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Abstract. We revisit the notion of initial sets by Xu and Cayrol (In Proceedings of the 1st Chinese Conference on Logic and
Argumentation (CLAR’16) 2016), i. e., non-empty minimal admissible sets in abstract argumentation frameworks. Initial sets
are a simple concept for analysing conflicts in an abstract argumentation framework and to explain why certain arguments can
be accepted. We contribute with new insights on the structure of initial sets and devise a simple non-deterministic construction
principle for any admissible set, based on iterative selection of initial sets of the original framework and its induced reducts.
In particular, we characterise many existing admissibility-based semantics via this construction principle, thus providing a
constructive explanation on the structure of extensions. We also investigate certain problems related to initial sets with respect
to their computational complexity.
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1. Introduction

Formal argumentation [3,6] encompasses approaches for non-monotonic reasoning that focus on the
role of arguments and their interactions. The most well-known approach is that of abstract argumenta-
tion frameworks [19] that model arguments as vertices in a directed graph, where a directed edge from
an argument a to an argument b denotes an attack from a to b. Although conceptually simple, abstract
argumentation frameworks can be used in a variety of argumentative scenarios such as persuasion dia-
logues [16], explanations in recommendation systems [31], mathematical modelling [11], or as a target
formalism of structured argumentation formalisms [28,35]. Formal semantics are given to abstract argu-
mentation frameworks by extensions, i. e., sets of arguments that can jointly be accepted and represent
a coherent standpoint on the conflicts between the arguments. Different variants of such semantics have
been proposed [5], but there are also other (non set-based) approaches such as ranking-based semantics
[1] and probabilistic approaches [26].

A particular advantage of approaches to formal argumentation is the capability to explain the rea-
soning behind certain conclusions using human-accessible concepts such as arguments and counterar-
guments. Works such as [2,27,29,31–33,36] have already explored certain aspects of the explanatory
power of approaches to formal argumentation. Amgoud and Prakken [2] and Rago et. al [31] develop ar-
gumentation formalisms for decision-making that augment recommendations with arguments. In [33] an
extension to abstract argumentation frameworks is developed that explicitly includes a relationship for
an “explanation”, while Liao and van der Torre [27] define “explanation semantics” for ordinary abstract
argumentation frameworks. Saribatur, Wallner, and Woltran [32] as well as Niskanen and Järvisalo [29]
address computational problems and develop a notion for explaining non-acceptability of arguments to,
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e. g., verify results of an argumentation solver. Finally, [36] presents strong explanations as a mechanism
to explain acceptability of (sets of) arguments.

In this paper, we revisit one of the fundamental concepts underlying approaches to formal argumen-
tation (and abstract argumentation in particular) for the purpose of explaining, namely admissibility.
Informally speaking, a set of arguments is admissible if each of its members is defended against any
attack from the outside (we will provide formal details in Section 2). Many popular semantics for ab-
stract argumentation rely on the notion of admissibility. In particular, a preferred extension is a maximal
(wrt. set inclusion) admissible set and preferred semantics satisfies many desirable properties [5]. How-
ever, since a preferred extension is a maximal admissible set, it can hardly be used for explaining why
a certain argument is acceptable: such an extension may contain many irrelevant arguments and its size
alone distracts from the particular reasons why a certain member is acceptable. Our aim is to investigate
why certain arguments are contained in, e. g., a preferred extension and how we can decompose such
large extensions into smaller sets that allow us to justify the reasoning process behind such complex
semantics. As a tool for our investigation, we consider initial sets, i. e., non-empty admissible sets that
are minimal wrt. set inclusion. Initial sets have been introduced in [38] and further analysed in [39,40].
We contribute to this analysis with new insights on the structure of initial sets and, in particular, to the
use of initial sets for the task of explanation. In fact, initial sets can exactly be used for the purpose men-
tioned before [38]: they allow us to decompose large extensions into smaller fragments, each of them
representing a single resolved issue in the argumentation framework and thus showcases the reasoning
behind certain semantics. This has been done already in some form in [38–40] but we present a new, and
arguably more elegant, formalisation of that idea that allows us to derive new results as well. Using the
notion of a reduct [8], we can concisely represent any admissible set as a sequence of initial sets of the
original framework and derived reducts. Moreover, we characterise many admissibility-based semantics
through a step-wise construction process using certain selections of initial sets (this has been hinted at
using the original formalisation for complete and preferred semantics in [40]). We round up our analysis
with a characterisation of the computational complexity of certain tasks related to initial sets, which is
also missing so far from the literature.

In summary, the contributions of this paper are as follows:

(1) We revisit initial sets and investigate further properties (Section 3)
(2) We provide a characterisation result of admissible sets and many admissibility-based semantics

(Section 4)
(3) We analyse certain computational problems wrt. their complexity (Section 5)

Section 2 introduces preliminaries on abstract argumentation and Section 6 concludes this paper.
Complete proofs can be found in the appendix. A short paper presenting the main ideas of this work

has been published before in [34].

2. Abstract argumentation

Let A denote a universal set of arguments. An abstract argumentation framework AF is a tuple AF =
(A, R) where A ⊆ A is a finite set of arguments and R is a relation R ⊆ A × A [19]. Let AF denote the
set of all abstract argumentation frameworks. For two arguments a, b ∈ A the relation aRb means that
argument a attacks argument b. For AF = (A, R) and AF′ = (A′, R′) we write AF′ � AF iff A′ ⊆ A and
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R′ = R ∩ (A′ × A′). For a set X ⊆ A, we denote by AF|X = (X, R ∩ (X × X)) the projection of AF on
X. For a set S ⊆ A we define

S+ = {a ∈ A | ∃b ∈ S : bRa}
S− = {a ∈ A | ∃b ∈ S : aRb}

If S is a singleton set, we omit brackets for readability, i. e., we write a− (a+) instead of {a}− ({a}+).
For two sets S and S ′ we write SRS ′ iff S+ ∩ S ′ �= ∅. We say that a set S ⊆ A is conflict-free if for all
a, b ∈ S it is not the case that aRb. A set S defends an argument b ∈ A if for all a with aRb there is
c ∈ S with cRa. A conflict-free set S is called admissible if S defends all a ∈ S. Let adm(AF) denote
the set of admissible sets of AF.

Different semantics can be phrased by imposing constraints on admissible sets [5]. In particular, an
admissible set E

• is a complete (co) extension iff for all a ∈ A, if E defends a then a ∈ E,
• is a grounded (gr) extension iff E is complete and minimal,
• is a stable (st) extension iff E ∪ E+ = A,
• is a preferred (pr) extension iff E is maximal.
• is a semi-stable (sst) extension iff E ∪ E+ is maximal,
• is an ideal (id) extension iff E is the maximal admissible set with E ⊆ E′ for each preferred

extension E′.
• is a strongly admissible (sa) extension iff E = ∅ or each a ∈ E is defended by some strongly

admissible E′ ⊆ E \ {a}.
All statements on minimality/maximality are meant to be with respect to set inclusion. For σ ∈
{co, gr, st, pr, sst, id, sa} let σ(AF) denote the set of σ -extensions of AF. We say a semantics σ is
admissibility-based if σ(AF) ⊆ adm(AF) for all AF. Note that all semantics above are admissibility-
based but there are also others such as CF2 semantics [7] and weak admissibility-based semantics [8].

3. Revisiting initial sets

Admissibility captures the basic intuition for an explanation why a certain argument can be regarded
as acceptable. More concretely, if S is an admissible set then a ∈ S is accepted because all arguments
in S are accepted, every attacker of a is attacked back by some argument in S. However, admissibility
alone is not sufficient to model explainability as it does not take relevance into account.

Example 1. Consider the argumentation framework AF0 depicted in Fig. 1. There are eight admissible
sets containing the argument e:

S1 = {b, e, f, h, i} S2 = {b, e, f, i} S3 = {b, e, h, i}
S4 = {e, f, h, i} S5 = {b, e, i} S6 = {f, e, i}
S7 = {h, e, i} S8 = {e, i}

S1 is also a preferred extension. However, it is also clear that arguments b, f , and h are not integral
for defending e and the set S8 presents a concise description of what is needed in order to deem e as
acceptable (wrt. admissibility), namely only e and i.
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Fig. 1. AF0 from example 1.

In the following, we take relevance into account by considering minimal (wrt. set inclusion) admissible
sets. Of course, a notion of minimal admissible set without further constraints is not a useful concept
as the empty set is always admissible and constitutes the unique minimal admissible set. Non-empty
minimal admissible sets have been coined initial sets by Xu and Cayrol in [38].

Definition 1 ([38]). For AF = (A, R), a set S ⊆ A with S �= ∅ is called an initial set if S is admissible
and there is no admissible S ′ � S with S ′ �= ∅. Let IS(AF) denote the set of initial sets of AF.

Example 2. We continue Example 1. There are four initial sets of AF0: {f }, {h}, {d, j}, and {e, i}.
As the previous example shows, an initial set is not supposed to provide a “solution” to the whole

argumentation represented in an abstract argumentation framework, but “solves” a single atomic conflict
(or in the case of {h} points to an obvious deterministic inference step). In fact, we can identify three
different types of initial sets.

Definition 2. For AF = (A, R) and S ∈ IS(AF), we say that

(1) S is unattacked iff S− = ∅,
(2) S is unchallenged iff S− �= ∅ and there is no S ′ ∈ IS(AF) with S ′RS,
(3) S is challenged iff there is S ′ ∈ IS(AF) with S ′RS.

Note that only unattacked initial sets have been considered explicitly in [40]; in particular, note that
every unattacked initial set S is a singleton S = {a}. Observe that the notions of unattacked, unchal-
lenged, and challenged initial sets are mutually exclusive and exhaustive. Let IS�(AF), IS�(AF), and
IS↔(AF) denote the set of unattacked, unchallenged, and challenged initial sets, respectively. So we have
IS(AF) = IS�(AF) ∪ IS�(AF) ∪ IS↔(AF). Moreover, for S ∈ IS(AF) let

conflicts(S, AF) = {
S ′ ∈ IS(AF) | S ′RS

}
denote the set of conflicting initial sets of S, which is always empty in the case of unattacked and
unchallenged initial sets. Note that SRS ′ implies S ′RS for any S, S ′ ∈ IS(AF) as S ′ is admissible and
therefore defends itself.

Example 3. We continue Example 2. Here we have

IS�(AF) = {{h}}
IS�(AF) = {{f }}
IS↔(AF) = {{d, j}, {e, i}}

and {d, j} and {e, i} are in conflict with each other, i. e., conflicts({d, j}, AF) = {{e, i}} and
conflicts({e, i}, AF) = {{d, j}}.
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Before we continue with characterising arbitrary admissible sets using initial sets in Section 4, we
first contribute some new results on the structure of initial sets, therefore extending the analysis from
[38–40].

Initial sets have an interesting property with respect to strongly connected components as follows.
Recall that we can decompose an abstract argumentation framework AF into its strongly connected com-
ponents. More precisely, an abstract argumentation framework AF′ = (A′, R′) is a strongly connected
component (SCC) of AF, if AF′ � AF s.t. there is a directed path between any pair a, b ∈ A′ in AF′ and
there is no larger AF′′ with that property. Let SCC(AF) be the set of SCCs of AF.

Example 4. Consider again the argumentation framework AF0 from Fig. 1. AF0 decomposes as follows
into SCCs: SCC(AF0) = {AF0|{d,e,i,j}, AF0|{c}, AF0|{h}, AF0|{g,f,a}, AF0|{b}}

The following result shows that initial sets are always completely contained in a single SCC.

Proposition 1. If S is an initial set of AF then there is AF′ = (A′, R′) ∈ SCC(AF) s.t. S ⊆ A′.

If S is an initial set let SCC(S) denote its SCC as in the above proposition. Initial sets can actually be
characterised by their SCC as follows.

Proposition 2. S is an initial set of AF if and only if S is an initial set of SCC(S) = (A′, R′) and S− ⊆ A′.

In other words, a set S is an initial set iff it is an initial set of a single SCC and it is not attacked by
arguments outside of the SCC.

We close this investigation on the relationship of initial sets with SCCs by making some straightfor-
ward observations regarding the types of initial sets.

Proposition 3. Let S ∈ IS(AF) and SCC(S) = (A′, R′).

(1) If S is unattacked then |A′| = 1.
(2) If S is challenged or unchallenged then |A′| > 1.
(3) If S is challenged and S ′ ∈ conflicts(S, AF) then SCC(S) = SCC(S ′).

In particular, the final observation in the previous proposition states that conflicts between initial sets
are always within a single SCC.

4. Characterising admissibility-based semantics through initial sets

In [38,40] it has been shown that any admissible set (and in particular every complete and preferred
extension) can be constructed by (1) selecting a set of non-conflicting initial sets, (2) adding further
defended arguments, and (3) iterating this procedure taking so-called “J-acceptable” sets into account.
In particular, the described mechanism involves iterative application of the characteristic function [19],
computation of the grounded extension, and said notion of J-acceptability to provide those characterisa-
tions (and some further concepts). In this section, we provide a (arguably) more elegant formalisation of
these ideas that allows us to derive characterisations of further semantics as well as some impossibility
results. Results that are (partly) due to works [38–40] are annotated as such, all remaining results are
new.

Our characterisations rely on the notion of the reduct [8].
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Fig. 2. AF1 from Example 5.

Definition 3. For AF = (A, R) and S ⊆ A, the S-reduct AFS of AF is defined via AFS = AF|A\(S∪S+).

As a single initial set S solves an atomic conflict in an abstract argumentation framework AF, “com-
mitting” to it by moving to AFS may reveal further conflicts and thus new initial sets. We can make the
following observations on this aspect.

Proposition 4. Let AF = (A, R) be an abstract argumentation framework and S, S ′ ∈ IS(AF) with
S �= S ′.

(1) If S ′ ∈ IS�(AF) then S ′ ∈ IS�(AFS)

(2) If S ′ ∈ conflicts(S, AF) then S ′ /∈ IS(AFS)

(3) If S ′ /∈ conflicts(S, AF) then S ′ ∩ ⋃
IS(AFS) �= ∅

The above observations give an impression on how initial sets behave under reducts. So unattacked
initial sets are always retained (item 1), conflicting initial sets are always removed (item 2), and non-
conflicting initial sets are “essentially” retained (item 3). More precisely, while it may not be guaranteed
that non-conflicting initial sets are still initial sets in the reduct, their arguments are still potentially
acceptable, as the following example shows.

Example 5. Consider the argumentation framework AF1 depicted in Fig. 2. We have

IS(AF1) = {{a, c}, {b, d}, {e}}
and {b, d} and {e} are conflicting (there are no further conflicts). Now we have

IS
(
AF{e}

1

) = {{c}}
So the initial set {a, c} of AF1 is not retained in AF{e}

1 , despite {a, c} and {e} not being in conflict.
However, we have that {c} ⊆ {a, c} is an initial set of AF{e}

1 . Furthermore, {a} (the “remaining” argument
of the initial set {a, c}) is actually the unique initial set of (AF{e}

1 ){c}.

The following results show that by an iterative selection of initial sets on the corresponding reducts,
we can re-construct every admissible set. These observations have been hinted at in [38–40], but no
formal proof had been provided. We make up for that now.

Theorem 1. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is admissible if
and only if either

• S = ∅ or
• S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is admissible in AFS1 .



M. Thimm / Revisiting initial sets in abstract argumentation 331

Proof. Let S be an admissible set and S �= ∅. By definition of initial sets, there is S1 ∈ IS(AF) with
S1 ⊆ S. It remains to show that S2 = S \ S1 is admissible in AFS1 . Let a ∈ S2 and let b1, . . . , bn ∈ A
be the attackers of a in AF. Since S is admissible, there are arguments c1, . . . , cn ∈ S so that ci attacks
bi , i = 1, . . . , n (possibly some of the ci are identical). Without loss of generality, assume c1, . . . , ck ∈
S1 for some k � n. Then b1, . . . , bk are not present in AFS1 , thus a must only be defended against
bk+1, . . . , bn in AFS1 . However, since S2 = S \ S1 we have that ck+1, . . . , cn ∈ S2, showing that a is
defended by S2 in AFS1 and, thus, S2 is admissible in AFS1 .

For the other direction,1 if S = ∅ then S is also admissible. Assume S = S1 ∪ S2, S1 ∈ IS(AF) and
S2 is an admissible set of AFS1 . We have to show that S is admissible. Let a ∈ S and let b1, . . . , bn be
the attackers of a in AF. If a ∈ S1 then there are c1, . . . , cn ∈ S1 ⊆ S such that ci attacks bi since S1 is
admissible. If a ∈ S2, assume for the sake of contradiction that there is an attacker b of a such that there
is no b ∈ S that attacks c in AF. It follows that b is also in AFS1 and a is undefended by S2 in AFS1 . This
contradicts the assumption that S2 is admissible in AFS1 . �

By recursively applying the above theorem, we obtain the following corollary.

Corollary 1. Every non-empty admissible set S can be written as S = S1∪· · ·∪Sn with pairwise disjoint
Si , i = 1, . . . , n, S1 is an initial set of AF and every Si , i = 2, . . . , n is an initial set of AFS1∪···∪Si−1 .
Furthermore, only non-empty admissible sets S can be written in such a fashion.

Example 6. Consider again the argumentation framework AF0 from Fig. 1 and recall that

S1 = {b, e, f, h, i}

is an admissible set of AF0 (and actually a preferred extension). S1 can be written as

S1 = {h} ∪ {f } ∪ {e, i} ∪ {b}

where

• {h} is an initial set of AF0 (Fig. 1),
• {f } is an initial set of AF{h}

0 (Fig. 3(a)),
• {e, i} is an initial set of AF{h,f }

0 (Fig. 3(b)), and
• {b} is an initial set of AF{e,i,h,f }

0 (Fig. 3(c)).

Note that a decomposition S = S1 ∪· · ·∪Sn of an admissible set S from Corollary 1 is not necessarily
uniquely determined. In the previous example, S1 could also have been constructed by selecting, e. g.,
{f } first.

Let us now discuss the wider significance of Theorem 1 and Corollary 1. For that, recall the standard
approach to compute and justify the (uniquely determined) grounded extension of an argumentation
framework AF = (A, R) [19], cf. also the discussion in [38]. Basically, the grounded extension E of
AF can be computed by selecting any non-attacked argument a ∈ A, add it to E, remove a and all
arguments attacked by a from AF (so move from AF to AF{a}), and continue the process until no further

1Note that this direction can also be shown by using the fact that admissible “semantics” is fully decomposable [4], but we
explicitly prove it for matters of simplicity.
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Fig. 3. Reducts obtained from AF0 for the construction of S1 = {b, e, f, h, i}.

unattacked argument can be found. Observe the similarity of this procedure to the procedure indicated
by Theorem 1: in order to construct any admissible set S of AF, first select any initial set S ′ of AF, add
it to S (which is initially empty), remove S ′ and all arguments attacked by S ′ from AF, and continue the
process. Therefore, initial sets allow us to serialise the construction of any admissible set into smaller
steps, each of these steps solving a single conflict in the framework under consideration. Depending
on how initial sets are selected at each step and how we end the process, we can also recover different
semantics. Let us now formalise these ideas. For that, we first need two functions that define the selection
mechanism of initial sets and the termination criterion.

Definition 4. A state T is a tuple T = (AF, S) with AF ∈ AF and S ⊆ A.

Definition 5. A selection function α is any function α : 2A×2A×2A → 2A with α(X, Y, Z) ⊆ X∪Y∪Z

for all X, Y, Z ⊆ A.

We will apply a selection function α in the form α(IS�(AF), IS�(AF), IS↔(AF)) (for some AF), so
α selects a subset of the initial sets as eligible to be selected in the construction process. We explicitly
differentiate the different types of initial sets as parameters here as a technical convenience.

Definition 6. A termination function β is any function β : AF × 2A → {0, 1}.
A termination function β is used to indicate when a construction of an admissible set is finished (this

will be the case if β(AF, S) = 1).
We will now define a transition system on states that makes use of a selection and a termination

function to constrain the construction of admissible sets. For some selection function α, consider the
following transition rule:

(AF, S)
S′∈α

(
IS�(AF),IS�(AF),IS↔(AF)

)
−−−−−−−−−−−−−−−−−−→ (

AFS′
, S ∪ S ′) (1)

If (AF′, S ′) can be reached from (AF, S) via a finite number of steps (this includes no steps at all) with the
above rule we write (AF, S) �α (AF′, S ′). If, in addition, the state (AF′, S ′) also satisfies the termination
criterion of β, i. e., β(AF′, S) = 1, then we write (AF, S) �α,β (AF′, S ′).

Given concrete instances of α and β, let Eα,β(AF) be the set of all S with (AF, ∅) �α,β (AF′, S) (for
some AF′).



M. Thimm / Revisiting initial sets in abstract argumentation 333

Definition 7. A semantics σ is serialisable with a selection function α and a termination function β if
σ(AF) = Eα,β(AF) for all AF.

A direct consequence of Corollary 1 is the following.

Theorem 2. Admissible semantics2 is serialisable with

αadm(X, Y, Z) = X ∪ Y ∪ Z βadm(AF, S) = 1

In other words, any admissible set can be constructed by not constraining the selection of initial sets at
all (αadm) and accepting every reachable state (βadm). We can also characterise most of the admissibility-
based semantics from Section 2 through serialisation using specific selection and termination functions,
as the following results show.

The following observation has been hinted at in [40], but not formally proven. Using the notions
of selection and termination functions, we can make the construction principle of complete extensions
explicit.

Theorem 3. Complete semantics is serialisable with αadm and

βco(AF, S) =
{

1 if IS�(AF) = ∅
0 otherwise

Note that βco only accepts those states, which cannot be extended by already defended arguments
(which are those appearing in IS�(AF)). The above theorem also allows us to characterise complete
extensions in a similar manner as admissible sets in Theorem 1.

Corollary 2. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is complete if and
only if either

• S = ∅ and IS�(AF) = ∅ or
• S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is complete in AFS1 .

Grounded semantics has the same termination criterion as complete semantics, but constrains the
selection of initial sets to those in IS�(AF).

Theorem 4. Grounded semantics is serialisable with

αgr(X, Y, Z) = X

and βco.

Note that αgr and βco formalise the algorithm to compute the grounded extension sketched before.
Therefore, the non-deterministic algorithm realised by the transition rule (1) is a generalisation of this
algorithm. Similarly as Corollary 2 we obtain the following characterisation of grounded semantics in
terms of the reduct.

2Although admissible sets are usually not regarded as a semantics, we can treat the function adm(·) as such.
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Corollary 3. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is grounded if
and only if either

• S = ∅ and IS�(AF) = ∅ or
• S = S1 ∪ S2, S1 ∈ IS�(AF) and S2 is grounded in AFS1 .

For stable semantics, we do not need to constrain the selection of initial sets but only ensure that all
arguments are either included in or attacked by the constructed extension.

Theorem 5. Stable semantics is serialisable with αadm and

βst(AF, S) =
{

1 if AF = (∅, ∅)

0 otherwise

As before, we obtain the following characterisation of stable semantics in terms of the reduct.

Corollary 4. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is stable if and
only if either

• S = ∅ and A = ∅ or
• S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is stable in AFS1 .

For preferred semantics, we simply have to apply transitions exhaustively. Note that this result
strengthens Proposition 3 from [40].

Theorem 6. Preferred semantics is serialisable with αadm and

βpr(AF, S) =
{

1 if IS(AF) = ∅
0 otherwise

Corollary 5. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is preferred if
and only if either

• S = ∅ and IS(AF) = ∅ or
• S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is preferred in AFS1 .

Our final positive result is about strong admissibility, which follows quite easily from the construction
of the grounded extension.

Theorem 7. Strong admissibility semantics is serialisable with αgr and βadm.

Corollary 6. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is strongly
admissible if and only if either

• S = ∅ or
• S = S1 ∪ S2, S1 ∈ IS�(AF) and S2 is strongly admissible in AFS1 .
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A related result to the above observation is given by Baumann et. al in [9] (Definition 7 and Propo-
sition 2). There, a strongly admissible extension E is characterised through the existence of pairwise
disjoint sets A1, . . . , An such that E = A1 ∪ . . . An, A1 is a set of unattacked arguments in AF and
A1 ∪ · · · ∪ Aj defends Aj+1 for all 1 � j � n − 1. Our construction above also implies the existence of
these sets A1, . . . , An with the same properties, but with the additional feature that all Ai , i = 1, . . . , n

are singleton sets (since unattacked initial sets are always singleton sets).
Missing from our results so far are the ideal and semi-stable semantics. Both of them cannot be

serialised.

Theorem 8. Ideal semantics is not serialisable.

The proof of the above theorem is given by the following counterexample.

Example 7. Consider the two argumentation frameworks AF2 and AF3 in Fig. 4. We have

id(AF2) = {b} id(AF3) = {b, e}

and

IS�(AF2) = IS�(AF3) = ∅
IS�(AF2) = IS�(AF3) = {{b}, {e}}
IS↔(AF2) = IS↔(AF3) = ∅

So no selection function α can distinguish these frameworks and should return either

(1) α(∅, {{b}, {e}}, ∅) = ∅ or
(2) α(∅, {{b}, {e}}, ∅) = {{b}, {e}}.

Note also that α cannot return just one of the two initial sets as they cannot be distinguished. In case
1, the ideal extensions of both AF2 and AF3 cannot be constructed. So assume case 2 and select {e} in

Fig. 4. The argumentation frameworks AF2 (top) and AF3 (bottom) from Example 7.
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the first transition. Observe that AF{e}
2 = AF{e}

3 , so further constructions will be identical. Since the ideal
extensions of AF2 and AF3 differ and no β can distinguish these cases, ideal semantics is not serialisable.

The above behaviour of ideal semantics is insofar surprising since the concept of unchallenged initial
sets is closely related to the general idea of the ideal extension. Recall that the initial extension is the
maximal admissible set contained in each preferred extension. This basically means that the arguments
in the ideal extension are compatible with each admissible set and no admissible set attacks any argument
in the ideal extension. On the other hand, an unchallenged initial set is likewise an undisputed admissible
set, as there is no other initial set that attacks it. However, as the above example shows, unchallenged
initial sets are not sufficient to characterise the ideal extension. We will discuss the relationship between
unchallenged initial sets and the ideal extension a bit more below and in Section 5.

Likewise negative, but for somewhat different reasons, is the following result about semi-stable se-
mantics.

Theorem 9. Semi-stable semantics is not serialisable.

The reason that semi-stable semantics is not serialisable is that it needs some form of “global” view on
candidate extensions to judge whether a set of arguments is indeed a semi-stable extension. We illustrate
this in the next example (which also serves as the proof of Theorem 9).

Example 8. Consider the three argumentation frameworks AF4, AF5, AF6 in Fig. 5. Observe that

sst(AF4) = {{a, c}, {b}}
sst(AF5) = {{b}}
sst(AF6) = {{a}, {b}}

However,

IS�(AF4) = IS�(AF5) = IS�(AF6) = ∅
IS�(AF4) = IS�(AF5) = IS�(AF6) = ∅
IS↔(AF4) = IS↔(AF5) = IS↔(AF6) = {{a}, {b}}

First, no selection function α can distinguish these frameworks (as it only operates on the sets IS�(·),
IS�(·), and IS↔(·)) and would either return

Fig. 5. The argumentation frameworks AF4 (top), AF5 (middle), and AF6 (bottom) from Example 8.
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(1) α(∅, ∅, {{a}, {b}}) = ∅,
(2) α(∅, ∅, {{a}, {b}}) = {{a}},
(3) α(∅, ∅, {{a}, {b}}) = {{b}}, or
(4) α(∅, ∅, {{a}, {b}}) = {{a}, {b}}.

In cases 1–3, not all semi-stable extensions can be constructed for, e. g., AF4. For case 4 and AF5, a valid
transition would then produce the state T1 = (({c}, {(c, c)}), {a}) from which no further transition is
possible. A β function for semi-stable semantics should now determine that T1 is not a terminating state
(since {a} is not a semi-stable extension of AF5). However, the same state T1 can also be reached for
AF6, but here {a} is a semi-stable extension. Since β cannot distinguish these two scenarios at T1, there
is no such β.

The same argument from above can also be used to show that eager semantics is not serialisable.
The eager extension is the maximal (wrt. set inclusion) admissible set contained in every semi-stable
extension, see e. g. [5]. In Example 8, the eager extension of AF5 is {b} while it is ∅ for AF4 and AF6. No
pair (α, β) can be defined to distinguish these cases as well.

The results of this section show that many admissibility-based semantics can be characterised through
the notion of initial sets and a simple non-deterministic algorithm based on selecting initial sets at each
step. This brings a new perspective on the rationality of admissibility-based semantics, as their basic
construction principles are made explicit via an operational mechanism. This is similar in spirit to the
purpose of discussion games [12] which model acceptability problems of individual arguments as an
operational mechanism as well (here a dialogue between a proponent and an opponent). However, here
we focused on the construction of whole extensions and not on acceptability problems of individual
arguments.

The notion of serialisability also allows to define completely new semantics by defining only a se-
lection and a termination function. For example, a straightforward idea for that would be the selection
function α0 defined via

α0(X, Y, Z) = X ∪ Y

and the termination function β0 defined via

β0(AF, S) =
{

1 if IS�(AF) ∪ IS�(AF) = ∅
0 otherwise

which amounts to exhaustively adding unattacked and unchallenged initial sets. This yields a semantics
that is more skeptical than the preferred semantics but less skeptical than the ideal semantics as the
following result shows.

Theorem 10. For every E with (AF, ∅) �α0,β0 (AF′, E)

(1) E ⊆ E′ for some preferred extension E′ and
(2) Eid ⊆ E for the ideal extension Eid.

Consider the following examples showing the difference between the above semantics and ideal se-
mantics.
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Fig. 6. The argumentation framework AF7 from Example 10.

Example 9. Consider again AF2 from Example 7 and depicted in Fig. 4. There are two extensions E1

and E2 wrt. to the serialisable semantics defined by α0 and β0:

E1 = {b} E2 = {b, e}

where the extension E2 can be constructed by first selecting the initial set {e} (which is unchallenged in
AF2) and then {b}.
Example 10. Consider AF7 depicted in Fig. 6. There are four preferred extensions E1, E2, E3, and E4

in AF7 defined via

E1 = {a, e} E2 = {a, d, f } E3 = {b, e} E4 = {b, d, f }

and the ideal extension Eid is empty:

Eid = ∅

However, there is one extension E5 wrt. to the serialisable semantics defined by α0 and β0:

E5 = {d, f }

The reason for that is that both {d} and {f } are unchallenged initial sets in AF7 (and once one is selected
the other becomes an unattacked initial set and can be selected as well).

For future work, we intend to investigate the above and further possibilities for serialisable semantics
in more detail.

5. Computational complexity

In order to round up our investigation of initial sets, we now analyse them wrt. computational com-
plexity. We assume familiarity with basic concepts of computational complexity and basic complexity
classes such as P, NP, coNP, see [30] for an introduction. We also require knowledge of the “non-
standard” classes DP (and its complement coDP), PNP, and PNP

‖ . The class DP is the class of decision
problems that are a conjunction of a problem in NP and a problem in coNP, i. e., in language nota-
tion DP = {L1 ∩ L2 | L1 ∈ NP, L2 ∈ coNP}. The class PNP is the class of decision problems that
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can be solved by a deterministic polynomial-time algorithm that can make polynomially many adaptive
queries3 to an NP-oracle. The class PNP

‖ [24] is the class of decision problems that can be solved by a
deterministic polynomial-time algorithm that can make polynomially many non-adaptive queries to an
NP-oracle. Note that PNP

‖ is sometimes denoted by �P
2 and is equal to PNP[log], i. e., the class of deci-

sion problems solvable by deterministic polynomial-time algorithm that can make logarithmically many
adaptive NP-oracle calls [30]. Observe also that DP ⊆ PNP

‖ and coDP ⊆ PNP
‖ as well as PNP

‖ ⊆ PNP.
We consider the following computational tasks for σ ∈ {IS, IS�, IS�, IS↔}, cf. [22]:

Verσ Given AF = (A, R) and S ⊆ A,
decide whether S ∈ σ(AF).

Existsσ Given AF = (A, R),
decide whether σ(AF) �= ∅.

Uniqueσ Given AF = (A, R),
decide whether |σ(AF)| = 1.

Credσ Given AF = (A, R) and a ∈ A,
decide whether there is S ∈ σ(AF) with a ∈ S.

Skeptσ Given AF = (A, R) and a ∈ A,
decide whether for all S ∈ σ(AF), a ∈ S.

Note that we do not consider the problems Exists¬∅
σ [22] (which asks whether there is a non-empty

(initial) set) as these are equivalent to Existsσ due to the non-emptiness of all types of initial sets.
Table 1 summarises our results on the complexity of the above tasks, all proofs can be found in the

appendix.
The results for IS mirror the results on admissible sets [22], with a few exceptions. While the problem

of deciding whether a set S is admissible can be solved in logarithmic space with polynomial time [22],
we only showed that the problem of deciding whether a set S is an initial set can be solved in polynomial
time. It is unlikely (though a formal proof is missing at the moment) that we can strengthen these results
in the same way as for admissible sets, since the minimality condition of an initial set suggest that
subsets (of linear size) have to be constructed in an algorithm. Moreover, while the problems Exists and
Skept are trivial for admissible sets [22] (since the empty set is always admissible), they are intractable
for initial sets. The problem UniqueIS is DP-complete (it is coNP-complete for admissible sets) since
existence of initial sets is not guaranteed.

We get some different complexity characterisations for the different types of initial sets. All tasks
for unattacked initial sets are tractable, as only unattacked arguments have to be considered. All tasks

Table 1

Complexity of computational tasks related to initial sets. An attached “-h” refers to hardness for the class and an attached “-c”
refers to completeness for the class. All hardness results are wrt. polynomial reductions

σ IS IS� IS� IS↔
Verσ in P in P coNP-c NP-c

Existsσ NP-c in P PNP‖ -c NP-c

Uniqueσ DP-c in P in PNP‖ , DP-h trivial

Credσ NP-c in P PNP‖ -c NP-c

Skeptσ coNP-c in P PNP‖ -c coNP-c

3A query is adaptive if it may depend on a previous query; queries are non-adaptive if they can be posed in any order or in
parallel.
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become harder (under standard complexity-theoretic assumptions) when only unchallenged initial sets
are considered. In particular, Verσ is coNP-complete as it has to be verified that there is no other initial
set attacking the set that is to be verified. Moreover, Theorem 10 already showed that there is some
conceptual relation between unchallenged initial sets and the ideal extension. This is strengthened by
our observation of the computational complexity of the other tasks pertaining to unchallenged initial
sets, as all non-trivial tasks on ideal semantics are PNP

‖ -complete (under randomised reductions) [21].
We showed PNP

‖ -completeness (under polynomial reductions) for most of those tasks as well, with the
exception being the problem UniqueIS� , where we only showed DP-hardness and a PNP

‖ -hardness proof
remains an open problem.

The complexity of the tasks for challenged initial sets are similar as in the general case, with two
exceptions. Verification of challenged initial sets is intractable as another initial set has to found that
attacks the set under consideration. Moreover, UniqueIS↔ has the trivial answer NO for all instances as
the existence of one challenged initial set S1 implies the existence of another challenged initial set S2

that attacks (and is attacked by) S1.

6. Discussion

In this paper, we revisited the notion of initial sets, i. e., non-empty minimal admissible sets. We
investigated their general properties and used them as basic building blocks to construct any admissible
set. We have characterised many admissibility-based semantics via this approach and concluded our
analysis with some notes on computational complexity.

Initial sets allow us to concisely explain why a certain argument can be accepted (e. g., whether
it is contained in a preferred extension). We can deconstruct an extension via the characterisation of
Corollary 1, justify the inclusion of initial sets along this characterisation – e. g., by pointing to the
conflicts that had to be solved –, and arrive step by step at the argument in question.

A recent paper that addresses a similar topic as we do is [10]. There, Baumann and Ulbricht introduce
explanation schemes as a way to explain the construction of extensions wrt. complete, admissible, and
strongly admissible semantics. Let us consider the case of complete semantics. Given AF = (A, R), the
construction follows basically three steps:4 (1) Determine the grounded extension E0 of AF, (2) select a
conflict-free set E1 from the set of arguments appearing in some even-length cycle in the reduct AFE0 ,
and (3) determine the grounded extension E2 of the reduct AFE0∪E1 . If E = E0 ∪ E1 ∪ E2 defends
E1 then E is a complete extension (and every complete extension can be decomposed in such a way).
The overall construction is similar to our approach, in particular, it consists of a series of steps where
we select a set of arguments and move to the reduct of the framework wrt. the arguments accumulated
so far. However, our approach provides a more fine-grained way to construct extensions. In each step,
we solve a single issue by selecting a single initial set. Step 2 of Baumann and Ulbricht’s approach
possibly solves a series of different conflicts all at once. This may actually diffuse the goal to provide
an explanation why a certain extension is constructed as it is, as a selection of a conflict-free set of
arguments from all even cycles may not clearly show, which conflicts are actually resolved. Furthermore,
we do not need to explicitly use the notion of grounded semantics (and the general possibility to include
defended arguments) in our construction, as it arises naturally through selecting (unattacked) initial sets
and moving to the reduct immediately.

4Although an abbreviated two-step procedure is also discussed.
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As a by-product of our work, we introduced a new principle [37] for abstract argumentation semantics:
serialisability. For future work, we aim at investigated relationships of this new principle to other exist-
ing principles listed in [37]. Another avenue for future work to investigate whether our characterisations
of admissibility-based semantics can be exploited for algorithmic purposes [14]. It is clear, that there
is no obvious advantage in terms of computational complexity by computing (for example) a preferred
extension via our transition system as it involves the computation of initial sets at each step (which is
an intractable problem as ExistsIS is already NP-complete). However, our characterisation of initial sets
through strongly connected components (see Section 3) could be exploited to devise a parallel algorithm
– see also [15] –, as initial sets can be calculated independently of each other in each strongly connected
component.
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Appendix. Proofs of technical results

Proposition 1. If S is an initial set of AF then there is AF′ = (A′, R′) ∈ SCC(AF) s.t. S ⊆ A′.

Proof. If S is a singleton the claim is trivially true. So let S be an initial set of AF with |S| > 1. Assume
there are two different AF′ = (A′, R′) ∈ SCC(AF) and AF′′ = (A′′, R′′) ∈ SCC(AF) with S ∩ A′ �= ∅ and
S ∩ A′′ �= ∅ and also S = (S ∩ A′) ∪ (S ∩ A′′) (the following proof generalises easily if S is spanned
across more than two SCCs). If (S ∩ A′)− ⊆ (S ∩ A′)+ then S ∩ A′ is admissible, contradicting the fact
that S is an initial set. So there is at least one a ∈ (S ∩ A′)− with a ∈ (S ∩ A′′)+ since the complete set
S is admissible. With the same reasoning there must be a b ∈ (S ∩ A′′)− with b ∈ (S ∩ A′)+. Then there
is a closed circuit: from a there is an edge to an element c in (S ∩ A′). Since (S ∩ A′) is part of an SCC,
there is a path from c to any other argument in (S ∩ A′), in particular, also to an attacker d of b. From d

we can go to b and then to an element in (S ∩ A′′). Again through the SCC of (S ∩ A′′) we can reach a.
This contradicts the assumption, so S is contained in a single SCC. �

Proposition 2. S is an initial set of AF if and only if S is an initial set of SCC(S) = (A′, R′) and S− ⊆ A′.

Proof. Let S be an initial set of AF. As S is admissible, all arguments a ∈ E− are attacked by some
b ∈ E. Proposition 1 already established that S ⊆ A′. Since each a ∈ S− attacks and is attacked by
S, S− ⊆ A′ as well. It follows that S is an initial set of SCC(S) as well as S ∪ S− ⊆ A′ and verifying
whether a set is initial only needs to consider the relationships of those arguments. This also proves the
other direction. �

Proposition 3. Let S ∈ IS(AF) and SCC(S) = (A′, R′).

(1) If S is unattacked then |A′| = 1.
(2) If S is challenged or unchallenged then |A′| > 1.
(3) If S is challenged and S ′ ∈ conflicts(S, AF) then SCC(S) = SCC(S ′).
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Proof. Let S ∈ IS(AF) and SCC(S) = (A′, R′).

(1) Since S = {a} is not attacked there is no other argument b with a path to a. It follows directly
|A′| = 1.

(2) As S is admissible and there is at least one b that attacks S, one argument in S must attack b. It
follows S ∪ {b} ∈ SCC(S) and therefore |A′| > 1.

(3) Let S ′ ∈ conflicts(S, AF). As SRS ′ and S ′RS as well as both S and S ′ are completely in one SCC,
it follows SCC(S) = SCC(S ′). �

Proposition 4. Let AF = (A, R) be an abstract argumentation framework and S, S ′ ∈ IS(AF) with
S �= S ′.

(1) If S ′ ∈ IS�(AF) then S ′ ∈ IS�(AFS)

(2) If S ′ ∈ conflicts(S, AF) then S ′ /∈ IS(AFS)

(3) If S ′ /∈ conflicts(S, AF) then S ′ ∩ ⋃
IS(AFS) �= ∅

Proof. Let AF = (A, R) be an abstract argumentation framework and S, S ′ ∈ IS(AF) with S �= S ′

(1) Let S ′ ∈ IS�(AF), so S = {a}. As a is not attacked in AF, it is also not attacked by S and it
follows a ∈ A′ for AFS = (A′, R′). It also follows that a is not attacked in AFS and therefore
{a} ∈ IS�(AFS).

(2) If S ′ ∈ conflicts(S, AF) then there is a ∈ S and b ∈ S ′ with aRb. It follows b /∈ A′ for AFS =
(A′, R′). So S ′ /∈ IS(AFS).

(3) As S ′ /∈ conflicts(S, AF) it follows that S ∪ S ′ is conflict-free and therefore S ′ ⊆ A′ for AFS =
(A′, R′). Furthermore, since S ′ is admissible in AF, S ′∩A′ remains admissible in AFS . By definition,
it follows that there is an initial set S ′′ of AFS with S ′′ ⊆ S ′, proving the claim. �

Corollary 1. Every non-empty admissible set S can be written as S = S1∪· · ·∪Sn with pairwise disjoint
Si , i = 1, . . . , n, S1 is an initial set of AF and every Si , i = 2, . . . , n is an initial set of AFS1∪···∪Si−1 .
Furthermore, only non-empty admissible sets S can be written in such a fashion.

Proof. This follows by iterative application of Theorem 1. �

Theorem 2. Admissible semantics is serialisable with

αadm(X, Y, Z) = X ∪ Y ∪ Z βadm(AF, S) = 1

Proof. Follows from Corollary 1. �

Theorem 3. Complete semantics is serialisable with αadm and

βco(AF, S) =
{

1 if IS�(AF) = ∅
0 otherwise

Proof. We have to show that E is a complete extension if and only if (AF, ∅) �αadm,βco (AF′, E) for
some AF′. Let AF = (A, R).
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• “⇒”:
Let E be a complete extension. By Corollary 1 and the fact that αadm does not constrain the selec-
tion of initial sets, it is clear that there is AF′ with (AF, ∅) �α (AF′, E). It remains to show that
βco(AF′, E) = 1. As E is complete, there is no argument a ∈ A s.t. all attackers of a (in AF) are
contained in E. This is equivalent to stating that there is no unattacked argument a in AFE and
therefore IS�(AFE) = ∅. As AFE = AF′ the claim follows.

• “⇐”:
Let (AF, ∅) �αadm,βco (AF′, E) for some AF′ = (A′, R′). By Corollary 1, E is admissible. Since
IS�(AF′) = ∅ there is no argument a ∈ A′ that is defended by E. Therefore, E is complete. �

Corollary 2. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is complete if and
only if either

• S = ∅ and IS�(AF) = ∅ or
• S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is complete in AFS1 .

Proof. If IS�(AF) = ∅ then S = ∅ is obviously a complete extension. Let S be any non-empty complete
extension. Due to Theorem 1 there are sets S1, S2 with S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is admissible
in AFS1 . Assume S2 is not complete in AFS1 . Then there is an argument a in AFS1 that is defended by S2

but a /∈ S2. But then a /∈ S1 and a /∈ S+
1 (otherwise it would not be in AFS1 ) and S defends a as well in

AF. This contradicts the assumption that S is complete. So S2 is complete in AFS1 .
For the other direction, let S be any set with S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is complete in AFS1 .

Assume that S is not complete in AF. Then there is an argument a that is defended by S but a /∈ S. Since
a is not contained in S1 nor attacked by it, it follows that a is contained in AFS1 . Let T be the attackers
of a in AF. Since S attacks all arguments in T let T1 ⊆ T be those arguments in T attacked by some
b ∈ S1 and T2 = T \ T1. It follows that no argument of T1 is contained in AFS1 but all arguments in
T2 are contained in AFS1 and are necessarily attacked by S2. It follows that a is defended by S2 in AFS1 ,
contradicting the fact that S2 is complete in AFS1 . It follows that S is indeed complete. �

Theorem 4. Grounded semantics is serialisable with

αgr(X, Y, Z) = X

and βco.

Proof. Let Egr be the grounded extension of AF = (A, R) and let Ek be such that

(AF, ∅) →αgr (AF1, E1) →αgr · · · →αgr (AFk, Ek)

so that βco(AFk, Ek) = 1. We first show Ei ⊆ Egr, for i = 1, . . . , k, by induction on i.

• i = 1: By definition of αgr we have E1 = {a} for some unattacked argument a ∈ A. Since Egr is
complete, it contains all unattacked arguments of A, therefore E1 ⊆ Egr.

• i > 1: By definition of αgr we have Ei = {a} ∪ Ei−1 for some unattacked argument a ∈ A in AFi .
Since a is unattacked in AFi , all attackers of a in AF must be attacked by Ei−1. By assumption,
Ei−1 ⊆ Egr and a is defended by Egr as well. Since Egr is complete it follows Ei ⊆ Egr.



344 M. Thimm / Revisiting initial sets in abstract argumentation

Since Theorem 3 already established that Ek is complete and Egr is the smallest complete extension,
from Ek ⊆ Egr is follows Ek = Egr and therefore the claim. �

Corollary 3. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is grounded if
and only if either

• S = ∅ and IS�(AF) = ∅ or
• S = S1 ∪ S2, S1 ∈ IS�(AF) and S2 is grounded in AFS1 .

Proof. If IS�(AF) = ∅ then S = ∅ is obviously the grounded extension. Assume S is the non-empty
grounded extension of AF. Then there must be an argument a ∈ S that is not attacked in AF. It follows
{a} ∈ IS�(AF). Let S ′ be the grounded extension of AF{a}. Then S ′ ∪ {a} is complete in AF:

(1) S ′ ∪ {a} is admissible due to Theorem 1.
(2) a is defended by S ′ ∪ {a} as it is not attacked.
(3) every b ∈ S ′ is defended by S ′ ∪ {a} as all attackers of b are either attacked by a (and therefore

not in the reduct AF{a}) or some argument in S ′ (since S ′ is grounded in AF{a}).

Assume there is a proper subset S ′′ ⊂ S ′ ∪ {a} that is complete. Since a is not attacked, a ∈ S ′′. It can
easily be seen that S ′ ∩ S ′′ would be complete in AF{a} and S ′ ∩ S ′′ ⊂ S ′, contradicting the fact that S ′ is
the grounded extension of AF{a}. It follows that S = S ′ ∪ {a}.

The other direction is analogous. �

Theorem 5. Stable semantics is serialisable with αadm and

βst(AF, S) =
{

1 if AF = (∅, ∅)

0 otherwise

Proof. Let S be a stable extension. By Theorem 2 it is clear (since any stable extension is admissible)
that there is AF′ with (AF, ∅) �αadm (AF′, S). As S ∪ S+ = A it follows AF′ = (∅, ∅) and therefore
βAF′,S = 1. Furthermore, for any S with (AF, ∅) �αadm,βst ((∅, ∅), S) it follows that S is admissible and
there is no a ∈ A with a /∈ S+ or a ∈ S. This is equivalent to stating that S is stable. �

Corollary 4. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is stable if and
only if either

• S = ∅ and A = ∅ or
• S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is stable in AFS1 .

Proof. If A = ∅ then S = ∅ is obviously the (only) stable extension. Assume S is a non-empty stable
extension of AF. Due to Theorem 1 there are sets S1, S2 with S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is
admissible in AFS1 . Assume S2 is not stable in AFS1 = (A′, R′). Then there is a ∈ A′ that is not attacked
by S2. Since a ∈ A′, a is also not attacked by S1. It follows that S is not a stable extension, in contradiction
to the assumption. It follows that S2 is stable in AFS1 .

For the other direction, let S = S1 ∪S2, S1 ∈ IS(AF) and S2 is stable in AFS1 = (A′, R′). By Theorem 1,
S is admissible. Assume S is not stable, then there is a ∈ A that is not attacked by S. It follows that
a ∈ A′, so a is also not attacked by S2 in AFS1 , in contradiction to the assumption that S2 is stable in
AFS1 . It follows that S is stable in AF. �
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Theorem 6. Preferred semantics is serialisable with αadm and

βpr(AF, S) =
{

1 if IS(AF) = ∅
0 otherwise

Proof. Let S be preferred. Due to Theorem 2 it follows that there is AF′ with (AF, ∅) �αadm (AF′, S).
If IS(AF′) �= ∅ then there is another admissible set S ′ with (AF′, S) �αadm (AF′′, S ′) and S � S ′, in
contradiction to the assumption that S is preferred. It follows IS(AF′) = ∅ and therefore (AF, ∅) �αadm,βpr

(AF′, S).
For the other direction, let (AF, ∅) �αadm,βpr (AF′, S). By Theorem 2 it is clear that S is admissible.

Assume S is not preferred, so there is admissible S ′ with S � S ′. Define S ′′ = S ′ \ S. We show now
that S ′′ is an admissible set of AF′ = AFS . First, since S ′ is conflict-free so is S ′′. Let now a ∈ S ′′.
As S ′ is admissible we have a− ⊆ (S ′)+. Let a− = X1 ∪ X2 with disjoint sets X1 and X2 such that
X1 = a− ∩ S+ and X2 = a− \ X1. As AF′ = AFS , those attackers of a in X1 are not present in AF′
anymore, so there is no need to defend against them. However, since S ′ is admissible, X2 ⊆ (S ′)+ and
it follows X2 ⊆ (S ′′)+ (as arguments in X2 are not attacked by arguments in S). So S ′′ defends a and
S ′′ is therefore admissible. As S ′′ is a (non-empty) admissible set of AF′, it follows that IS(AF′) �= ∅.
This contradicts the assumption that (AF, ∅) �αadm,βpr (AF′, S) and it follows that S is indeed a preferred
extension. �

Corollary 5. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is preferred if
and only if either

• S = ∅ and IS(AF) = ∅ or
• S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is preferred in AFS1 .

Proof. If IS(AF) = ∅ then S = ∅ is obviously the only preferred extension, since it is the only admissible
set. Assume S is a non-empty preferred extension of AF. Due to Theorem 1 there are sets S1, S2 with
S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is admissible in AFS1 . Assume S2 is not preferred in AFS1 . Then there
is admissible S ′

2 with S2 � S ′
2. By Theorem 1, S1 ∪ S ′

2 is admissible in AF and S = S1 ∪ S2 � S1 ∪ S ′
2,

contradicting the fact that S is preferred. It follows that S2 is preferred in AFS1 .
For the other direction, let S = S1 ∪ S2, S1 ∈ IS(AF) and S2 is preferred in AFS1 . By Theorem 1, S is

admissible. Assume S is not preferred, then there is admissible S ′ with S � S ′. Since S1 ⊆ S ′, S ′ \ S1

must be completely contained in AFS1 (otherwise S ′ would not be conflict free) and S2 � S ′ \ S1. S ′ \ S1

is also necessarily admissible in AFS1 , contradicting the fact that S2 is preferred in AFS1 . It follows that
S is preferred. �

Theorem 7. Strong admissibility semantics is serialisable with αgr and βadm.

Proof. Let S be a strongly admissible set. We show (AF, ∅) �αgr (AF′, S) (note that we do not have to
consider βadm as this function always returns 1) by induction on the size of S.

(1) |S| = 0: trivial as (AF, ∅) �α (AF, ∅) for any α via zero steps.
(2) |S| = n: Let a ∈ S such that S ′ = S \ {a} is strongly admissible (the existence of such a is

guaranteed as a direct corollary of Theorem 5 in [13] and the definition of strong admissibility). By
induction hypothesis (AF, ∅) �αgr (AF′, S ′). As S is strongly admissible, it follows that a cannot
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be attacked in AF′ (otherwise a is not defended by (a subset of) S’). So we have {a} ∈ IS�(AF′)
and (AF, ∅) �αgr (AF′, S ′) �αgr (AF′′, S).

For the other direction, let (AF, ∅) �αgr (AF′, S). We show that S is strongly admissible by induction on
the size of S.

(1) |S| = 0: the empty set is by definition strongly admissible.
(2) |S| = n: Consider the final step in the construction of S, i. e., (AF, ∅) �αgr (AF′, S ′) �αgr

(AF′′, S). As αgr returns only singleton sets, we have S = S ′ ∪ {a} for some a ∈ A. As a is
unattacked in AF′′, S ′ defends a in AF. By induction hypothesis, S ′ is strongly admissible, showing
that S is strongly admissible. �

Corollary 6. Let AF = (A, R) be an abstract argumentation framework and S ⊆ A. S is strongly
admissible if and only if either

• S = ∅ or
• S = S1 ∪ S2, S1 ∈ IS�(AF) and S2 is strongly admissible in AFS1 .

Proof. Since ∅ is always strongly admissible, we only consider the second case. Assume S is a non-
empty strongly admissible set. Since S ⊆ Egr, where Egr is the grounded extension of AF, there is an
unattacked a ∈ S and {a} ∈ IS�(AF). Let S2 = S \ {a} and b ∈ S2. Since S is strongly admissible in
AF, there is S ′′ ⊆ S \ {b} that is strongly admissible and defends b. If a ∈ S ′′ then S ′′ \ {a} is strongly
admissible in AF{a} and defends b. If a /∈ S ′′ then S ′′ remains strongly admissible in AF{a} and defends b.
In any case, it follows that S2 is strongly admissible in AF{a}.

The other direction is analogous. �

Theorem 10. For every E with (AF, ∅) �α0,β0 (AF′, E)

(1) E ⊆ E′ for some preferred extension E′ and
(2) Eid ⊆ E for the ideal extension Eid.

Proof. (1) Note that α0(X, Y, Z) ⊆ αadm(X, Y, Z) for all X, Y , Z. So if (AF, ∅) �α0 (AF′, E) then
(AF, ∅) �αadm (AF′, E). Furthermore, (AF′, E) �αadm,βpr (AF′′, E′) eventually with a preferred
extension E′ due to Theorem 6. This shows E ⊆ E′.

(2) Let Eid be the ideal extension of AF and let Eid = S1 ∪ · · · ∪ Sn with Si being an initial set of
AFS1∪···∪Si−1 for all i = 1, . . . , n (this representation exists due to Corollary 1 and the fact that Eid

is admissible).
Let E with (AF, ∅) �α0,β0 (AFE, E). Assume that Eid � E and let k ∈ {1, . . . , n} be the smallest
integer such that Sk � E. Let Ŝk = E \ Sk. We show now that Ŝk is admissible in AFE = (A′, R′):

(a) Ŝk ⊆ A′: For the sake of contradiction, assume there is a ∈ Ŝk with a /∈ A′. Due to Ŝk = E \Sk

it follows that a is attacked by E. Then the admissible set E attacks Eid, contradicting the fact
that Eid is the ideal extension.

(b) Ŝk is conflict-free: clear since Ŝk ⊆ Eid.
(c) Ŝk defends all its elements (in AFE): recall that S1 ∪ · · · ∪ Sk is an admissible set in AF (due

to Corollary 1) and that S1 ∪ · · · ∪ Sk−1 ∪ (Sk \ Ŝk) ⊆ E. Let a be an attacker of Ŝk in AF and
b ∈ S1 ∪ · · · ∪ Sk that attacks a. Then either b ∈ E (meaning that a /∈ A′ and Ŝk does not need
to defend against a in AFE) or b ∈ Ŝk (meaning that Ŝk defends against a in AFE).



M. Thimm / Revisiting initial sets in abstract argumentation 347

It follows that Ŝk is admissible in AFE . Then there must be an initial set Ŝ ′
k ⊆ Ŝk. Assume Ŝ ′

k

is challenged by another initial set T . Then T ∪ E would be an admissible set that attacks Eid.
It follows Ŝ ′

k is unattacked or unchallenged in AFE . This contradicts the fact that (AF, ∅) �α0,β0

(AFE, E). Therefore we have Eid ⊆ E. �

Lemma 1. Let S be conflict-free and a ∈ S. Deciding whether there is an admissible set S ′ ⊆ S with
a ∈ S ′ can be decided in polynomial time.

Proof. In polynomial time we can check first whether S is already admissible. If not, define S1 via

S1 = FAF(S) ∩ S

Note that S1 � S (if S1 = S then S would already have been admissible). Furthermore, all a ∈ S \ S1

are not defended by arguments in S and can therefore not be a member of any admissible set S ′ ⊆ S. It
follows that, if there is an admissible set S ′ ⊆ S with a ∈ S ′ then S ′ ⊆ S1. So if a /∈ S1 or (a ∈ S1 and
S1 is admissible), we are finished. Otherwise define S2 via

S2 = FAF(S1) ∩ S1

and continue as before. Note that moving from Si to Si+1 at least one argument is discarded (otherwise
we have found an admissible set). So we have to compute at maximum S1, . . . , S|S| and all computations
are polynomial. �

Proposition 5. VerIS is in P.

Proof. In polynomial time we can check first whether the input S is admissible. Then, for each a, b ∈ S

with a �= b we can test whether S \ {b} contains an admissible set including a (see Lemma 1). If this is
the case for one pair a, b, S cannot be an initial set. If this is not the case for any a, b then S is an initial
set. All checks are in polynomial time. �

Proposition 6. ExistsIS is NP-complete.

Proof. Equivalence of ExistsIS and Exists¬∅
adm follows from the fact that every non-empty admissible set

contains an initial set [38]. Exists¬∅
adm is NP-complete [22]. �

Proposition 7. UniqueIS is DP-complete.

Proof. Let AF be the input argumentation framework. Note that UniqueIS can be solved by solving the
two problems:

(1) decide whether AF has at least one initial set and
(2) decide whether AF has at most one initial set.

Problem 1 is ExistsIS and therefore NP-complete. The complement of problem 2 can be solved by non-
deterministically guessing two different sets S1 and S2 and verifying that both are initial sets. Problem 2
is therefore in coNP and this shows DP-membership of UniqueIS.
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For hardness, we provide a reduction from the problem Uniquest, i. e., the problem of deciding
whether an argumentation framework has a unique stable extension, cf. [18,22]. For that, we directly use
construction Tr4 from [23], which translates (with polynomial overhead) an argumentation framework
AF into an argumentation framework Tr4(AF) such that st(AF) = adm(Tr4(AF)) \ {∅}, cf. Lemma 5
and Theorem 4 in [23]. Since for every pair of stable extensions E1, E2 it holds E1 � E2 and
E2 � E1, it follows that E1, E2 ∈ adm(Tr4(AF)) \ {∅}, E1 � E2 and E2 � E1, and therefore
adm(Tr4(AF)) \ {∅} = IS(Tr4(AF)). It follows st(AF) = IS(Tr4(AF)) and |st(AF)| = 1 if and only if
|IS(Tr4(AF))| = 1 and therefore the claim. �

Proposition 8. CredIS is NP-complete.

Proof. For NP-membership consider the following algorithm. Upon input a ∈ A we guess a set S ⊆ A
with a ∈ S and verify in polynomial time that S is an initial set (see Proposition 5). It follows that a is
credulously accepted wrt. initial sets. This shows NP-membership.

For NP-hardness we do a reduction from Credst, i. e., the problem of deciding whether an argument is
credulously accepted wrt. stable semantics. We use the same reduction as in the proof of Proposition 7,
namely the construction Tr4 from [23]. We already established in the proof of Proposition 7 that st(AF) =
IS(Tr4(AF)). It follows that an argument a is credulously accepted wrt. stable semantics in AF if and only
if it is credulously accepted wrt. initial sets in Tr4(AF). �

Proposition 9. SkeptIS is coNP-complete.

Proof. For coNP-membership consider the following algorithm, which solves the complement problem
in NP. Upon input a ∈ A we guess a set S ⊆ A with a /∈ S and verify in polynomial time that S is an
initial set (see Proposition 5). It follows that a is not skeptically accepted wrt. initial sets. This shows
coNP-membership for SkeptIS.

For coNP-hardness we do a reduction from Skeptst, i. e., the problem of deciding whether an argument
is skeptically accepted wrt. stable semantics. We use the same reduction as in the proof of Proposition 7,
namely the construction Tr4 from [23]. We already established in the proof of Proposition 7 that st(AF) =
IS(Tr4(AF)). It follows that an argument a is skeptically accepted wrt. stable semantics in AF if and only
if it is skeptically accepted wrt. initial sets in Tr4(AF). �

Proposition 10. VerIS� , ExistsIS� , UniqueIS� , CredIS� , and SkeptIS� are in P.

Proof. Note that all these problems only have to make a simple check on the input:

• VerIS� : Verifying whether a single argument is unattacked is in P.
• ExistsIS� : Checking whether there is an unattacked argument in a given input framework AF is in P.
• UniqueIS� : Checking whether there is a single unattacked argument in a given input framework AF

is in P.
• CredIS� : this is equivalent to VerIS� with input AF and {a}.
• SkeptIS� : checking whether a is the only unattacked argument in AF is in P. �

Proposition 11. VerIS� is coNP-complete.
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Proof. For coNP-membership, we consider the complement problem of verifying that input S is not an
unchallenged initial set in NP. We first check in polynomial time whether the input S is an initial set at
all, see Proposition 5. Then we check whether S is an unattacked initial set, see Proposition 10. If it is
not, we guess another set S ′ with S ′RS and verify in polynomial time that S ′ is an initial set. This shows
that S is not an unchallenged initial set in NP.

For coNP-hardness, we do a reduction from 3UNSAT, i. e., the problem of deciding whether a
propositional formula in conjunctive normal form with exactly three literals per clause is unsatisfi-
able. For that, we extend Reduction 3.6 from [22]. Let φ be an instance of 3UNSAT in set notation,
i. e., φ = {C1, . . . , Cn} and Ci = {l1,i , l2,i , l3,i} with literals l1,i , l2,i , l3,i from a set of atoms At, for
i = 1, . . . , n. Define an abstract argumentation framework AF′

φ = (A′
φ, R′

φ) via

A′
φ = {φ, φ̃, ψ} ∪ {C1, . . . , Cn} ∪ {a, ¬a | a ∈ At}

R′
φ = {

(C1, φ), . . . , (Cn, φ)
}

∪ {
(l, Ci) | l ∈ C, i ∈ {1, . . . , n}}

∪ {
(a, ¬a), (¬a, a) | a ∈ At

}
∪ {

(φ̃, a), (φ̃, ¬a) | a ∈ At
}

∪ {
(φ, φ̃), (φ, ψ), (ψ, φ)

}
Figure 7 shows an example of the reduction. We first show that there is an initial set containing φ if and
only if φ is satisfiable. For that, assume first that φ is satisfiable and let I : At → {true, false} be a model
of φ. Consider the set

SI = {
a | I (a) = true

} ∪ {¬a | I (a) = false
} ∪ {φ}

First observe that SI is conflict-free: as I is an interpretation it is not the case that a, ¬a ∈ S for some
a ∈ At. Furthermore, there are no attacks between any argument from {a, ¬a | a ∈ At} to φ and vice
versa. Now observe that SI is admissible (in fact SI is stable):

(1) each a ∈ S defends itself against ¬a (for a ∈ At),

Fig. 7. The argumentation framework AF′
φ for φ = {{a, ¬b, c}, {¬a, ¬b, c}, {¬a, b, ¬c}}.
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(2) each ¬a ∈ S defends itself against a (for a ∈ At),
(3) each Ci is attacked by some a ∈ S or ¬a ∈ S (since I is a model, every clause is satisfied), and
(4) φ̃ is attacked by φ.

However, SI is not necessarily an initial set. Consider the example in Fig. 7 again: here, I with I (a) =
I (b) = I (c) = false is a model of φ and we have

SI = {¬a, ¬b, ¬c, φ}

Furthermore, S ′
I = {¬a, ¬b, φ} ⊆ SI is also admissible (this happens when the truth value of one or

more atoms does not matter for satisfiability). However, due to the fact that every non-empty admissible
set contains an initial set, there is always an initial set S ′

I ⊆ SI and S ′
I must always contain φ as this is

the only argument defending all arguments in {a, ¬a | a ∈ At}. It follows that if φ is satisfiable then
there is an initial set containing φ. The other direction is analogous.

We now claim that φ is unsatisfiable if and only if {ψ} is an unchallenged initial set. First, it is clear
that {ψ} is an initial set since ψ counterattacks the only attack. Moreover, we established above that φ

is satisfiable if and only if there is an initial set S containing φ. So if φ is satisfiable {ψ} is challenged
by S. If φ is unsatisfiable then {ψ} is clearly unchallenged. �

Proposition 12. ExistsIS� is in PNP
‖ -complete.

Proof. In order to show PNP
‖ -completeness, we use a characterisation of PNP

‖ from [17].5 More precisely,
Theorem 9 of [17] establishes that a problem X is PNP

‖ -complete if and only if

(1) X ∈ PNP
‖ ,

(2) X is NP-hard,
(3) X is coNP-hard,
(4) Two problem instances i1 and i2 of X can be polynomially reduced to a problem instance i3 of X

such that i3 is a positive instance if and only if both i1 and i2 are positive instances.
(5) A set of problem instances I = {i1, . . . , ik} of X can be polynomially reduced to a problem instance

i of X such that i is a positive instance if and only if there is at least one positive instance in I .

We now show that properties 1–5 above hold for the problem ExistsIS� .

(1) For PNP
‖ -membership, consider the following algorithm.6 Let AF = (A, R) be the input argumenta-

tion framework.

1. For each argument a ∈ A, check whether a is not attacked by an initial set
2. For each argument a ∈ A, check whether a is contained in an initial set
3. Let M be the set of arguments for which both checks 1 and 2 were positive
4. Remove all unattacked arguments from M , yielding a new set M ′
5. Compute the maximal admissible set M ′′ in M ′ (which is uniquely determined)
6. If M ′′ �= ∅ return YES, otherwise return NO

First observe that the above algorithm runs in PNP
‖ . All checks in steps 1 and 2 can be solved by an

NP-oracle:

5I am very grateful to an anonymous reviewer for pointing out that characterisation.
6Note that this algorithm is inspired by an algorithm for determining the ideal extension, cf. [20,21].
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(a) The check in step 1 is a decision problem in coNP as the complement problem (i. e., checking
whether a is attacked by an initial set) can be solved by guessing a set S that attacks a and
verifying in polynomial time (see Proposition 5) that it is an initial set.

(b) The check in step 2 is a decision problem in NP: it can be solved by guessing a set S that
contains a and verifying in polynomial time (see Proposition 5) that it is an initial set.

All checks in step 1 and 2 are non-adaptive, so they can be done in parallel (and there are linearly
many of them). For step 4, observe that identifying unattacked arguments can be done in polyno-
mial time. For step 5, note that M ′ is conflict-free (if there would be two arguments a, b ∈ M ′ with
aRb, it means that both a and b are in some (possibly different) initial sets and that b is in some
initial set that is attacked by some other initial set, which cannot be due to step 1). Determining
the maximal admissible set in M ′ can be done similarly as in the proof of Lemma 1 in polynomial
time.
Now we claim that the above algorithm returns YES if and only if the answer to ExistsIS� upon
input AF is YES.

• “⇒”: Let M ′′ �= ∅ be the admissible set computed in step 5 and let S ⊆ M ′′ be an initial set
contained in M ′′ (which necessarily exists since M ′′ is admissible and non-empty). Observe that
S is not an unattacked initial set as we removed all unattacked arguments in step 4. Assume S

is a challenged initial set. Then there exists another initial set S ′ which attacks some argument
b ∈ S. This is in contradiction to the fact that S ⊆ M ′ ⊆ M and M contains only arguments that
are not attacked by an initial set (see step 1). So S is an unchallenged initial set and the answer
to ExistsIS� upon input AF is YES.

• “⇐”: Assume the answer to ExistsIS� upon input AF is YES. Then there exists an unchallenged
initial set S. By definition, every argument a ∈ S is contained in an initial set and not attacked
by an initial set, so S ⊆ M in step 3 of the above algorithm. Since S is unchallenged (but not
unattacked), every argument in S is attacked and we have S ⊆ M ′ in step 4. As S is admissible
(and in no conflict with any other argument in M ′) we also have S ⊆ M ′′ in step 5 of the above
algorithm. As S �= ∅ it follows M ′′ �= ∅ as well and the algorithm return YES.

In conclusion, ExistsIS� is in PNP
‖ .

(2) We show DP-hardness (which entails NP-hardness) instead. For that we use the same reduction
from Uniquest as in the proof of Proposition 7, i. e., the construction Tr4 from [23]. In particular,
observe that if Tr4(AF) has exactly one initial set S then S is unchallenged. Furthermore, if Tr4(AF)

has no initial sets then it obviously also has no unchallenged initial sets. If Tr4(AF) has at least
two initial sets, then all these initial sets are challenged (as they are all stable extensions of the
original framework and two different stable extensions necessarily attack each other). This shows
DP-hardness of ExistsIS� .

(3) Since ExistsIS� is DP-hard (see above) it is also coNP-hard.
(4) Let AF1 = (A1, R1) and AF2 = (A2, R2) be two argumentation frameworks and assume A1∩A2 = ∅

(otherwise rename arguments accordingly). Construct AF3 = (A3, R3) as follows (let a1, a2 be fresh
arguments):

A3 = A1 ∪ A2 ∪ {a1, a2}
R3 = R1 ∪ R2 ∪ {

(a1, a1), (a2, a2)
}
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∪ {
(a, a1) | a ∈ A1, a

− �= ∅} ∪ {
(a1, b) | b ∈ A2, b

− �= ∅}
∪ {

(b, a2) | b ∈ A2, b
− �= ∅} ∪ {

(a2, a) | a ∈ A1, b
− �= ∅}

The intuition behind the above construction is that the two frameworks AF1 and AF2 are arranged
in a circle where every (already attacked) argument of AF1 attacks a1, a1 attacks every (already
attacked) argument of AF2, which in turn all attack a2, which in turn attacks all (already attacked)
arguments of AF1. Obviously, the construction of AF3 is polynomial in the size of AF1 and AF2.
We now show that AF3 has an unchallenged initial set if and only if both AF1 and AF2 have unchal-
lenged initial sets. Let M be an unchallenged initial set of AF3. Since a1 and a2 attack themselves,
a1, a2 /∈ M . Assume M ⊆ A1. Since M is unchallenged and not unattacked, all a ∈ M are attacked.
It follows that a2 attacks M . Since only arguments in AF2 attack a2, M cannot defend itself from a2.
It follows that A2 ∩ M �= ∅. For the same reason and using a1 instead of a2, it follows A1 ∩ M �= ∅.
Let M1 = M ∩ A1 and M2 = M ∩ A2. Assume M1 is challenged in AF1 and let M ′

1 be an initial
set in conflict with M1 in AF1. Then M ′

1 ∪ M2 is also an initial set of AF3 and in conflict with M ,
contradicting the assumption that M is unchallenged. It follows that both M1 and (with the same
argument) M2 are unchallenged in AF1 and AF2, respectively. For the other direction, given that
M1 and M2 are unchallenged initial sets of AF1 and AF2, respectively, it is also clear that M1 ∪ M2

is an unchallenged initial set of AF3.
(5) Let AF1 = (A1, R1), . . . , AFn = (An, Rn) be argumentation frameworks and assume Ai ∩ Aj = ∅

for all i, j = 1, . . . , n and i �= j (otherwise rename arguments accordingly). Observe that AF =
(A1 ∪ · · · ∪ An, R1 ∪ · · · ∪ Rn) has an unchallenged initial set M if and only if at least one of
AF1, . . . , AFn has an unchallenged initial set (since necessarily M ⊆ Ai for some i due to the
disconnectedness of AF). �

Proposition 13. UniqueIS� is in PNP
‖ and DP-hard.

Proof. For PNP
‖ -membership, we use a similar algorithm as in the proof of Proposition 12. Let AF =

(A, R) be the input argumentation framework.

1. For each argument a ∈ A, check whether a is not attacked by an initial set
2. For each argument a ∈ A, check whether a is contained in an initial set
3. Let M be the set of arguments for which both checks 1 and 2 were positive
4. Remove all unattacked arguments from M , yielding a new set M ′
5. Compute the maximal admissible set M ′′ in M ′ (which is uniquely determined)
6. If M ′′ = ∅ return NO

7. For each argument a ∈ M ′′, let Ma = M ′′ \ {a}
8. For each argument a ∈ M ′′, let M ′

a be the maximal admissible set in Ma (which is uniquely
determined)

9. If for all a ∈ M ′′, M ′
a �= ∅, return NO

10. Let S = {a | M ′
a = ∅}

11. If S is an initial set return YES, otherwise return NO

First observe that the above algorithm runs in PNP
‖ . Steps 1–6 run in PNP

‖ as already shown in the proof
of Proposition 12. Furthermore, steps 7–11 run in (deterministic) polynomial time (in particular, step
8 runs in polynomial time by leveraging a similar algorithm as in the proof of Lemma 1 and step 11
because of Proposition 5).
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We now claim that the above algorithm returns YES if and only if AF has a unique unchallenged initial
set.

• “⇒”: If the algorithm returns YES, we have obviously found an initial set S in step 11. As S ⊆ M ′′
we also have that S is an unchallenged initial set (see the proof of Proposition 12). Assume there
exists an unchallenged initial set S ′ with S ′ �= S. Note that both S � S ′ and S ′ � S since both are
initial sets and S ′ ⊆ M ′′ (again, see the proof of Proposition 12). Let x ∈ S \ S ′. Then M ′

x �= ∅ as
Mx completely contains S ′. This contradicts the fact that x ∈ S due to step 10. It follows that AF
has the unique unchallenged initial set S.

• “⇐”: Assume AF has the unique unchallenged initial set M . By the argumentation in the proof of
Proposition 12 we have that M ⊆ M ′′ in step 6. Then for all a ∈ M ′′ we have that

∗ M ′
a = ∅ if and only if a ∈ M since Ma �= ∅ would imply that there is another unchallenged

initial set contained in Ma .
∗ M ′

a �= ∅ if and only if a /∈ M as M is contained in Ma .

By the definition of S in step 10 it follows S = M . As M is an initial set, the algorithm returns YES

in step 11.

For showing DP-hardness we use the same reduction from Uniquest as in the proof of Proposition 7, i.
e., the construction Tr4 from [23]. In particular, note that AF has exactly one stable extension if and only
if Tr4(AF) has exactly one (unchallenged) initial set. �

Proposition 14. CredIS� is PNP
‖ -complete.

Proof. In order to show PNP
‖ -completeness, we again use the characterisation of PNP

‖ from [17] (see also
Proposition 12). So we show that is CredIS� is PNP

‖ -complete by showing that

(1) CredIS� ∈ PNP
‖ ,

(2) CredIS� is NP-hard,
(3) CredIS� is coNP-hard,
(4) Two problem instances (AF1, a1) and (AF2, a2) of CredIS� can be polynomially reduced to a prob-

lem instance (AF3, a3) of CredIS� such that (AF3, a3) is a positive instance if and only if both
(AF1, a1) and (AF2, a2) are positive instances.

(5) A set of problem instances I = {(AF1, a1), . . . , (AFk, ak)} of CredIS� can be polynomially reduced
to a problem instance (AF, a) of CredIS� such that (AF, a) is a positive instance if and only if there
is at least one positive instance in I .

We now show that properties 1–5 above hold:

(1) For showing PNP
‖ -membership, we use a similar algorithm as in the proof of Proposition 12. Let

AF = (A, R) be the input argumentation framework and x the input argument..

1. For each argument a ∈ A, check whether a is not attacked by an initial set
2. For each argument a ∈ A, check whether a is contained in an initial set
3. Let M be the set of arguments for which both checks 1 and 2 were positive
4. Remove all unattacked arguments from M , yielding a new set M ′
5. Compute the maximal admissible set M ′′ in M ′ (which is uniquely determined)
6. If there is an initial set S ⊆ M ′′ with x ∈ S, return YES, otherwise return NO
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First observe that the above algorithm runs in PNP
‖ using two consecutive rounds of parallel calls

(which is still in PNP
‖ due to Proposition 2.1 of [24]): steps 1–5 run in PNP

‖ ⊆ PNP as already
shown in the proof of Proposition 12, and step 6 can be solved by one further NP-oracle call (non-
deterministically guess S ⊆ M ′′ and verify that it is an initial set with x ∈ S). The above algorithm
also solves CredIS� as M ′′ contains all (and only) unchallenged initial sets.

(2) We show DP-hardness (which entails NP-hardness) instead. For that, we use the same reduction
from Uniquest as in the proof of Proposition 7, i. e., the construction Tr4 from [23], but first augment
the input argumentation framework AF = (A, R) with a fresh argument a (without any additional
attacks), yielding an argumentation framework ÂF = (A∪{a}, R). Note that E is a stable extension
of AF if and only if E ∪ {a} is a stable extension of ÂF. By the same argumentation as in the proof
of Proposition 7, AF has a unique stable extension E if and only if Tr4(ÂF) has the unique (and
unchallenged) initial set E∪{a}. So AF has a unique stable extension if and only if a is credulously
accepted wrt. unchallenged initial sets in Tr4(ÂF).

(3) Since CredIS� is DP-hard (see above) it is also coNP-hard.
(4) Let AF1 = (A1, R1) and AF2 = (A2, R2) be two argumentation frameworks and assume A1∩A2 = ∅

(otherwise rename arguments accordingly) and let (AF1, a1) and (AF2, a2) be two instances for
CredIS� . Construct an instance (AF3, a3) with AF3 = (A3, R3) for CredIS� as follows (let a3 be a
fresh argument):

A3 = A1 \ {a1} ∪ A2 \ {a2} ∪ {a3}
R3 = {

(b, c) ∈ R1 | b �= a1, c �= a1
}

{
(b, c) ∈ R2 | b �= a2, c �= a2

}
{
(a3, c) | (a1, c) ∈ R1

} ∪ {
(b, a3) | (b, a1) ∈ R1

}
{
(a3, c) | (a2, c) ∈ R2

} ∪ {
(b, a3) | (b, a2) ∈ R2

}
Informally speaking, AF3 is simply the union of AF1 and AF2 where the two arguments a1 (from
AF1) and a2 (from AF2) are merged into a new argument a3 that retains all previous attacks of a1

and a2.
We now show that a3 is credulously accepted wrt. unchallenged initial sets in AF3 if and only if
both a1 and a2 are credulously accepted wrt. unchallenged initial sets in AF1 and AF2, respectively.
Without loss of generality, we assume that both a1 and a2 are attacked in AF1 and AF2, respec-
tively (otherwise the problem trivialises since {a1} and/or {a2} are then unattacked initial sets).
Assume now that a3 is credulously accepted wrt. unchallenged initial sets in AF3 and let M be an
unchallenged initial set with a3 ∈ M . Consider M1 = M ∩ A1 ∪ {a1} and observe

• M1 is admissible in AF1: let c ∈ A1 be attacking M1. Then c also attacks M in AF3 and M

defends itself in AF3 through some d ∈ M . Since there are no attacks between AF1 and AF2

either d = a3 or d ∈ A1. In the first case, a1 ∈ M1 then attacks c. In the second case d ∈ M1

attacks c. It follows that M1 is admissible in AF1.
• M1 is an initial set in AF1: Assume there exists non-empty initial M ′

1 � M1. If a1 /∈ M ′
1 then

M ′
1 � M as well, contradicting the fact that M is initial. If a1 ∈ M ′

1, it is also easy to see that
M ′

1 \ {a1} ∪ {a3} ∪ (M ∩ A2) � M must be an initial set of AF3.
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Fig. 8. A sketch of the argumentation framework AF from the proof of Proposition 14.

• M1 is unchallenged: Suppose there is another initial set M ′
1 in conflict with M1 in AF1. If a1 /∈ M ′

1
then M ′

1 also is in conflict with M in AF3, contradicting the fact that M is unchallenged. The same
follows for a1 ∈ M ′

1 with the same argumentation as above.

For the same reason it follows that M2 = M ∩ A2 ∪ {a2} is an unchallenged initial set in AF2 and,
therefore, both a1 and a2 are credulously accepted wrt. unchallenged initial sets in AF1 and AF2,
respectively. The other direction is analogous.

(5) Let AF1 = (A1, R1), . . . , AFn = (An, Rn) be argumentation frameworks and assume Ai ∩ Aj =
∅ for all i, j = 1, . . . , n and i �= j (otherwise rename arguments accordingly). Let I =
{(AF1, a1), . . . , (AFk, ak)} be a set of instances of CredIS� . Construct AF = (A, R) as follows
(let a, b, c be fresh arguments):

A = A1 ∪ · · · ∪ Ak ∪ {a, b, c}
R = R1 ∪ · · · ∪ Rk ∪ {

(a, a), (a, b), (b, c), (c, c), (a1, a), . . . , (ak, a), (c, a1), . . . , (c, ak)
}

A sketch of the construction is shown in Fig. 8. We now show that b is credulously accepted
wrt. unchallenged initial sets in AF if and only if there is ai (i = 1, . . . , k) that is credulously
accepted wrt. unchallenged initial sets in AFi . Again, without loss of generality, we assume that
all ai (i = 1, . . . , k) are attacked in AFi , respectively. Assume that b is credulously accepted wrt.
unchallenged initial sets in AF and let M be an unchallenged initial set with b ∈ M . Since M is
admissible and b is attacked by a, there must be ai ∈ M for some i = 1, . . . , k. Let Mi = M \ {b}.
Then Mi is necessarily an unchallenged initial set in AFi (if, e. g., Mi is challenged in AFi then M

would also be challenged in AF). It follows that ai is credulously accepted wrt. unchallenged initial
sets in AFi . The other direction is analogous. �

Proposition 15. SkeptIS� is PNP
‖ -complete.

Proof. In order to show PNP
‖ -completeness, we use a characterisation of PNP

‖ from [25], in particular
Corollary 8. This allows us to show PNP

‖ -completeness of SkeptIS� by showing that



356 M. Thimm / Revisiting initial sets in abstract argumentation

(1) SkeptIS� ∈ PNP
‖ ,

(2) SkeptIS� is coDP-hard,
(3) A set of problem instances I = {(AF1, a1), . . . , (AFk, ak)} of SkeptIS� can be polynomially reduced

to a problem instance (AF, a) of SkeptIS� such that (AF, a) is a positive instance if and only if all
instances in I are positive.

We now show that properties 1–3 above hold:

(1) For PNP
‖ -membership, we use a similar algorithm as in the proof of Proposition 12. Let AF = (A, R)

be the input argumentation framework and x the input argument.

1. For each argument a ∈ A, check whether a is not attacked by an initial set
2. For each argument a ∈ A, check whether a is contained in an initial set
3. Let M be the set of arguments for which both checks 1 and 2 were positive
4. Remove all unattacked arguments from M , yielding a new set M ′
5. Compute the maximal admissible set M ′′ in M ′ (which is uniquely determined)
6. If M ′′ = ∅ return YES

7. Let Mx = M ′′ \ {x}
8. Let M ′

x be the maximal admissible set in Mx (which is uniquely determined)
9. If M ′

x = ∅ return YES, otherwise return NO

First observe that the above algorithm runs in PNP
‖ . Steps 1–6 run in PNP

‖ as already shown in
the proof of Proposition 12. Furthermore, steps 7–9 run in (deterministic) polynomial time (in
particular, step 8 runs in polynomial time by leveraging a similar algorithm as in the proof of
Lemma 1).
We now claim that the above algorithm returns YES if and only if x is skeptically accepted wrt.
unchallenged initial sets in AF.

• “⇒”: Assume the algorithm returns YES. First, assume the algorithm terminates in step 6. M ′′ =
∅ means that AF does not contain any unchallenged initial set (see the proof of Proposition 12).
Then all arguments (including x) are trivially skeptically accepted. Now, assume the algorithm
terminates in step 9. Since M ′′ is non-empty it contains unchallenged initial sets S1, . . . , Sn

(which are all unchallenged initial sets of AF, cf. the proof of Proposition 12). Since M ′
x = ∅ it

follows Si � Mx for all i = 1, . . . , n. It follows x ∈ Si for all i = 1, . . . , n and x is skeptically
accepted.

• “⇐”: Assume x is skeptically accepted wrt. unchallenged initial sets. Consider the following
case differentiation:

∗ There is no unchallenged initial set: in that case M ′′ = ∅ in step 6 (see again the proof of
Proposition 12) and the algorithm returns YES in step 6.

∗ There are unchallenged initial sets S1, . . . , Sn: since x ∈ Si for all i = 1, . . . , n we have that
M ′

x = ∅ (all unchallenged initial sets are “broken” by removing x). Then the algorithm returns
YES in step 9.

(2) For showing coDP-hardness, we provide a reduction from the problem ¬Uniquest, i. e., the prob-
lem of deciding whether an argumentation framework AF does not have a unique stable extension
(which is naturally coDP-complete as its complement Uniquest is DP-complete). We use a similar
approach as in the proof of Proposition 14, see also the proof of Proposition 7, again using the con-
struction Tr4 from [23]. For an input argumentation framework AF = (A, R) and a fresh argument
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a, we construct

ÃF = (
A ∪ {a}, R ∪ {

(b, a) | b ∈ A
})

In other words, we add an argument a and attacks from each original argument to a. Note that
E is a stable extension of AF if and only if E is a stable extension of ÃF. We now claim that an
input argumentation framework AF does not possess a unique stable extension if and only if a is
skeptically accepted wrt. unchallenged initial sets in ÃF

′
.

• Assume AF has no stable extension. Then Tr4(ÃF) has no initial set (see the proof of Propo-
sition 7) and also no unchallenged initial set. Then every argument (including a) is trivially
skeptically accepted wrt. unchallenged initial sets.

• Assume AF has a unique stable extension E. Then Tr4(ÃF) has the unique (and unchallenged)
initial set E that does not contain a. So a is not skeptically accepted, as desired.

• Assume AF has more than one stable extension. Then Tr4(ÃF) has the same sets as (challenged)
initial sets (as all these sets attack each other) and no unchallenged initial set. Then every argu-
ment (including a) is trivially skeptically accepted wrt. unchallenged initial sets.

For the other direction, assume a is skeptically accepted wrt. unchallenged initial sets. As observed
above, this can only happen if there are no unchallenged sets and this can only happen if AF does
not have a unique stable extension. This shows coDP-hardness of SkeptIS� .

(3) Let AF1 = (A1, R1), . . . , AFn = (An, Rn) be argumentation frameworks and assume Ai ∩ Aj =
∅ for all i, j = 1, . . . , n and i �= j (otherwise rename arguments accordingly). Let I =
{(AF1, a1), . . . , (AFk, ak)} be a set of instances of SkeptIS� . We again assume that each ai is at-
tacked in each AFi . Consider the argumentation framework AF following the construction in the
proof of Proposition 14, item (5), see also Fig. 8. We claim that b is skeptically accepted wrt. un-
challenged initial sets in AF if and only if a1, . . . , ak are skeptically accepted wrt. unchallenged
initial sets in AF1, . . . , AFk, respectively. Without loss of generality, assume that a1 is not skepti-
cally accepted wrt. unchallenged initial sets in AF1. Then there is an unchallenged initial set M

in AF1 with a1 /∈ M . Observe that M is also necessarily an unchallenged initial set in AF (since
a1 /∈ M there is no interaction with the rest of AF). Since b /∈ M it follows that b is also not
skeptically accepted wrt. unchallenged initial sets in AF. The argument generalises naturally to all
i = 1, . . . , k. The other direction is analogous. �

Proposition 16. VerIS↔ is NP-complete.

Proof. For NP-membership, on input AF and S1 we guess a set S2 that attacks S1 and verify in polyno-
mial time that S2 is an initial set, cf. Proposition 5. This shows that S1 is a challenged initial set.

To show NP-hardness, we use the same reduction as in the proof of Proposition 11 but using an
instance of 3SAT. It is easy to see that an input instance φ is satisfiable if and only if {ψ} is a challenged
initial set in AF′

φ . �

Proposition 17. ExistsIS↔ is NP-complete.

Proof. For NP-membership, we guess two sets S1 and S2 that attack each other and verify in polynomial
time that both are initial sets, cf. Proposition 5. This shows actually that both S1 and S2 are challenged
initial sets.
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To show NP-hardness, we use the same reduction as in the proof of Proposition 11 but using an
instance of 3SAT. It is easy to see that an input instance φ is satisfiable if and only if there is a challenged
initial set (concretely, {ψ}) in AF′

φ . �

Proposition 18. CredIS↔ is NP-complete.

Proof. For NP-membership, on input AF and a we guess two sets S1 and S2 with a ∈ S1, S1 and S2 attack
each other and verify in polynomial time that both are initial sets, cf. Proposition 5. This shows actually
that both S1 and S2 are challenged initial sets and a is credulously accepted wrt challanged initial sets
(as a ∈ S1).

To show NP-hardness, we use the same reduction as in the proof of Proposition 11 but using an
instance of 3SAT. It is easy to see that an input instance φ is satisfiable if and only if ψ is credulously
accepted wrt. challenged initial sets in AF′

φ . �

Proposition 19. SkeptIS↔ is coNP-complete.

Proof. For coNP-membership, we show that the complement problem, i. e., the problem of deciding
whether an input argument a is not skeptically accepted wrt. initial sets, is in NP. For that we guess two
sets S1 and S2 with a /∈ S1, S1 and S2 attack each other and verify in polynomial time that both are initial
sets, cf. Proposition 5. This shows that a is not skeptically accepted and therefore SkeptIS↔ is in coNP.

To show coNP-hardness, we use the same reduction as in the proof of Proposition 11. It is easy to see
that an input instance φ is unsatisfiable if and only if ψ is skeptically accepted wrt. challenged initial
sets in AF′

φ . �
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