
Portfolio Optimization for Cointelated Pairs: SDEs vs Machine

Learning

Babak Mahdavi-Damghani1, Konul Mustafayeva2, Cristin Buescu2, and Stephen

Roberts1

1Oxford-Man Institute of Quantitative Finance, Oxford, UK
2Department of Mathematics, King’s College London, London, UK

Abstract

With the recent rise of Machine Learning as a candidate to partially replace classic

Financial Mathematics methodologies, we investigate the performances of both in solving

the problem of dynamic portfolio optimization in continuous-time, finite-horizon setting

for a portfolio of two assets that are intertwined.

In Financial Mathematics approach we model the asset prices not via the common

approaches used in pairs trading such as a high correlation or cointegration, but with

the cointelation model in [12] that aims to reconcile both short-term risk and long-

term equilibrium. We maximize the overall P&L with Financial Mathematics approach

that dynamically switches between a mean-variance optimal strategy and a power utility

maximizing strategy. We use a stochastic control formulation of the problem of power

utility maximization and solve numerically the resulting HJB equation with the Deep

Galerkin method introduced in [16].

We turn to Machine Learning for the same P&L maximization problem and use clus-

tering analysis to devise bands, combined with in-band optimization. Although this

approach is model agnostic, results obtained with data simulated from the same cointe-

lation model as FM give an edge to ML.
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1 Introduction

In a financial market with two assets that exhibit clear dependence we go beyond high

correlation which is used in pairs trading, and model asset prices with the hybrid model of

cointelation introduced in [12]. We solve the portfolio optimization problem employing a

more general set of admissible strategies than long/short strategies used in pairs trading.

A pairs trading strategy involves matching a long position with a short position in two

assets with a high correlation. Pairs trading was pioneered in the mid 1980s by a group of

quantitative researchers from Morgan Stanley (for introduction to pairs trading see [19]).

The securities in a pairs trade must have a high positive correlation, which is the primary

driver behind the strategys profits.

Pairs trading is based on the high historical correlation of two assets and a trader’s

view that the two securities will maintain a specified correlation. A pairs trading strategy

is applied when a trader identifies a correlation discrepancy. More specifically, the trader

monitors performance of two historically correlated securities. When the correlation between

the two securities temporarily weakens, i.e. the spread widens, the trader applies a trading

strategy which shorts the high asset and buys the low asset. As the spread narrows again to

some equilibrium value, a profit results.

However, many authors argue that correlation is an inappropriate measure of dependency

in financial markets, since returns often exhibit a nonlinear co-dependence (e.g. [3], [20]).

Mahdavi-Damghani, et al. [14] showed that measured correlation of the returns of a mean-

reverting processes is misleading: a strong positive correlation does not necessarily imply

that two stochastic processes move in the same direction and vice versa. Cointegration, on

the other hand, tests the long-term equilibrium relationships between assets and has been

extensively used in pairs trading ( see [19]). Cointegration tests do not measure how well

two variables move together, but rather whether the difference between their means remains

constant. Sometimes series with high correlation will also be cointegrated, and vice versa,

but this is not always the case.

The cointelation model was introduced in [12] as a hybrid model which reconciles corre-

lation and cointegration by capturing both short-term risk and long-term equilibrium. The

rationale for the long term risk is that during the time of rare market crashes all assets prices

fall. However, in the more bullish periods, the short term risk increases, the long term risk

becomes less pronounced and the macro driver less visible. These influences are accompanied

with mean reversion forces from one asset to the other.

In this setting we consider a continuous-time, finite horizon portfolio optimization prob-

lems for pairs of assets whose prices follow the cointelation model in [12]. Generally, the

optimization problem is to find the optimal control

w̃∗ = argmax
w̃∈A

U(Xw̃
t , Y

w̃
t ) (1)

where U(x) is a utility function, w̃ = (w̃1, w̃2) is a vector of proportions of wealth invested

in each asset, A is a set of admissible strategies: either w̃1 = −w̃2 (long/short) or w̃1, w̃2 > 0
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with w̃1 + w̃2 = 1 (long only).

We solve the portfolio optimization problem in (1) with Financial Mathematics and

Machine Learning methodologies and compare their performance. In Financial Mathematics

approach we use SDE evolution of asset prices, whereas the Machine Learning approach does

not assume an underlying model and applies generally to any pair of assets.

In Section 2 we review the cointelation model. In Section 3 we use the classical Finan-

cial Mathematics criteria: mean-variance optimization and power utility maximization. In

Section 4 we use clustering analysis from Machine Learning to solve the P&L maximization

problem. We present the results of each approach in Section 5 and discuss them compara-

tively.

2 Review of cointelation model for pairs of asset

We first present the usual way correlation is calculated in the financial industry (see e.g. p.274

[20], [3]). Assume we have two assets with prices modeled by stochastic processes (Xt)t≥0 and

(Yt)t≥0 on a probability space (Ω,F ,P). We have N observations of X and Y at intervals

∆t, i.e. X(ti) and Y (ti) with i = 1, ..., N and ∆t = ti − ti−1. Here ∆t ∈ {1, 5, 22, 252}
corresponds to daily, weekly, monthly and yearly data. The ∆t-returns on i-th data point of

assets X and Y is

RX(ti,∆t) =
X(ti + ∆t)−X(ti)

X(ti)
(2)

RY (ti,∆t) =
Y (ti + ∆t)− Y (ti)

Y (ti)
. (3)

The sample volatilities of time series of asset prices X and Y are then

σX(∆t) =

√√√√ 1

∆t(N − 1)

N∑

i=1

(RX(ti,∆t)− R̄X)2 (4)

σY (∆t) =

√√√√ 1

∆t(N − 1)

N∑

i=1

(RY (ti,∆t)− R̄Y )2, (5)

where R̄X , R̄Y are the sample average of all the returns in the series of X and Y , respectively.

The sample covariance between the returns of assets X and Y is given by

σXY (∆t) =
1

∆t(N − 1)

N∑

i=1

(RX(ti,∆t)− R̄X)(RY (ti,∆t)− R̄Y ). (6)

In this paper we consider the measured correlation, which is the sample cross-correlation

given by

ρXY (∆t) =
σXY (∆t)

σX(∆t)σY (∆t)
. (7)

For correlation to be an appropriate choice of measure of co-dependence the assumption of
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linear dependency between series needs to be satisfied (see Chapter 1.4 [3]). Often in financial

markets with a non-linear dependence between returns, the correlation is an inappropriate

measure of co-dependency and is misleading, especially when used to capture long-term

relationship between assets (see [14] and [12]).

An alternative statistical measure to correlation is cointegration. If two time series Xt

and Yt are integrated1 of order d and there exists β such that a linear combination Xt + βYt

is integrated of order less that d, then Xt and Yt are cointegrated (see [7]). Since the spread

of cointegrated asset prices is mean reverting, they have a common stochastic trend, i.e.

the asset prices are tied together in the long term, although they might drift apart in the

short-term (see [2]). Because the cointegration requires sophisticated statistical analysis, it

has not been used as widely as correlation in the financial industry.

Although correlation and cointegration are related, they are different concepts. High

correlation does not necessarily imply high cointegration, and neither does high cointegration

imply high correlation (e.g. see Figure 4 in [14]). Two assets may be perfectly correlated

over short timescales yet diverge in the long run, with one growing and the other decaying.

Conversely, two assets may follow each other, with a certain finite spread, but with any

correlation, positive, negative or varying.

Mahdavi-Damghani [12] proposed cointelation as a hybrid model that aims to mediate

between correlation and cointegration. It captures both short-term and long-terms relation-

ships between the assets.

Definition 1. Consider a filtered probability space by (Ω,F , (Ft)(t≥0),P), with the historical

probability measure, P. The cointelation model for a pairs of assets with prices Xt and Yt

defined in [12] as

dXt = µXtdt+ σXtdWt,

dYt = κ(Xt − Yt)dt+ ηYtdW̃t,

d〈W, W̃ 〉t = ρdt, (8)

where µ ∈ R, σ > 0, X(t0) = x0 are the drift, diffusion coefficients and initial value of

asset price X; 0 < κ ≤ 1, η > 0, Y (t0) = y0 > 0 are the rate of mean reversion, volatility

and initial value of the asset price Y ; (W̃ (t))t≥0 and (W (t))t≥0 are two correlated Brownian

motions with constant correlation coefficient −1 ≤ ρ ≤ 1 that generate the filtration (Ft)(t≥0).

The processes (X)t≥0 and (Y )t≥0 are called the leading process and the lagging process,

respectively. This is due to the fact that the lagging process reverts around the leading

process.

We present here the concepts of inferred correlation function and number of crosses

formula introduced in [12] in order to device a test whether two pairs are cointelated .

Let ρ∗XY (∆t) be the inferred correlation function between two times series of cointelated

1A time series Xt is integrated of order d if (1− L)dXt is a stationary process. Here L is a lag operator.
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asset prices defined as follows

ρ∗XY (∆t) = sup
0<∆̃t≤∆t

ρXY (∆̃t). (9)

Sometimes there may not be enough data to calculate ∆t-inferred (measured) correlation of

cointelated assets. In [12] the following formula for approximation of inferred correlation (9)

was proposed via examining various data sets:

ρ∗XY (∆t) ≈ ρ+ (1− ρ) [1− exp (−λκ(∆t− 1))] , (10)

where κ ∈ [0, 1], λ > 0, ρ ∈ [−1, 1]. The parameter λ ≈ 1.75 for ”regular financial data”,

although it is itself a function in general. Thus, if one does not have enough empirical data

to calculate, for example, the yearly (252 days) inferred correlation, the formula in equation

(10) allows to approximate it using only κ and ρ parameters of cointelation model in (8) and

setting ∆t = 252, λ ≈ 1.75.

The motivation for inferred correlation approximation formula (10), is that in the dis-

crete version of the processes in equation (8) the measured correlation increases as the time

increment, ∆t, increases (e.g. correlations calculated using daily, weekly, monthly returns).

Moreover, the measured correlation of cointelated pairs will converge to 1 faster as the speed

of mean reversion parameter κ increases. If we set ρ = −1 in (8), the inferred correlation of

cointelated asset prices may cover the whole correlation spectrum [−1, 1] (see Figure 1).

Another way for testing if two times series are cointelated is to study how many times

the normalized series cross paths. If one discretizes equation (8), then one can approximate

the expectation of the number of times, Γx,y, the two stochastic process, x = Xi∈[1,2,...N ] and

y = Yi∈[1,2,...N ], cross paths as follows

E[Γx,y(κ,N)] ≈ N
[
γ(1− κ) +

1

2

√
κ

]
(11)

with N is the length of the data, γ is a positive constant and κ is the speed of mean reversion

in equation (8).

Compared to the number of times purely correlated SDEs (eg: without the mean reversion

component, i.e. when κ = 0) the number of times the discrete version of the cointelated SDEs

cross paths is larger than if they were random, and the bigger the κ the more often the paths

of discretized SDEs cross each other per unit of time.

Then two stochastic processes are cointelated (see [12]) if

• Inferred correlation formula in equation (10) is verified;

• The number of crosses formula in equation (11) is verified;

• the underlying assets have a reasonable physical connection that would suggest their

spread should mean revert (e.g. oil and BP share prices).

The parameters in cointelation model (8) can be estimated using the inferred correlation
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formula (10) and the number of crosses formula (11) (see [12]). Similarly to the variance

reduction methodology described in [14], [12], we can define

B+ =

∣∣∣∣
max(Xt − Yt, t ∈ [0, T ])

2

∣∣∣∣ , (12)

B− =

∣∣∣∣
inf(Xt − Yt, t ∈ [0, T ])

2

∣∣∣∣ .

We note that the estimation of κ has a higher variance when

Zρ = B+ > |Xt − Yt| > B−, (13)

where ρ, on the other hand has quality samples. The reverse is true when

Zκ = |Xt − Yt| > B+

⋃
|Xt − Yt| < B−. (14)

We can therefore sample κ in Zκ and ρ in Zρ. Figure 2 illustrates this.

3 Financial Mathematics approach for portfolio optimization

problem

We consider the portfolio of two assets and model the their prices with the cointelation in (8).

We approach the optimization problem of this portfolio with classic Financial Mathematics

criteria: mean-variance and power utility maximization. Since the cointelated assets are

characterized by both correlation and mean-reversion components, we formulate the mean-

variance optimization problem for long only strategies and we calculate the optimal strategies

to make profit on correlation. To make profit on mean-reversion property of the cointelated

assets we use stochastic control formulation of the power utility maximization problem for

long/short strategies and calculate the optimal weights. We then maximize portfolio P&L

by dynamically switching between these two optimal strategies.

3.1 Mean-variance optimization

We first review fundamental notions and concepts for mean-variance optimization.

Returns: A portfolio considers a combination of n potential assets, with an initial capital

V (0) and weights w1, w2, ..., wn, such that
∑n

i wi = 1, wiV (0) is the amount invested in

security i for i = 1, 2, ..., n at time t = 0. The number of shares to invest in security i at

time t = 0 is

ni =
wiV (0)

Si(0)
. (15)
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The value of portfolio at time t is

V (t) =

N∑

i=1

niSi(t). (16)

Given the number of shares ni with i = 1, ..., n, the percentage of the portfolio invested in

asset i at time t is

wi(t) =
niSi(t)∑N
i=1 niSi(t)

, (17)

with
∑N

i=1wi(t) = 1. The rate of return of asset i at time t (i.e. over [t−∆t, t]) is given by

Ri(t) =
Si(t)− Si(t−∆t)

Si(t−∆t)
=

Si(t)

Si(t−∆t)
− 1. (18)

The rate of return of portfolio, Rp(t), is then

Rp(t) =
V (t)− V (t−∆t)

V (t−∆t)
. (19)

We can show that the return of portfolio is a linear combination of the returns of individual

assets as follows

Rp(t) =
V (t)

V (t−∆t)
− 1 =

N∑

i=1

niSi(t)∑N
j=1 niSi(t−∆t)

− 1

=
N∑

i=1

niSi(t−∆t)Si(t)∑N
j=1 niSi(t−∆t)Si(t−∆t)

− 1 =
N∑

i=1

wi(t)(Ri(t) + 1)− 1

=
N∑

i=1

wi(t)Ri(t). (20)

Sometimes it is more convenient to use log returns, which are defined for asset i by

ri(t) = ln

(
Si(t)

Si(t−∆t)

)
. (21)

It should be pointed out that for short period of time the log return is approximately equal

to the rate of return

ri(t) = ln

(
Si(t)

Si(t−∆t)

)
= ln(Ri(t) + 1) ≈ Ri(t). (22)

Therefore we do not distinguish between these two returns, as long as the time increment, ∆t,

is short. Going forward we will use daily logarithmic returns. Thus, the return of portfolio,

rp, at time at time t in this case becomes

rp =

N∑

i=1

wiri. (23)
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Expectation and variance of returns: By the linearity property of expected value

operator, the expected return of portfolio, E(rp), is

E(rp) = E

(
N∑

i=1

wiri

)
=

N∑

i=1

wiE(ri) =

N∑

i=1

wiµi = w>µ, (24)

where µi denotes the expected return of asset i and w> = [w1, w2, ..., wn], µ = [µ1, µ2, ..., µn]>.

The variance of the return of portfolio, V ar(rp), is given by

V ar(rp) = E



(

N∑

i=1

wiri − E(rp)

)2

 = E



(

N∑

i=1

wi(ri − E(ri))

)2



= E



(

N∑

i=1

wi(ri − E(ri))

)


N∑

j=1

wj(rj − E(rj))






=
N∑

i=1

N∑

j=1

wiwj E [(ri − E(ri))(rj − E(rj))]︸ ︷︷ ︸
:=σ(ri,rj)

=
N∑

i=1

N∑

j=1

wiwjσ(ri, rj) = w>Σw, (25)

where Σ denotes the covariance matrix of the asset returns, composed of all covariances

between the returns of assets i and j defined as σ(ri, rj). The variance of asset is return,

which constitute the diagonal of the covariance matrix, is σ(ri, ri).

Optimal investment strategy using mean-variance criterion

We consider a portfolio consisting of two assets. The uncertainty is modelled by a probability

space (Ω,F , P ) with a filtration (Ft)t≥0 generated by two-dimensional Brownian motion:

(W, W̃ ). Denote by X(t) and Y (t) the prices of two assets at time t, with dynamics following

cointelation model in (8). The investment behavior is modelled by an investment strategy

h = (h1, h2). Here, hi ∈ [0, 1], i = 1, 2, denotes the percentage of total wealth invested in

i-th asset (see equation (17)). Let h1(t) and h2(t) denote respectively the portfolio weights

for assets X and Y at time t. The holdings are allowed to be adjusted continuously up to a

fixed horizon T .

Denoting by V h
t the value of portfolio at time t associated to a strategy h we have

V h(t) =
h1(t)V h(t)

X(t)
X(t) +

h2(t)V h(t)

Y (t)
Y (t), (26)

with initial wealth V h(t0) = v0. We restrict our considerations to self-financing strategies,

where the value of the portfolio changes only because the asset prices change, i.e. there is
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no inflow or withdrawal of money [9]. In this case the dynamic of the wealth process is

dV h(t) = V h(t)

[
h1(t)

dX(t)

X(t)
+ h2(t)

dY (t)

Y (t)

]
. (27)

Let A1 denote the set of all admissible strategies, h = (h1, h2), satisfying:

(i) Given v0 > 0 the wealth process V v0,h(·) corresponding to w0, h satisfies

V v0,h(t) ≥ 0, 0 ≤ t ≤ T, (28)

(ii) hi(t) ≥ 0 for all i = 1, 2,

(iii)
∑2

i=1 hi(t) = 1.

An investment strategy, h ∈ A1, is called optimal if there exists no other strategy h̃ ∈ A1

such that E(rp(h)) ≥ E(rp(h̃)) and V ar(r(h)) ≤ V ar(r(h̃)) with at least one inequality

being strict (see [11]).

We define a utility function, U(t, h), as in [5]:

U(t, h) = 2τE[rp(t)]− σ2[rp(t)], (29)

where τ ≥ 0 is the risk tolerance coefficient. Then according to [8] we have the following

proposition.

Proposition 1 (Mean-Variance Criterion). Finding an optimal strategy for mean-variance

criteria is equivalent to the utility maximization problem:

max
h(t)

U(t, h) (30)

with constraints

•
∑N

i=1 hi = 1,

• hi ≥ 0 ∀i.

and U(t, h) given in (29).

Thus we have optimization problem in equation (30). From equation (20) we have that

the rate of return of our portfolio, Rp, over [t−∆t, t] is

Rp(t) =
V h(t)− V h(t−∆t)

V h(t−∆t)
=

2∑

i=1

hi(t)Ri(t), (31)

where Ri is the rate of return of individual assets. The log return of our portfolio, rp is given

by

rp(t) = h1r1(t) + h2r2(t), (32)

where ri(t) ≈ Ri(t), as we showed in equation (22).
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Lemma 1. Denote by V h(t) the value of the portfolio corresponding to the admissible strategy

h ∈ A1. Then:

(i) The expectation of portfolio return over [t−∆t, t] is

E(rp(t)) = h1E[rX(t)] + h2E[rY (t)]. (33)

(ii) The variance of portfolio return over [t−∆, t] is

V ar(rp(t)) = h2
1V ar[rX(t)] + h2

2V ar[rY (t)] + 2h1h2Cov[rXrY (t)], (34)

where r(Xt) = ln
(

Xt
Xt−∆t

)
and r(Yt) = ln

(
Yt

Yt−∆t

)
the daily log returns of assets X and Y

and

• E(rX(t)) = (µ − σ2

2 )∆t is the expected return of the asset price X over the horizon

[t−∆t, t];

• E(rY (t)) = [ln
(
aeµ∆t + (Y0 − a)e−κ∆t

)
− ce(2µ+σ2)∆t+de(µ−κ+σηρ)∆t

2(aeµ∆t+(Y0−a)e−κ∆t)2 − ln(Yt−∆t)]−
(Y 2

0 −c−d)e2(η2−κ)∆t

2(aeµt+(Y0−a)e−κ∆t)2 + 1
2 is the expected return of the asset price Y over the horizon

[t−∆t, t];

• V ar(rX(t)) = σ2∆t is the variance of return of asset price X over the horizon [t−∆t, t];

• V ar(rY (t)) = ce(2µ+σ2)∆t

(aeµ∆t+(Y0−a)e−κ∆t)2 + de(µ+σηρ−κ)∆t

(aeµ∆t+(Y0−a)e−κ∆t)2 +
(Y 2

0 −c−d)e2(η2−κ)∆t

(aeµ∆t+(Y0−a)e−κ∆t)2 −1 is the

variance of return of asset price Y over the horizon [t−∆t, t];

• Cov(rX(t)rY (t)) = ln

(
be(µ+σ2)∆t+(X0Y0−b)e(σηρ−κ)∆t

aX0e2µ∆t+(X0Y0−aX0)e(µ−κ)∆t

)
is the covariance of returns of two

asset prices X and Y over the horizon [t−∆t, t].

Proof. See Appendix A

The optimal weights for mean-variance criterion were derived in [17]. We state the

following proposition from [17] applied to the cointelation model (8).

Proposition 2. The optimal solution for the problem in (30) for cointelation model (8) is:

h∗(t) =
1

e′Σ−1(t)e
Σ−1(t)e+ τ

[
Σ−1(t)M(t)− e′Σ−1(t)M(t)

e′Σ−1(t)e
Σ−1(t)e

]
, (35)

with e′ = [1, 1, 1], M(t) = [E(rX(t)), E(rY (t))] and covariance matrix is

Σ(t) =

[
V ar(rX(t)) Cov(rX(t), rY (t))

Cov(rX(t), rY (t)) V ar(rY (t))

]
,

where the expressions for E(rX(t)), E(rY (t)) and V ar(rX(t)), V ar(rY (t)), Cov[rX(t), rY (t)]

are given above.
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Replacing these formulas for expectation, variance and covariance of the returns of asset

prices in equation (35), we get optimal strategies for mean-variance optimization problem.

We will present numerical examples in Section 5.

3.2 Stochastic control for pairs trading

Power utility maximization problem

We now use a stochastic control approach to the power utility maximization problem. Here

we mainly follow [15], but with modified dynamics for asset prices. More specifically, they

assume the price dynamics of one of the assets is a geometric Brownian motion and model

the log-spread as an Ornstein-Uhlenbeck process. We, however, assume the dynamics of

asset prices are governed by the cointelation model in equation (8), where one of the assets

follow the geometric Brownian motion and the second asset mean reverts around the first

one.

Let (Ω,F , P ) be a complete probability space with a filtration (Ft)t≥0 generated by two-

dimensional Brownian motion: (W, W̃ ). We consider the same market as in Subsection 3.1:

two assets which follow the cointelation model (8).

We assume an initial wealth v0 > 0 at time t = 0. Initial wealth is held in a margin

account. For simplicity we assume that the interest rate for margin account is 0, r = 0.

Margin account restricts how much one can short or long. The holdings are allowed to be

adjusted continuously up to a fixed horizon T . The investment behavior is modelled by

an investment strategy π = (π1, π2). Here, πi(t), i = 1, 2, denotes the percentage of total

wealth invested in i-th asset at time t (see equation (17)). Let π1(t), π2(t) be respectively

the portfolio weights for assets X and Y at time t. We only allow pairs trading: short one

of the asset and long the other in equal dollar amount, i.e. π1(t) = −π2(t). In addition, we

restrict our considerations to self-financing strategies.

We define admissible control and controlled process as in [10].

Definition 2 (Control). Given a subset U of R2, we denote by U0 the set of all progressively

measurable processes π = {πt, t ≥ 0} valued in U . The elements of U0 are called control

processes.

Denote by V π(t) the value of portfolio corresponding to strategy π at time t, which is

given by

V π(t) =
π1(t)V π(t)

X(t)
X(t) +

π2(t)V π(t)

Y (t)
Y (t). (36)

The dynamics of the portfolio value V π associated with strategy π = (π1, π2) is given by

dV π(t) = V π(t)

[
π1(t)

dX(t)

X(t)
+ π2(t)

dY (t)

Y (t)

]
(37)

Replacing the dynamics for X(t) and Y (t) into (37) we get:

dV π(t) = V π(t)
[
π1(µdt+ σdW (t))− π1

(
κ

(
X(t)

Y (t)
− 1

)
dt+ ηdW̃ (t)

)]
. (38)
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Lemma 2. Denote Z(t) := X(t)
Y (t) . For the cointelation model (8) we obtain that Z(t) has the

dynamics

dZ(t) = [µ+ η2 − σηρ− κ(Z(t)− 1)]Z(t)dt+ Z(t)(σdW (t) + ηdW̃ (t)). (39)

Proof. By Ito’s quotient rule:

d

(
X(t)

Y (t)

)
=
dX(t)

X(t)

X(t)

Y (t)
− dY (t)

Y (t)

X(t)

Y (t)
+
d〈Y, Y 〉t
Y (t)2

X(t)

Y (t)
− d〈X,Y 〉t
X(t)Y (t)

X(t)

Y (t)
. (40)

Writing this in terms of Z(t) gives

dZ(t) = Z(t)(µdt+ σdWt − κ(Z(t)− 1)dt− ηdW̃ (t) +
η2Y 2(t)

Y 2(t)
dt− σηρdt)

= [µ+ η2 − σηρ− κ(Z(t)− 1)]Z(t)dt+ (σdW (t)− ηdW̃ (t))Z(t), (41)

which proves the lemma.

For each control process π ∈ U0 we rewrite the dynamics of two-dimensional state process,

P = (V π, Z), as follows

dP (t) = a(t, P (t), π(t))dt+ b(t, P (t), π(t))dB(t). (42)

with initial value of P (t0) = p0 and B = (W, W̃ ) being the two-dimensional Brownian

motion. The process P is called the controlled process. Let [t0, T ] with 0 ≤ t0 < T <∞ be

the relevant time interval and define Q := [t0, T )× R2. The coefficient functions

a : Q× U → R2, (43)

b : Q× U → R2×2,

are all continuous. Further, for all π ∈ U let a(·, ·, π) and b(·, ·, π) be in C1(Q). We then

define

Definition 3 (Admissible control). Denoting A2 the set of all admissible controls, we say a

control {π(t)}t∈[t0,T ] will be called admissible if the following conditions hold

(i) ∀k ∈ N the integrability condition

E

(∫ T

t0

|π(s)|kds
)
<∞ (44)

is satisfied,

(ii) the corresponding state process P π satisfies

Et0,p0

(
sup

t∈[t0,T ]
|P π(t)|k

)
<∞,
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(iii) only pairs trading is allowed: short one of the asset and long the other

π1 = −π2. (45)

Since we consider self-financing portfolio, then by equation (45) the dynamics of the state

process, P = (V π, Z), becomes

dV π(t) = V π(t)
[
(π1[µ− κ(Z(t)− 1)])dt+ π1[σdW (t)) + ηdW̃ (t)]

]
, V π(0) = v0,

dZ(t) = [µ+ η2 − σηρ− κ(Z(t)− 1)]Z(t)dt+ [σdW (t)− ηdW̃ (t)]Z(t), Z(0) = z0.

Optimal investment strategy

We assume that an investor’s preference is represented by the power utility function

U(x) =
1

γ
xγ , (46)

with x ≥ 0 and risk aversion parameter γ < 1. Our aim is to maximize the objective

functional J over all admissible controls, i.e. determine an admissible control π(·) such that

for each initial value (t0, v0) the utility functional below is maximized:

J(t0, v0, z0;π) := E [U(V π(T ))|Vt0 = v0, Zt0 = z0] . (47)

The optimization problem is to find ṽ(t, v, z) and π ∈ A2 such that

ṽ(t, v, z) := sup
π(·)∈A2

J(t, v, z, π) = J(t, v, z, π∗). (48)

Consider the function G(t, v, z) such that G ∈ C1,2(Q). The Hamilton-Jacobi-Bellman (HJB)

equation corresponding to the stochastic control problem (48) is

∂G

∂t
(t, v, z) + sup

π∈A2

LπG(t, v, z) = 0, (49)

subject to terminal condition

G(T, v, z) = vγ . (50)

The infinitesimal generator, LπG(t, v, z) in (49) associated with the two dimensional state

process P = (V,Z) is given by

LπG(t, v, z) =
1

2
[π2

1(σ2 − 2σηρ+ η2)v2Gvv + 2π1(σ2 − 2σηρ+ η2)vzGvz +

(σ2 − 2σηρ+ η2)z2Gzz] + [π1[µ− κ(z − 1)]]vGv +

[µ+ η2 − σηρ− κ(z − 1)]zGz. (51)
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Theorem 1. If there exists an optimal control π∗(·) then G coincides with the value function:

G(t, v, s) = ṽ(t, v, z) = J(t, v;π∗).

Using separation ansatz we reduce a 3-dimensional HJB equation in (49) to the following

2-dimensional PDE:

σ̃(γ − 1)fft −
1

2
σ̃2γz2f2

z −
1

2
γ[µ− κ(z − 1)]2f +

1

2
σ̃(γ − 1)z2ffzz −

σ̃γ[µ− κ(z − 1)]zffz + σ̃(γ − 1)[µ+ η2 − σηρ− κ(z − 1)]ffz,

with f(T, z) = 1, (t, z) ∈ [0, T ]× R, ∀z ∈ R, (52)

where σ̃ = σ2 − 2σηρ+ η2.

The issue at this stage is that this PDE does not have a closed for solution. This is

a non standard PDE, which is not high dimensional but is nonlinear which makes using

finite difference methods or any standard numerical methods inadequate. For this reason we

propose to use the ”Deep Galerkin Method” to solve the PDE in (52). Once the solution is

found, we can write the optimal strategy as

π∗1 = − σ̃zGvz + [µ− κ(z − 1)]Gv
σ̃vGvv

= − σ̃z(fzv
γ−1γ) + [µ− κ(z − 1)](fvγ−1γ)

σ̃v(fvγ−2γ(γ − 1))

= − σ̃zfz + [µ− κ(z − 1)]f

σ̃f(γ − 1)
= − zfz

(γ − 1)f
− [µ− κ(z − 1)]

σ̃(γ − 1)
. (53)

See Appendix B for the details.

3.3 Deep learning for solving PDE in stochastic control

Without an analytical solution to the non-standard 2-dimensional PDE in (52), we approxi-

mate the solution with an algorithm ”Deep Galekin Method” (DGM) proposed in [16]. DGM

is a merger of the Galerkin method and deep neural network machine learning algorithm.

The Galerkin method is a popular numerical method which seeks a reduced-form solution

to a PDE as a linear combination of basis functions. The deep learning algorithm, or DGM,

uses a deep neural network instead of a linear combination of basis functions. The algorithm

is trained on batches of randomly sampled time and space points, therefore it is mesh free.

Brief review of DGM

In general case, consider a PDE with d spatial dimensions:

∂u

∂t
(t, x; θ) + Lu(t, x) = 0, (t, x) ∈ [0, T ]× Ω,

u(t, x) = g(t, x), x ∈ ∂Ω,

u(t = 0, x) = u0(x), x ∈ Ω (54)
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where x ∈ Ω ⊂ Rd and L is an operator of all the other partial derivatives. The goal is to

approximate the U(t, x) with deep neural network f(t, x; θ). Here θ ∈ RK are the neural

network parameters. We want to minimize the objective function associated to the problem

(54) which consists of three parts:

1. A measure of how well the approximation satisfies the PDE:

∥∥∥∥
∂f

∂t
(t, x; θ)− Lf(t, x; θ)

∥∥∥∥
2

[0,T ]×Ω,ν1

. (55)

2. A measure of how well the approximation satisfies the boundary condition:

∥∥∥∥
∂f

∂t
(t, x; θ)− g(t, x)

∥∥∥∥
2

[0,T ]×∂Ω,ν2

. (56)

3. A measure of how well the approximation satisfies the initial condition:

∥∥∥∥
∂f

∂t
(0, x; θ)− u(0, x)

∥∥∥∥
2

Ω,ν3

. (57)

Here all three errors are measured in terms of L2-norm, i.e. ‖f(y)‖2Y,ν =
∫
Y |f(y)|2ν(y)dy

with ν(y) being a density on region Y.

The sum of all three terms above gives us the objective function associated with the

training of the neural network:

J(f) =

∥∥∥∥
∂f

∂t
(t, x; θ)− Lf(t, x; θ)

∥∥∥∥
2

[0,T ]×Ω,ν1

+

∥∥∥∥
∂f

∂t
(t, x; θ)− g(t, x)

∥∥∥∥
2

[0,T ]×∂Ω,ν2

+

∥∥∥∥
∂f

∂t
(0, x; θ)− u(0, x)

∥∥∥∥
2

Ω,ν3

. (58)

Thus, the goal is to find a set of parameters θ such that the function f(t, x; θ) minimizes

the error J(f). When the dimension d is large, estimating θ by directly minimizing J(f) is

infeasible. Therefore, one can minimize the error J(f) using a machine learning approach:

stochastic gradient descent, where we use a sequence of time and space points drawn ran-

domly. The algorithm for DGM method is described in Algorithm 1 below.

Remark 1. The learning rate, αn, is a configurable hyperparameter2 used in the training

of neural networks that controls how much to change the model in response to the estimated

error. Each time the model weights are updated. Learning rate has a small positive value,

often in the range between 0.0 and 1.0. Similar to [1], we set α0 = 0.001. Note that our

learning rate αn must decrease with n, see [16], and a simple enough way to do that is by

using an exponential weighted method where αn ← αn−1 ∗ λ with λ ∈ ]0, 1[.

2In machine learning, a hyperparameter is a parameter whose value is set before the learning process
begins whereas, the values of other parameters are derived via training.
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Algorithm 1 Deep Galerkin Method()

Require: Lf(), u(), g()
Ensure: L1

n + L2
n + L3

n is minimized

Generate random points:
1: (tn, xn)← U ∼ [0, 1]2

2: (τn, zn)← U ∼ [0, 1]2

3: wn ← U ∼ [0, 1]
4: sn ← ((tn, xn), (τn, zn), wn)

Calculate the squared error:

5: L1
n ←

(
∂f
∂t (tn, xn; θn)− Lf(tn, xn; θn)

)2

6: L2
n ←

(
∂f
∂t (τn, zn; θn)− g(τn, zn)

)2

7: L3
n ←

(
∂f
∂t (0, xn; θn)− u(0, wn)

)2

8: G(θn, sn)← L1
n + L2

n + L3
n

Take a descent step at the random points:
9: −argmax

θn

G(θn, sn)

10: αn ← αn−1 ∗ λ
11: θn+1 ← θn − αn∇θG(θn, sn)

Repeat until tolerance level 10−8 for convergence criterion is achieved

The neural network (NN) architecture used in DGM is like a long short-term networks

(LSTMs) though with small differences, see [16]. We describe below the architecture of this

NN:
S1 = σ(w1 · x + b1)

Z l = σ(uz,l · x + wz,l · Sl + bz,l) l = 1, . . . , L

Gl = σ(ug,l · x + wg,l · Sl + bg,l) l = 1, . . . , L

Rl = σ(ur,l · x + wr,l · Sl + br,l) l = 1, . . . , L

H l = σ(uh,l · x + wh,l · (Sl �Rl) + bh,l) l = 1, . . . , L

Sl+1 = (1−Gl)�H l + Z l � Sl l = 1, . . . , L

f(t,x, θ) = w · SL+1 + b

with � denoting Hadamard multiplication, L number of layers and σ the activation function.

The rest of the subscript refer to the neurones for our NN architecture of Figures 3 and 4.

Remark 2. We can see the Bird Eye view of the DGM [1, 16] method in Figure 3 and its

details in Figure 4. The rationale is explained in [1, 16].

Testing DGM on Merton problem

The method was tested with several nonlinear, high-dimensional PDEs independently in [1]

and [16], including nonlinear HJB equations. We have tested the DGM algorithm on HJB

equation for the Merton problem ourselves. More specifically, Figures 5 and 6 show the
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plots of the analytical and approximated surface with DGM solution. Figure 7 shows the

difference between analytical and approximate solution. The approximation is good. Most

of the time, the error is between 0% and 1%. The approximate solution does not do as

well around t = 0 (the maximum error of 4% is around t = 0). This corroborates with the

findings in [1].

Solution to our PDE problem using DGM

Recall the PDE we want to solve is given in equation (52). In the absence of a closed form

solution to this PDE we approximate the solution with the DGM algorithm described above.

Figure 8 shows the approximate solution to the PDE in (52) for different parameter values.

Recall, once we have the numerical solution f for the PDE above, we obtain the optimal

weights as following:

π∗1 = − σ̃zGvz + [µ− κ(z − 1)]Gv
σ̃vGvv

= − σ̃z(fzv
γ−1γ)− [µ− κ(z − 1)](fvγ−1γ)

σ̃v(fvγ−2γ(γ − 1))

= − σ̃zfz − [µ− κ(z − 1)]f

σ̃f(γ − 1)
= − zfz

(γ − 1)f
− [µ− κ(z − 1)]

σ̃(γ − 1)
, (60)

with π∗1 = −π∗2.

3.4 Dynamic Switching between optimal strategies of mean-variance and

power utility

Although in the previous two cases we assume that an investor has a certain risk preferences

as modelled by a utility function (MVC and power utility), it is interesting to consider a

limiting case where the investor can be always persuaded to go for more money (identical

utility function U(x) = x, which is essentially the power utility function with risk aversion

parameter γ = 1) when deciding between MVC or power utility.

Assuming that an investors’ preference is modelled either as in equation (29) or as in

equation (46), in order to improve further the portfolio returns we employ dynamic switching

between the two optimal strategies

ψ∗(t) =




π∗(t), if V π∗(t) ≥ V h∗(t),

h∗(t), otherwise,
(61)

where π∗(t) and h∗(t) are given in equations (60) and (35) and V π∗(t) and V h∗(t) are given in

equations (36) and (26). The motivation behind the dynamic switching is that the investor

wants to benefit from both the mean-reversion and the correlation elements of the cointe-

lation model (8). More specifically, as the spread between two assets increases the investor

implements pairs trading and makes profit, otherwise the MVC approach is used.

The portfolio return over investment horizon [0, T ] with T = 1000 days is

R(rp) =
V (0)− V (T )

V (0)
. (62)
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We perform 500 simulations with the same model and present in Table 1 the average re-

sults. The average return at terminal time T obtained by using dynamic switching optimal

strategies is higher than the average returns calculated by employing MVC or power utility

maximizing optimal strategies.

4 Machine Learning formulation of the portfolio optimization

problem

4.1 The portfolio optimization problem

We assume an initial wealth w̃0 > 0 at time t = 0. The investment behaviour is modeled

by an investment strategy w = (w1, w2). Here w1(t), w2(t) denote the percentages of wealth

invested in asset X and Y respectively at time t. Let V (t) denote the portfolio value at time

t and V PnL(t) := V (t) − V (0) denote the profit ant loss (P&L) over [0, t]. At each time

t we allow either pairs trading: w1(t) = −w2(t) or long only strategies without leverage:

w1(t) + w2(t) = 1 with w1(t), w2(t) > 0.

The general optimization problem is to find an optimal strategy, w(t), such that the

terminal P&L is maximized:

w∗(t) = argmax
w(t)∈A

V PnL(w, T ), (63)

where V PnL(w, T ) is profit and loss corresponding to the strategy w at time terminal time

T . We use clustering analysis to device the bands and in each band we solve the following

optimization problem

w∗i (t) = argmax
wi(t)∈A

V PnL(wi, t), (64)

where i = 1, ..., n is the number of bands, V PnL(wi, t) is profit and loss corresponding to the

strategy wi at time t. Then the overall solution w∗ is obtained via a linear interpolation of

optimal weights per band w∗i
The advantage of the proposed method is that we do not impose certain model on the

asset prices. Only data observations are required to calculate the optimal weight, meaning

that the complex SDE calibration is avoided.

4.2 Review of Band-Wise Gaussian Mixture model

We review band-wise Gaussian mixture model because it inspires our method of selecting

the bands. Consider a probability space (Ω,F ,P) and let (Pt)t≥0 denote the asset price.

Mahdavi-Damghani and Roberts [13] has recently introduced a generalised bumping SDE

for the price dynamics of asset Pt. The SDE contains some secondary parameters whose

purpose is empirical manual fitting. The generalized SDE is given by

dPt = θt,τ (µt,τ − Pt)dt+ σPαt (1− P 2
t )βdWt. (65)
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Here θt is the speed of mean reversion, µt is the long term mean, α is the positivity flag

enforcer, β is the [−1,+1] boundary flag enforcer and {⋃ dWi}ti=t−τ is the set of historical

deviations of the assumed model’s distribution (e.g.: all the historical absolute returns in

the context of a normal diffusion).

This generalised SDE gives as a special case the cointelation model: take θ = −µ, µ = 0,

α = 1 and β = 0 for the dynamic of X in (8); take θt,τ = κ, µt,τ = Xt, α = 1, β = 0 for the

dynamics of Y in (8). The SDE in (65) can also model:

• Proportional returns (log-normal diffusion) when θ = 0, α = 1, β = 0.

• Absolute returns (normal diffusion) when θ = 0, α = 0, β = 0,

• Mean reverting returns where we enforce positivity of returns (e.g. CIR [6] diffusion

when α = 1/2 and β = 0),

• Mean reverting returns where we do not enforce positivity of the returns (e.g OU [18]

diffusion when α = 0 and β = 0).

In general calibrating parameters of the SDE in (65) to a real data is complex. Using data

simulated with (65) their empirical distribution is approximated for the purpose of prediction

by a band-wise Gaussian mixture model. This is done for a sequence of bands which are

created using Machine Learning clustering method (see [13]).

Let P = {p1, . . . , pn} be a set of empirical random variables sampled using equation (65)

with cumulative distribution function F (p) and density f(p). Denote O = {p(1), . . . , p(n)}
the ordered set of P such that p(1) < p(2) < . . . < p(n) and

Oih = {p(dn((i−1)+1)/he), . . . , p(bn(i)/hc)}.

Then the band-wise Gaussian mixture model for the empirical distribution function of the

data simulated using the SDE in equation (65) is given as follows:

F̂n(pi|Ft) =
1

n

h∑

j=1

ζ∑

i=η

1
pi∈Ojh

(66)

with η = dn((i− 1) + 1)/he and ζ = bn(i)/hc.
For example in the case bands h = 3, using a Gaussian Mixture such that

F̂n(pi|Ft) = N (−3, 1)1pt∈O1
3

+N (0, 1)1pt∈O2
3

+N (3, 1)1pt∈O3
3
, (67)

we obtain the approximate stratification in Figure 9. The stratification is made so that the

cardinality in each Ojh region remains approximately the same, as opposed to being the result

of a geometrical separation function of p(1) and p(n).

Theorem 1 in [13] ensures a good approximation of the generalised SDE (65) by the

Gaussian mixture model (66). The calibration for the band-wise Gaussian mixture is given

in Algorithm 2.
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For our optimization problem we take a similar approach of dividing the range of obser-

vations into bands via the clustering algorithm, and then perform an optimization in each

band via perturbation of weights.

Algorithm 2 Band-Wise Gaussian Mixture(P, h)

Require: array P1:n and number of bands h
Ensure: Ω(1:h), [B+

(1:h), B
−
(1:h)] are returned.

Sorting state:
1: X(1:h) ← QuickSort(X1:n)

2: [B+
(1:h), B

−
(1:h)] ← FindPercentileBands(X(1:n), h)

3: Ω(1:dn/he) ← []

Allocation state:
4: for j = 1 to h do
5: for i = 1 to n do
6: if B−(1:h) ≤ P(i) < B+

(1:h) then

7: Amend(Ω(j), P(i))
8: end if
9: end for

10: end for

Checking Approximation state:
11: µ̂1:h ← mean(Ω(1:h))
12: σ̂1:h ← stdev(Ω(1:h))
13: Print(∪hi=1N (µ̂i, σ̂i))

Return state:
14: Ω(1:h), [B+

(1:h), B
−
(1:h)]

4.3 Optimal Machine Learning strategy

Based on the idea of band-wise Gaussian mixture model, we use clustering analysis to create

bands, however not for the observed asset price data, but for the spread between two asset

prices in (8), i.e. Xt − Yt. Inside of each band instead of specifying the distribution as in

band-wise Gaussian mixture, we test a set of strategies that maximizes the corresponding

P&L. We record the optimal strategies within each band, and in live trading, whenever the

spread of asset prices falls in a certain band we employ the optimal strategy for this specific

band.

We now present the trading signal that translates to investment strategy in machine

learning approach.

The Bayesian set-up: We set from equation (8) Bt = Xt − Yt and have

Bt = {B+
n,t, B

+
n−1,t, . . . , B

+
1,t, B

1
1,t, . . . , B

−
n−1,t, B

−
n,t},
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such that B+
n,t > B+

n−1,t > . . . > B+
1,t > 0 > B−1,t > . . . > B−n−1,t > B−n,t. We know that

depending on the spread, the resulting approximated distribution of the samples differ [13].

The calibration algorithm will then consist of creating as many zones as possible whilst

and as many strategies as possible within these bands and test how well each strategy is

doing in each band in terms of P&L maximization. We take a direct approach (see Remark

3) consisting of 3 strategies and their cumulative P&Ls. Fixing the bands [ai, bi], with

i = 1, 2, ..., n we consider the following strategies:

• Strategy S++ in which we are long both X and Y at time t in between bands [ai, bi]

and with P&L V ++
[ai,bi],t

.

• Strategy S+− in which we are long X and short Y at time t in between bands [ai, bi]

and with P&L V +−
[ai,bi],t

.

• Strategy S−+ in which we are short X and long Y at time t in between bands [ai, bi]

and with P&L V −+
[ai,bi],t

.

The P&Ls corresponding to these strategies are defined as following:

V ++
[ai,bi],T

=
T∑

t=0

[w++
[ai,bi],t

∆Xt + (1− w++
[ai,bi],t

)∆Yt]1ai<∆t≤bi ,

V +−
[ai,bi],T

=
T∑

t=0

[w+−
[ai,bi],t

∆Xt − (1− w+−
[ai,bi],t

)∆Yt]1ai<∆t≤bi ,

V −+
[ai,bi],T

=

T∑

t=0

[−w−+
[ai,bi],t

∆Xt + (1− w−+
[ai,bi],t

)∆Yt]1ai<∆t≤bi .

Remark 3. We call this approach direct, since ideally the number of strategies should consist

of a more granular weight distribution. However for the sake of comparing with Financial

Mathematics approach we consider the same set of strategies: long only, long/short.

We denote the maximum P&L achieved by each of these strategies by V ∓∓,∗[ai,bi],T
, as given

by equation (68) and define S∗∗[ai,bi],T of P&L V ∗∗[ai,bi],T
(equation (69)), the optimal strategy

using Gaussian Learning in band [ai, bi].

V ∓∓,∗[ai,bi],T
= argmax

w∓∓
[ai,bi],t∈[0,T ]

V ∓[ai,bi],T , w
∓∓
[ai,bi],t

∈ [0, 1] (68)

V ∗∗[ai,bi],T
= max(V ++,∗

[ai,bi],T
, V +−,∗

[ai,bi],T
, V −+,∗

[ai,bi],T
). (69)

In live trading we recombine the optimal weights per bands into an overall optimal solution

via a linear interpolation:

w∗(t) =
n∑

i=1

w∗i 1{(Xt−Yt)∈[ai,bi]}. (70)

Although we do not have a proof that the resulting interpolated strategy in (70) is optimal,

we use it as a benchmark that still improves over the results with Financial Mathematics
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approach. Our goal is to apply Machine Learning approach to a pair of assets that exhibit

some dependence, but this approach can be used for any model, i.e. it is model agnostic.

Algorithm 3 Band-Wise ML for Cointelation(P, h)

Require: array P1:n and number of bands h
Ensure: Ω(1:h), [B+

(1:h), B
−
(1:h)] are returned

Sorting state:
1: P(1:h) ← QuickSort(P1:h)

2: [B+

(1:h
2

)
, B−

(1:h
2

)
] ← FindPercentileBands(P(1:n), h)

3: B(1:h) ← [B+

(1:h
2

)
, B−

(1:h
2

)
]

4: Ω(1:dn/he) ← []

Allocation state:
5: for j = 1 to h do
6: for i = 1 to n do
7: if P(i) ∈ Bi then

8: Amend(Ω(j), P(i))
9: end if

10: end for
11: end for

Optimize the 3 types of P&L for each band:
12: for i = 1 to h do
13: V ++,∗

Bi,T
← argmax

w++
Bi,t∈[0,T ]

V ++
Bi,T

14: V +−,∗
Bi,T

← argmax
w+−
Bi,t∈[0,T ]

V +−
Bi,T

15: V −+,∗
Bi,T

← argmax
w−+
Bi,t∈[0,T ]

V −+
Bi,T

16: end for

Rank and return best strategy for each band:
17: for i = 1 to h do
18: V ∗∗Bi,T ← max(V ++,∗

Bi,T
, V +−,∗

Bi,T
, V −+,∗

Bi,T
)

19: S∗T ← (S++,∗
Bi,T

, S+−,∗
Bi,T

, S−+,∗
Bi,T

)
20: S∗∗Bi,T ← returnCorrespondingStrat(V ∗∗Bi,T , S

∗
T ),

21: end for

Forecasting :
22: signalS , signalSl ← forecast(S∗∗Bi,T , St, Sl,t)

Return buy/sell signals:
23: signalS , signalSl

We further provide Algorithm 3 as the pseudo-code for the calibration process. Note

that in both Algorithms 2 and 3, we have used a QuickSort which can be substituted by

other sorting algorithms. Note that the use of self explanatory functions such as returnCor-
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respondingStrat(x,y) in line 20 of Algorithm 3 which given the set of strategies and the P&L

returns, as its name indicates, outputs the corresponding strategy that maximizes P&L. The

function forecast(x,y,z) in line 22 of Algorithm 3 takes as input the set of trained strategies

and the current level of Xt and Yt and returns a prediction of where the signals for the latter

two should be. Finally the use of the argmax function in lines 13-16 can be replaced by a

simple for loop but in the interest of not making the pseudocode too crowded we have kept

it this way.

Remark 4. In [13] authors show that a reasonable risk manager or trader can assume the

generalized SDE (65) with β = 0 and an α = 1, in order to enforce positivity for the simulated

scenarios of our risk factor. This very reasonable assumption would have crashed the whole

risk engine if it is no longer satisfied in the real markets. The approach we advocate would

have, however, been able to continue its dynamical learning scenario without any problem

since it is model agnostic.

5 Numerical results

Figure 10 illustrates the ML and the DS approaches on one single simulated path. Note

that when implementing the ML approach with a horizon of 1000 days, we double this data

for training, i.e. we use 2000 historical daily prices. We have performed two sets of 500

simulations and we have gathered their results in the following two examples.

Example 1. We have simulated 500 paths of X and Y based on cointelation model (8)

with parameters µ = 0.05, σ = 0.17, η = 0.16, κ = 0.1, ρ = −0.6. Figure 11 illustrates that

the Machine Learning approach with long/short strategies (MLLS), on average performs

slightly better in terms of P&L than the Stochastic Control approach (SC). However, based

on histogram none of the approaches perform significantly better or significantly worse than

the other at any time.

Example 2. We have simulated 500 paths of X and Y based on cointelation model (8) with

parameters µ = 0.05, σ = 0.17, η = 0.16, κ = 0.1, ρ = −0.6. Figure 12 illustrates how the ML

approach seems to perform slightly better in terms of P&L than the FM approach about 55%

of the time, while being outperformed the other 45% of the time. However, based on histogram

we have noticed that sometimes the ML approach is being outperformed significantly more

than it outperforms FM approach.

From histogram of performance in Figures 11 and 12 we have concluded that for param-

eters µ = 0.05, σ = 0.17, η = 0.16, κ = 0.1, ρ = −0.6 of cointelation model (8) we have the

following rankings for the approaches:

SC < MLLS < FM < ML.

The reason for ML with full set of strategies (long only and long/short) outperforming the

DS most of the time might be the fact that in long only optimal strategies of ML approach
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we have more variety in weights, whereas the closed form formula (35) in FM gives us almost

constant weights (with small fluctuations).

Possible directions for future work

Multidimensional case

One direction for future work is to consider portfolio optimization problem for n-dimensional

cointelation model. For instance, when n = 3 we can have something of the following form:

dSat = σSat dW
a
t

dSbt = θ(Sat − Sbt )dt+ σSat dW
b
t (71)

dSct = θ(Sat − Sct )dt+ σSct dW
c
t

One natural question would first be about how to model this triplet? For instance would

equation (72) with Sb and Sc reverting around Sa be more in-line with the pair from equation

(8) or would Sb reverting around Sa and Sc reverting around Sb be better? Are they

equivalent or is one more useful? What happens as n increases? We plan to examine these

questions in the future.

Application to cryptocurrencies

Another direction for future work is to model cryptocurrencies prices with the cointelation

model and construct cryptocurrency indices using the portfolio optimization approaches pro-

posed in this paper. Cryptocurrencies offer a source of alternative alpha, therefore there has

been an emergence of cryptocurrency indices in the recent past with construction method-

ology ranging in the spectrum of Risk Parity to Stochastic Portfolio Theory (SPT). Given

the spectacular volatility of the cryptocurrency market, even though the point of the index

is to reduce the overall volatility, the index position remains fundamentally long. However,

using a combination of beta neutral approach (long/short strategies) with an occasional long

only alternative could be the winning combination for this asset class. For this reason the

cointelation model is an interesting model to use for this application.

Conclusion

We have studied the portfolio optimization problem of two assets that follow the cointela-

tion model using two approaches: Financial Mathematics and Machine Learning. We first

implemented the FM approach, where we use classic financial mathematics criteria: mean-

variance and power utility maximization. Without an analytical solution to the PDE (52),

we resort to the DGM method, a deep learning algorithm, to solve it numerically. The

second approach we implemented is ML using clustering. The latter approach is easier to

implement, it is model agnostic, therefore avoids the complex SDE calibration. In our case

the Machine Learning approach slightly outperforms the Financial Mathematics approach.
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Appendices

A Proof of Lemma 1

Since Xt is a geometric Brownian motion, we have

E[r(Xt)] = (µ− σ2

2
)∆t (72)

where Xt−∆t is a known constant at time t−∆t. The expectation of log return of asset Y is

E[r(Yt)] = E[ln(Yt)]− ln(Yt−∆t), (73)

where Yt−∆t is a known constant at time t −∆t. We use Taylor expansion to approximate

expected value and variance of ln(Yt) and covariance of ln(Yt) and ln(Xt) (see [4], p.165-167):

E[ln(Yt)] ≈ ln (E[Yt])−
σ2[Yt]

2E[Yt]2
, (74)

σ2[ln(Yt)] ≈
σ2[Yt]

E[Yt]2
, (75)

σ[ln(Yt) ln(Xt)] ≈ ln

(
1 +

σ[XtYt]

E[Xt]E[Yt]

)
. (76)

First, we need to derive E[Yt]. From equation (8) we have

Yt = Yt−∆t + κ

∫ t

t−∆t
(Xs − Ys)ds+ η

∫ t

t−∆t
YsdZs. (77)

Taking expectation on both sides we have

E[Yt] = Yt−∆t + κ

∫ t

t−∆t
E[Xs − Ys]ds. (78)

Differentiating on both sides we get

dE[Yt]

dt
= κE[Xt]− κE[Yt] = κXt−∆te

µ∆t − κE[Yt]. (79)

Denoting E[Yt] = y(t) we obtain an ordinary differential equation (ODE):

y′ = −κy + κXt−∆te
µ∆t. (80)

The solution is given by

y(t) = E[Yt] = aeµ∆t + (Yt−∆t − a)e−κ∆t, (81)

where

a =
κXt−∆t

µ+ κ
.
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In order to derive E[Y 2
t ] we first compute E[XtYt]. Applying integration by parts (IBP) to

(8) we get

d(XtYt) = XtdYt + YtdXt + dXtdYt

= κX2
t dt− κXtYtdt+ ηXtYtdWt + µXtYtdt+ σXtYtdZt + σηρXtYtdt. (82)

Thus

XtYt = Xt−∆tYt−∆t + κ

∫ t

t−∆t
X2
sds+ η

∫ t

t−∆t
XsYsdWs +

(µ− κ+ σηρ)

∫ t

t−∆t
XsYsds+ σ

∫ t

t−∆t
XsYsdZs.

Taking expectation and differentiating on both sides

dE[XtYt]

dt
= κE[X2

t ] + (µ− κ+ σηρ)E[XtYt]. (83)

Denoting E[XtYt] = x(t) we obtain ODE

x′ = κE[X2
t ] + (µ+ σηρ− κ)y. (84)

Since Xt is GBM, its second moment is given by

E[X2
t ] = E[X2

t−∆te
(2µ−σ2)∆t+2σWt ] = X2

t−∆te
(2µ+σ2)∆t. (85)

Thus (84) becomes

x′ = κX2
t−∆te

(2µ+σ2)∆t + (µ− κ+ σηρ)y. (86)

Using variation of parameters method we get the solution

x(t) = E[XtYt] = be(2µ+σ2)∆t + (Xt−∆tYt−∆t − b)e(µ−κ+σηρ)∆t, (87)

where

b =
κX2

t−∆t

µ+ σ2 + κ− σηρ.

Now we are ready to compute E[Y 2
t ]. By Itô’s lemma the dynamics of Y 2

t is

dY 2
t = 2YtdYt + (dYt)

2 = (η2 − 2κ)Y 2
t dt+ 2κXtYtdt+ 2ηY 2

t dZt. (88)

Integrating on both sides

Y 2
t = Y 2

0 + 2(η2 − κ)

∫ t

0
Y 2
s ds+ 2κ

∫ t

0
XsYsds+ 2η

∫ t

0
Y 2
s dZs. (89)
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Taking expectation on both sides and and differentiating

dE[Y 2
t ]

dt
= 2(η2 − κ)E[Y 2

t ] + 2κE[XtYt]. (90)

Defining E[Y 2
t ] = z(t) and replacing the value for E[XtYt] form equation (87) we obtain an

ODE

z′ = (η2 − κ)z + 2κbe(2µ+σ2)∆t + 2κ(Xt−∆tYt−∆t − b)e(µ−κ+σηρ)∆t.

Using again variation of parameters we obtain the following solution

z(t) = E[Y 2
t ] = ce(2µ+σ2)∆t + de(µ−κ+σηρ)∆t + (Y 2

t−∆t − c− d)e2(η2−κ)∆t, (91)

with c = 2κb
2µ+σ2−2η2+2κ

and d =
2κ(Xt−∆tYt−∆t−b)
µ−2η2+κ+σηρ

.

Now we are ready to approximate E[ln(Yt)]. From (74) we have

E[ln(Yt)] ≈ ln[E[Yt]]−
E[Y 2

t ]

2E[Yt]2
+

1

2
= ln

(
aeµ∆t + (Yt−∆t − a)e−κ∆t

)
+

1

2

− ce(2µ+σ2)∆t + de(µ−κ+σηρ)∆t

2(aeµ∆t + (Yt−∆t − a)e−κ∆t)2
− (Y 2

t−∆t − c− d)e2(η2−κ)∆t

2(aeµ∆t + (Yt−∆t − a)e−κ∆t)2
(92)

and

E[r(Yt)] = E[ln(Yt)]− ln(Yt−∆t) ≈ ln
(
aeµ∆t + (Yt−∆t − a)e−κ∆t

)
+

1

2
− (93)

ce(2µ+σ2)∆t + de(µ−κ+σηρ)∆t

2(aeµ∆t + (Yt−∆t − a)e−κ∆t)2
− (Y 2

t−∆t − c− d)e2(η2−κ)∆t

2(aeµ∆t + (Yt−∆t − a)e−κ∆t)2
− ln(Yt−∆t)

From (75) we have

V ar[r(Yt)] = V ar[ln(Yt)] ≈
E[Y 2

t ]

E[Yt]2
− 1 =

ce(2µ+σ2)∆t + de(µ+σηρ−κ)∆t

(aeµ∆t + (Yt−∆t − a)e−κ∆t)2
+

(Y 2
t−∆t − c− d)e2(η2−κ)∆t

(aeµ∆t + (Yt−∆t − a)e−κ∆t)2
− 1 (94)

and

V ar[r(Xt)] = V ar[ln(Xt)] = σ2∆t. (95)

From (76) we obtain the covariance:

Cov[r(Xt)r(Yt)] = Cov[ln(Xt) ln(Yt)] ≈ ln
(

E[XtYt]
E[Xt]E[Yt]

)

≈ ln

(
be(2µ+σ2)∆t+(Xt−∆tYt−∆t−b)e(µ−κ+σηρ)∆t

aX0e2µ∆t+(Yt−∆tXt−∆t−aXt−∆t)e(µ−κ)∆t

)
. (96)
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B Dimension reduction of 3-dim HJB (49)

For ease of notation let σ̃ = σ2 − 2σηρ+ η2 and rewrite (49):

Gt + sup
π1

{1

2
(π2

1σ̃v
2Gvv + σ̃z2Gzz + 2π1σ̃vzGvz) +

(π1[µ− κ(z − 1)])vGv + (µ+ η2 − σηρ− κ(z − 1))zGz} = 0. (97)

The first order condition for the maximization is

π∗1σ̃vGvv + σ̃zGvz + [µ− κ(z − 1)]Gv = 0. (98)

Now assuming Gvv < 0 the first order condition is sufficient, yielding

π∗1 = − σ̃zGvz + [µ− κ(z − 1)]Gv
σ̃vGvv

. (99)

Replacing (99) back into (97) yields:

Gt +
1

2
{(σ̃zGvz + [µ− κ(z − 1)]Gv)

2

σ̃2v2G2
vv

σ̃v2Gvv + σ̃z2Gzz

−2
σ̃zGvz + [µ− κ(z − 1)]Gv

σ̃vGvv
σ̃vzGvz}+

[
µ+ η2 − σηρ− κ(z − 1)

]
zGz

− σ̃zGvz + [µ− κ(z − 1)]Gv
σ̃vGvv

[µ− κ(z − 1)] vGv = 0.

Multiplying both sides of equation by σ̃Gvv we get:

σ̃GtGvv +
1

2
(σ̃zGvz + [µ− κ(z − 1)]Gv)

2 − (σ̃zGvz + [µ− κ(z − 1)]Gv)σ̃zGvz

+
1

2
σ̃z2GzzGvv − (σ̃zGvz + [µ− κ(z − 1)]Gv)[µ− κ(z − 1)]Gv

+σ̃[µ+ η2 − σηρ− κ(z − 1)]zGzGvz = 0.

Expanding gives

σ̃GtGvv +
1

2
σ̃2z2G2

vz +
1

2
[µ− κ(z − 1)]2G2

v + σ̃z[µ− κ(z − 1)]GvGvz

−σ̃2z2G2
vz − σ̃z[µ− κ(z − 1)]GvGvz +

1

2
σ̃z2GzzGvv − σ̃z[µ− κ(z − 1)]GvGvz

−[µ− κ(z − 1)]2G2
v + σ̃[µ+ η2 − σηρ− κ(z − 1)]zGzGvz = 0. (100)

Which further simplifies to

σ̃GtGvv −
1

2
[µ− κ(z − 1)]2G2

v +
1

2
σ̃z2GzzGvv − σ̃z[µ− κ(z − 1)]GvGvz

−1

2
σ̃2z2G2

vz + σ̃[µ+ η2 − σηρ− κ(z − 1)]zGzGvz = 0. (101)
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At this stage we were able to turn our four variable PDE into three, but we can get eliminate

one more. For this we consider the following separation ansatz:

G(t, v, z) = f(t, z)vγ , (102)

with the terminal condition

f(T, z) = 1 ∀z. (103)

We compute the derivatives of (102):

Gt = ftv
γ , Gv = fvγ−1γ, Gz = fzv

γ , Gvv = fvγ−2γ(γ − 1),

Gvz = fzv
γ−1γ, Gzz = vγfzz.

Replace derivative back into (101) and divide by v2(γ−1)γ to get

σ̃(γ − 1)fft −
1

2
σ̃2γz2f2

z −
1

2
γ[µ− κ(z − 1)]2f +

1

2
σ̃(γ − 1)z2ffzz −

σ̃γ[µ− κ(z − 1)]zffz + σ̃(γ − 1)[µ+ η2 − σηρ− κ(z − 1)]ffz = 0. (104)

We now have a PDE with only two variables instead of four.
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Criterion Average portfolio return R̂(rp)

MVC 35%
SC 61%
DS 83%

Table 1: Average over 500 simulations of portfolio returns at terminal time T (day 1000)
with dynamic switching (DS) is higher than average portfolio return with only stochastic
control (SC) or only mean-variance-criterion (MVC).
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Figure 1: (Up) Simulated path of cointelation model (8) with ρ = −1, θ = 0.1, σ = 0.01; (Down)

Corresponding measured correlation (7) as a function of the time increment increases

from −1 to 1.

Figure 3: Birds-eye perspective of overall DGM architecture [1].

Figure 4: Operations within a single DGM layer [1]

Figure 5: Analytical solution of the Merton Problem.

Figure 6 Approximate solution of Merton problem using DGM.

Figure 7: Error between analytical and approximate solution of Merton problem.

Figure 8: Approximate solutions to PDE (104) with DGM for four different scenarios of ρ and

µ and fixed σ = 0.2, η = 0.19, γ = 0.5.

(a) Approximate solution with low µ = 0.01 and low ρ = −0.5.

(b) Approximate solution with low µ = 0.01 and high ρ = 0.5.

(c) Approximate solution with high µ = 0.4 and low ρ = −0.5.

(d) Approximate solution with high µ = 0.4 and high ρ = 0.5.

Figure 9: Two examples of Gaussian Mixture Simulations with different number of bands.

(a) Empirical distribution of random variable sampled from cointelation model (8) in

three different zones described in Figure 2.

(b) Empirical distribution of random variable sampled from cointelation model (8) in

five different zones: two additional zones were added to the initial three zones in

Figure 2.

Figure 10: (a) one simulated scenario based on cointelation model (8) with parameters: µ =

0.05, σ = 0.17, η = 0.16, κ = 0.1, ρ = −0.6 and scaled spread: κ(Xt − Yt); (b) portfolio

return and optimal weight of asset X with Dynamic Switching approach; (c) portfolio

return and optimal weight of asset X and Y with Machine Learning approach.

Figure 11: Histogram of excess (P&L) for MLLS vs SC at terminal time T .

Figure 12: Histogram of excess (P&L) for ML vs FM at terminal time T .

Figure 13: In FM approach optimal long/short strategies are more volatile than optimal long only

strategies.

Figure 14: In ML approach optimal long/short strategies are slightly more volatile than optimal

long only strategies.

32



time
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

pr
ic

e

20

40

60

80

100

120

140

S
t

S
l,t

timescale
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ea

su
re

d 
co

rr
el

at
io

n

-1

-0.5

0

0.5

1

measured correlation and its linear interpolation

Figure 1

33



Figure 2

34



w1 · x+ b1

S1

x

D
G

M
Layer

D
G

M
Layer

D
G

M
Layer

SL+1 w · SL+1 + b y

σ

Figure 5.2: Bird’s-eye perspective of overall DGM architecture.

Within a DGM layer, the mini-batch inputs along with the output of the previous
layer are transformed through a series of operations that closely resemble those
in Highway Networks. Below, we present the architecture in the equations along
with a visual representation of a single DGM layer in Figure 5.3:

S1 = σ
(
w1 · x+ b1

)

Z` = σ
(
uz,` · x+ wz,` · S` + bz,`

)
` = 1, ..., L

G` = σ
(
ug,` · x+ wg,` · S` + bg,`

)
` = 1, ..., L

R` = σ
(
ur,` · x+ wr,` · S` + br,`

)
` = 1, ..., L

H` = σ
(
uh,` · x+ wh,` ·

(
S` �R`

)
+ bh,`

)
` = 1, ..., L

S`+1 =
(

1−G`
)
�H` + Z` � S` ` = 1, ..., L

f(t,x;θ) = w · SL+1 + b

where � denotes Hadamard (element-wise) multiplication, L is the total number
of layers, σ is an activation function and the u, w and b terms with various super-
scripts are the model parameters.

Similar to the intuition for LSTMs, each layer produces weights based on the last
layer, determining how much of the information gets passed to the next layer. In
Sirignano and Spiliopoulos (2018) the authors also argue that including repeated
element-wise multiplication of nonlinear functions helps capture “sharp turn” fea-
tures present in more complicated functions. Note that at every iteration the orig-
inal input enters into the calculations of every intermediate step, thus decreasing
the probability of vanishing gradients of the output function with respect to x.

Compared to a Multilayer Perceptron (MLP), the number of parameters in each
hidden layer of the DGM network is roughly eight times bigger than the same
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Figure 5.3: Operations within a single DGM layer.

number in an usual dense layer. Since each DGM network layer has 8 weight ma-
trices and 4 bias vectors while the MLP network only has one weight matrix and
one bias vector (assuming the matrix/vector sizes are similar to each other). Thus,
the DGM architecture, unlike a deep MLP, is able to handle issues of vanishing gra-
dients, while being flexible enough to model complex functions.

Remark on Hessian implementation: second-order differential equations call for the
computation of second derivatives. In principle, given a deep neural network
f(t,x;θ), the computation of higher-order derivatives by automatic differentiation
is possible. However, given x ∈ Rn for n > 1, the computation of those derivatives
becomes computationally costly, due to the quadratic number of second derivative
terms and the memory-inefficient manner in which the algorithm computes this
quantity for larger mini-batches. For this reason, we implement a finite difference
method for computing the Hessian along the lines of the methods discussed in
Chapter 3. In particular, for each of the sample points x, we compute the value of
the neural net and its gradients at the points x + hej and x − hej , for each canon-
ical vector ej , where h is the step size, and estimate the Hessian by central finite
differences, resulting in a precision of order O(h2). The resulting matrix H is then
symmetrized by the transformation 0.5(H +HT ).
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