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Abstract

With the recent rise of Machine Learning as a candidate to partially replace classic
Financial Mathematics methodologies, we investigate the performances of both in solving
the problem of dynamic portfolio optimization in continuous-time, finite-horizon setting
for a portfolio of two assets that are intertwined.

In Financial Mathematics approach we model the asset prices not via the common
approaches used in pairs trading such as a high correlation or cointegration, but with
the cointelation model in [I2] that aims to reconcile both short-term risk and long-
term equilibrium. We maximize the overall P&L with Financial Mathematics approach
that dynamically switches between a mean-variance optimal strategy and a power utility
maximizing strategy. We use a stochastic control formulation of the problem of power
utility maximization and solve numerically the resulting HJB equation with the Deep
Galerkin method introduced in [16].

We turn to Machine Learning for the same P&L maximization problem and use clus-
tering analysis to devise bands, combined with in-band optimization. Although this
approach is model agnostic, results obtained with data simulated from the same cointe-

lation model as FM give an edge to ML.
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1 Introduction

In a financial market with two assets that exhibit clear dependence we go beyond high
correlation which is used in pairs trading, and model asset prices with the hybrid model of
cointelation introduced in [I2]. We solve the portfolio optimization problem employing a
more general set of admissible strategies than long/short strategies used in pairs trading.

A pairs trading strategy involves matching a long position with a short position in two
assets with a high correlation. Pairs trading was pioneered in the mid 1980s by a group of
quantitative researchers from Morgan Stanley (for introduction to pairs trading see [19]).
The securities in a pairs trade must have a high positive correlation, which is the primary
driver behind the strategys profits.

Pairs trading is based on the high historical correlation of two assets and a trader’s
view that the two securities will maintain a specified correlation. A pairs trading strategy
is applied when a trader identifies a correlation discrepancy. More specifically, the trader
monitors performance of two historically correlated securities. When the correlation between
the two securities temporarily weakens, i.e. the spread widens, the trader applies a trading
strategy which shorts the high asset and buys the low asset. As the spread narrows again to
some equilibrium value, a profit results.

However, many authors argue that correlation is an inappropriate measure of dependency
in financial markets, since returns often exhibit a nonlinear co-dependence (e.g. [3], [20]).
Mahdavi-Damghani, et al. [I4] showed that measured correlation of the returns of a mean-
reverting processes is misleading: a strong positive correlation does not necessarily imply
that two stochastic processes move in the same direction and vice versa. Cointegration, on
the other hand, tests the long-term equilibrium relationships between assets and has been
extensively used in pairs trading ( see [19]). Cointegration tests do not measure how well
two variables move together, but rather whether the difference between their means remains
constant. Sometimes series with high correlation will also be cointegrated, and vice versa,
but this is not always the case.

The cointelation model was introduced in [12] as a hybrid model which reconciles corre-
lation and cointegration by capturing both short-term risk and long-term equilibrium. The
rationale for the long term risk is that during the time of rare market crashes all assets prices
fall. However, in the more bullish periods, the short term risk increases, the long term risk
becomes less pronounced and the macro driver less visible. These influences are accompanied
with mean reversion forces from one asset to the other.

In this setting we consider a continuous-time, finite horizon portfolio optimization prob-
lems for pairs of assets whose prices follow the cointelation model in [I2]. Generally, the

optimization problem is to find the optimal control

w* = argmax U(X",Y") (1)
weA

where U(x) is a utility function, @w = (w1, ws) is a vector of proportions of wealth invested

in each asset, A is a set of admissible strategies: either w; = —w2 (long/short) or wy,ws > 0



with w1 + w2 = 1 (long only).

We solve the portfolio optimization problem in with Financial Mathematics and
Machine Learning methodologies and compare their performance. In Financial Mathematics
approach we use SDE evolution of asset prices, whereas the Machine Learning approach does
not assume an underlying model and applies generally to any pair of assets.

In Section 2l we review the cointelation model. In Section [3] we use the classical Finan-
cial Mathematics criteria: mean-variance optimization and power utility maximization. In
Section [4] we use clustering analysis from Machine Learning to solve the P&L maximization
problem. We present the results of each approach in Section [5| and discuss them compara-

tively.

2 Review of cointelation model for pairs of asset

We first present the usual way correlation is calculated in the financial industry (see e.g. p.274
[20], [3]). Assume we have two assets with prices modeled by stochastic processes (X¢)>0 and
(Y2)t>0 on a probability space (2, F,P). We have N observations of X and Y at intervals
At, ie. X(t;) and Y (¢;) with ¢ = 1,..., N and At = t; — t,_;. Here At € {1,5,22,252}
corresponds to daily, weekly, monthly and yearly data. The At-returns on i-th data point of
assets X and Y is

X (t; + At) — X (t;)

Rx (t;, At) Xt (2)
Ry (1, A1) = Y(t”?(tt)i)_ Yt), (3)

The sample volatilities of time series of asset prices X and Y are then

N
X(At) = Z Rx tzaAt RX)z (4)
=1
1 ol _
O’y(At) = m Z(RY(ti’ At) - RY)2’ (5)
=1

where Ry, Ry are the sample average of all the returns in the series of X and Y, respectively.

The sample covariance between the returns of assets X and Y is given by
N
oxy (At) = Z Rx(ti, At) — Rx)(Ry (t;, At) — Ry). (6)
=1

In this paper we consider the measured correlation, which is the sample cross-correlation
given by
oxy (At)

pxy (A = R oy (A1)

(7)

For correlation to be an appropriate choice of measure of co-dependence the assumption of



linear dependency between series needs to be satisfied (see Chapter 1.4 [3]). Often in financial
markets with a non-linear dependence between returns, the correlation is an inappropriate
measure of co-dependency and is misleading, especially when used to capture long-term
relationship between assets (see [14] and [12]).

An alternative statistical measure to correlation is cointegration. If two time series X;
and Y; are integratedﬂ of order d and there exists 8 such that a linear combination X; + 8Y;
is integrated of order less that d, then X; and Y; are cointegrated (see [7]). Since the spread
of cointegrated asset prices is mean reverting, they have a common stochastic trend, i.e.
the asset prices are tied together in the long term, although they might drift apart in the
short-term (see [2]). Because the cointegration requires sophisticated statistical analysis, it
has not been used as widely as correlation in the financial industry.

Although correlation and cointegration are related, they are different concepts. High
correlation does not necessarily imply high cointegration, and neither does high cointegration
imply high correlation (e.g. see Figure 4 in [I4]). Two assets may be perfectly correlated
over short timescales yet diverge in the long run, with one growing and the other decaying.
Conversely, two assets may follow each other, with a certain finite spread, but with any
correlation, positive, negative or varying.

Mahdavi-Damghani [12] proposed cointelation as a hybrid model that aims to mediate
between correlation and cointegration. It captures both short-term and long-terms relation-

ships between the assets.

Definition 1. Consider a filtered probability space by (Q, F, (]:t)(tzo),IP’), with the historical
probability measure, P. The cointelation model for a pairs of assets with prices X; and Y;
defined in [12] as

dXt = ,U,Xtdt + OLXthVVt7
dY; = k(X — Y,)dt + nY,dW,,
d(W, W), = pdt, (8)

where p € R, o > 0, X(tg) = xo are the drift, diffusion coefficients and initial value of
asset price X; 0 < k <1, 7> 0, Y(tg) = yo > 0 are the rate of mean reversion, volatility

and initial value of the asset price Y ; (W (t))i>0 and (W (t))¢>0 are two correlated Brownian

motions with constant correlation coefficient —1 < p < 1 that generate the filtration (ft)(t>0).

The processes (X):>0 and (Y);>0 are called the leading process and the lagging process,
respectively. This is due to the fact that the lagging process reverts around the leading
process.

We present here the concepts of inferred correlation function and number of crosses
formula introduced in [12] in order to device a test whether two pairs are cointelated .

Let p%y (At) be the inferred correlation function between two times series of cointelated

YA time series X is integrated of order d if (1 — L)dXz is a stationary process. Here L is a lag operator.



asset prices defined as follows

pxy(At) = sup pxy(AD). (9)

0<At<At
Sometimes there may not be enough data to calculate At-inferred (measured) correlation of
cointelated assets. In [12] the following formula for approximation of inferred correlation (9

was proposed via examining various data sets:

Py (A1) ~ p+ (1 p)[1 — exp (~Ar(At — 1))], (10)

where k € [0,1], A > 0, p € [-1,1]. The parameter A ~ 1.75 for "regular financial data”,
although it is itself a function in general. Thus, if one does not have enough empirical data
to calculate, for example, the yearly (252 days) inferred correlation, the formula in equation
allows to approximate it using only x and p parameters of cointelation model in and
setting At = 252, A =~ 1.75.

The motivation for inferred correlation approximation formula , is that in the dis-
crete version of the processes in equation the measured correlation increases as the time
increment, At, increases (e.g. correlations calculated using daily, weekly, monthly returns).
Moreover, the measured correlation of cointelated pairs will converge to 1 faster as the speed
of mean reversion parameter x increases. If we set p = —1 in , the inferred correlation of
cointelated asset prices may cover the whole correlation spectrum [—1, 1] (see Figure [1).

Another way for testing if two times series are cointelated is to study how many times
the normalized series cross paths. If one discretizes equation , then one can approximate
the expectation of the number of times, I'; ;;, the two stochastic process, * = X;c[1 o, n] and

Y = Yie[,2,...N]» cross paths as follows

E[lyy(k,N)| =~ N [7(1 —K)+ ;\/E} (11)

with NV is the length of the data,  is a positive constant and « is the speed of mean reversion
in equation .

Compared to the number of times purely correlated SDEs (eg: without the mean reversion
component, i.e. when x = 0) the number of times the discrete version of the cointelated SDEs
cross paths is larger than if they were random, and the bigger the x the more often the paths
of discretized SDEs cross each other per unit of time.

Then two stochastic processes are cointelated (see [12]) if
e Inferred correlation formula in equation is verified;
e The number of crosses formula in equation is verified;

e the underlying assets have a reasonable physical connection that would suggest their

spread should mean revert (e.g. oil and BP share prices).

The parameters in cointelation model can be estimated using the inferred correlation



formula and the number of crosses formula (see [12]). Similarly to the variance
reduction methodology described in [I4], [I2], we can define

Xi— Yt T
B+ — ’ma’X( t 2t7 G [O? ]) , (12)
B - inf(X; — Y, t €[0,7))
_ = 5 .
We note that the estimation of x has a higher variance when
Z,= By >|X; Y| > B, (13)
where p, on the other hand has quality samples. The reverse is true when
Z.=|X,-Yy|>B | JIX, - V| <B_. (14)

We can therefore sample « in Z,; and p in Z,. Figure [2|illustrates this.

3 Financial Mathematics approach for portfolio optimization

problem

We consider the portfolio of two assets and model the their prices with the cointelation in .
We approach the optimization problem of this portfolio with classic Financial Mathematics
criteria: mean-variance and power utility maximization. Since the cointelated assets are
characterized by both correlation and mean-reversion components, we formulate the mean-
variance optimization problem for long only strategies and we calculate the optimal strategies
to make profit on correlation. To make profit on mean-reversion property of the cointelated
assets we use stochastic control formulation of the power utility maximization problem for
long/short strategies and calculate the optimal weights. We then maximize portfolio P&L

by dynamically switching between these two optimal strategies.

3.1 Mean-variance optimization

We first review fundamental notions and concepts for mean-variance optimization.

Returns: A portfolio considers a combination of n potential assets, with an initial capital
V(0) and weights wy,ws, ..., wy, such that > " w; = 1, w;V(0) is the amount invested in
security ¢ for ¢ = 1,2,...,n at time ¢ = 0. The number of shares to invest in security ¢ at

time t = 0 is
in(O)

S;(0)

(15)

n; =



The value of portfolio at time ¢ is

N
V()= niSi(t). (16)

i=1
Given the number of shares n; with ¢« = 1,...,n, the percentage of the portfolio invested in
asset ¢ at time ¢t is .t
wilh) = — )

> i1 niSi(t)

with Zfil w;(t) = 1. The rate of return of asset i at time ¢ (i.e. over [t — At,t]) is given by

; (17)

LS - Sit— A Si(h)
Ri(t) = Sit—At)  Si(t—At) L (18)

The rate of return of portfolio, R,(t), is then

V() — V(t - At)

By(t) = V(t— At)

(19)

We can show that the return of portfolio is a linear combination of the returns of individual

assets as follows

N

BO = v an TS ws—a
N

n;S;(t — At)S;(t)
Z Z;V:1 n;Si(t — At)S;(t —

A 1= ;wi(t)(Ri(t) +1)-1

i=1

N
= S wOR). (20)
=1

Sometimes it is more convenient to use log returns, which are defined for asset ¢ by

ri(t) =1n (Sl(fl—(t)At)) : (21)

It should be pointed out that for short period of time the log return is approximately equal

to the rate of return

’l“i(t) =1In <Sl(fl£t)At)> = ln(Ri(t) + 1) ~ Rz(t) (22)

Therefore we do not distinguish between these two returns, as long as the time increment, At,

is short. Going forward we will use daily logarithmic returns. Thus, the return of portfolio,

rp, at time at time ¢ in this case becomes

N
'rp = Z wq;T;. (23)
i=1



Expectation and variance of returns: By the linearity property of expected value

operator, the expected return of portfolio, E(ry), is

N N N
E(rp) =FE (Z wirz) = Z w E(r;) = Z wip; = wTu, (24)
i=1 i=1 i=1

where p; denotes the expected return of asset i and w ' = [w1, wa, ..., wp], it = (1, f12, oo ] | -
The variance of the return of portfolio, Var(ry), is given by
S ) N 9
Var(r,) = E (Z w;iT; — E(T‘p)> =k <Z w;(r; — E(h)))
i=1 i=1
[/ N N
= F (Z wi(r; — E(ﬁ))) ij(rj — E(rj))
| \i=1 j=1
N N
= S iy B — E) (s — E(ry))]
=1 ‘7:1 Z:O'(Tiﬂ"]')
N N
= D> wiwjo(ri,ry) = w' S, (25)
i=1 j=1

where Y denotes the covariance matrix of the asset returns, composed of all covariances
between the returns of assets i and j defined as o(r;, 7). The variance of asset is return,

which constitute the diagonal of the covariance matrix, is o(r;, ;).

Optimal investment strategy using mean-variance criterion

We consider a portfolio consisting of two assets. The uncertainty is modelled by a probability
space (€, F,P) with a filtration (F¢)¢>0 generated by two-dimensional Brownian motion:
(W, W). Denote by X () and Y (t) the prices of two assets at time ¢, with dynamics following
cointelation model in . The investment behavior is modelled by an investment strategy
h = (hi,hy). Here, h; € [0,1], i = 1,2, denotes the percentage of total wealth invested in
i-th asset (see equation (17])). Let hq(t) and ha(t) denote respectively the portfolio weights
for assets X and Y at time ¢t. The holdings are allowed to be adjusted continuously up to a
fixed horizon T.

Denoting by V}* the value of portfolio at time ¢ associated to a strategy h we have

hi () V(t)
X()

ha(H)V(t)

i = 40

X(t) + Y (t), (26)
with initial wealth V" (ty) = vy. We restrict our considerations to self-financing strategies,

where the value of the portfolio changes only because the asset prices change, i.e. there is



no inflow or withdrawal of money [9]. In this case the dynamic of the wealth process is

B dX () dY (¢)
dvh(t) = V() hl(t)m - hQ(t)W : (27)

Let A! denote the set of all admissible strategies, h = (h1, ho), satisfying:

(i) Given vg > 0 the wealth process V0"(-) corresponding to wp, h satisfies

Veoh(ty >0, 0<t<T, (28)

(ii) hi(t) >0 foralli=1,2,

(it)) Y24 ha(t) = 1.

An investment strategy, h € A%, is called optimal if there exists no other strategy i € A

such that E(rp(h)) > E(rp(h)) and Var(r(h)) < Var(r(h)) with at least one inequality
being strict (see [11]).
We define a utility function, U(t, h), as in [5]:

U(t, h) = 27 E[rp(t)] — o*[rp(2)], (29)
where 7 > 0 is the risk tolerance coefficient. Then according to [8] we have the following
proposition.

Proposition 1 (Mean-Variance Criterion). Finding an optimal strategy for mean-variance

criteria is equivalent to the utility maximization problem:

Ul(t, h 30
rggy(,) (30)

with constraints
° sz\il hi =1,
o h; >0 Vi.
and U(t, h) given in (29).

Thus we have optimization problem in equation . From equation we have that

the rate of return of our portfolio, Ry, over [t — At,t] is

his\ _ vh(t 2
Ry(t) = ’ (tl)/h(tv— (it) S Z hi(t)Ri(t), (31)
i=1

where R; is the rate of return of individual assets. The log return of our portfolio, r, is given
by
Tp(t) = hir (t) + haory (t), (32)

where r;(t) &= R;(t), as we showed in equation ([22)).



Lemma 1. Denote by V*(t) the value of the portfolio corresponding to the admissible strategy
h e A'. Then:

(i) The expectation of portfolio return over [t — At,t] is

E(ry(t)) = hiE[rx (t)] + ha E[ry (t)]. (33)

(i) The variance of portfolio return over [t — A,t] is

Var(rp(t)) = h%Var[rX(t)] + h%Var[ry(t)] + 2h1hoCovlrxry (t)], (34)

where r(X;) = In <Xfm> and r(Y;) = In (%’At) the daily log returns of assets X and Y

and

o E(rx(t)) = (u— %)At is the expected return of the asset price X over the horizon
[t - Ata t] ;

_ ( (72) t (p—rK+onp)A
e E(ry(t)) = [In (ae!™ + (Y — a)e "At) — C“’;(Z;mf&fi;)el ;;7)2 L In(Yia)]—

(Y02 _c_d)62(772 —Kk)At
2(aett+(Yp—a)e—HAt)
[t — At t];

s + % 1s the expected return of the asset price Y over the horizon

e Var(rx(t)) = 02At is the variance of return of asset price X over the horizon [t—At, t];

2
. ce2uto?)At de(ptonp—r)At (Y@ —c—d)e2(n"—rm)At
i Var(ry(t)) - (aeMAt+(Yo_a)67HAt)2 + (ae,u,At_l_(YO_a)eant)Q + (aeMAt+(Yo_a)67HAt)2

variance of return of asset price Y over the horizon [t — At,t];

—1 s the

be(il«+02)At+(X0YO _b)e<O'UP*K)At
aXer“At+(X0Y0—aX0)€(“7H)At

o Cov(rx(t)ry(t)) =1In ( is the covariance of returns of two

asset prices X andY over the horizon [t — At,t].
Proof. See Appendix [A] O

The optimal weights for mean-variance criterion were derived in [I7]. We state the

following proposition from [17] applied to the cointelation model (g).
Proposition 2. The optimal solution for the problem in for cointelation model 18:

IR )M(t)

W) = ey1(t)e

! 621(t)e+7[21(t)M(t)

T El(t)e] : (35)

with ¢ = [1,1,1], M(t) = [E(rx(t)), E(ry(t))] and covariance matriz is

S(t) =

Var(rx(t)) Cov(rx(t), TY(t))]
Cov(rx(t),ry(t)) Var(ry(t)) ’

where the expressions for E(rx(t)), E(ry(t)) and Var(rx(t)), Var(ry(t)), Cov[rx(t),ry(t)]

are given above.

10



Replacing these formulas for expectation, variance and covariance of the returns of asset
prices in equation (35]), we get optimal strategies for mean-variance optimization problem.

We will present numerical examples in Section

3.2 Stochastic control for pairs trading
Power utility maximization problem

We now use a stochastic control approach to the power utility maximization problem. Here
we mainly follow [I5], but with modified dynamics for asset prices. More specifically, they
assume the price dynamics of one of the assets is a geometric Brownian motion and model
the log-spread as an Ornstein-Uhlenbeck process. We, however, assume the dynamics of
asset prices are governed by the cointelation model in equation , where one of the assets
follow the geometric Brownian motion and the second asset mean reverts around the first
one.

Let (Q, F, P) be a complete probability space with a filtration (F;):>0 generated by two-
dimensional Brownian motion: (W, W). We consider the same market as in Subsection
two assets which follow the cointelation model .

We assume an initial wealth vg > 0 at time ¢ = 0. Initial wealth is held in a margin
account. For simplicity we assume that the interest rate for margin account is 0, » = 0.
Margin account restricts how much one can short or long. The holdings are allowed to be
adjusted continuously up to a fixed horizon T. The investment behavior is modelled by
an investment strategy m = (w1, m2). Here, m;(t), i = 1,2, denotes the percentage of total
wealth invested in i-th asset at time ¢ (see equation (I7))). Let m(t), m2(t) be respectively
the portfolio weights for assets X and Y at time ¢. We only allow pairs trading: short one
of the asset and long the other in equal dollar amount, i.e. m(t) = —m2(t). In addition, we
restrict our considerations to self-financing strategies.

We define admissible control and controlled process as in [10].

Definition 2 (Control). Given a subset U of R?, we denote by Uy the set of all progressively
measurable processes m = {m;,t > 0} valued in U. The elements of Uy are called control

processes.

Denote by V7(t) the value of portfolio corresponding to strategy 7 at time ¢, which is

given by
Ve - MOV L V)

X X0+ T o (36)

The dynamics of the portfolio value V™ associated with strategy = = (71, m2) is given by

@) = V(o) [m S + 0P| 7
Replacing the dynamics for X (¢) and Y (¢) into we get:
AV (t) = V™ (t)|m1(pdt + cdW(t)) —m (m <§/(g)) — > dt + ndW(t)) } (38)

11



Lemma 2. Denote Z(t) := % For the cointelation model we obtain that Z(t) has the

dynamics
dZ(t) = [p+ 1 — onp — k(Z(t) — 1) Z(t)dt + Z(t)(cdW (t) + ndW (t)). (39)

Proof. By Ito’s quotient rule:

(G8)- S50 - 5010 U BIG.
Writing this in terms of Z(t) gives
dZ(t) = Z(t)(udt + odW; — k(Z(t) — 1)dt — ndW (t) + ”;iit()t it — onpdt)
—[u+n — onp— K(Z(E) — V]Z(B)dt + (0dW () — ndW (E)Z(),  (41)
which proves the lemma. O

For each control process m € Uy we rewrite the dynamics of two-dimensional state process,
P = (V™ Z), as follows

dP(t) = alt, P(t), (t))dt + b(t, P(t), 7(t))dB(t). (42)

with initial value of P(to) = po and B = (W, W) being the two-dimensional Brownian
motion. The process P is called the controlled process. Let [tg,T] with 0 <ty < T < oo be

the relevant time interval and define Q := [to, T) x R?. The coefficient functions
a : QxU—R? (43)
b QxU—R*™?2

are all continuous. Further, for all # € U let a(-,-,7) and b(-,-,7) be in C'(Q). We then
define

Definition 3 (Admissible control). Denoting A? the set of all admissible controls, we say a

control {m(t)},e14, 1y will be called admissible if the following conditions hold

(i) Vk € N the integrability condition

E (/: ]77(3)|de> < 00 (44)

18 satisfied,

(ii) the corresponding state process P™ satisfies

Eoro | sup |PT(t)* ] < oo,
te(to,T)

12



(iii) only pairs trading is allowed: short one of the asset and long the other

T = —T9. (45)

Since we consider self-financing portfolio, then by equation the dynamics of the state
process, P = (V™ Z), becomes

o

V(1) = V(1) [(mal — w(Z(0) = D)t +m[odW (D) +0dW(@)]], V7(0)
dZ(t) = [p+ 1> — onp — K(Z(t) = )] Z()dt + [odWV (t) — ndW (£)Z(1), Z(0)

Vo,

20.

Optimal investment strategy

We assume that an investor’s preference is represented by the power utility function
1
U(x)=—27, (46)
g

with > 0 and risk aversion parameter v < 1. Our aim is to maximize the objective
functional J over all admissible controls, i.e. determine an admissible control 7(-) such that

for each initial value (tg,vg) the utility functional below is maximized:
J(to, vo, 203 ™) := E[U(V™(T)) Vi, = vo, Zty = 20] - (47)
The optimization problem is to find ©(t,v, z) and 7 € A2 such that

0(t,v,2) = sup J(t,v,z,m)=J(t,v,z,7"). (48)
n()eA?

Consider the function G(¢, v, z) such that G € C12(Q). The Hamilton-Jacobi-Bellman (HJB)
equation corresponding to the stochastic control problem is

aa?(t, v,2) + SEUEQ LTG(t,v,2) =0, (49)

subject to terminal condition
G(T,v,z)="". (50)

The infinitesimal generator, L™G(¢,v, z) in associated with the two dimensional state
process P = (V, Z) is given by

1
LTG(t,v,z) = 5[7r%(02 —20mp + n*) 3Gy + 211 (0% — 20mp + 0 )v2Gys +
(0% = 20mp +1%)22Cox] + [milp — k(2 — D]JoGy +
[+ 1% —onp — k(z —1)]2G.. (51)

13



Theorem 1. If there exists an optimal control 7*(-) then G coincides with the value function:
G(t,v,s) =0(t,v,2) = J(t,v;7").

Using separation ansatz we reduce a 3-dimensional HJB equation in to the following
2-dimensional PDE:
~ L.y 9.0 1 2 L. 2
oty—=1ffi— SIANCE §W[M —k(z=1DIf+ 50(’7— D)2 f fez —
oyl —w(z = V]zffo +6(y = Dlp+0* —onp — k(z = D]f =,
with f(T,z) =1, (t,2)€[0,T] xR, VzeR, (52)

where 6 = 02 — 20mp + 1.

The issue at this stage is that this PDE does not have a closed for solution. This is
a non standard PDE, which is not high dimensional but is nonlinear which makes using
finite difference methods or any standard numerical methods inadequate. For this reason we
propose to use the ”Deep Galerkin Method” to solve the PDE in . Once the solution is

found, we can write the optimal strategy as

o = _02Gy: + (1 —K(z —1)]G, _ _6Z(fz7ﬂ_17) + [ — w(z = D)](fv771y)
1 50G gu(for—2y(y = 1))
_5Zfz+[ﬂ—’€(2—1)]f _ _ Zfz - [:U’_K/(Z_l)] (53)
cf(y-1) (v=1f oly—1) =

See Appendix [B] for the details.

3.3 Deep learning for solving PDE in stochastic control

Without an analytical solution to the non-standard 2-dimensional PDE in , we approxi-
mate the solution with an algorithm ”Deep Galekin Method” (DGM) proposed in [16]. DGM
is a merger of the Galerkin method and deep neural network machine learning algorithm.
The Galerkin method is a popular numerical method which seeks a reduced-form solution
to a PDE as a linear combination of basis functions. The deep learning algorithm, or DGM,
uses a deep neural network instead of a linear combination of basis functions. The algorithm

is trained on batches of randomly sampled time and space points, therefore it is mesh free.

Brief review of DGM
In general case, consider a PDE with d spatial dimensions:

ou

a(t,x;@) + Lu(t,z) =0, (t,z)€[0,T] x Q,
u(t,x) = g(t,z), x € 9,
u(t =0,2) =up(z), x€Q (54)
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where z € Q € R? and £ is an operator of all the other partial derivatives. The goal is to
approximate the U(t,z) with deep neural network f(t,z;60). Here § € RX are the neural

network parameters. We want to minimize the objective function associated to the problem
which consists of three parts:

1. A measure of how well the approximation satisfies the PDE:

2
H (t,z;0) — Lf(t,x;0) . (55)
[O,T]XQ,Vl
2. A measure of how well the approximation satisfies the boundary condition:
o 2
H f(t x;0) — g(t, z) . (56)
at [O,T] X 8Q,U2
3. A measure of how well the approximation satisfies the initial condition:
o 2
H L0, 2:0) - u(0, ) (57)
ot Qs
Here all three errors are measured in terms of L2mnorm, i.e. | f(y = [, 1fW)Pr(y)dy

with v(y) being a density on region ).
The sum of all three terms above gives us the objective function associated with the

training of the neural network:

2
H (t,z;0) — Lf(t,x;0) +
[0 T]XQ 1
2 2
H (t,z;0) — g(t, x) H (0,2;6) — u(0,x) (58)
[0,T]x 08,12 Qs

Thus, the goal is to find a set of parameters 6 such that the function f(¢,x;#0) minimizes
the error J(f). When the dimension d is large, estimating € by directly minimizing J(f) is
infeasible. Therefore, one can minimize the error J(f) using a machine learning approach:
stochastic gradient descent, where we use a sequence of time and space points drawn ran-
domly. The algorithm for DGM method is described in Algorithm [I| below.

Remark 1. The learning rate, cun,, is a configurable hyperpammeteﬂ used in the training
of neural networks that controls how much to change the model in response to the estimated
error. Fach time the model weights are updated. Learning rate has a small positive value,
often in the range between 0.0 and 1.0. Similar to [1], we set oy = 0.001. Note that our
learning rate oy, must decrease with n, see [16], and a simple enough way to do that is by

using an exponential weighted method where o, < ap—1 * A with X € 0, 1].

2In machine learning, a hyperparameter is a parameter whose value is set before the learning process
begins whereas, the values of other parameters are derived via training.
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Algorithm 1 DEEP GALERKIN METHOD()

Require: £f(),u(),9()
Ensure: L! + L2 + L} is minimized

Generate random points:
(tn,n) < U ~ [0,1]?

(Toy 20) U ~ [0,1]

wp, U ~ [0, 1]

Sp < ((tn,xn), (Tn, 2n), Wy)

Calculate the squared error:
2
5: Lylz — (%(tna T O0n) — Lf(tn, Tn; Hn))
2
6: L2 (%(Tn,zn;ﬁn) — g(Tn,zn)>

5, (of 2
7 L3 (510, 20300) = u(0,w,))
8 G(On,spn) «+ LL+ L2+ L3

Take a descent step at the random points:
9: —argmax G(0y, sp)

n

10: Qup ¢ Qi1 * A
11: 9n+1 — 6, — anVQG(Gn, Sn)

Repeat until tolerance level 10~8 for convergence criterion is achieved

The neural network (NN) architecture used in DGM is like a long short-term networks
(LSTMs) though with small differences, see [16]. We describe below the architecture of this
NN:

St =o(w - x40

Z'=o(u® x +wl. St b l=1,...,L
G' = o(u?! X+wgl S b9 l=1,...,L
Rl =o(u™ - x+wh. S+ l=1,...,L
H =o@" - x+whl. (S0 RY+bM) 1=1,...,L
St =—a1-cHYoH +7'04 l=1,...,L
ft,x,0) =w-SE1 4+ b

with ® denoting Hadamard multiplication, L number of layers and o the activation function.

The rest of the subscript refer to the neurones for our NN architecture of Figures |3 and
Remark 2. We can see the Bird Eye view of the DGM [1, [16] method in Figure @ and its
details in Figure[f The rationale is explained in [1, [16].

Testing DGM on Merton problem

The method was tested with several nonlinear, high-dimensional PDEs independently in [I]
and [16], including nonlinear HJB equations. We have tested the DGM algorithm on HJB

equation for the Merton problem ourselves. More specifically, Figures [5] and [6] show the
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plots of the analytical and approximated surface with DGM solution. Figure [7] shows the
difference between analytical and approximate solution. The approximation is good. Most
of the time, the error is between 0% and 1%. The approximate solution does not do as
well around ¢ = 0 (the maximum error of 4% is around ¢ = 0). This corroborates with the

findings in [1].

Solution to our PDE problem using DGM

Recall the PDE we want to solve is given in equation . In the absence of a closed form
solution to this PDE we approximate the solution with the DGM algorithm described above.
Figure [§| shows the approximate solution to the PDE in for different parameter values.
Recall, once we have the numerical solution f for the PDE above, we obtain the optimal

weights as following;:

o 02Gut =Rz D]Gy _ 52(f:071y) = [p— k(= = D](f0 )
1 F0Gy au(fvr=2y(y = 1))
_&Zfz_[ﬂ_’%(z_l)]f__ zf _ [ —kK(z—1)]
-1 G-Uf sh-1) (60)
with 7 = —73.

3.4 Dynamic Switching between optimal strategies of mean-variance and
power utility

Although in the previous two cases we assume that an investor has a certain risk preferences
as modelled by a utility function (MVC and power utility), it is interesting to consider a
limiting case where the investor can be always persuaded to go for more money (identical
utility function U(z) = x, which is essentially the power utility function with risk aversion
parameter v = 1) when deciding between MVC or power utility.

Assuming that an investors’ preference is modelled either as in equation or as in
equation , in order to improve further the portfolio returns we employ dynamic switching

between the two optimal strategies

=g Vﬂ*,(t)zw(t)’ (61)
h*(t), otherwise,

where 7*(t) and h*(t) are given in equations and and V™ () and V" (t) are given in
equations and . The motivation behind the dynamic switching is that the investor
wants to benefit from both the mean-reversion and the correlation elements of the cointe-
lation model . More specifically, as the spread between two assets increases the investor
implements pairs trading and makes profit, otherwise the MVC approach is used.

The portfolio return over investment horizon [0, 7] with 7' = 1000 days is

V(o) - V(T)

R(rp) = V(O)

(62)
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We perform 500 simulations with the same model and present in Table [1| the average re-
sults. The average return at terminal time 7" obtained by using dynamic switching optimal
strategies is higher than the average returns calculated by employing MVC or power utility

maximizing optimal strategies.

4 Machine Learning formulation of the portfolio optimization

problem

4.1 The portfolio optimization problem

We assume an initial wealth wy > 0 at time ¢ = 0. The investment behaviour is modeled
by an investment strategy w = (w1, ws). Here wy (t), wa(t) denote the percentages of wealth
invested in asset X and Y respectively at time ¢. Let V(¢) denote the portfolio value at time
t and VI"L(t) := V() — V(0) denote the profit ant loss (P&L) over [0,¢]. At each time
t we allow either pairs trading: wi(t) = —wa(t) or long only strategies without leverage:
wi (t) + we(t) = 1 with wy(t), wa(t) > 0.

The general optimization problem is to find an optimal strategy, w(t), such that the

terminal P&L is maximized:

w*(t) = argmax VI (w, T), (63)
w(t)eA

where VPl (w, T) is profit and loss corresponding to the strategy w at time terminal time
T. We use clustering analysis to device the bands and in each band we solve the following
optimization problem
wi(t) = argmax VI (w;, t), (64)
w;(t)eA
where i = 1,...,n is the number of bands, V"L (wj, t) is profit and loss corresponding to the
strategy w; at time ¢t. Then the overall solution w* is obtained via a linear interpolation of
optimal weights per band w}
The advantage of the proposed method is that we do not impose certain model on the
asset prices. Only data observations are required to calculate the optimal weight, meaning

that the complex SDE calibration is avoided.

4.2 Review of Band-Wise Gaussian Mixture model

We review band-wise Gaussian mixture model because it inspires our method of selecting
the bands. Consider a probability space (2, F,P) and let (P;);>0 denote the asset price.
Mahdavi-Damghani and Roberts [I3] has recently introduced a generalised bumping SDE
for the price dynamics of asset P,. The SDE contains some secondary parameters whose

purpose is empirical manual fitting. The generalized SDE is given by

AP, = 01, (s — P)dt + o P2 (1 — P2)Pdw;. (65)
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Here 6, is the speed of mean reversion, p; is the long term mean, « is the positivity flag
enforcer, (3 is the [—1,+1] boundary flag enforcer and {|JdW;}!_, . is the set of historical
deviations of the assumed model’s distribution (e.g.: all the historical absolute returns in
the context of a normal diffusion).

This generalised SDE gives as a special case the cointelation model: take 8 = —pu, =0,
a =1 and 8 = 0 for the dynamic of X in ; take 0 » = K, ppr = Xy, a =1, f =0 for the

dynamics of Y in . The SDE in can also model:
e Proportional returns (log-normal diffusion) when § =0, « =1, § = 0.
e Absolute returns (normal diffusion) when § =0, « =0, 8 =0,

e Mean reverting returns where we enforce positivity of returns (e.g. CIR [0] diffusion
when oo = 1/2 and 8 = 0),

e Mean reverting returns where we do not enforce positivity of the returns (e.g OU [1§]
diffusion when av = 0 and 8 = 0).

In general calibrating parameters of the SDE in to a real data is complex. Using data
simulated with their empirical distribution is approximated for the purpose of prediction
by a band-wise Gaussian mixture model. This is done for a sequence of bands which are
created using Machine Learning clustering method (see [13]).

Let P = {p1,...,pn} be a set of empirical random variables sampled using equation
with cumulative distribution function F'(p) and density f(p). Denote O = {p(),..-,pm)}
the ordered set of P such that p1) <p@p) <...<pg) and

O, = {P(Tn((i=1)+1)/h])s - - - » P({n(i)/h)) }-

Then the band-wise Gaussian mixture model for the empirical distribution function of the

data simulated using the SDE in equation (65)) is given as follows:

Fn(pz‘]:t) =

Z Z 1, col (66)

j=11i=n

SRS

with n = [n((i —1) +1)/h] and ¢ = |[n(i)/h].
For example in the case bands h = 3, using a Gaussian Mixture such that

Fn(pil Fe) = N(=3,1)1,,c01 + N (0, 1)1, c02 + N(3, 1)1,,c08, (67)

we obtain the approximate stratification in Figure [0 The stratification is made so that the
cardinality in each OfL region remains approximately the same, as opposed to being the result
of a geometrical separation function of p(1) and p(y).

Theorem 1 in [I3] ensures a good approximation of the generalised SDE by the
Gaussian mixture model . The calibration for the band-wise Gaussian mixture is given
in Algorithm
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For our optimization problem we take a similar approach of dividing the range of obser-
vations into bands via the clustering algorithm, and then perform an optimization in each

band via perturbation of weights.

Algorithm 2 BAND-WISE GAUSSIAN MIXTURE(P, h)

Require: array Pp., and number of bands h

Ensure: Q7)) [Ba:h)’Ba:h)] are returned.

Sorting state:
1: X(l:h) + QuickSort(X.y)
2: [B(Jg:h),B(E:h)] < FindPercentileBands(X1.,), h)
3. QR ]

Allocation state:
for j =1to h do
for i =1ton do
e B -
if B(l:h) < P(i) < B(l:h) then
Amend(Q(]), P(l))
end if
end for

10: end for

Checking Approximation state:
11: fi1.p mean(Q(lzh))
12: &1  stdev(QU)
13: Print(U?leOli, 6’@))

Return state:
:h —
1 QUM (BB,

4.3 Optimal Machine Learning strategy

Based on the idea of band-wise Gaussian mixture model, we use clustering analysis to create
bands, however not for the observed asset price data, but for the spread between two asset
prices in , i.e. X; —Y;:. Inside of each band instead of specifying the distribution as in
band-wise Gaussian mixture, we test a set of strategies that maximizes the corresponding
P&L. We record the optimal strategies within each band, and in live trading, whenever the
spread of asset prices falls in a certain band we employ the optimal strategy for this specific
band.

We now present the trading signal that translates to investment strategy in machine

learning approach.

The Bayesian set-up: We set from equation B; = X; — Y; and have

By = {B}

n,t?

+ + pl - -
Bn—l,tv e >Bl,ta Bigs--, Bn—l,t’ Bn,t}7
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such that B,tt > B:{_Lt > 0> Bfft >0 > Bit > > Bg—l,t > B;’t. We know that
depending on the spread, the resulting approximated distribution of the samples differ [13].
The calibration algorithm will then consist of creating as many zones as possible whilst
and as many strategies as possible within these bands and test how well each strategy is
doing in each band in terms of P&L maximization. We take a direct approach (see Remark
3)) consisting of 3 strategies and their cumulative P&Ls. Fixing the bands [a;, b;], with

1=1,2,...,n we consider the following strategies:

e Strategy STT in which we are long both X and Y at time ¢ in between bands [a;, b;]

and with P&L Vgt Lt

e Strategy ST~ in which we are long X and short Y at time ¢ in between bands [a;, b;]
and with P&L V[a bil b

e Strategy S~ in which we are short X and long Y at time ¢ in between bands [a;, b;]

and with P&L V" 1 ..

The P&Ls corresponding to these strategies are defined as following:

T

V[;_i:;i],T - Z[w[::bi},tAXt—i_(l_ [a; b]t)AYt] a;<A¢<bis
t;O

V[ai;)i],T = Z[w[—z;bi},tAXt -(1- w[—;;biLt)AY;]laKAtSbi’
t;@

V[;Z]T = Z[ W, b]tAXt+( [;“bi}’t)AY;f]lai<At§bi~

~+
Il
o

Remark 3. We call this approach direct, since ideally the number of strategies should consist
of a more granular weight distribution. However for the sake of comparing with Financial

Mathematics approach we consider the same set of strategies: long only, long/short.

We denote the maximum P&L achieved by each of these strategies by Vﬁi’] 7> s given

by equation and define S[a bil,T of P&L V[ai bil,T (equation ), the optimal strategy

using Gaussian Learning in band [a;, b;].

FEA
[ai,bi], T aigmax V[ i:bi], T [:';ja:bi]vt € [0,1] (68)

Yla.b5],t€(0,T]

Kk +4,% +— % —,%
V[ai,bi],T = maX(‘/[a“b e V[ai,bi},T’ V[ai,bi],T)'

(69)
In live trading we recombine the optimal weights per bands into an overall optimal solution
via a linear interpolation:
n
=D WX, velar b} (70)
i=1
Although we do not have a proof that the resulting interpolated strategy in is optimal,

we use it as a benchmark that still improves over the results with Financial Mathematics
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approach. Our goal is to apply Machine Learning approach to a pair of assets that exhibit

some dependence, but this approach can be used for any model, i.e. it is model agnostic.

Algorithm 3 BAND-WISE ML FOR COINTELATION(P, h)

Require: array P;., and number of bands h

Ensure: Q") [BF

10:
11:

12:

13:

14:

15:

16:

17:
18:

19:
20:
21:

22:

23:

1
. Q:n/h]) I

(1h)> Ba:h)] are returned

Sorting state:

: P(l:h) — QuiCkSOI‘t(Plzh)
. [Bf ,.,B"

18y (1:%)] + FindPercentileBands(F;.y), h)

: By < [B 4, B

)

—

SIS

Allocation state:

: for j=1to h do

for i =1ton do
if P(l) € B’ then
Amend(Q0), Puy)
end if
end for
end for

Optimize the 3 types of P&L for each band:
for i =1 to h do
VE;:- +T* 4 argmax VEJ{Z, +T
wrt
B;,t€[0,T]
+—,* +—
VBi’T — afgmax VB,-,T
Wp,,tel0,T]
— —+
VBi’T < argmax VBi’T
W, tel0,T]
end for

Rank and return best strategy for each band:
for i =1to h do
SRR T iR Tt
Vi « max(Vp 7 ’VBZ;T 7VBi,T )
Sp = (54" Sp i+ Sp,t)
SE:,T + returnCorrespondingStrat g;T, S5)s
end for

Forecasting :
signal®, signal® « forecast(SE, ., St, Sit)

Return buy/sell signals:
signal®, signalls

We further provide Algorithm [3] as the pseudo-code for the calibration process. Note

that in both Algorithms [2| and [3, we have used a QuickSort which can be substituted by

other sorting algorithms. Note that the use of self explanatory functions such as returnCor-
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respondingStrat(z,y) in line 20 of Algorithm [3[ which given the set of strategies and the P&L
returns, as its name indicates, outputs the corresponding strategy that maximizes P&L. The
function forecast(z,y,z) in line 22 of Algorithm [3| takes as input the set of trained strategies
and the current level of X; and Y; and returns a prediction of where the signals for the latter
two should be. Finally the use of the argmaz function in lines 13-16 can be replaced by a
simple for loop but in the interest of not making the pseudocode too crowded we have kept

it this way.

Remark 4. In [13] authors show that a reasonable risk manager or trader can assume the
generalized SDE with B =0 and an o = 1, in order to enforce positivity for the simulated
scenarios of our risk factor. This very reasonable assumption would have crashed the whole
risk engine if it is no longer satisfied in the real markets. The approach we advocate would
have, however, been able to continue its dynamical learning scenario without any problem

since it is model agnostic.

5 Numerical results

Figure illustrates the ML and the DS approaches on one single simulated path. Note
that when implementing the ML approach with a horizon of 1000 days, we double this data
for training, i.e. we use 2000 historical daily prices. We have performed two sets of 500

simulations and we have gathered their results in the following two examples.

Example 1. We have simulated 500 paths of X and Y based on cointelation model
with parameters p = 0.05,0 = 0.17,7 = 0.16,x = 0.1, p = —0.6. Figure illustrates that
the Machine Learning approach with long/short strategies (M Lps), on average performs
slightly better in terms of PEL than the Stochastic Control approach (SC). However, based
on histogram none of the approaches perform significantly better or significantly worse than

the other at any time.

Example 2. We have simulated 500 paths of X and Y based on cointelation model with
parameters p = 0.05,0 = 0.17,n = 0.16,x = 0.1, p = —0.6. Figure[1] illustrates how the ML
approach seems to perform slightly better in terms of PE&L than the FM approach about 55%
of the time, while being outperformed the other 456% of the time. However, based on histogram
we have noticed that sometimes the ML approach is being outperformed significantly more

than it outperforms FM approach.

From histogram of performance in Figures [11] and [12] we have concluded that for param-
eters u = 0.05,0 = 0.17,n = 0.16,x = 0.1, p = —0.6 of cointelation model we have the

following rankings for the approaches:
SC < MLps < FM < ML.

The reason for ML with full set of strategies (long only and long/short) outperforming the
DS most of the time might be the fact that in long only optimal strategies of ML approach
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we have more variety in weights, whereas the closed form formula in FM gives us almost

constant weights (with small fluctuations).

Possible directions for future work
Multidimensional case

One direction for future work is to consider portfolio optimization problem for n-dimensional

cointelation model. For instance, when n = 3 we can have something of the following form:

dsy = oSLAWP
dsb = 6(S¢ — SV)dt + o SLAW} (71)
dS¢ = 0(S¢ — S§)dt 4+ o SLAWE

One natural question would first be about how to model this triplet? For instance would
equation with S? and S¢ reverting around S® be more in-line with the pair from equation
or would S® reverting around S and S¢ reverting around S® be better? Are they
equivalent or is one more useful? What happens as n increases? We plan to examine these

questions in the future.

Application to cryptocurrencies

Another direction for future work is to model cryptocurrencies prices with the cointelation
model and construct cryptocurrency indices using the portfolio optimization approaches pro-
posed in this paper. Cryptocurrencies offer a source of alternative alpha, therefore there has
been an emergence of cryptocurrency indices in the recent past with construction method-
ology ranging in the spectrum of Risk Parity to Stochastic Portfolio Theory (SPT). Given
the spectacular volatility of the cryptocurrency market, even though the point of the index
is to reduce the overall volatility, the index position remains fundamentally long. However,
using a combination of beta neutral approach (long/short strategies) with an occasional long
only alternative could be the winning combination for this asset class. For this reason the

cointelation model is an interesting model to use for this application.

Conclusion

We have studied the portfolio optimization problem of two assets that follow the cointela-
tion model using two approaches: Financial Mathematics and Machine Learning. We first
implemented the FM approach, where we use classic financial mathematics criteria: mean-
variance and power utility maximization. Without an analytical solution to the PDE ,
we resort to the DGM method, a deep learning algorithm, to solve it numerically. The
second approach we implemented is ML using clustering. The latter approach is easier to
implement, it is model agnostic, therefore avoids the complex SDE calibration. In our case

the Machine Learning approach slightly outperforms the Financial Mathematics approach.

24



Appendices

A Proof of Lemma [1I

Since X; is a geometric Brownian motion, we have

0.2

Blr(X)] = (1 — T)At

(72)

where X;_a; is a known constant at time ¢t — At. The expectation of log return of asset Y is

E[r(Yy)] = E[ln(Yy)] — In(Y-a¢),

(73)

where Y;_a¢ is a known constant at time ¢t — At. We use Taylor expansion to approximate

expected value and variance of In(Y;) and covariance of In(Y;) and In(X;) (see [4], p.165-167):

O’2 t
Eln(v;)] =~ 1n<E[m>—2E[[§]]2a
- oY
0'2[111(%&)] ~ E[Y,]?’
o[ln(¥:) In(Xy)] ~ In <1+E%>'

First, we need to derive E[Y;]. From equation (8) we have

t t

Yi=Yiatn [ (X-Yods+n [ vz
t—At t—At

Taking expectation on both sides we have
t
EY] =Yiae + K;/ E[X; — Yi]ds.
t—At

Differentiating on both sides we get

dE[Yy]

= RELXi] - kE[Y)] = kXi_ae' — KE[Y].

Denoting E[Y;] = y(t) we obtain an ordinary differential equation (ODE):

y/ = —KYy + HXt_AteuAt.
The solution is given by

y(t) = E[Y3] = ae" + (Yi—ar — a)e "2,

where
KXt—At

ptn
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In order to derive E[Y;?] we first compute E[X;Y;]. Applying integration by parts (IBP) to
we get

d(X:Y:) = X¢dY; + Yid Xy + dXdY;
= kX2dt — kX, Yidt + n X YidWy 4+ p X Yidt + 0 X YidZs + onpX Yedt.  (82)

Thus

t t
XYy = XiatYieae + 5 XZds+n XY dW, +
t—At t—At
t t
(1 — K+ onp) X Yds+ o X Y,dZ,.
t—At t—At
Taking expectation and differentiating on both sides

dE[XYi]

= REXF] + (= it onp) E[X,Y)). (83)

Denoting F[X;Y;] = z(t) we obtain ODE
o' = RE[X] + (1 + onp — k)y. (84)
Since X; is GBM, its second moment is given by
B[X7] = EIX] 58020 = X7 elBrrton)de, (85)

Thus becomes
2’ = 5 XE 7PN 4 (1 — i+ onp)y. (86)

Using variation of parameters method we get the solution
2(t) = E[XY;] = be®HoDA L (X, A Vi ny — b)elnrtomnAt, (87)

where )
KX At

b= .
p+o*+ K —onp

Now we are ready to compute E[Y;?]. By It6’s lemma the dynamics of Y;2 is
dY? = 2Y;dY; + (dY;)? = (n* — 26)Y2dt 4 26X, Yidt + 20Y2dZ;. (88)

Integrating on both sides

t t t
Y2 =YZ+2(1n* — k) / Y2ds + 2k / XYsds + 2n / Y2dZ,. (89)
0 0 0
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Taking expectation on both sides and and differentiating

dE[Y}?

e a2 - 0B + 2nBLXY (90)
Defining E[Y;?] = z(t) and replacing the value for E[X;Y;] form equation we obtain an
ODE

S = (7]2 _ :‘i)Z 4 2I{b€(2u+02)At + 2"9(Xt7Ath7At - b)e(N*KJFUnP)At‘

Using again variation of parameters we obtain the following solution

Z(t) _ E.[Ytz] _ Ce(2,u+<72)At + de(,uf/erUnp)At 4 (YtzAt —c— d)e2(n27”)At, (91)
: _ 2kb = 26(X—atYioai—b)
Wlth C = m and d - N_gngi’{t_‘_?;p

Now we are ready to approximate E[ln(Y;)]. From we have

E[Y?] 1 _ JI7AN —kAt 1
_ 2BV + 5= In (ae + (Yiear —a)e ) + 5

Ce(2u+a2)At + de(p—r+onp)At (Y;fz—At —c— d)62(772_n)At

- - 92
2(aeBt + (Yi_pnr — a)e— 802 2(aetdt 1+ (Y,_py — a)eFAt)2 (92)

E[n(Yy)] ~ n[E[Y]]

and

E[r(Y:)] = E[In(Yy)] — In(Y;—a¢) = In (ae“At + (Yieat — a)e_“At) + % - (93)

ce(2u+02)At + de(H—r+onp)At (th%At —c— d)ez(WQ,n)At

2(ael‘At + (Yiear — a)eant)Q B 2(a6pAt + (Yiear — a)e*“At)Q

- 111(YLAt)

From we have

Varlr(¥)] = Var[in(vy)] =

ce@uta®)At 4 go(ntonp—r)At N (Y2 A —C— d)e2(n2—H)At
(@ehDt 1 (Yi_pr — a)e—FB02 T (qehBt 4 (Y,_py — a)e—RAE)2

~1 (94)

and
Var[r(Xy)] = Var[ln(X;)] = o?At. (95)

From we obtain the covariance:

Cov[r(Xy)r(Yy)] = Cov[ln(X) In(Y;)] =~ In (%)

w1y [ BTN (X pr Vi ar—bele oAl (96)
aXOBQHAt+(Yt_AtXt_At7aXt_At)€(M7N>At
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B Dimension reduction of 3-dim HJB
For ease of notation let & = 02 — 20mp + n? and rewrite :
Gy + s:lp{;(W%&UQGW + 62°G.. + 2m6v2G,,.) +
(1l — K(z — DGy + (n+1* — onp — k(2 — 1))2G,} = 0. (97)
The first order condition for the maximization is
100Gy + 562Gy + (1 — k(2 — 1)]G, = 0. (98)

Now assuming G, < 0 the first order condition is sufficient, yielding

o 002Gy + [u—K(z = 1)]G,
T = 50Co . (99)

Replacing back into @ yields:

1 (62Gys + [t — k(z — 1)]Gy)?
s 1yt o )G
652Gy, + [u— k(2 — 1)]G
VG e
562Gy + [ — k(2 — 1)]Gy
B UGy

502Gy + 62°G.,

-2 “5v2Gy.} + [p+ 0 —onp — k(z — 1)] 2G.

1 —r(z—1)]vG, = 0.

Multiplying both sides of equation by ¢G,, we get:

GGy + %(62@02 + [p— k(2 = D)]Gy)? = (62G, + [ — k(2 — 1)]Gy)52G,.
1

+§6z2GZZGm, — (02Gys + [ — k(2 — 1)|Gy) [ — k(2 — 1)]G,

+6[u+n? — onp — k(z —1)]2G.G,. = 0.

Expanding gives

GGy + %5’222ng + %[,u — k(2 = DPG? 4 62[p — k(2 — 1)]Go G

1
—62z2G12)Z —az[p — k(z — 1)]|GyGyr + §6z2GZZGm, —0z[p — k(z — 1)]Gy Gy
[ —r(z = DPG2 +lu+n* —onp — k(z — 1)]2G,G,. = 0. (100)

Which further simplifies to

GGy — %[M —r(z = 1)]?G? + %62’2(}%(}% —oz[p — k(2 — 1)]Gy Gy
—%62,226?12,3 +6[p+n* —onp — k(z —1)]2G.G,. = 0. (101)
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At this stage we were able to turn our four variable PDE into three, but we can get eliminate

one more. For this we consider the following separation ansatz:
G(t,U,Z) = f(t,z)?ﬂ, (102)

with the terminal condition
f(T,z)=1 V= (103)

We compute the derivatives of (102]):

Gy = fiv7, G, = fzﬂ_l’)/v G, = .07, Gy = fv’Y—Q,y(,y - 1)5
sz = fzvv_lf)’a Gzz = U’Yfzz-

Replace derivative back into (T01)) and divide by v2("=D~ to get

50y =1 f i = 55927 = gl = sz = DPF + 560y = 12 F e~

Gyl —r(z—=Dzffo+6(y = Dp+n" —onp—r(z = D]ff. =0. (104)

We now have a PDE with only two variables instead of four.
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Criterion Average portfolio return R(rp)
MVC 35%
SC 61%
DS 83%

Table 1: Average over 500 simulations of portfolio returns at terminal time 7' (day 1000)
with dynamic switching (DS) is higher than average portfolio return with only stochastic
control (SC) or only mean-variance-criterion (MVC).
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Figure[I} (Up) Simulated path of cointelation model with p = —1,0 = 0.1, 0 = 0.01; (Down)
Corresponding measured correlation as a function of the time increment increases

from —1 to 1.
Figure B} Birds-eye perspective of overall DGM architecture [1].
Figure [} Operations within a single DGM layer [I]
Figure 5} Analytical solution of the Merton Problem.
Figure [6] Approximate solution of Merton problem using DGM.
Figure [} Error between analytical and approximate solution of Merton problem.

Figure [8} Approximate solutions to PDE ([104) with DGM for four different scenarios of p and
u and fixed 0 = 0.2, n =0.19, v = 0.5.

(a) Approximate solution with low g = 0.01 and low p = —0.5.
(b
(c

(d) Approximate solution with high p = 0.4 and high p = 0.5.

Approximate solution with low g = 0.01 and high p = 0.5.
Approximate solution with high y = 0.4 and low p = —0.5.

)
)
)
)

Figure [0} Two examples of Gaussian Mixture Simulations with different number of bands.
(a) Empirical distribution of random variable sampled from cointelation model in
three different zones described in Figure [2]

(b) Empirical distribution of random variable sampled from cointelation model (8)) in

five different zones: two additional zones were added to the initial three zones in
Figure [2

Figure [I0} (a) one simulated scenario based on cointelation model with parameters: p =
0.05,0 =0.17,7 = 0.16, k = 0.1, p = —0.6 and scaled spread: x(X; — Y}); (b) portfolio
return and optimal weight of asset X with Dynamic Switching approach; (c) portfolio

return and optimal weight of asset X and Y with Machine Learning approach.
Figure Histogram of excess (P&L) for M Lyg vs SC at terminal time 7.
Figure Histogram of excess (P&L) for ML vs FM at terminal time 7'

Figure [I3} In FM approach optimal long/short strategies are more volatile than optimal long only

strategies.

Figure In ML approach optimal long/short strategies are slightly more volatile than optimal

long only strategies.
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