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Abstract. Financial time series usually exhibit non-stationarity and time-varying volatility. Extraction and analysis of compli-
cated patterns, such as trends and transient changes, are at the core of modern financial data analytics. Furthermore, efficient
and timely analysis is often hindered by large volumes of raw data, which are supplied and stored nowadays. In this paper, the
power of learned dictionaries in adapting accurately to the underlying micro-local structures of time series is exploited to extract
sparse patterns, aiming at compactly capturing the meaningful information of volatile financial data. Specifically, our proposed
method relies on sparse representations of the original time series in terms of dictionary atoms, which are learned and updated
from the available data directly in a rolling-window fashion. In contrast to previous methods, our extracted sparse patterns
enable both compact storage and highly accurate reconstruction of the original data. Equally importantly, financial analytics,
such as volatility clustering, can be performed on the sparse patterns directly, thus reducing the overall computational cost,
without deteriorating accuracy. Experimental evaluation on 12 market indexes reveals a superior performance of our approach
against a modified symbolic representation and a well-established wavelet transform-based technique, in terms of information
compactness, reconstruction accuracy, and volatility clustering efficiency.

Keywords: Dictionary learning, sparse modeling, financial time series, financial analytics, symbolic representations, transform
coding

1. Introduction

Perceiving and interpreting complicated time-
varying phenomena are challenging tasks in several
distinct engineering and scientific fields. Such issues
become even more demanding in view of the large
volumes of raw data that have emerged thanks to the
advances of computing technologies. Typical examples
include large panel and e-commerce data in finance
and marketing, microarray gene expression data in
genetics, global temperature data in meteorology, and
high-resolution images in biomedical applications,
among many others. Knowledge discovery from this
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data deluge necessitates the extraction of descriptive
features in appropriate lower-dimensional spaces,
which provide a meaningful, yet compact, representa-
tion of the original implicit information to be further
employed for executing high-level tasks, such as clas-
sification, clustering, pattern discovery and similarity
search by content, to name a few.

Focusing on the financial domain, dealing with
financial data, which are usually large in size and
unstructured, is by no means a non-trivial problem.
Technical analysis (Murphy, 1999), which is one of
the most commonly used methods for analyzing and
predicting price movements and future market trends,
is based on the examination of large volumes of already
available past data. To this end, efficient modeling
and discovery of informative repetitive patterns in
time series ensembles can be applied to understand
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the underlying behavior within a time series or the
relationship among a set of time series and reach a
more accurate inference. In the framework of financial
data modeling, high-dimensional models, such as vec-
tor autoregression (VAR) (Stock and Watson, 2001),
have recently gained considerable interest in captur-
ing interdependencies among multiple time series and
extracting their inherent structural information. How-
ever, standard VAR models are usually constrained in a
few tenths of variables, since the number of parameters
grows in a quadratic way with the size of the model. In
practice, though, financial analysts deal with hundreds
of time series, thus making the use of such approaches
prohibitive.

Another example concerns the analysis of large
stock price data and the need to incorporate cross-
sectional effects, since the price of a given stock may
depend on various other stocks of the same market,
or of distinct markets around the globe. To this end,
typical correlation analysis based on ordinary least
squares (OLS) estimation can be impractical, since the
regression equation may include up to a few thousand
stocks. Moreover, in the modern portfolio construction
approaches, asset managers rely on the estimation of a
large volatility matrix of the assets returns comprising
the portfolio to optimize the portfolio’s performance
or to manage its risk. However, as it has been shown in
Tao et al. (2011), the existing volatility matrix estima-
tors perform poorly and in fact are inconsistent when
both the number of assets and the sample sizes go to
infinity.

Apart from a computational bottleneck, high dimen-
sionality, which may refer to a large number of time
series or a large number of samples, rises two critical
issues during data processing, namely, the occurrence
of spurious correlations (Fan and Lv, 2010) and the
accumulation of noise (Fan and Fan, 2008). Both
phenomena can affect unfavorably the systematic com-
putational analysis of our data. Hence, it is important
to perform analytics on a faithful representation of the
time series, that acts as a close proxy of the raw data in
terms of the inherent information content, but which
lies in a space of reduced dimensionality enabling a
more convenient manipulation.

Several solutions have been proposed to query and
index large sets of time series (ref. Zhu and Shasha
(2002); Reeves et al. (2009)). Despite their efficiency,
these techniques do not support a dedicated storage
methodology for compactly and faithfully archiving
the entire data series history, as well as for executing

interactive queries on top of the corresponding
compact representations. For instance, the system
described in Zhu and Shasha (2002) (StatStream) is
not effective for correlating noisy data or for preserv-
ing significant spikes in data, while the one designed in
Reeves et al. (2009) (Cypress) introduces a multi-scale
lossy compression of the original data series by main-
taining multiple representations of a given time series
to be used in distinct queries. However, both techniques
could fail in case of financial time series, which usu-
ally exhibit quite complicated patterns characterized
by non-stationary and transient behavior. On the other
hand, our ultimate goal in this work is to design an
efficient method for achieving a single compact rep-
resentation of a given time series, as opposed to the
multiple ones produced by Cypress, while still being
able to capture the micro-local (spiky) structures, in
contrast to StatStream.

A common characteristic of all those time series pro-
cessing systems is the presence of a dimensionality
reduction process, which aims at mitigating the effects
of high-dimensional spaces (Jimenez and Langrebe,
1998), such as the limited scalability of algorithms
to high-dimensional data, typically due to increased
memory and time requirements. Dimensionality reduc-
tion techniques can be roughly classified according to
their linear or non-linear nature, as well as in terms of
a data-adaptive or non data-adaptive behavior.

Traditional linear techniques include principal com-
ponents analysis (PCA) and factor analysis. However,
the main drawback of linear techniques is their ineffi-
ciency to adequately handle complex non-linear data.
Motivated by this, non-linear techniques for dimen-
sionality reduction have been proposed recently (Lee
and Verleysen, 2007). In contrast to their linear coun-
terparts, non-linear methods have the capability to deal
with complex data sets. Non-linear methods are further
categorized as embedding-based and mapping-based.
Embedding-based techniques (Tenenbaum et al., 2000;
Roweis and Saul, 2000; Belkin and Niyogi, 2001;
Jenkins and Matarić, 2004) model the structure of the
data that generates a manifold without providing map-
ping functions between the observation space and the
latent (manifold) space, thus making difficult to map
new data into the low-dimensional latent space and
vice versa. On the other hand, mapping-based tech-
niques learn appropriate mapping functions either by
modeling the non-linear function directly (Schölkopf
et al., 1998) or by combining local linear models
(Li et al., 2007).
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In terms of adaptation capability, non data-adaptive
techniques use the same set of parameters for dimen-
sionality reduction regardless of the underlying data.
Typicalexamples includemethodswhichutilize thedis-
crete Fourier transform (DFT) (Agrawal et al., 1993) or
a multiresolution decomposition, such as those based
on the discrete wavelet transform (DWT) (Chan and Fu,
1999; Kahveci and Singh, 2001). In contrast to DFT,
DWT provides increased flexibility by using local-
ized wavelet functions at multiple frequency levels to
achieve more compact, yet very accurate, represen-
tations of the data. A completely different approach,
especially tailored to the analysis of time series, is
the piecewise aggregate approximation (PAA) (Yi and
Faloutsos, 2000; Chakrabarti et al., 2002), whose sim-
ple formation appears to be competitive compared with
the more sophisticated transform-based approaches.

In contrast to the above methods, which represent
each data point independently of the rest of the data,
data-adaptive techniques account for the underlying
data structure and adjust their parameters accordingly.
For instance, methods employing a singular value
decomposition (SVD) (Wu et al., 1996; Keogh et al.,
2001) consider the entire data, thus acting globally and
accounting for potential dependencies among them.
A conceptually different data-adaptive approach for
dimensionality reduction is based on the conversion of
time series into sequences of symbols. Symbolic aggre-
gate approximation (SAX) (Lin et al., 2003) is such an
example, which employs a PAA representation as an
intermediate step between the raw data and the result-
ing symbolic sequence. SAX-based methods have been
utilized efficiently in performing tasks, such as classi-
fication, recognition and pattern discovery on distinct
types of data (Keogh et al., 2004; Chen et al., 2005; Fer-
reira et al., 2006; Wijaya et al., 2013).

A major drawback of both the transform-based and
symbolic representations is that they may suffer from
a significant loss of the inherent information content
during the conversion of the original data into highly
reduced sets of transform coefficients and symbolic
sequences, respectively. In addition, a large amount of
historical data is required to ensure that the generated
low-dimensional representations will be representative
of the range of values that will be observed in the future.

To analyze complex financial time series, and espe-
cially to provide fast responses to specific queries,
such as classification or indexing, the challenge is to
achieve a trade-off between the degree of compactness
and the representative capability of the associated low-

dimensional representation. For instance, despite their
representationaccuracy, themajorityof theembedding-
based methods mentioned above do not scale well
with an increasing number of time series or observa-
tions, due to their quadratic or cubic complexity in
the number of data. As such, they would be ineffi-
cient for carrying out classification or indexing tasks
over large databases in a timely manner. On the other
hand, although transformed-based or symbolic repre-
sentation methods may achieve inferior performance in
termsofrepresentationaccuracyincaseofcomplextime
series, however, their computational complexity is sig-
nificantly reduced, and as such they can be very efficient
in executing classification or indexing queries in time-
constraint applications.

The requirement to attain the trade-off between
representationaccuracyandhighcompactnessofappro-
priately extracted patterns from a given time series
ensemble can be critical in financial applications. From
the one side, we have to maintain a high recon-
struction quality of the original time series from the
lower-dimensionalpatterns, inorder toachieveaccurate
inference (e.g., forecasting, classification, indexing).
On the other hand, a high compactness of such low-
dimensional patterns can be very beneficial towards
reducing the storing, archiving, or communication time
requirements for huge volumes of financial data gen-
erated by the various markets. Motivated by this, the
present work introduces a method which compromises
the advantages of non-linear techniques in achieving
highlyaccurate, low-dimensional representationsof the
originaldatatobefurtherusedinhigher-level tasks(e.g.,
classification and indexing), with the advantages of non
data-adaptive methods, as mentioned above, in terms of
increased scalability and computational efficiency for
an increasing number of time series or observations.

More specifically, our proposed method is developed
intheframeworkofsparserepresentationsoverlearned
dictionaries. In the field of signal processing, sparse
representations (Bruckstein et al., 2009; Elad, 2010)
is one of the most active research areas. The key con-
cept of this theory is that accurate, yet highly compact,
representationscanbeconstructedbydecomposingsig-
nals over elementary atoms chosen from an appropriate
dictionary. Sparsity enables faster and simpler pro-
cessing of the data of interest, since few coefficients
reveal all the meaningful information, while also pre-
senting increased robustness to the presence of noise
andenhanced reconstructionaccuracy fromincomplete
information.
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However, extraction of the sparsest representation is
bynomeansanon-trivialproblem. Ina transform-based
approach, the sparsifying transformation is known and
fixed (e.g., DFT or DWT). On the contrary, designing
sparsifying dictionaries that best fit our specific data
could improve significantly their representative power
and achieved sparsity. To this end, dictionary learn-
ing has been widely and successfully used in diverse
machine learning applications, such as classification,
recognition,andimagerestoration(Aharonetal.,2006).
Under this model, each data point is assumed to be
expressed as a linear combination of very few atoms,
that is,columnsofadictionary,whicharejointly learned
from a set of training data under strict sparsity con-
straints. It is also important to highlight that the joint
learning process of the dictionary atoms exploits poten-
tial correlations among distinct segments of the same
time series, or between different time series. This prop-
erty,whichgenerally improvestherepresentativepower
and increases the sparsity of the induced representa-
tions, is not supported by most of the dimensionality
reduction techniques.

Focusing on the case of financial data, given an
appropriately learned dictionary and a financial time
series we aim at extracting sparse patterns charac-
terized by high representative power, in terms of
accurately reconstructing the original data, along with
limited storage requirements. Furthermore, we inves-
tigate the effectiveness of these sparse patterns in
performing clustering based on the volatility estimated
directly from them. Volatility clustering was selected
as a proper financial analytics to be evaluated due to its
importance in quantitative finance. Specifically, accu-
rate volatility clustering enables, among others, the
design of more efficient mean reversion models by bet-
ter understanding the micro-local behavior of a market
index.

We also emphasize that the proposed method is
not affected by neither the underlying distribution of
the original time series, nor their relative magnitudes.
These two properties mean that our method is equally
efficient for Gaussian and non-Gaussian data, as well as
for financial data expressed in local currencies without
requiring prior normalization.

1.1. Contributions

To summarize, the main contributions of this work
are as follows: (i) an adaptive and scalable method
is introduced, which exploits the principles of sparse

representations over learned dictionaries, for extract-
ing highly representative sparse patterns from financial
time series; (ii) the superior performance of the
proposed method is illustrated, in terms of informa-
tion compression through efficient sparse coding, and
reconstruction quality of the original time series via an
appropriate averaging scheme, when compared with
widely used transform-based and symbolic dimen-
sionality reduction techniques tailored to performing
queries on time series; (iii) a modified SAX algorithm
is introduced by providing additional options for the
estimation of more representative breakpoints, which
define the associated symbols; (iv) the clustering effi-
ciency of the sparse patterns obtained by our method
is demonstrated in terms of clustering distinct seg-
ments of financial time series based on their volatility
estimated directly from their sparse patterns.

We would also like to note that an exhaustive
comparison with all previous state-of-the-art dimen-
sionality reduction techniques is beyond the scope of
this paper. Instead, our main goal is to introduce an
alternative perspective for performing financial data
analytics in an efficient and timely manner. To the best
of our knowledge, this is the first time to bridge the
theory of sparse representation coding over learned
dictionaries with financial data analytics.

The rest of the paper is organized as follows:
Section 2 introduces briefly the main concepts of
transform-based dimensionality reduction techniques,
and describes in detail our modified SAX-based sym-
bolic representation. Section 3 analyzes the building
blocks of our proposed method for extracting sparse
patterns from financial time series, which comprises
of a sparse representation coding step in conjunction
with a dictionary learning phase. In Section 4, the
performance of the proposed method is evaluated and
compared against a transform-based approach and the
modified SAX-based method introduced in Section 2,
in terms of the achieved compression ratio for storing
the low-dimensional representations, the reconstruc-
tion quality, and the clustering efficiency based on the
estimated volatility. Finally, Section 5 summarizes
the main results and gives directions for further
enhancements.

1.2. Notation

In the subsequent analysis, the following notations
are adopted. Let x = [x1, . . . , xN ] denote the vector
consisting of N time series samples. Each sample
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xi ∈ R, i = 1, . . . , N, is the observed value at time
ti, where the set of time instants {t1, . . . , tN} can be
non-uniform (unequally spaced) in the general case.
We also note that all the representation methods men-
tioned in this work will be applied on a rolling window
of length w, which slides with a step size equal to s sam-
ples across time. Doing so, xi,w = [xi−w+1, . . . , xi]
will denote a window of length w whose ending point
is the i-th sample of the original time series x. Further-
more, lowercase letters will denote a scalar, boldface
lowercase letters will denote vectors, whereas boldface
uppercase letters will denote matrices.

2. Transform and symbolic representations
of time series

In this section, the main concepts of transform-based
dimensionality reduction techniques are introduced
briefly, along with a detailed description of our modi-
fied SAX-based symbolic representation, which better
captures the varying nature of financial data than the
standard SAX. As we already noted in Section 1, these
two classes of dimensionality reduction techniques
were chosen for illustration purposes based on their
extensive use in financial technical analysis under stor-
age and temporal limitations for processing specific
high-level queries (e.g., indexing (Fu et al., 2004), clas-
sification (Lahmiri et al., 2013), and pattern discovery
(Ahmad et al., 2004)).

2.1. Transform-based time series representations

Transform-based time series representations are
powerful signal processing techniques, aiming at map-
ping efficiently a, usually high-dimensional, time
series in an appropriate transform domain, where low-
dimensional features can be extracted to represent the
meaningful information of the original data. Prominent
members of such representations are those techniques
which employ the computationally tractable discrete
Fourier transform (DFT) and discrete wavelet trans-
form (DWT) (Mallat, 2008).

Specifically, DFT, which maps the time series data
from the time domain to the frequency domain, has
been extensively used in time series indexing (Rafiei
and Mendelzon, 1998) by taking only the first few
large-magnitude Fourier coefficients, thus effectively
reducing the dimensionality of the representation space
and speeding-up the similarity queries. Unlike DFT,

which maps the original data from the time domain
into the frequency domain, DWT improved the repre-
sentation accuracy by transforming the data from the
time domain into a time-frequency domain. To this end,
a multi-scale decomposition of the original time series
is performed, which results in an approximation part
corresponding to the broad trend of the series, and in
several detail parts which represent the localized vari-
ations. It is exactly due to its enhanced time-frequency
localization property, meaning that most of the time
series energy can be represented by only a few high-
magnitude wavelet coefficients at multiple scales, that
DWT has been shown to achieve superior performance
than DFT (e.g., for time series classification) (Wu et al.,
2000; Chan et al., 2003).

For convenience, in the rest of the paper we keep
a uniform notation for the transform-based time series
representations. In particular, if x ∈ R

N is a time series
with N observations, then

c = T{x} , (1)

where c ∈ R
M with, in general, M > N, will denote

the set of transform coefficients. Having calculated
c, a lower-dimensional subset cs ∈ R

S (S � M) is
extracted, which contains a predetermined portion of
the total energy of the time series, to represent com-
pactly the original data and perform higher-level tasks,
such as clustering and indexing. Since the DWT-based
approach will be used as a benchmark for comparison
against our proposed technique, we will not go further
into its structural details. For a thorough analysis of
the DWT’s properties the interested reader is referred
to Mallat (2008).

2.2. Symbolic time series representations

As mentioned in Section 1, the family of symbolic
models has gained recently the interest of the data min-
ing community, due to its simplicity and efficiency
when compared with existing dimensionality reduction
and data representation methods. A key advantage of
symbolic representations, such as SAX, is that they
enable the use of many already existing algorithms
from the fields of text processing and bioinformatics.

However, financial time series usually present criti-
cal or extreme points, which the original SAX method
cannot handle. To mitigate the loss of such important
points, as well as to account for the underlying trend
feature and capture important patterns more accurately,
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a modified algorithm, the so-called eSAX (Lkhagva
et al., 2006), was introduced recently extending the
capabilities of the typical SAX representation.

In this section, we introduce a modification of
eSAX, which will be used as a benchmark to compare
with the performance of sparse representations over
learned dictionaries. In particular, our modified eSAX
(m-eSAX) algorithm provides additional options for
choosing the breakpoints, which determine the inter-
val limits for the associated symbols. More specifically,
apart from estimating the breakpoints based on a Gaus-
sian assumption, as is the case with eSAX, for the
statistics of the given time series data, we employ
three additional options, namely, a) uniform partition
of the time series range of values, b) estimation of k

q-quantiles of the ordered data, and c) estimation of k

q-quantiles of the ordered data by removing repeated
values. This modification makes m-eSAX suitable for
non-Gaussian distributed data, which is often the case
in practice, and also more efficient in extracting spe-
cific patterns inherent in financial time series.

The m-eSAX, like any other symbolic representa-
tion, aims at representing a contiguous part of a time
series as a single symbol, which is selected from a
predefined alphabet. Two distinct types of aggregation
(segmentation) should be considered, namely, vertical
(or temporal) aggregation of the time series values in
each window xi,w, and horizontal aggregation, which
changes the granularity of the values a symbol can
represent.

Typical operators for vertical aggregation include
the average, the sum, the maximum or the minimum
value. Following the PAA approach, the average is
employed hereafter. Doing so, a given window xi,w is
divided into R equally sized non-overlapping segments
of size c = �w/R�, where �a� is the closest integer
smaller than a, as follows: xi,w = [g1

i,w, . . . ,gR
i,w],

where gr
i,w = [x(i−w+1)+(r−1)c, . . . , x(i−w+1)+rc−1],

r = 1, . . . , R. Then, for each segment the average is
computed by

μr
i,w = R

w

(i−w+1)+rc−1∑
j=(i−w+1)+(r−1)c

xj , r = 1, . . . , R . (2)

In order to capture a more complex data behavior,
two additional values, namely, the minimum and the
maximum of each segment are also considered. Let
mr

i,w = min{gr
i,w} and Mr

i,w = max{gr
i,w} be the mini-

mum and maximum values of the r-th segment in the
current window, respectively. As a result, the origi-

nal w-dimensional window xi,w is mapped to a lower,
(3R)-dimensional, representation

xi,w �−→
{(

θ1
1, θ1

2, θ1
3

)
, . . . ,

(
θR

1 , θR
2 , θR

3

)}
, (3)

where each triplet
(
θr

1, θ
r
2, θ

r
3

)
is a permutation of

the triplet
(
mr

i,w, μr
i,w, Mr

i,w

)
, for r = 1, . . . , R. This

permutation corresponds to the relative times of occur-
rence of mr

i,w, μr
i,w, and Mr

i,w. In particular, let
[tr1,i,w, . . . , trc,i,w] be the time interval corresponding to
the r-th segment of the current window. Let also trmr

i,w

and trMr
i,w

denote the time instants of occurrence of the

minimum mr
i,w and maximum Mr

i,w, respectively, in
this time interval. For the average μr

i,w we follow the
convention that it appears in the middle of the time
interval, that is, trμr

i,w
= (tr1,i,w + trc,i,w)/2.

Then, the ordering of the triplet
(
θr

1, θ
r
2, θ

r
3

)
is deter-

mined by the relative position of trmr
i,w

, trμr
i,w

, and trMr
i,w

,

as follows:(
θr

1, θ
r
2, θ

r
3

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
mr

i,w, μr
i,w, Mr

i,w

)
if trmr

i,w
< trμr

i,w
< trMr

i,w(
Mr

i,w, μr
i,w, mr

i,w

)
if trMr

i,w
< trμr

i,w
< trmr

i,w

...(
μr

i,w, mr
i,w, Mr

i,w

)
otherwise

(4)

From (3)-(4) the vertical segmentation of the current
window xi,w consists in forming a sequence of ordered
triplets.

A horizontal segmentation comes as the next step,
which associates each element of the triplets θr

j ,
j = 1, 2, 3, r = 1, . . . , R, to a symbol selected from
a predetermined alphabet. Horizontal segmentation
changes the granularity of the values a symbol from
the alphabet can represent. In our m-eSAX, we employ
an alphabet consisting of dyadic symbols of variable
length by dividing recursively the sub-ranges of real
values. In particular, the whole range of values of a
given time series is divided into 2Q intervals, where
Q ∈ N is defined by the user according to the required
granularity. In fact, this is equivalent to quantizing the
time series data in 2Q levels, or, equivalently, with
Q = log2 2Q bits. Table 1 shows examples of dyadic
alphabets by varying the value of Q.

Apart from the alphabet, the second component
of a horizontal segmentation consists of a set of
separator points (or breakpoints). In particular, let
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Table 1

Examples of dyadic alphabets for varying number of quantization
bits Q

Quantization Dyadic
bits (Q) alphabet (A)

1 A = {0, 1}
2 A = {00, 01, 10, 11}
3 A = {000, 001, 010, 011, 100, 101, 110, 111}

A = {a1, . . . , aK} be an alphabet of size K, and B =
{b1, . . . , bK−1}, with bi ∈ R, be a set of breakpoints.
Then, each element θr

i of the triplets defined in (4) is
mapped to a symbol aj ∈ A as follows:

θr
i �−→⎧⎪⎨
⎪⎩

a1 if θr
i ≤ b1

aK if θr
i > bK−1

aj if bj−1 < θr
i ≤ bj

(i=1, 2, 3, r=1, . . . , R, j=2, . . . , K − 1) (5)

The mapping operators defined by (4) and (5) are
applied sequentially on each segment and each sliding
window resulting in the final symbolic representation
of the original time series x. Figure 1 summarizes the
steps of the m-eSAX representation.

The alphabet A and the breakpoints set B constitute
the core of the horizontal segmentation. Motivated by
Wijaya et al. (2013), we support two additional options
to define the breakpoints in m-eSAX. In particular, the
breakpoints are generated by using information from
the data distribution directly. To this end, two distinct
methods are employed to design the set B:

� Uniform: If mx = min{x} and Mx = max{x}
are the minimum and maximum values of our
time series data, then, the range [mx, Mx] is par-
titioned uniformly in K equally sized sub-ranges
for each of the K symbols.

� Median: The ordered time series data are divided
into K equal-sized subsets (K-quantiles). Then,
the breakpoints are defined as the boundary val-
ues between adjacent subsets.

In a financial analytics system, data are continuously
generated and the processing can be done either when
a new value is obtained, or by storing and processing
batches of past values. However, all the SAX-based
approaches suffer from a possible lack of representa-
tion power of the induced symbolic sequence. First,
the set of breakpoints B has to be learned on histor-
ical data, which should be representative enough for
future data. Otherwise, if the range of values assigned
to a symbol changes frequently with time, we have to
update B, which makes it difficult to implement any
algorithm on the generated symbols. This limitation
arises naturally in financial applications, where histor-
ical data may be unable to represent and describe a
typical behavior of the measured phenomenon (e.g.,
the condition of a global market), which often depends
on unpredictable factors.

3. Sparse patterns representation of financial
time series

The framework of sparse representation coding
(SRC) has been gaining a growing interest in the field of
signal processing due to its efficiency in revealing the
inherent meaningful information content in a signifi-
cantly lower-dimensional space. In particular, given a
signal x ∈ R

N , that is, a time series of N observations
in our case, and an overcomplete dictionary matrix
D = [d1, . . . ,dK] ∈ R

N×K, with N < K, then x can
be represented as a sparse linear combination of the

Fig. 1. Flow diagram of the m-eSAX symbolic representation.
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columns of D. The representation of x over D may be
either exact, x = Dα, or approximate, x ≈ Dα with
‖x − Dα‖p ≤ ε, where ‖ · ‖p denotes the �p norm.
The vector α ∈ R

K, which contains the representation
coefficients of x, is also known as the sparse code of
x. In case of real data, the approximate representation
is typically employed, where the deviation is measured
in terms of �p norms for p = 1, 2, and ∞.

In the following, our proposed method, hereafter
denoted by FTS-SRC (Financial Time Series-Sparse
Representation Coding), for representing sparsely, yet
highly accurately, volatile financial time series, is ana-
lyzed in detail.

3.1. Joint optimization for dictionary learning and
sparse coding

The overcomplete nature of D, in conjunction with
a full rank, yield an infinite number of solutions for
the representation problem. Hence, appropriate reg-
ularization is required to tackle its ill-posed nature.
Motivated by our need to achieve high information
compaction, whilst maintaining the inherent structures
of volatile financial time series, a sparsity constraint on
the representation vector α serves as a means to limit
the dimension of the solution space.

To this end, the sparsest representation α is calcu-
lated by solving either an exact (P0) or an approximate
problem (P0,ε) as follows:

(P0) min
α∈RK

‖α‖0 s.t. x = Dα (6)

(P0,ε) min
α∈RK

‖α‖0 s.t. ‖x − Dα‖2 ≤ ε , (7)

where ‖ · ‖0 is the �0 pseudo-norm, which is equal to
the number of non-zero elements of a vector.

The majority of sparse representation methods are
based on a preliminary assumption that the sparsifying
dictionary D is known and fixed. This requires typ-
ically a trial-and-error preprocessing step to find the
most appropriate dictionary for our data. On the con-
trary, there is a recent research focus on the proper
design of sparsifying dictionaries, which are learned
from the available data to better adapt to the under-
lying data structures, as well as to the sparsity model
imposed.

In the following, let X = {xj}Jj=1, with xj ∈ R
N ,

be a set of training time series. Given X, we seek
for a dictionary D, which generates the training series
via sparse linear combinations of its atoms (columns).

This means that solving the P0 problem for each time
series xj yields a corresponding sparse representation
αj , j = 1, . . . , J . The joint estimation of an adaptive
sparsifying dictionary D, along with the associated
sparse codes, is performed by solving the following
optimization problem:

min
D∈RN×K,A∈RK×J

{
‖X − DA‖2

F

}

s.t. ‖αj‖0 ≤ τ, j = 1, . . . , J , (8)

where ‖ · ‖F denotes the matrix Frobenius norm, A ∈
R

K×J is the matrix whose columns are the sparse codes
αj , and τ is a predetermined sparsity level for the
αj’s.

The solution of (8) consists of alternating between
a sparse coding step for the estimation of A, and an
update step for the dictionary D. For the first step, the
dictionary D is considered fixed, and (8) is solved over
A. By noting that

‖X − DA‖2
F =

J∑
j=1

‖xj − Dαj‖2
2 , (9)

the optimization problem is decoupled into J distinct
problems of the form:

min
αj∈RK

{
‖xj − Dαj‖2

2

}

s.t. ‖αj‖0 ≤ τ, j = 1, . . . , J . (10)

Each one of these J constrained least-squares opti-
mization problems can be solved efficiently by
applying a pursuit algorithm, such as the matching
pursuit (MP) (Mallat and Zhang, 1993) or the orthog-
onal matching pursuit (OMP) (Cai andWang, 2011)
among many other existing algorithms. In all these
cases, the sparsity level τ affects the maximum num-
ber of iterations for the estimation of the, at most, τ

non-zero coefficients of each αj . For the second step,
it is assumed that both D and A are fixed, and we
seek to update sequentially only one column at a time
in the dictionary, dk (k = 1, . . . , K), along with the
coefficients that correspond to this column, that is, the
k-th row of A. The algorithm terminates when a prede-
fined maximum number of iterations has been reached,
or when the approximation error falls below a given
threshold ε.
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Fig. 2. Flow diagram of sparse representation coding of a given time series based on a learned dictionary.

3.2. Extracting sparse micro-local patterns
in financial time series

A typical characteristic in most financial data is
the presence of micro-local structures in small time
windows. Our aim is to represent these structures as
accurately as possible by utilizing a minimal amount
of information. To this end, we associate the current
window of a given time series with its estimated sparse
code, thus achieving a mapping between the original
dense temporal observations and the space of sparse
patterns. These sparse patterns are defined as the esti-
mated sparse codes over the learned dictionary.

The accuracy of the learned dictionary in capturing
the significant inherent structures depends also on the
representative capability of the training samples. To
tackle this issue, given a financial time series x ∈ R

N

of N observations, it is first divided into two parts,
namely, the training set (historical data) xH ∈ R

NH

and the test set xT ∈ R
NT , where NH + NT = N. In

the following, the dimension of the training set is
expressed as a percentage of the total dimension, that
is, NH = δ · N with δ ∈ (0, 1).

In order to better capture the transient micro-local
behavior of a volatile financial series, whilst main-
taining the inter-dependencies among consecutive
time instants, the training data xH is further parti-
tioned into a set of overlapping sliding windows,
xH ;i,w = [xH, i−w+1, . . . , xH, i], of length w using a
step size equal to s. The ending point of xH ; i,w is the
i-th sample of the training time series xH . All these
windows are then augmented in a single data matrix
XH = [

xH ; w,w |xH ; w + s,w | · · · |xH ; w + (c̃−1)s,w
] ∈

R
w×c̃, where c̃ = �NH−w

s
+ 1� is the number of

overlapping windows that span xH .
The corresponding dictionary DH is learned by

solving (8), that is,

min
DH∈Rw×K,AH∈RK×c̃

{
‖XH − DHAH‖2

F

}

s.t. ‖αH, j‖0 ≤ τ, j = 1, . . . , c̃ . (11)

Having obtained the dictionary for the training set, the
associated sparse code αT, i′ for a window xT ;i′,w in the
test set is estimated by solving an MP-like optimization
problem (ref. (10)):

αT, i′ = arg{ min
αT, j′ ∈RK

{
‖xT ;i′,w − DHαT, j′ ‖2

2

}

s.t. ‖αT, j′ ‖0 ≤ τ} . (12)

By solving (12) and augmenting the resulting sparse
codes for all the overlapping windows in the test set
xT , which are also of length w and slide with a step
size equal to s, we obtain the sparse representation
matrix AT = [

αT, 1 | αT, 2 | · · · | αT, ĉ

] ∈ R
K×ĉ, where

ĉ = �NT −w
s

+ 1� is the number of overlapping win-
dows that span the test data xT . Figure 2 summarizes
the steps for learning the dictionary based on a train-
ing set, and calculating the sparse codes for both the
training and the test data.

The advantage of sparse coding against its sym-
bolic representation counterpart for extracting sparse
patterns from volatile time series, is its increased
robustness in case of limited training data. As we
mentioned before, a major drawback of the symbolic
approaches is that the estimated breakpoints, which
define the range of values assigned to a symbol, are
highly sensitive to the available data. Thus, if the his-
torical (training) data are not representative enough
to describe future observations, the resulting symbolic
representation yields a degraded approximation, as it
will be illustrated by our experimental evaluation. On
the contrary, sparse coding over a learned dictionary
results in a set of atoms to be used for the representa-
tion of a whole window of observations, instead of a
few individual values (as is the case with m-eSAX).

Given a highly reduced set of observations, it is
more probable to estimate a basis (set of atoms) in
which the given time series is approximated accurately,
than to estimate a discrete set of transform coefficients
or breakpoints, for the transform and symbolic-based
methods, respectively, with the capability to represent
future distinct observations. As a consequence, the
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learned dictionary DH has to be updated much less
frequently than the set of breakpoints B, in order to
account for the potential variations as new data become
available. On the other hand, the predetermined trans-
formation, which plays the role of a dictionary in
transform-based methods, remains fixed across time
(e.g., wavelet functions in the DWT case).

Concerning the storage requirements, symbolic
representations with small-sized alphabets are less
demanding, since we only have to store the set B with
K − 1 breakpoints (∈ R), along with the alphabet A
of size K. On the other hand, in case of sparse cod-
ing, one has to store a dense matrix DH ∈ R

w×K. This
is also the case for a transform-based method imple-
mented as a matrix-vector multiplication, such as the
DWT, where the associated transform matrix has to be
stored. However, in the later case the dictionary or the
transform matrix are usually stored on a server with
increased memory and processing resources, mitigat-
ing their higher size when compared with the necessary
information to be stored in case of m-eSAX.

3.3. Reconstruction of original volatile series
from sparse patterns

Given the learned dictionary DH and the associ-
ated sparse pattern αj of an arbitrary window xj,w,
which is obtained by solving the optimization prob-
lem (12), reconstruction of the original window is
simply obtained by

x̂j,w = DHαj . (13)

Among the several existing algorithms for solving (8),
in our proposed approach we relied on the use of
K-SVD (Aharon et al., 2006), which is an efficient iter-

ative algorithm that alternates between sparse coding
of the training samples based on the current dictionary,
and an update step for the dictionary atoms, so as to
better fit the data. The dictionary update is performed
jointly with an update of the sparse representation
coefficients related to it, resulting in accelerated con-
vergence and increased robustness. On the other hand,
the sparse pattern of an arbitrary window is obtained
by solving (12) using the OMP algorithm, which was
shown to achieve a good trade-off between the recon-
struction accuracy and the computational cost. We
emphasize here that the choice of both the K-SVD
and OMP is based on our empirical experimental
evaluation, whilst our proposed framework is generic
enough to be used with alternative optimization meth-
ods depending on the specific requirements of the
end-user.

In practice, we are not interested in reconstructing
a single individual window, but a series of consec-
utive overlapping windows as new observations are
obtained, and subsequently the original 1-dimensional
series. More specifically, without loss of generality, we
consider the following case of three overlapping win-
dows, xw,w, xw+1,w, and xw+2,w, of length w and step
size equal to s = 1. This means that each window dif-
fers from the previous one by a single sample (new
observation).

First, each individual window is reconstructed as
in (13). Then, the reconstructed samples which belong
to more than one windows are averaged to get the final
single reconstructed value of each sample. For those
samples corresponding to a single window, such as x1,
the average is the sample by itself. Figure 3 shows this
averaging process, which transforms the reconstructed
overlapping windows to the original time series data.

Fig. 3. Averaging of reconstructed overlapping windows to obtain original time series.
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The same averaging process is also employed for the
transform-based approach and the m-eSAX represen-
tation to turn the window-by-window reconstruction
back to the original 1-dimensional series. On the other
hand, if non-overlapping windows are used to scan
the original series, then the above averaging scheme
is reduced to using the reconstructed sample values by
themselves.

4. Experimental evaluation

In this section, the performance of sparse pattern
extraction over dictionaries learned from volatile finan-
cial time series is evaluated in terms of the achieved
reconstruction quality of the original data, as well as
the amount of information (in bits) required to repre-
sent the sparse patterns. Furthermore, the performance
of the proposed approach is also evaluated in the frame-
work of volatility clustering by utilizing the sparse
patterns directly. Our proposed approach, FTS-SRC,
is compared against a typical transform-based repre-
sentation method by employing the DWT, as well as
against m-eSAX.

Our data set consists of a group of 12 developed
equity markets (Australia (XP1), Canada (SPTSX),
France (CF1), Germany (GX1), Hong Kong (HI1),
Japan (TP1), Singapore (QZ1), Spain (IB1), Sweden
(OMX), Switzerland (SM1), United Kingdom (Z1),
and USA (ES1)). Closing prices at a daily frequency
for the main futures indexes of each country have been
collected, expressed in local currency, while the cover-
ing period is between January 2001 and January 2013.
The use of data in local currencies can be advantageous
in terms of diversification of international portfolios
and does not affect the sparse representation, since the
learned dictionary has the capability of automatically
adapting to the inherent behavior of each individual
country.

During the selected time period, all markets had
undergone through various financial crises, such as, the
IT-bubble (or dot-com bubble), whose collapse took
place by the end of 2001, the global subprimes-debt
crisis, whose effects were perceived by the markets
in 2007-2008, and the European sovereign crisis in
2010. All crises were followed by a recovery period,
which might differ depending on the country and the
continent, thus offering a good paradigm to study
the adaptability of the learned dictionary in capturing
highly diverse micro-local volatile patterns. Table 2

Table 2

Statistics (average, volatility, and skewness) of returns (first differ-
ence of logarithms) for the 12 equity markets

Index Average (%) Volatility (%) Skewness

XP1 2.158 16.70 −0.274
SPTSX 2.873 18.35 −0.461
CF1 −2.652 25.69 0.087
GX1 −0.725 26.31 0.249
HI1 5.291 25.47 0.208
TP1 −1.604 23.75 0.199
QZ1 4.556 21.78 −0.002
IB1 1.363 24.96 0.294
OMX 0.602 25.20 0.231
SM1 0.035 20.52 0.087
Z1 0.003 22.09 0.106
ES1 0.324 20.83 0.255

lists the average, volatility, and skewness of the 12 time
series in our data set.

Concerning volatility clustering, we adopt the
convention that volatility values below 10% are char-
acterized as low, whereas volatility values above 25%
are considered to be high. Finally, values ranging in
the interval [10%, 25%] are characterized as normal.
In terms of diversification capabilities for investors,
low volatility is related to increased dispersion among
the markets or assets, thus offering increased diversifi-
cation. On the contrary, high volatility usually results
in a higher fear factor, which subsequently yields a
decrease of the assets trends followed by an increase of
their correlation. However, a high correlation between
distinct assets is equivalent to lack of diversification,
since the assets of interest present similar (correlated)
behavior.

4.1. Performance metrics

The performance of our proposed method, as well as
of the methods against which we compare, is measured
in terms of the reconstruction accuracy of the original
data based on the corresponding low-dimensional pat-
terns, in conjunction with the information compression
ratio between the full-dimensional (original) data and
their low-dimensional representations. Concerning the
volatility clustering task, its performance is evaluated
based on the capability to classify and track the volatil-
ity changes in the original data in one of the above
three classes (low, normal, high) based solely on the
low-dimensional patterns.

Regarding the reconstruction quality of the original
financial data, this is measured by means of the root
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mean squared relative error (RMSRE). In particular,
let x and x̂ denote the original and reconstructed time
series, respectively. Then, the RMSRE is defined as
follows:

RMSRE(x, x̂) =
√√√√ 1

N

N∑
j=1

(
xj − x̂j

xj

)2

. (14)

Concerning the information compression ratio
achieved by the corresponding sparse patterns or sym-
bolic sequences, it will be quantified by employing
lossless data compression and encoding. In particular,
the compression ratio (CR) is defined as follows

CR = Uncompressed size

Compressed size
, (15)

where the uncompressed size and compressed size cor-
respond to the number of bits required to encode the
original data and their sparse representations, respec-
tively. Specifically, the elements of both the current
data window and its associated sparse pattern are first
transformed into a binary stream. Then, this binary
stream is compressed in two stages: i) the LZ77 com-
pression algorithm (Ziv and Lempel, 1977) is applied
first to replace repeated occurrences of data with ref-
erences to a single copy of that data existing earlier in
the uncompressed stream; ii) Huffman encoding (Cor-
men et al., 2009) follows as a second step to generate
an appropriate codebook, which represents each sym-
bol in the already compressed binary stream, resulting
in a prefix code that further compresses the data. For
the recovery of the original binary stream, the inverse
processes are employed by first applying Huffman
decoding followed by LZ77 decompression.

In case of our proposed FTS-SRC method, the
achieved compression ratio will depend mainly on the
maximum sparsity level, τ, of the patterns, whereas
for the transform-based and the symbolic m-eSAX
representations, the compression ratios will be con-
trolled by the maximum number of significant (largest
magnitude) transform coefficients and the alphabet
size, respectively. We emphasize that we do not intend
to provide here a sophisticated encoding process of
the corresponding representations, but to illustrate the
superiority of our proposed approach, when compared
with the transform and symbolic-based frameworks,
in enabling highly accurate representations of volatile
financial series by storing a significantly compressed
amount of information. We note that our framework
is generic enough and can be used by substituting the

compression method adopted here with a more efficient
scheme.

4.2. Parameter setting for m-eSAX

Our m-eSAX algorithm is applied on the above set
of financial time series by varying the window length
wm-eSAX ∈ {30, 60}, the segment size c ∈ {5, 6}, and
the alphabet size Km-eSAX ∈ {64, 128}. The uniform
and median horizontal segmentation methods are
employed to estimate the breakpoints, along with a
dyadic alphabet to generate the symbolic sequence.
The choice of the above parameters is based on a
requirement to keep a balanced trade-off between the
computational complexity and the achieved accuracy
of the induced symbolic representations. Notice also
that in case of a dyadic alphabet, the step of transform-
ing the low-dimensional representation of the current
window into a binary stream is omitted.

4.3. Parameter setting for FTS-SRC

In order to achieve a comparable reconstruction
quality for a fair comparison with m-eSAX, the
window length in our FTS-SRC method varies in
wFTS-SRC ∈ {30, 60}, with a sparsity level τ ∈ {4, 8}.
Although a dictionary of increasing size is expected
to yield an improved representation performance, for
simplicity, we hereafter fix the dictionary size to
KFTS-SRC = 200, and the maximum number of iter-
ations for the K-SVD algorithm to Imax = 100. For
both the FTS-SRC and m-eSAX, the number of train-
ing samples, which are used for the dictionary learning
and the estimation of the breakpoints, respectively,
is defined as a percentage of the original time series
length N, and is set equal to NH = δ · N, where δ ∈
{0.5, . . . , 0.7} and N = 3147.

For the transform-based representation, the DWT is
employed. In particular, each window is decomposed
to the maximum possible number of scales using the
’db8’ wavelet (e.g., 3 scales for a window length of
128), which was shown to achieve a good trade-off
between the reconstruction quality and the compres-
sion ratio. We also note that the choice of the optimal
wavelet is by its own a separate study, which is beyond
the scope of this work. Given the corresponding set
of transform coefficients we rely only on those with
the highest magnitudes for reconstructing the origi-
nal time series data. To this end, let KDWT denote
the number of most significant DWT coefficients.
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In the subsequent evaluation, the value of KDWT is
set by employing scale-dependent thresholds, which
are obtained using a wavelet coefficients selection
rule based on the Birgé-Massart strategy (Birgé and
Massart, 1997). The estimated thresholds, and subse-
quently the compression ratio, depend on a parameter
α. In order to attain comparable compression ratios
with our FTS-SRC method, the values of α are chosen
from the set {7.5, 8.5}. However, there is no systematic
way to define α as a function of the (predetermined)
sparsity level for a given wavelet.

4.4. Analysis of performance

As a first evaluation of the efficiency of our pro-
posed FTS-SRC method, when compared against
a transform-based representation and m-eSAX, we
examine the trade-off between the reconstruction qual-
ity of the original market indexes and the amount of
past information to be used for training the different
methods. To this end, the average RMSRE is com-
puted, where the average is taken over all the 12 equity
markets, as a function of the percentage of training
data. In all the subsequent results, except if otherwise
mentioned, the median horizontal segmentation will
be used for the m-eSAX representation. Table 3 shows
the average RMSRE versus the percentage of training
samples for FTS-SRC, m-eSAX, and the transform-
based representation by employing the DWT, using the
parameter settings described in the previous sections.

Clearly, for the same percentage of training data,
FTS-SRC achieves a superior reconstruction quality,

Table 3

Average RMSRE versus the percentage of training samples
over 12 equity indexes for FTS-SRC, m-eSAX, and DWT-based

representations

Method Training samples (%) Average RMSRE

50 0.0057
FTS-SRC 60 0.0056

70 0.0055
50 0.0099

m-eSAX 60 0.0098
70 0.0098
50 0.0070

DWT 60 0.0070
70 0.0070

when compared against the other two methods.
Besides, the performance of FTS-SRC improves as the
number of training samples increases, since an increase
of historical data enhances the representative power of
the learned dictionary for the future observations. On
the contrary, the DWT-based approach, as well as the
m-eSAX method, present an almost constant behav-
ior. In the case of DWT, this is due to the fact that the
wavelet decomposition of the current window does not
depend on the past data, thus the number of training
samples is irrelevant to the reconstruction quality. On
the other hand, for m-eSAX, this can be attributed to
the fact that, for the given data set of equity markets, a
percentage of 50% of training data is already enough to
capture the main underlying structures, without being
able to extract more detailed micro-local patterns by
increasing the training period.

In Figure 4, the average RMSRE and the average
compression ratio are shown for each individual equity

Fig. 4. Average RMSRE and average Compression Ratio for each equity index for FTS-SRC, m-eSAX, and DWT-based representations (average
is taken over the percentage of training samples).
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index and for the three methods, where the average is
takenover thepercentagesof trainingsamples.First,we
note the improved performance of FTS-SRC in recon-
structing with high accuracy the original data from
the associated sparse patterns, when compared against
the symbolic (m-eSAX) and transform-based (DWT)
counterparts. Equally importantly, the enhanced recon-
struction quality of FTS-SRC comes at significantly
higher compression ratios. In contrast to both FTS-SRC
and DWT, the m-eSAX approach results in very small
compression ratios, while also delivering the highest
reconstruction error for most of the equity indexes. The
main reason for this behavior is that, although the ini-
tial representation of a given data window in terms of
triplets, as in (3), is highly compact, however, the size of
thealphabet,whichmapsthose triplets tosymbols,must
be large enough in order to be able to capture the volatile
structures of financial time series, thus reducing sig-
nificantly the overall compression ratio. The enhanced
reconstruction performance of FTS-SRC, in conjunc-
tion with its high information compressibility, can be
very beneficial in financial applications dealing with
large data volumes, since the original high-dimensional
information can be preserved and processed in a much
lower-dimensional space.

Figure 5 shows a typical result for the time series in
our data set. In particular, the original market index of
Australia (XP1 index) is shown, along with its recon-
struction by applying FTS-SRC, m-eSAX, and DWT,
for 70% of training data. In accordance with the results
shown in the previous figures, FTS-SRC outperforms

significantly the m-eSAX approach, whilst DWT fol-
lows closely, in terms of approximation accuracy of
the original time series. In contrast to FTS-SRC and
DWT, which approximate the original data very accu-
rately, m-eSAX introduces artificially high spikes in
the reconstructed time series, as it can be seen in
the zoomed part of the plot. This is due to the infe-
rior capability of a symbolic representation to capture
the behavior of observations which deviate from the
boundary (that is, the minimum and maximum) break-
points. All the values that are lower or higher than the
minimum or maximum breakpoint, respectively, are
mapped to the minimum or maximum breakpoint irre-
spectively of how much they deviate from them. On
the other hand, although DWT achieves a comparable
reconstruction quality with FTS-SRC, it requires the
prior choice of a suitable wavelet, which may depend
on the specific characteristics of each individual mar-
ket. However, the advantage of our proposed FTS-SRC
is that the estimated dictionary is adapted automatically
to the micro-local structures of each market, thus no
prior knowledge of the market-wise characteristics is
necessary.

The accuracy in reconstruction of these financial
time series can be related to the inherent market vari-
ation, which is expressed in terms of statistics, such
as the volatility and skewness. The 12 analyzed equity
markets present volatilities of around 20% and some
skewness, as it can be seen in Table 2, whose values are
being computed over the whole time period covered by
our data set. In the following, we examine the relation

Fig. 5. Original time series (Australian market) and its reconstruction using FTS-SRC, m-eSAX, and DWT (zoomed part (gray rectangle) is
shown in the right plot along with some spikes (squares) introduced artificially by m-eSAX).
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between the replication accuracy, as expressed via the
RMSRE, and the values of the annualized volatility
and skewness for the logarithmic returns of our equity
market indexes.

Specifically, let x = [x1, . . . , xN ] ∈ R
N be a given

time series of prices. Then, the series of logarithmic
returns r ∈ R

N−1 is defined as

rt = log(xt) − log(xt−1) , t = 2, . . . , N , (16)

where xt is the value of the market variable at the end
of time (e.g., day) t, and rt defines the continuously
compounded return during time t (between the end of
time t − 1 and the end of time t). It is also noted that,
for numerical reasons, we set r1 = NaN, since for t =
1 the sample xt−1 does not exist. Having computed
the standard deviation of the returns, σr = std (r), the
annualized volatility is given by

σr,annual = σr

√
Os , (17)

where Os denotes the number of open stock market
days per year (Os = 250 for our data set).

To this end, Figure 6 shows the RMSRE (%) versus
the annualized volatilities of logarithmic returns for the
12 equity markets and for the three sparse representa-
tion methods, where the percentage of training data
is fixed at 70%. The common observation for all the
three low-dimensional representation methods is that
the reconstruction accuracy increases, or equivalently
the approximation error decreases, as the annualized
volatility of logarithmic returns reduces, following an
almost linear dependence. Furthermore, the superior-
ity of our proposed FTS-SRC method against m-eSAX
and DWT is revealed once again in achieving highly
compact, still very efficient, sparse representations of
the original financial data. In addition, the difference
in reconstruction performance between FTS-SRC and
the other two methods is more prominent especially
for higher volatilities, where the time series are, in
general, characterized by highly varying micro-local
structures. This verifies the capability of FTS-SRC to
better adapt to and extract such localized patterns. On
the other hand, the improved reconstruction quality,
which is achieved for time series with smaller annual-
ized volatility, can be attributed to the fact that a low
volatility results in a more representative dictionary
for a fixed number of atoms, since the learned dic-
tionary has to capture localized structures of reduced
variability.

Fig. 6. RMSRE (%) versus annualized volatility of logarithmic
returns for the 12 equity markets, for the FTS-SRC, m-eSAX, and
DWT representations (70% training samples).

Fig. 7. RMSRE (%) versus skewness of logarithmic returns for the
12 equity markets, for the FTS-SRC, m-eSAX, and DWT represen-
tations (70% training samples).

The effect of skewness on the reconstruction per-
formance is examined in Figure 7, which shows
the RMSRE (%) versus the skewness of logarith-
mic returns for the 12 equity markets. For FTS-SRC
an approximately linear relationship exists between
RMSRE and skewness, which is not the case for m-
eSAX and DWT. In particular, for both the m-eSAX
and DWT the reconstruction quality can differ sig-
nificantly for time series with similar skewness. This
is, for instance, the case for SM1 and CF1, as well
as for ES1, GX1 and HI1. However, the approxima-
tion error is mostly affected by the inherent volatility
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Table 4

Major advantages (Pros) and limitations (Cons) of the three representation methods, FTS-SRC, m-eSAX, and DWT

FTS-SRC m-eSAX DWT

Pros � Automatic adaptation to
complicated localized patterns

� Data adaptive � Capable of representing extreme
points

� High compression rates � High compression rates � High compression rates
� Independent of data distribution

(Gaussian, non-Gaussian)
� Independent of data distribution

(Gaussian, non-Gaussian)
� Independent of data distribution

(Gaussian, non-Gaussian)
� Increased robustness to limited

training data
� Simple and computationally

efficient implementation
� Computationally efficient

implementation
� No need for data normalization

(e.g., local currencies are
supported)

� No need for data normalization
(e.g., local currencies are
supported)

� Correlations between distinct time
series are exploited

Cons × Increased computational cost for
training the dictionary

× Poor representation of complicated
localized patterns

× Non data-adaptive

× Large amount of training
(historical) data is necessary

× Large amount of training
(historical) data is necessary

× Estimated breakpoints are highly
sensitive to available data

× Prior knowledge of data
characteristics is required to
choose optimally the wavelet
decomposition

× Data normalization is required
(e.g., local currencies are not
supported)

× Correlations between distinct time
series are not exploited

× Artificial spikes can be introduced
during reconstruction

× Correlations between distinct time
series are not exploited

than the degree of skewness, as it can be concluded by
inspecting Figures 6 and 7.

As a last illustration, we evaluate the performance
of the three methods in clustering the volatility of the
equity market indexes, which is estimated directly from
the associated sparse patterns. To this end, Figure 8
shows the moving annualized volatility for the XP1
index in monthly rolling windows with a step size of
one week, as it is estimated by employing directly
the sparse patterns which are extracted using FTS-
SRC, m-eSAX, and DWT. First, we observe that the
curve corresponding to FTS-SRC tracks very closely
the MAVol curve, which corresponds to the moving
annualized volatility values estimated from the origi-
nal time series. On the other hand, m-eSAX yields both
over- and under-estimates of the ground truth volatil-
ity, whereas the DWT-based approach results mostly
in under-estimated annualized volatility values due to
the higher compression of the fine-scale wavelet coef-
ficients via the inherent thresholding process. We note
also that these curves represent the volatility over the
last 3.5 years in our data set, since the first 70% of the
samples are used as a training set.

Fig. 8. Moving annualized volatility (%) for XP1 index, estimated
in monthly rolling windows with a weekly step-size. The ground
truth volatility (MAVol) is compared against the volatility values
estimated directly from the sparse patterns associated with FTS-
SRC, m-eSAX, and DWT representations (70% training samples).

Finally, we further verify the improved capabil-
ity of our proposed FTS-SRC method in clustering
correctly the windows of low, normal, and high volatil-
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Fig. 9. Success rates (%) of correctly identifying low, normal, and high annualized volatility windows based on the sparse patterns extracted via
FTS-SRC, m-eSAX, and DWT for the 12 equity indexes. The overlaid curves correspond to the true number of low, normal, and high volatility
windows, respectively.

ity based solely on the extracted sparse patterns. For
this purpose, Figure 9 compares the rates of success-
ful volatility clustering in the low (σr,annual < 10%),
normal (10% ≤ σr,annual ≤ 25%) or high (σr,annual
> 25%) regime between FTS-SRC, m-eSAX and
DWT for the 12 equity market indexes. Furthermore, a
curve is overlaid on each bar graph, which corresponds
to the true number of low, normal, and high volatility
windows for each market index, respectively.

Starting from the normal volatility class, which is
the most populous among the three, we observe that
FTS-SRC yields the highest success rates for all equity
indexes, which are also achieved at significantly higher
compression ratios when compared with m-eSAX and
DWT (ref. Figure 4). On the other hand, DWT delivers
the lower success rates, which can be attributed to the
fact that a major part of the high-frequency information
of the original time series is lost due to the inherent

thresholding step, which suppresses many of the fine-
scale wavelet coefficients to zero.

This is also the case for the high-volatility class,
which is the second most populous among the three.
Specifically, FTS-SRC and m-eSAX achieve the high-
est success rates, whereas the decreased performance
of DWT is justified by the loss of high-frequency infor-
mation as mentioned before. Interestingly, there are
cases of indexes (GX1, QZ1, OMX) for which the m-
eSAX method achieves slightly improved performance
against FTS-SRC. However, this comes at the cost of
highly reduced compression ratios in order to preserve
the main information content of the original time series
(ref. Figure 4).

Lastly, concerning the low-volatility class, FTS-
SRC and DWT achieve perfect success rates for
all market indexes, except for the Spanish market
(IB1 index). From the one hand, for FTS-SRC, this
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verifies once again the effectiveness of a learned
dictionary-based representation to extract the sig-
nificant micro-local structures. For the DWT-based
approach, the high performance is justified by the
fact that most of the coarse-scale wavelet coefficients,
which represent the low-frequency, thus low-volatile,
content of the original time series, are preserved after
applying the level-dependent thresholds. In case of
IB1, for which no low-volatility windows occur, we
observe that only m-eSAX achieves to identify this
behavior correctly. On the other hand, FTS-SRC iden-
tifies a single window as a low-volatility one, and for
this its success rate is set equal to zero. However, this
is only a minor issue for FTS-SRC, since the estimated
annualized volatility for this single window based on
its associated sparse pattern is equal to 9.69%, thus
very close to the 10% lower limit. On the contrary, this
is not the case for DWT, which wrongly identifies 18
windows in the low-volatility class. Finally, Table 4
summarizes the major advantages and limitations of
the three representation methods, FTS-SRC, m-eSAX,
and DWT.

5. Conclusions and further work

In this work, we introduced a method based on
sparse representations over a learned dictionary, in
order to extract highly compact sparse patterns, whilst
preserving the significant micro-local structures in
volatile time series. Furthermore, a modified version of
the standard SAX algorithm was also proposed towards
enhancing the adaptability of symbolic representations
to volatile data.

The efficiency of our proposed sparse coding FTS-
SRC method against its symbolic (m-eSAX) and
transform-based (DWT) counterparts was highlighted
by applying the three distinct methods on a set of
volatile equity market indexes. The performance eval-
uation first revealed the superiority of FTS-SRC in
achieving highly accurate reconstructions of the orig-
inal financial data, while operating at significantly
higher compression ratios, when compared with m-
eSAX and DWT. Furthermore, we also examined the
capability of the three methods in clustering the mov-
ing annualized volatility of each market index by
relying solely on the associated low-dimensional rep-
resentations. The experimental results revealed once
again that FTS-SRC outperforms the other two alter-
natives in terms of correctly clustering the distinct

windows in the low, normal, and high volatility
regimes. On the contrary, m-eSAX was shown to fol-
low the performance of FTS-SRC, but at the cost
of significantly reduced compression ratios, whereas
DWT was better capable in identifying correctly low
and normal volatility data windows rather than high
volatility ones.

In addition, a general observation was that the dif-
ference in performance, in terms of reconstruction
error, between FTS-SRC and the other two meth-
ods, increases for increasing annualized volatility and
skewness of the corresponding logarithmic returns.
This means that FTS-SRC is better capable of adapting
to a higher variability of the original data, when com-
pared with m-eSAX and DWT, which is very important
when we deal with financial data.

Although in the present work potential correlations
among the distinct time series are exploited during
the dictionary learning process, however, the presence
of common sparse supports between the various time
series or data windows, when expressed as linear com-
binations of the dictionary atoms, is not exploited.
Towards this direction, a further enhancement of FTS-
SRC can be achieved by incorporating a constraint
for extracting jointly (group) sparse supports, which
would further improve the interpretation capability of
the learned dictionary, while also increasing the degree
of sparsity, and subsequently the compression ratio, of
the corresponding sparse patterns.

Moreover, the application of FTS-SRC in a real-time
financial instrument necessitates the fast update of the
learned dictionary, which is the main bottleneck for the
overall computational complexity of FTS-SRC. Recent
advances in incremental singular value decomposition
could be exploited to design an efficient incremental
approach for updating the dictionary in a fast online
fashion as new observations become available. Finally,
the power of sparse representations in embedding the
inherent meaningful information in a low-dimensional
space will be exploited to perform other tasks of finan-
cial interest, such as the discovery of significant motifs
and the detection of abnormal events in a given time
series, at significantly reduced computational cost.
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