25].

According to [1], the exact formulation of rationality postulates for structured argumentation frame-
works depends on the family of a logical language that they use: rule-based or classical. In frameworks
with rule-based languages, a distinction is made between strict rules (rules without exceptions) and de-
feasible rules (rules that may have exceptions). Arguments are built according to the available strict
and defeasible rules. Examples of such systems are ASPIC+ [68] and DeLP [41]. In frameworks with
classical languages, arguments are built from a knowledge base using an underlying monotonic logic.
Examples of frameworks that use classical languages are [18] and [19]. The framework described in [18]
is based on a propositional language, while that of [19] is based on a first-order language.

Following [1], we will first consider five postulates, originally formulated for argumentation frame-
works built on classical languages. In general, classical-logic based argumentation frameworks start
from the idea that there is some knowledge base with classical logic formulas. We define arguments
from that (possibly inconsistent) knowledge base as pairs of sets of formulas and conclusion formulas
such that a conclusion formula is classically entailed by a set of formulas. We will here present the five
postulates without committing to Amgoud’s definition of an argument. We do so deliberately, because
the definition of an argument for classical-logic based frameworks cannot be applied to our logic. The
reasons will be given shortly after we present the postulates. We give their “framework-neutral” for-
mulation, leaving the exact definitions of framework extensions, arguments, sub-arguments, strict rules,
premises and conclusions unspecified:

Closure The set of conclusions for each extension is closed under strict rules.
Sub-arguments If an argument is contained in an extension, then all the sub-arguments of the argument

are contained in the extension.
Consistency The set of conclusions for each extension is consistent.
Exhaustiveness If each premise and the conclusions of an argument are conclusions of an extension,

then the argument is contained in the extension.
Free precedence If an argument is not involved in any conflict, then the argument is contained in each

extension.

Although we mentioned that the five postulates provide criteria to evaluate classical-logic based argu-
mentation frameworks, they are also relevant for rule-based argumentation frameworks. In fact, their
rule-based framework variants can be found in [2]. To conclude the discussion about the rationality pos-
tulates at the end of the section, we briefly turn to the recent debate over satisfying the non-interference
postulate. This postulate turned be problematic for those approaches that make a distinction between
strict and defeasible rules.

5.1. Delimiting the notion of argument in default justification logic

To discuss whether rationality postulates hold for a system, it is required to have a precise definition of
an argument. Note that default justification logic offers both a narrower and broader understandings of
an argument, which may include implicit components. The narrower understanding takes every formula
of the type t : F to be a structured argument such that t represents premises of an argument and F repre-
sents its conclusion. However, as Fig. 3 shows, t codifies a more complex structure that involves implicit

36 S. Pandžić / Logic of defeasible argumentation

features of an argument, such as an argument’s warrant and its backing. This offers a broader perspec-
tive whereby an argument can rather be seen as an argument schema, which is inclusive of its implicit
elements. For the discussion on the rationality postulates Closure, Consistency and Free-precedence, it
suffices to focus on explicit features of arguments in the sense of the narrower understanding. To discuss
Sub-arguments and Exhaustiveness, we will use additional elements from the broader understanding of
arguments.

Although the idea of a classical-logic based system is closer to our default logic, the postulates given
by [1] are not directly applicable to our logic. While the logic of default justifications uses JTCS con-
sequence to build arguments, it also allows for defeasible rules by means of extending the application
operation · for default rules. It is not the case that all arguments are built from a knowledge base us-
ing only the monotonic consequence for the underlying language, as required in [1, p. 2030]. Default
reasons are built using warrants of the type u : (F → G) and warrants function as defeasible rules,
but they are not initially known and they do not need to become a part of the knowledge base, although
they potentially could. Finally, and most importantly, arguments in the narrower sense are featured in
the JTCS language itself, which means that a pair (premises, conclusion) is also an object-level formula,
unlike, for example, in [18].

On the other hand, rule-based languages introduce the differentiation between strict and defeasible
rules, but these rules are not a part of the base language. In contrast with, for example, [68], arguments
in justification logic are built via the operations in the JTCS language, where the strict rules are simply
the rules of the logic JTCS and defeasible rules are in the object language due to the fact that both
warrants are a part of the JTCS and the operation · is a part of the language. This makes any argument
logically dependent on other strict and defeasible conclusions within the system. For example, since
warrants are formulas of the JTCS language, a consequent of a default rule may refer to the underlying
warrant of another default rule in the way of an undercut attack.

Our logic takes the middle way between rule-based systems and classical-logic based systems by
combining the distinction between strict rules and defeasible rules with logical dependency of arguments
via JTCS consequence. This middle way is epitomized by the two roles that warrants have in the system:
they function as both implicit rules as well as statements.31 Warrants in the role of rules enable default
conclusions and warrants in the role of logical statements enable other formulas to refer to warrants
within the logical system. However, this also means that our logic cannot be aligned with only one of
the two families of logic-based argumentation systems identified in [1].

5.2. Postulates for default justification logic

Even without directly applying the postulates for classical-logic based argumentation, we can check
whether the desiderata on which [1] builds the rationality postulates hold for our logic. We first examine
three postulates from [1, pp. 2032–2035] that are easily adaptable for our logic. For any JTCS-complete,
JTCS-grounded, JTCS-preferred or JTCS-stable extension � of a default theory T = (W, D), the follow-
ing postulates are required to hold:

JTCS closure The set of conclusions for each JTCS extension � is closed under strict rules;

31Note that this corresponds to Toulmin’s ambiguous use of the term “warrant”. For example, [77, p. 91] refers to warrants
as both rules and statements in a single paragraph.

S. Pandžić / Logic of defeasible argumentation 37

JTCS consistency The set of conclusions for each JTCS extension � is JTCS-consistent;32

JTCS free precedence If some argument t : F is not involved in any conflict, then t : F ∈ � for each
JTCS extension �.

In our logic, strict rules are simply the rules of JTCS logic. By Definitions 20, 23, 27, 28, extensions are
closed under JTCS consequence and, therefore, closed under strict rules.

The satisfaction of the consistency postulate is guaranteed for each default theory T = (W, D) with
a consistent set of facts W . For such default theories, it can be easily shown that JTCS consistency
of each extension is preserved by the conditions of application for each default rule. This follows from
Theorem 17 and the fact that each JTCS extension is conflict-free. Exceptions to the consistency postulate
are theories with an inconsistent set of facts W . This reflects the way in which our logic deals with
inconsistent information. Firstly, an agent starts with known facts represented by justified formulas that
do not conflict with one another. Conflicts arise only after an agent needs to extend an incomplete
knowledge base by default assumptions. Resolving such meaningful conflicts always leads to JTCS-
consistent extensions.

The free precedence postulate requires that the system infers all the arguments and, in general, for-
mulas that do not conflict with any other argument. As stated above, we take arguments in the narrower
sense of formulas t : F and these arguments may be based either on strict or on defeasible rules. This
postulate follows trivially for all JTCS extensions, except for JTCS-admissible extensions that do not
maximize inclusion of arguments by their definition. Notice that for other JTCS extensions, no formula
t : F = cons(δ) is excluded from a JTCS extension �, unless δ is inapplicable to the respective pro-
cess containing � or one of the subterms of t is undercut by �. The inclusion of all free formulas and
arguments built on conflict-free grounds is then ensured by the closure under JTCS consequence.

For the two additional postulates from [1], the notion of a sub-argument of an argument needs to be
defined. We will start again from the narrower understanding of an argument in the sense of any formula
t : F . The concept of a sub-argument for default application will be taken to mean the following:

• If a formula (u · t) : G is obtained by means of application (axiom A1) or default application from
the formulas t : F and u : (F → G), then t : F and u : (F → G) are sub-arguments of (u · t) : G;

• If a formula (t + u) : F is obtained by means of sum (axiom A2) from either the formula t : F or
the formula u : F , then at least one of the formulas t : F and u : F is a sub-argument of (t +u) : F .

If an argument t : F is a sub-argument of (u · t) : G and a sub-argument of (t + u) : F , then any sub-
argument of t : F is also a sub-argument of (u · t) : G and (t + u) : F . Notice that if an argument t : F

is a sub-argument of (t +u) : F , it is not necessary that there is some formula u : G which is also a sub-
argument of (t + u) : F . It is possible that some justification term u does not justify any formula G. For
a simple example, take some justification constant c and any formula F . Then (c · c) is not a justification
for F in JTCS logic because the application operation that gives (c · c) is not meaningful for an injective
constant specification CS .

The following two postulates require rational acceptance of an argument with respect to its substruc-
ture:

JTCS sub-arguments If an argument t : F is in a JTCS extension �, then any sub-argument of t : F is
also in �;

32It is not needed to distinguish between the direct and indirect version of this postulate. This distinction rests on the as-
sumption that, by their definition, extensions of an argumentation framework are not closed under strict rules. However, in our
logic, this follows from the definitions of JTCS extensions.

38 S. Pandžić / Logic of defeasible argumentation

JTCS exhaustiveness If each sub-argument and the formula F for some argument t : F are conclusions
of JTCS extension �, then t : F is in �.

In contrast to the Exhaustiveness postulate on page 35, notice that the JTCS variant of exhaustiveness
does not mention premises of an argument as conclusions of JTCS extensions. On the narrower un-
derstanding of the arguments as justification assertions, the premises of an argument are reason terms,
but not well-formed formulas. The postulate is reinterpreted to track conclusion formulas that are sub-
arguments for an argument, because reason terms codify reasoning steps from those formulas such as,
for example, the warrants of arguments. The JTCS exhaustiveness postulate obviously holds for all JTCS

extensions closed under JTCS consequence by axioms A1 and A2. Thus, informally, if the steps of an
argument are contained in an extension, then the argument itself is.

The sub-arguments postulate can be seen as a dual version of exhaustiveness, in the sense that it
requires that all the steps of an accepted argument should also be accepted [1, p. 2029]. This postulate
is not directly satisfied by our logic. Take, for example, an argument (u · t) : G obtained by default
application. According to default application, one of the sub-arguments of (u · t) : G is some formula
u : (F → G) which is neither a part of a knowledge base W for a default theory T nor is it required for
that formula to become a part of an extended knowledge base, which results from applying the available
defaults.

Does that mean that arguments introduced by default rules are based on unjustified reasoning steps?
We can show that this is not the case. Although the sub-arguments postulate is not directly satisfied,
the basic idea behind the postulate is: “an argument cannot be accepted if at least one of its sub-parts
is bad” [1, p. 2033]. This desideratum holds because, even if the sub-argument u : (F → G) of an
argument (u · t) : G does not become a part of a knowledge base, the system ensures that the warrant
u : (F → G) has not been compromised by other available arguments in the knowledge base. For any
argument (u · t) : G and its warrant u : (F → G), if (u · t) : G is in a JTCS extension, then that
extension contains the formula ((c · t) · (u · t)) : (F → G), assuming that the constant c justifies the
axiom F → (G → (F → G)) and that the sub-argument t : F of (u · t) : G is also contained in the
extension. Therefore, it is possible to ascertain that none of the steps in building the argument (u · t) : G

has turned out to be bad, if the argument (u · t) : G is actually accepted in a JTCS extension.

5.3. The non-interference postulate

Recently, a number of authors including [23,44,82] have discussed the way in which the Ex Falso
Sequitur Quodlibet principle in the underlying logic of an argumentation system may threaten plausi-
bility of acceptability semantics outputs for the system. We explain the intuition behind the problem
of “trivialisation” [44, p. 199] that the Ex Falso principle causes in the case of rebutting attacks, but a
reader can refer to the mentioned sources for a more technical elaboration of the problem. In a nutshell,
argumentation systems with strict and defeasible rules allow that arguments using defeasible rules have
contradictory conclusions, say ϕ and ¬ϕ, rebutting each other. However, if strict rules are based on a
deductive logic with the Ex Falso principle, then the conclusions ϕ and ¬ϕ of the arguments can form
an additional argument for any proposition ψ , where ψ is a conclusion of some argument in the system.
This produces undesirable effects, because the conclusion ψ may be a conclusion of an argument that is
unrelated to the rebuttal between ϕ and ¬ϕ.

The effects of trivialisation are recognized, for example, in the context of the ASPIC+ framework.
To test whether a system is susceptible to the problem, Caminada, Carnielli and Dunne [26] propose the
rationality postulate called “non-interference” for generalized defeasible theories based on propositional

S. Pandžić / Logic of defeasible argumentation 39

logic. We take DT to be defined as a pair (P, R), where P is a (consistent) set of propositional formulas
and R a set of defeasible rules. Two theories DT1 and DT2 are said to be syntactically disjoint iff
Atoms(DT1) ∩ Atoms(DT2) = ∅, where Atoms(DT) is the set of all atomic propositional formulas
occurring in DT . The postulate requires the following:

Non-interference For two syntactically disjoint defeasible theories DT1 and DT2 such that P1 and P2

are consistent, conclusions that are acceptable under some argumentation semantics for each of
the defeasible theories DT1 and DT2 should remain acceptable under the same argumentation se-
mantics for the merged defeasible theory defined as the union DT1 ∪ DT2 = (P1 ∪ P2, R1 ∪ R2).

Violating this postulate would imply “that a defeasible theory somehow influences the entailment of a
completely unrelated (syntactically disjoint) defeasible theory when being merged to it” [23, p. 2728].

In default justification logic, the basic JTCS logic language extends that of propositional logic with
justification assertions. In the JTCS logic, we assume the disputed Ex Falso Sequitur Quodlibet principle
in axiom A0. However, in our operational semantics, rebutting reasons are necessarily kept apart by the
way in which we build process trees. According to Definition 9, default rules are applied to an evidence
base in such a way that it it is not possible that JTCS-inconsistent conclusions of an argument together
form new arguments based on the Ex Falso principle.

Let Atoms(T) be the set of all atomic propositional formulas occurring in a default theory T = (W, D)

and let Subterms(T) be the set of all subterms occurring in a default theory theory T = (W, D). We
say that the default theories T1 and T2 are syntactically disjoint iff Atoms(T1) ∩ Atoms(T2) = ∅ and
Subterms(T1) ∩ Subterms(T2) = ∅. We can then ask whether our logic satisfies the following JTCS

variant of the non-interference postulate or not:

JTCS non-interference For two syntactically disjoint default theories T1 and T2 such that W1 and W2 are
JTCS-consistent, conclusions that are acceptable under some argumentation semantics for each of
the defeasible theories T1 and T2 should remain acceptable under the same argumentation seman-
tics for the merged defeasible theory defined as the union T1 ∪ T2 = (W1 ∪ W2, D1 ∪ D2).

It is clear that our default theories do not satisfy the postulate with respect to the JTCS-stable semantics.
For example, consider joining some syntactically disjoint default theories T1 and T2, where T1 is the
theory defined in Example 26. Recall that the example represents a self-defeating argument featuring
Robert who suffers from pink-elephant phobia. Regardless of whether the default theory T2 has a JTCS-
stable extension or not, the union T1 ∪ T2 will not have a JTCS-stable extension, given the assumption
that the two theories are syntactically disjoint.

Assuming consistent and syntactically disjoint default theories, we can check that our default justifica-
tion logic satisfies the JTCS non-interference postulate for all the semantics based on JTCS admissibility.
The proof for this statement would follow from the above observation that our process tree semantics
prevents constructing new arguments from conclusions of rebutting arguments, and the assumption that
we consider consistent default theories.

To conclude the discussion about rationality postulates, we will indicate several limitations on giv-
ing a systemic evaluation of default justification logic in this paper. Firstly, default justification logic as
presented in this paper does not yet model all the varieties of argumentative attacks as, for example, en-
abled in ASPIC+.33 In particular, this paper does not include a justification logic variant of undermining

33There are also further differences in the basic languages underlying our logic of arguments and the examples that initiated
the non-interference postulate debate. Consider, for example, the statement “John says the cup of coffee contains sugar”. In

40 S. Pandžić / Logic of defeasible argumentation

attacks or attacks on premises of an argument. Undermining in justification logic is first introduced in
[62] and it is also further developed as a part of an ongoing work. It can be plausibly assumed that satis-
fying non-interference will not be affected by undermining, because we use the mechanism of multiple
extensions of an evidence base to model undermining.

6. Related work and discussion

The logic of default justification has a similar connection to abstract argumentation frameworks as
standard justification logic systems have to their modal logic counterparts. Artemov [6] provided a proof
of the Realization Theorem that connects the logic of arithmetic proofs LP with the modal logic S4.
The result has been followed up by similar theorems for many other modal logics with known “explicit”
justification counterparts.34 In our paper we show that our logic can be considered as an explicit justifi-
cation logic counterpart to a substantial subclass of abstract argumentation frameworks called warranted
frameworks.

In the general context of default logics, our logic introduces some new technical properties for normal
default theories that are still to be thoroughly investigated. Among them are revision of extensions and
interaction of different defaults that does not rely on their preference orderings, as commonly done in
default logic [29]. An extensive account of default reasons that makes use of preference orderings on
defaults is developed by [47]. Horty’s logic is based on a propositional language and develops from a
different notion of reasons, which are not explicitly featured in the language itself. He uses the idea of
preferences to represent undercutters or exclusionary reasons.

Our work provides a complementary addition to the study of less-than-ideal reasons in justification
logic. Among related approaches, the logic of conditional probabilities developed by [59] introduces a
way to model non-monotonic reasoning with justification assertions. Their proposal is based on defining
operators for approximate probabilities of a justified formula given some condition formula. Using con-
ditional probabilities, the logic models certain aspects of defeasible inferences with justification terms.
Yet the system can neither encode the defeasibility of justification terms in their internal structure nor
model defeat among reasons, to mention only some differences from our initial desiderata.

Baltag, Renne and Smets [12] define a justification logic in which an agent may hold a justified belief
that can be compromised in the face of newly received information. The logic builds on the ideas from
belief revision and dynamic epistemic logic to model examples where epistemic actions cause changes
to an agent’s evidence. Concerning the possibility of modelling defeaters, the logic offers two dynamic
operations that change the availability of evidence in a model, namely “updates” and “upgrades” [12,
p. 183]. Evidence obtained by updates counts as “hard” or infallible, while upgrades bring about “soft”
or fallible evidence. With the use of these actions, epistemic models can represent justified beliefs being
defeated, for example, by means of an epistemic action of update with hard evidence. In this way,

standard structured argumentation frameworks, the underlying language is usually assumed to be a classical logic language. If
we take propositional logic, the statement is formalized using a propositional formula, e.g., ‘s’. Justification assertions are richer
expressions and this opens up a possibility to go beyond the propositional language and indicate that a certain reason supports
a formula. As we do in the examples in this paper, the statement would translate into the justification assertion ‘j : S’, thus
specifying the source of information as a reason justifying the statement. This is the starting point of the modelling testimonies
and undermining attacks in [62] that can be used to provide an alternative formalization of the benchmark examples from
[23]. We already indicated at the end of Section 4 how this affects the way in which we can model self-referential claims of
unreliability such as “John says that John is unreliable”.

34See [38] for a good overview of realization theorems.

S. Pandžić / Logic of defeasible argumentation 41

however, the mechanism by which reasons may conflict with one another is simply being “outsourced”
to an extra-logical notion of fallibility and, therefore, the logic does not directly address the ways of
defeat that we formalize in this paper.

Several interesting paths could be followed in connecting the logic of default justifications with for-
mal argumentation frameworks. Among frameworks with abstract arguments, the AFRA framework [15]
with recursive attacks offers a possibility of representing attacks to attacks. This conceptual advance is
useful in connecting default reasons to abstract arguments. More obviously, our logic is closely related
to the frameworks with structured arguments, which is why connections with systems such as ASPIC+
[68], DeLP [41], SG [46] and the logic-based argumentation framework by [18] are interesting to ex-
plore. Since each of these frameworks elaborates on the notion of defeat, a thorough comparison to our
logic would shed light on their formal connections. A different logic-based perspective on argumenta-
tion frameworks is given by [27] and [45]. Both papers start from the idea of studying attack graphs and
formalizing notions of extensions from abstract argumentation theory using modal logic, with the former
approach being proof-theoretical and the latter model-theoretical. A further interesting research venue
in the field of argumentation theory is the one about the logical interpretation of prima facie justified
assumptions in [80]. The DefLog system which is developed there is closely related to ours in motiva-
tion, but it develops from a perspective of a sentence-based theory of defeasible reasoning instead of a
rule-based or argument-based approach.

Further developments are possible starting from the basic form of default rules with justified formulas.
We indicate some of the possibilities to extend the basic logic. On the technical side of the logic, we used
only the expressiveness of normal default rules and we still need to investigate how to add non-normal
default rules. Since all processes are successful for normal default theories, it is interesting to see whether
the logic has some further desirable properties such as, for example, goal-driven query evaluation.

It is also possible to use the first-order variant of justification logic [37], instead of the propositional
justification logic used here. This is an intriguing direction because of the possibilities it opens. To
mention one of them, a first-order warrant of a default rule would fully correspond to the Toulminian
warrant, being also generally applicable to all the objects as a rule schema. Defining default rules on
such rich language would be one step closer to a full account of structured arguments.

One of the ongoing projects started in [62] is to add the dynamic aspect of default theories with
justification terms. Besides the existing mechanism of extension revisions, we also consider changes to
a default theory and adding belief-revision-style operations to deal with such theory changes. A similar
proposal is given in [4] for standard default theories. This completes the logic proposed here because
it enables modelling an additional kind of defeat that was only briefly mentioned in this paper, namely
undermining defeat. This form of defeat is understood as an attack on the premises or assumptions of an
argument [79, p. 626] and premises can be interpreted as the information contained in the set W for a
theory T = (W, D).

At this point, our logic is presented as single-agent. Since argumentation is distinctively dialogical and
multi-agent practice, developing a multi-agent generalization of the default justification logic stands as
one of the main future goals. The problem that needs to be initially addressed is how does inclusion of
multiple agents essentially differ from the already existing argument exchange through default reasons.

Finally, the logic of default justifications has a potential to link the formal analysis of knowledge with
mainstream epistemology. Ever since the concept of justification entered into epistemic logics, there has
been a tendency to model mainstream epistemology examples, proposed by e.g. Russell, Dretske and
Gettier, with the use of justification logic [7,8]. With the introduction of default justifications, however,
we gain flexibility for a more full-blooded integration of the formal theory of justification with the

42 S. Pandžić / Logic of defeasible argumentation

study of knowledge in philosophy, since paradigmatic examples include both incomplete specification
of reasons and defeated reasons. Potential benefits of a non-monotonic system of justifications in this
context were anticipated by Artemov in [7, p. 482] where he states that “to develop a theory of non-
monotonic justifications which prompt belief revision” stands as an “intriguing challenge”.

Acknowledgements

I am grateful to Allard Tamminga, Barteld Kooi and Rineke Verbrugge for their generous advice and
valuable comments on the previous versions of this manuscript. My research is supported by Ammodo
KNAW project Rational Dynamics and Reasoning awarded to Barteld Kooi. I am also grateful to the
three reviewers of the Argument & Computation journal for their constructive suggestions that helped
me to improve this paper.

Appendix

Proof of Theorem 6. The claim from left to right is obvious. For the other direction, take CS to be
some specific axiomatically appropriate and injective constant specification. We first show that if a set
� is JTCS-finitely satisfiable, then for all formulas F ∈ Fm, it holds that � ∪ {F } or � ∪ {¬F } is JTCS-
finitely satisfiable. Suppose that � is JTCS-finitely satisfiable and that � ∪ {F } and � ∪ {¬F } are both
not JTCS-finitely satisfiable. Then there would be finite subsets �′ and �′′ of � such that �′ ∪ {F } and
�′′∪{¬F } are not JTCS satisfiable. Since for no interpretation I it holds that I |= {F, ¬F }, �′∪{F, ¬F }
is never JTCS satisfiable. But since for any possible interpretation I one of the formulas F or ¬F holds,
this means that I |= �′ ⊆ A′ for a class of interpretations A′ such that for each I ′ ∈ A′, it holds that
I ′ |= ¬F . In a similar way we get that I |= �′′ ⊆ A′′ for a class A′′ consisting of the interpretations
I ′′ such that I ′′ |= F . Therefore, we have that I |= �′ ∩ I |= �′′ = ∅ and, thus, �′ ∪ �′′ is not JTCS-
satisfiable. But �′ ∪ �′′ is a finite subset of � and this contradicts the assumption that � is JTCS-finitely
satisfiable.

The next step is proving a JTCS variant of the Lindenbaum lemma. Using the above-proven statement
that for any JTCS-finitely satisfiable set of formulas � and any formula F , � ∪ {F } or � ∪ {¬F } is
JTCS-finitely satisfiable together with the fact that �∪{F, ¬F } is never JTCS-finitely satisfiable, we can
construct maximally JTCS-finitely satisfiable sets. Let F1, F2, F3, . . . be an enumeration of F ∈ Fm.
For a JTCS-finitely satisfiable set � and for all i ∈ N define an increasing sequence of sets of formulas
as follows:

�0 = �

�i+1 = �i ∪ {Fi} if �i ∪ {F1} is JTCS-finitely satisfiable, otherwise �i+1 = �i ∪ {¬Fi}
�′ = ⋃∞

i=0 �i

We can prove that �′ is JTCS-finitely satisfiable by induction. The base case �0 = � holds by assump-
tion. Then we claim that for all i ∈ N, �i is JTCS-finitely satisfiable. For some n ∈ N, take �n to be
JTCS-finitely satisfiable. Then either � ∪ {Fn} or � ∪ {¬Fn} is JTCS-finitely satisfiable and, therefore,
�n+1 is also JTCS-finitely satisfiable.

From the construction of the increasing sequence, we have that for any finite set �k ⊆ �′ there is a
JTCS-finitely satisfiable finite set �k+1 ⊆ �′ such that �k ⊆ �k+1 and, therefore, �k is JTCS-satisfiable.
Since any finite subset of �′ is JTCS satisfiable, �′ is JTCS-finitely satisfiable. The set �′ is maximal

S. Pandžić / Logic of defeasible argumentation 43

according to the enumeration of the set of formulas Fm and contains exactly one of Fi or ¬Fi for all
i ∈ N.

Now we define a valuation v such that v(P) = True iff P ∈ �′ and the reason assignment ∗(t) = {F |
t : F ∈ �′}. We only need to check the conditions on the reason assignment function. First, we show
that ∗(·) satisfies the application condition. Since the formula t : (F → G) → (u : F → (t · u) : G) is
JTCS valid, it is contained in �′. If F → G ∈ ∗(t) and F ∈ ∗(u), then {t : (F → G), u : F } ∈ �′. Since
� is closed under Modus ponens, we have that (t · u) : G ∈ �′ and, therefore, G ∈ ∗(t · u). Similarly,
since the formulas t : F → (t + u) : F and u : F → (t + u) : F are both in �′ we can easily check that
the sum condition holds for ∗(·).

Finally, we have defined an interpretation I = (∗, v) that meets CS and we need to prove that truth in
this interpretation is equivalent to inclusion in �′:

I |= F iff F ∈ �′

The proof is by induction on the structure of F . For the base case, suppose F is an atomic formula P :
I |= P iff v(P) = True iff P ∈ �′.

For the inductive step, suppose that if the result holds for F and G, then it also holds for ¬F , F ∧ G,
F ∨ G, F → G and t : F . For the negation case: I |= ¬F iff I �|= F . By the inductive hypothesis,
I �|= F iff F /∈ �′. By the maximality of �′, we have that F /∈ �′ iff ¬F ∈ �′.

For the conjunction case: I |= F ∧G iff I |= F and I |= G. By the inductive hypothesis, I |= F and
I |= G iff F ∈ �′ and G ∈ �′ iff F ∧ G ∈ �′. Since other connectives are definable in terms of ¬ and
∧, we skip the remaining cases.

Finally for the justified formula case: I |= t : F iff F ∈ ∗(t). By the definition of ∗(·), it holds that
F ∈ ∗(t) iff t : F ∈ �′.

Therefore, for any JTCS-finitely satisfiable set � there is an interpretation I based on a maximal
JTCS-finitely satisfiable extension �′ of � such that I |= �. �

Proof of Proposition 32. The proof is by induction on the acceptance conditions for a formula t : F =
cons(δ) given by the definitions of JTCS-complete, JTCS-grounded, JTCS-preferred and JTCS-stable
extension definitions for default theories.

The following is an argument for the JTCS-preferred extension case. Take as the induction base default
theory T = (W, D) such that T has a non-empty process � = (δ) and t : F = cons(δ). The theory
has a JTCS-preferred extension ThJTCS(�), where � = W ∪ {cons(δ)}. The forgetful projection of T is
defined as Af = (Arg, Att), where Arg = {A} and Att is empty. The only preferred extension of Af is A.

For the inductive step, assume that if t : F = cons(δk) is in a JTCS-preferred extension of a default
theory Tn = (Wn, Dn) such that t : F occurs in a closed process � = (δ1, . . . , δm) of T , then it is also
in a preferred extension of its forgetful projection Afn = (Argn, Attn). By the induction hypothesis and
the definition of JTCS-preferred extensions, it holds that t : F ∈ � such that � is a JTCS-admissible
extension and for no other JTCS-admissible extension �′ it holds that � ⊂ �′. By the definition of
a JTCS-admissible set, it holds that � is conflict-free and each formula in � is acceptable w.r.t. � in
�. For a non-complex default theory and the formula t : F , this means that for any undercutting reason
u : G ∈ ThJTCS(W ∪ {cons(δj)}) for t being a reason for F in �, � undercuts u being a reason for G. The
forgetful projection maps all the formulas cons(�′) for any process �′ into arguments A1, . . . , An of the
framework Afn and for the undercutter u : G ascribes an attack relation (Aj , Ak), and analogously for any
other possible undercutter. Moreover, any conflict-free set is also JTCS consistent and for each formula
v : H = cons(δp) such that v : H ∈ �′ for a JTCS-admissible extension �′ of T and v : H /∈ cons(�),

44 S. Pandžić / Logic of defeasible argumentation

it holds that v : H and t : F do not occur together in any process �′ because T is non-complex.
According to the forgetful projection, (Ak, Ap) and (Ap, Ak) are both in Attn. It is easy to check that, by
the definition of Dung’s preferred extension, the forgetful projection maps � into a preferred extension
S of Afn such that Ak is in S. �

Proof of Proposition 35. The proof is by induction on the acceptance conditions for an argument A

given by the definitions of complete, grounded, preferred and stable extension definitions for Dung’s
abstract argumentation frameworks restricted to the subclass of warranted frameworks.

The proof of the inductive step relies on the fact that the realization procedure −→−→−→ preserves the
direction of attacks specified by Dung’s attack relation. The direction of argument attacks in our oper-
ational semantics is defined exactly as semantics in abstract argumentation, where realized extensions
can be instantiated with the corresponding consistent models from JTCS, modulo specifying the logical
structure of attacks and closing the realized extensions under the JTCS consequence relation.

The realization procedure is straightforward for Af ’s that amount to directed acyclic graphs as well
for (most) Af ’s whose cycles include two-node-cycle components, which translate into rebuttal between
formulas. For example, for the existence of a directed path, the realization assigns an undercutter formula
u : ¬[t : (F → G)] as an argument that realizes the starting node such that any warrant of a subsequent
node is a subformula of G. With the presence of other types of cycles, the realization forces the existence
of sub-arguments for at least one argument t : F corresponding to a node from a realized cycle. This
follows from Theorem 33. �

References

[1] L. Amgoud, Postulates for logic-based argumentation systems, International Journal of Approximate Reasoning 55(9)
(2014), 2028–2048. doi:10.1016/j.ijar.2013.10.004.

[2] L. Amgoud and P. Besnard, A formal characterization of the outcomes of rule-based argumentation systems, in: Inter-
national Conference on Scalable Uncertainty Management, SUM 2013, W. Liu, V.S. Subrahmanian and J. Wijsen, eds,
LNCS, Vol. 8078, Springer, 2013, pp. 78–91.

[3] G. Antoniou, Nonmonotonic Reasoning, MIT Press, Cambridge, MA, 1997.
[4] G. Antoniou, On the dynamics of default reasoning, International Journal of Intelligent Systems 17(12) (2002), 1143–

1155. doi:10.1002/int.10065.
[5] S.N. Artemov, Operational modal logic, Technical Report, MSI 95–29, Mathematical Sciences Institute, Cornell Univer-

sity, 1995.
[6] S.N. Artemov, Explicit provability and constructive semantics, Bulletin of Symbolic Logic (2001), 1–36.
[7] S.N. Artemov, The logic of justification, The Review of Symbolic Logic 1(4) (2008), 477–513. doi:10.1017/

S1755020308090060.
[8] S.N. Artemov, Justification awareness models, in: International Symposium on Logical Foundations of Computer Science,

S.N. Artemov and A. Nerode, eds, LNCS, Vol. 10703, Springer, 2018, pp. 22–36. doi:10.1007/978-3-319-72056-2_2.
[9] S.N. Artemov and M. Fitting, Justification logic, in: The Stanford Encyclopedia of Philosophy, E.N. Zalta, ed., Meta-

physics Research Lab, Stanford University, 2016.
[10] S.N. Artemov and M. Fitting, Justification Logic: Reasoning with Reasons, Cambridge Tracts in Mathematics, Vol. 216,

Cambridge University Press, 2019.
[11] S.N. Artemov and E. Nogina, Introducing justification into epistemic logic, Journal of Logic and Computation 15(6)

(2005), 1059–1073. doi:10.1093/logcom/exi053.
[12] A. Baltag, B. Renne and S. Smets, The logic of justified belief change, soft evidence and defeasible knowledge, in:

International Workshop on Logic, Language, Information, and Computation, L. Ong and R. de Queiroz, eds, Springer,
2012, pp. 168–190. doi:10.1007/978-3-642-32621-9_13.

[13] A. Baltag, B. Renne and S. Smets, The logic of justified belief, explicit knowledge, and conclusive evidence, Annals of
Pure and Applied Logic 165(1) (2014), 49–81. doi:10.1016/j.apal.2013.07.005.

[14] H. Barendregt, W. Dekkers and R. Statman, Lambda Calculus with Types, Cambridge University Press, 2013.

https://doi.org/10.1016/j.ijar.2013.10.004
https://doi.org/10.1002/int.10065
https://doi.org/10.1017/S1755020308090060
https://doi.org/10.1017/S1755020308090060
https://doi.org/10.1007/978-3-319-72056-2_2
https://doi.org/10.1093/logcom/exi053
https://doi.org/10.1007/978-3-642-32621-9_13
https://doi.org/10.1016/j.apal.2013.07.005

S. Pandžić / Logic of defeasible argumentation 45

[15] P. Baroni, F. Cerutti, M. Giacomin and G. Guida, AFRA: Argumentation framework with recursive attacks, International
Journal of Approximate Reasoning 52(1) (2011), 19–37. doi:10.1016/j.ijar.2010.05.004.

[16] P. Baroni and M. Giacomin, Solving semantic problems with odd-length cycles in argumentation, in: European Conference
on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, T. Dyhre Nielsen and N. Lianwen Zhang, eds,
LNCS, Vol. 2711, Springer-Verlag, 2003, pp. 440–451.

[17] T.J. Bench-Capon and P.E. Dunne, Argumentation in artificial intelligence, Artificial Intelligence 171(10–15) (2007),
619–641. doi:10.1016/j.artint.2007.05.001.

[18] P. Besnard and A. Hunter, A logic-based theory of deductive arguments, Artificial Intelligence 128(1–2) (2001), 203–235.
doi:10.1016/S0004-3702(01)00071-6.

[19] P. Besnard and A. Hunter, Practical first-order argumentation, in: Proceedings of the National Conference on Artificial
Intelligence, AAAI’05, Vol. 20, AAAI Press, 2005, p. 590.

[20] P. Besnard and A. Hunter, Constructing argument graphs with deductive arguments: A tutorial, Argument & Computation
5(1) (2014), 5–30. doi:10.1080/19462166.2013.869765.

[21] V. Brezhnev, On the logic of proofs, in: Proceedings of the Sixth ESSLLI Student Session, Helsinki, K. Striegnitz, ed.,
2001, pp. 35–46.

[22] M.W.A. Caminada, Contamination in formal argumentation systems, in: Proceedings of the 17th Belgium-Netherlands
Conference on Artificial Intelligence, BNAIC 2005, K. Verbeeck, K. Tuyls, A. Nowé, B. Manderick and B. Kuijpers, eds,
Koninklijke Vlaamse Academie van Belie voor Wetenschappen en Kunsten, 2005.

[23] M.W.A. Caminada, Rationality postulates: Applying argumentation theory for non-monotonic reasoning, Journal of Ap-
plied Logics 4(8) (2017), 2707–2734.

[24] M.W.A. Caminada, A gentle introduction to argumentation semantics (Summer 2008), Lecture material.
[25] M.W.A. Caminada and L. Amgoud, On the evaluation of argumentation formalisms, Artificial Intelligence 171(5–6)

(2007), 286–310. doi:10.1016/j.artint.2007.02.003.
[26] M.W.A. Caminada, W.A. Carnielli and P.E. Dunne, Semi-stable semantics, Journal of Logic and Computation 22(5)

(2012), 1207–1254. doi:10.1093/logcom/exr033.
[27] M.W.A. Caminada and D.M. Gabbay, A logical account of formal argumentation, Studia Logica 93(2–3) (2009), 109.

doi:10.1007/s11225-009-9218-x.
[28] R.M. Chisholm, Theory of Knowledge, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[29] J.P. Delgrande and T. Schaub, Expressing preferences in default logic, Artificial Intelligence 123(1–2) (2000), 41–87.

doi:10.1016/S0004-3702(00)00049-7.
[30] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming

and n-person games, Artificial Intelligence 77(2) (1995), 321–357. doi:10.1016/0004-3702(94)00041-X.
[31] M. Elvang-Gøransson, P. Krause and J. Fox, Dialectic reasoning with inconsistent information, in: Proceedings of the

Ninth International Conference on Uncertainty in Artificial Intelligence, D. Heckerman and A. Mamdani, eds, Morgan
Kaufmann Publishers Inc., 1993, pp. 114–121. doi:10.1016/B978-1-4832-1451-1.50018-4.

[32] T.-F. Fan and C.-J. Liau, A logic for reasoning about justified uncertain beliefs, in: Proceedings of the IJCAI 2015, Q.
Yang and M. Wooldridge, eds, AAAI Press, 2015, pp. 2948–2954.

[33] M. Fitting, A logic of explicit knowledge, in: Logica Yearbook 2004, L. Běhounek and M. Bílková, eds, Filosofia, Prague,
2005, pp. 11–22.

[34] M. Fitting, The logic of proofs, semantically, Annals of Pure and Applied Logic 132(1) (2005), 1–25. doi:10.1016/j.apal.
2004.04.009.

[35] M. Fitting, Justification logics, logics of knowledge, and conservativity, Annals of Mathematics and Artificial Intelligence
53(1–4) (2008), 153–167. doi:10.1007/s10472-009-9112-2.

[36] M. Fitting, Reasoning with justifications, in: Towards Mathematical Philosophy, Springer, 2009, pp. 107–123. doi:10.
1007/978-1-4020-9084-4_6.

[37] M. Fitting, Possible world semantics for first-order logic of proofs, Annals of Pure and Applied Logic 165(1) (2014),
225–240. doi:10.1016/j.apal.2013.07.011.

[38] M. Fitting, Modal logics, justification logics, and realization, Annals of Pure and Applied Logic 167(8) (2016), 615–648.
doi:10.1016/j.apal.2016.03.005.

[39] M. Fitting, Paraconsistent logic, evidence, and justification, Studia Logica 105(6) (2017), 1149–1166. doi:10.1007/
s11225-017-9714-3.

[40] J. Fox, D. Glasspool and J. Bury, Quantitative and qualitative approaches to reasoning under uncertainty in medical
decision making, in: Conference on Artificial Intelligence in Medicine in Europe, AIME 2001, S. Quaglini, P. Barahona
and S. Andreassen, eds, Springer, 2001, pp. 272–282.

[41] A.J. García and G.R. Simari, Defeasible logic programming: An argumentative approach, Theory and Practice of Logic
Programming 4(1–2) (2004), 95. doi:10.1017/S1471068403001674.

[42] A.J. García and G.R. Simari, Defeasible logic programming: DeLP-servers, contextual queries, and explanations for
answers, Argument & Computation 5(1) (2014), 63–88. doi:10.1080/19462166.2013.869767.

https://doi.org/10.1016/j.ijar.2010.05.004
https://doi.org/10.1016/j.artint.2007.05.001
https://doi.org/10.1016/S0004-3702(01)00071-6
https://doi.org/10.1080/19462166.2013.869765
https://doi.org/10.1016/j.artint.2007.02.003
https://doi.org/10.1093/logcom/exr033
https://doi.org/10.1007/s11225-009-9218-x
https://doi.org/10.1016/S0004-3702(00)00049-7
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/B978-1-4832-1451-1.50018-4
https://doi.org/10.1016/j.apal.2004.04.009
https://doi.org/10.1016/j.apal.2004.04.009
https://doi.org/10.1007/s10472-009-9112-2
https://doi.org/10.1007/978-1-4020-9084-4_6
https://doi.org/10.1007/978-1-4020-9084-4_6
https://doi.org/10.1016/j.apal.2013.07.011
https://doi.org/10.1016/j.apal.2016.03.005
https://doi.org/10.1007/s11225-017-9714-3
https://doi.org/10.1007/s11225-017-9714-3
https://doi.org/10.1017/S1471068403001674
https://doi.org/10.1080/19462166.2013.869767

46 S. Pandžić / Logic of defeasible argumentation

[43] K. Gödel, Vortrag bei Zilsel/Lecture at Zilsel’s (1938a), in: Kurt Gödel: Collected Works: Volume III: Unpublished Essays
and Lectures, Vol. 3, Oxford University Press, 1995, pp. 87–114.

[44] D. Grooters and H. Prakken, Two aspects of relevance in structured argumentation: Minimality and paraconsistency,
Journal of Artificial Intelligence Research 56 (2016), 197–245. doi:10.1613/jair.5058.

[45] D. Grossi, Argumentation in the view of modal logic, in: 7th International Workshop on Argumentation in Multi-Agent
Systems, ArgMAS 2010, P. McBurney, I. Rahwan and S. Parsons, eds, LNCS, Vol. 6614, Springer, 2010, pp. 190–208.

[46] A. Hecham, P. Bisquert and M. Croitoru, On a flexible representation for defeasible reasoning variants, in: Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, M. Dastani, G.
Sukthankar, E. André and S. Koenig, eds, International Foundation for Autonomous Agents and Multiagent Systems,
2018, pp. 1123–1131.

[47] J.F. Horty, Reasons as Defaults, Oxford University Press, 2012.
[48] I. Kokkinis, P. Maksimović, Z. Ognjanović and T. Studer, First steps towards probabilistic justification logic, Logic Journal

of the IGPL 23(4) (2015), 662–687. doi:10.1093/jigpal/jzv025.
[49] I. Kokkinis, Z. Ognjanović and T. Studer, Probabilistic justification logic, in: International Symposium on Logical Foun-

dations of Computer Science, S.N. Artemov and A. Nerode, eds, LNCS, Vol. 9537, Springer, 2016, pp. 174–186. doi:10.
1007/978-3-319-27683-0_13.

[50] R. Koons, Defeasible reasoning, in: The Stanford Encyclopedia of Philosophy, E.N. Zalta, ed., Metaphysics Research Lab,
Stanford University, 2017.

[51] P. Krause, S. Ambler, M. Elvang-Gøransson and J. Fox, A logic of argumentation for reasoning under uncertainty, Com-
putational Intelligence 11(1) (1995), 113–131. doi:10.1111/j.1467-8640.1995.tb00025.x.

[52] R. Kuznets, On the complexity of explicit modal logics, in: Computer Science Logic: 14th International Workshop, CSL
2000, P.G. Clote and H. Schwichtenberg, eds, LNCS, Vol. 1862, Springer-Verlag, 2000, pp. 371–383. doi:10.1007/3-540-
44622-2_25.

[53] R. Kuznets and T. Studer, Logics of Proofs and Justifications, College Publications, 2019.
[54] R.S. Milnikel, Derivability in certain subsystems of the Logic of Proofs is �

p
2 -complete, Annals of Pure and Applied

Logic 145(3) (2007), 223–239. doi:10.1016/j.apal.2006.03.001.
[55] R.S. Milnikel, The logic of uncertain justifications, Annals of Pure and Applied Logic 165(1) (2014), 305–315. doi:10.

1016/j.apal.2013.07.015.
[56] A. Mkrtychev, Models for the Logic of Proofs, in: Logical Foundations of Computer Science, 4th International Sympo-

sium, LFCS ’97, S. Adian and A. Nerode, eds, LNCS, Vol. 1234, Springer-Verlag, 1997, pp. 266–275. doi:10.1007/3-
540-63045-7_27.

[57] S. Modgil and H. Prakken, The ASPIC+ framework for structured argumentation: A tutorial, Argument & Computation
5(1) (2014), 31–62. doi:10.1080/19462166.2013.869766.

[58] S.H. Nielsen and S. Parsons, A generalization of Dung’s abstract framework for argumentation: Arguing with sets of
attacking arguments, in: International Workshop on Argumentation in Multi-Agent Systems, Springer, 2006, pp. 54–73.

[59] Z. Ognjanović, N. Savić and T. Studer, Justification logic with approximate conditional probabilities, in: Logic, Rationality
and Interaction, 6th International Workshop, LORI 2017, A. Baltag, J. Seligman and T. Yamada, eds, LNCS, Vol. 10455,
Springer, 2017, pp. 681–686.

[60] S. Pandžić, A logic of default justifications, in: 17th International Workshop on Nonmonotonic Reasoning, NMR 2018, E.
Fermé and S. Villata, eds, 2018, pp. 126–135.

[61] S. Pandžić, Reifying default reasons in justification logic, in: Proceedings of the KI 2019 Workshop on Formal and Cog-
nitive Reasoning, DKB-KIK 2019, C. Beierle, M. Ragni, F. Stolzenburg and M. Thimm, eds, Vol. 2445, CEUR Workshop
Proceedings, 2019, pp. 59–70.

[62] S. Pandžić, On the dynamics of structured argumentation: Modeling changes in default justification logic, in: Foundations
of Information and Knowledge Systems, 11th International Symposium, FoIKS 2020, A. Herzig and J. Kontinen, eds,
LNCS, Vol. 12012, Springer, 2020, pp. 222–241.

[63] J.L. Pollock, Defeasible reasoning, Cognitive Science 11(4) (1987), 481–518. doi:10.1207/s15516709cog1104_4.
[64] J.L. Pollock, Cognitive Carpentry: A Blueprint for How to Build a Person, MIT Press, Cambridge, MA, 1995.
[65] J.L. Pollock, Defeasible reasoning with variable degrees of justification, Artificial Intelligence 133(1–2) (2001), 233–282.

doi:10.1016/S0004-3702(01)00145-X.
[66] J.L. Pollock, A recursive semantics for defeasible reasoning, in: Argumentation in Artificial Intelligence, I. Rahwan and

G.R. Simari, eds, Springer, 2009, pp. 173–197. doi:10.1007/978-0-387-98197-0_9.
[67] H. Prakken, An argumentation framework in default logic, Annals of Mathematics and Artificial Intelligence 9(1–2)

(1993), 93–132. doi:10.1007/BF01531263.
[68] H. Prakken, An abstract framework for argumentation with structured arguments, Argument and Computation 1(2) (2010),

93–124. doi:10.1080/19462160903564592.
[69] H. Prakken and J.F. Horty, An appreciation of John Pollock’s work on the computational study of argument, Argument &

Computation 3(1) (2012), 1–19. doi:10.1080/19462166.2012.663409.

https://doi.org/10.1613/jair.5058
https://doi.org/10.1093/jigpal/jzv025
https://doi.org/10.1007/978-3-319-27683-0_13
https://doi.org/10.1007/978-3-319-27683-0_13
https://doi.org/10.1111/j.1467-8640.1995.tb00025.x
https://doi.org/10.1007/3-540-44622-2_25
https://doi.org/10.1007/3-540-44622-2_25
https://doi.org/10.1016/j.apal.2006.03.001
https://doi.org/10.1016/j.apal.2013.07.015
https://doi.org/10.1016/j.apal.2013.07.015
https://doi.org/10.1007/3-540-63045-7_27
https://doi.org/10.1007/3-540-63045-7_27
https://doi.org/10.1080/19462166.2013.869766
https://doi.org/10.1207/s15516709cog1104_4
https://doi.org/10.1016/S0004-3702(01)00145-X
https://doi.org/10.1007/978-0-387-98197-0_9
https://doi.org/10.1007/BF01531263
https://doi.org/10.1080/19462160903564592
https://doi.org/10.1080/19462166.2012.663409

S. Pandžić / Logic of defeasible argumentation 47

[70] G. Priest, Intensional paradoxes, Notre Dame Journal of Formal Logic 32(2) (1991), 193–211. doi:10.1305/ndjfl/
1093635745.

[71] A.N. Prior, On a family of paradoxes, Notre Dame Journal of Formal Logic 2(1) (1961), 16–32. doi:10.1305/ndjfl/
1093956750.

[72] R. Reiter, A logic for default reasoning, Artificial Intelligence 13(1–2) (1980), 81–132. doi:10.1016/0004-
3702(80)90014-4.

[73] B. Renne, Multi-agent justification logic: Communication and evidence elimination, Synthese 185(1) (2012), 43–82.
doi:10.1007/s11229-011-9968-7.

[74] C.-P. Su, T.-F. Fan and C.-J. Liau, Possibilistic justification logic: Reasoning about justified uncertain beliefs, ACM Trans-
actions on Computational Logic (TOCL) 18(2) (2017), 15. doi:10.1145/3091118.

[75] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics 5(2) (1955), 285–309.
doi:10.2140/pjm.1955.5.285.

[76] F. Toni, A tutorial on assumption-based argumentation, Argument & Computation 5(1) (2014), 89–117. doi:10.1080/
19462166.2013.869878.

[77] S.E. Toulmin, The Uses of Argument, Cambridge University Press, 2003.
[78] G. Uzquiano, Quantifiers and quantification, in: The Stanford Encyclopedia of Philosophy, E.N. Zalta, ed., Metaphysics

Research Lab, Stanford University, 2020.
[79] F.H. van Eemeren, B. Garssen, E.C.W. Krabbe, A.F.S. Henkemans, H.B. Verheij and J.H.M. Wagemans, Argumentation

and artificial intelligence, in: Handbook of Argumentation Theory, Springer, 2014, pp. 615–675.
[80] B. Verheij, DefLog: On the logical interpretation of prima facie justified assumptions, Journal of Logic and Computation

13(3) (2003), 319–346. doi:10.1093/logcom/13.3.319.
[81] B. Verheij, The Toulmin argument model in artificial intelligence, in: Argumentation in Artificial Intelligence, I. Rahwan

and G.R. Simari, eds, Springer, 2009, pp. 219–238. doi:10.1007/978-0-387-98197-0_11.
[82] Y. Wu and M. Podlaszewski, Implementing crash-resistance and non-interference in logic-based argumentation, Journal

of Logic and Computation 25(2) (2015), 303–333. doi:10.1093/logcom/exu017.
[83] M. Zorn, A remark on method in transfinite algebra, Bulletin of the American Mathematical Society 41(10) (1935), 667–

670. doi:10.1090/S0002-9904-1935-06166-X.

https://doi.org/10.1305/ndjfl/1093635745
https://doi.org/10.1305/ndjfl/1093635745
https://doi.org/10.1305/ndjfl/1093956750
https://doi.org/10.1305/ndjfl/1093956750
https://doi.org/10.1016/0004-3702(80)90014-4
https://doi.org/10.1016/0004-3702(80)90014-4
https://doi.org/10.1007/s11229-011-9968-7
https://doi.org/10.1145/3091118
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1080/19462166.2013.869878
https://doi.org/10.1080/19462166.2013.869878
https://doi.org/10.1093/logcom/13.3.319
https://doi.org/10.1007/978-0-387-98197-0_11
https://doi.org/10.1093/logcom/exu017
https://doi.org/10.1090/S0002-9904-1935-06166-X

	Introduction
	Justification logic
	The logic of non-defeasible reasons JT
	Syntax
	Axioms and rules of JT
	Semantics

	A logic of default justifications
	Operational semantics of default justifications
	Argumentative schemes and argumentative attacks in justification logic
	Argument acceptance in justification logic

	Relations of the logic of default justifications to abstract argumentation frameworks: Realizing Dung's frameworks in justification logic
	Rationality postulates for structured argumentation
	Delimiting the notion of argument in default justification logic
	Postulates for default justification logic
	The non-interference postulate

	Related work and discussion
	Acknowledgements
	Appendix
	References

