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1Exploiting abstra
tionsin 
ost-sensitive abdu
tive problem solvingwith observations and a
tionsGianlu
a Torta a;�, Lu
a Anselma a andDaniele Theseider Dupr�e baDipartimento di Informati
a, Universit�a diTorinoCorso Svizzera 185, 10149 Torino (Italy)E-mail: ftorta,anselmag�di.unito.itbDiSIT, Universit�a del Piemonte OrientaleViale Teresa Mi
hel 11, 15121 Alessandria (Italy)E-mail: dtd�di.unipmn.itSeveral explanation and interpretation tasks, su
h asdiagnosis, plan re
ognition and image interpretation,
an be formalized as abdu
tive and 
onsisten
y rea-soning. The interpretation task is usually exe
uted forthe purpose of performing a
tions, e.g., in diagnosis,repair a
tions or therapy. Some proposals address theproblem based on a task-independent representationof a domain whi
h in
ludes an ontology or taxonomyof hypotheses and observations. In this paper we relyon the same type of representation, and we point outthe role of abstra
tions in an iterative abdu
tion pro-
ess. At ea
h iteration, as in model-based diagnosis andtroubleshooting, our algorithm 
hooses to perform fur-ther observations or a
tions taking into a

ount their
osts and the likelihood of 
andidate hypotheses. Themain goal of the algorithm is to ensure dis
riminationamong hypotheses and, more importantly, to performthe appropriate a
tions for the 
ase at hand. We dis-
uss an implementation of the proposed method andreport experimental results that support the 
on
lu-sion that abstra
tions are indeed useful for the 
onsid-ered task.Keywords: Abdu
tion, Abstra
tion, A
tions, Costs1. Introdu
tionSeveral explanation and interpretation tasks,su
h as diagnosis, plan re
ognition and image in-*Corresponding author: Gianlu
a Torta, Corso Svizzera185, 10149 Torino (Italy).

terpretation, 
an be formalized as abdu
tive rea-soning or related forms of nonmonotoni
 reason-ing. A number of approa
hes [4,14,7,17,2℄ addressthe problem based on a representation of a do-main whi
h in
ludes an ontology or taxonomy ofhypotheses.However, explanation or interpretation is usu-ally an intermediate step to a �nal goal, whi
h isperforming a
tions, su
h as repair or therapy indiagnosis, or rea
ting to the re
ognized plan, inplan re
ognition. In some 
ases, su
h a
tions arealso needed, or, at least, useful, for dis
riminatingamong alternative explanations during the expla-nation/interpretation pro
ess itself (e.g., trying arepair a
tion would either solve the problem or atleast provide the information that the 
orrespond-ing hypothesis is not the 
orre
t one).Ontologies have been proposed as the basis forlarge knowledge bases to be used also for otherproblem solving tasks (in
luding planning, see [21,11℄), but, as noted in [6℄, they should be sharedamong di�erent problem solvers for related tasks;therefore, they should be developed independentlyof the reasoning task1: i.e., their stru
ture shouldre
e
t a natural representation of the domain, butit might not dire
tly provide the best stru
ture fordiagnosis, interpretation, or planning and a
ting.In this paper we propose a novel approa
h wherea similar representation is adopted in the 
ontextof an iterative abdu
tion pro
ess where:{ further observations or a
tions (e.g. substitut-ing a suspe
t 
omponent in the system), as inmodel-based diagnosis [12℄ and troubleshoot-ing [13℄, 
an be proposed with the interme-diate goal of dis
riminating among 
andidateexplanations and the ultimate goal of per-1In perspe
tive, a shared ontology for di�erent reasoningtasks may be available on the Web.AI Communi
ationsISSN 0921-7126, IOS Press. All rights reserved
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tions in 
ost-sensitive abdu
tive problem solvingforming a
tions that are appropriate for the
ase at hand. A
tions may be interleaved withobservations [10℄.{ The 
osts of observations are balan
ed withredu
ed 
osts of the a
tions performed forsolving the problem.The 
osts asso
iated with the results of abdu
-tion, in a diagnosti
 setting, 
orrespond to the 
ostof repair a
tions or therapy, and are expe
ted tode
rease as long as more information is availableon the hypotheses; similarly, in a plan re
ognitionor in an interpretation task, the human or soft-ware agent using the results should a
hieve an ad-vantage from a better dis
rimination of hypothe-ses or from more spe
i�
 hypotheses, leading to amore fo
used a
tion, possibly with redu
ed 
osts| e.g., if hypotheses are threats to the agent with
ostly defense a
tions. In all settings, we intendthat some a
tions have to be taken based, in gen-eral, on the remaining 
andidate hypotheses. If theset of 
andidates is too broad or too abstra
t, theagent is expe
ted to in
ur into higher a
tion 
ostsdue to (a 
ombination of) the following reasons:{ an a
tion whi
h is stronger than ne
essary istaken, in order to a

ount for all 
urrent pos-sibilities;{ unne
essary a
tions are taken, e.g., repairingthe wrong part, taking the wrong therapy, de-fending from the wrong threat.The di�erent issues are related: dis
riminationmay be performed among hypotheses at the samelevel of abstra
tion, but it 
ould also involve re-�ning hypotheses. In any 
ase, dis
rimination re-quires more observations, whose 
ost should bebalan
ed with the bene�ts, in terms of more suit-able a
tions, of better dis
rimination.The presen
e of a domain representation withIS-A abstra
tions has a signi�
ant impa
t on thistrade-o�. The 
ost of observing the same phe-nomenon at di�erent levels of abstra
tion is ex-pe
ted to vary signi�
antly; in fa
t, it may rangefrom subje
tive information from a human (pa-tient or user) to more or less 
ostly medi
al or te
h-ni
al tests, or, in an image interpretation task, itmay involve 
omputationally 
omplex image pro-
essing, to be performed intera
tively with the rea-soning task, as suggested in [15℄. Note that, in any
ase, the presen
e of abstra
tions should not pre-vent in general the ability to exploit detailed ob-servations and knowledge when 
onvenient [24℄.

In several settings, an observation whi
h is itselfexpensive, be
ause it 
onsumes resour
es and timeto be performed, implies additional 
osts due tothe delay before taking an a
tion: breakdown 
ostsin diagnosing a physi
al system, risk of death ofthe patient in medi
al diagnosis, taking defensivea
tions too late, missing the opportunity of earn-ing money. Note that similar drawba
ks result, atleast in some s
enarios, from time spent in 
om-puting an optimal or near-optimal solution, withrespe
t to performing a suboptimal a
tion earlier.Moreover, if the knowledge base has been de-signed independently of the explanation/a
tiontask (e.g., diagnosis and repair), it 
ould in
ludea detailed des
ription of the domain whi
h is notne
essary for the task; more generally, the useful-ness of a detailed dis
rimination may depend onthe spe
i�
 
ase at hand.Finally, human problem solvers have knowledgeand are able to reason on abstra
t a
tions, su
has \taking an antibioti
 therapy" if the leadinghypothesis is \ba
terial infe
tion", and evaluatingtheir 
osts in a broad sense, for example in
ludingside e�e
ts, without ne
essarily reasoning on spe-
i�
 instan
es. Of 
ourse, an abstra
t a
tion 
an-not be exe
uted dire
tly, but abstra
t knowledgemay be used to 
onsider it as a 
andidate \nextstep" before 
ommitting to a spe
i�
 instan
e.The main expe
ted bene�t in expli
itly 
onsider-ing abstra
tions in the iterative abdu
tion pro
essis a signi�
ant redu
tion of the 
omputational 
ostof de
iding what to do next (observe or performan a
tion? whi
h observation or a
tion?), withoutsigni�
antly in
reasing the total 
ost of the obser-vations and a
tions performed to solve the prob-lem.In the following, we �rst des
ribe the knowledgewe expe
t to be available and de�ne the 
on
eptof explanation of a set of observations in generalterms. Then, we des
ribe a spe
i�
 syntax for ex-pressing the knowledge (based on 
ausal graphs)and asso
iate a pre
ise semanti
s with su
h syntaxin terms of propositional logi
. The syntax and theasso
iated semanti
s des
ribed in the paper are byno means the only possible 
hoi
e; however theymake the generi
 notion of explanation more 
on-
rete for illustrative purposes, and they are usedfor building an implementation of the method.In the subsequent se
tions we des
ribe a basi
iterative abdu
tive problem solving loop and we
on
entrate on the exe
ution of a
tions and their
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ost-sensitive abdu
tive problem solving 3estimated 
osts, and on the 
riterion for sele
tingthe next step in the loop: either performing a fur-ther observation at some level of detail, or an ab-stra
t or 
on
rete a
tion. Then, we des
ribe thekey points of our implementation of the methodand present experimental results whi
h 
on�rmthe expe
tations about the advantages of using ab-stra
t hypotheses and a
tions.For the same purpose of making the framework
on
rete, in the problem solving loop we assumethat a
tions are \repair" a
tions, in the sense that,as in most forms of diagnosti
 problem solving,they make a 
orresponding hypothesis false, i.e.,they remove the 
ause of the problem (as far as
auses are modeled in the domain), while obser-vations are eviden
e of the problem. In other set-tings, e.g., plan re
ognition, the purpose of thea
tion, to be 
hosen appropriately for the situa-tion (whi
h 
an only be assessed through hypo-theti
al reasoning), may be di�erent from makingthe hypothesized situation false. However, also inthese settings performing an a
tion is at least use-ful (like performing further observations) to 
on-�rm or dis
on�rm the 
orre
tness of the hypothe-sis, even though 
omputing the predi
ted e�e
ts ofperforming the a
tion may be di�erent from \re-moving symptoms if the hypothesis was 
orre
t",as in the 
on
rete framework des
ribed in the pa-per.2. Domain Representation2.1. Hierar
hiesThe basi
 elements of the domain model are aset of abdu
ibles (i.e., assumptions, hypotheses)A = fA1; : : : ; Ang and a set of manifestations(i.e., observables) M = fM1; : : : ; Mmg.Ea
h abdu
ible Ai is asso
iated with an IS-Ahierar
hy �(Ai) 
ontaining abstra
t values of Aias well as their re�nements at multiple levels; sim-ilarly, ea
h manifestation Mj is asso
iated with anIS-A hierar
hy �(Mj).We assume that the dire
t re�nements v1; : : : ; vqof a value V in a hierar
hy (either �(Ai) or �(Mj))are mutually ex
lusive, i.e., the � hierar
hies aretrees; moreover, in a given situation, exa
tly oneground instan
e (i.e., leaf) of ea
h manifestationMj is true while, for ea
h abdu
ible Ai, eitherone ground instan
e is true (i.e., the abdu
ible is

present) or none of them is true (i.e., the abdu
ibleis not present). The assumption that there is al-ways a true leaf for ea
h manifestationMj is madejust for 
onvenien
e, so that in
reasing our knowl-edge about manifestations 
an always be viewedas a re�nement of the previous knowledge; 
learly,knowing that the root of a manifestation hierar
hy�(Mj) is true represents 
omplete la
k of knowl-edge about Mj (see se
tion 3).The overall goal of our problem solving pro
essis to perform a
tions that remove all of the ab-du
ibles whi
h are present in a given situation atan (approximately) minimum 
ost.The abdu
ibles set vals(Ai ) of an abdu
ible Aiis the set of all of the elements of the hierar
hy�(Ai), while gndvals(Ai ) is the subset of vals(Ai )
ontaining only ground abdu
ibles, i.e., the leavesof hierar
hy �(Ai). The de�nition of set vals (resp.gndvals) 
an be extended to a set of abdu
iblesby taking the union of the vals (resp. gndvals) ofea
h abdu
ible in the set; we also de�ne set vals(resp. gndvals) for an abdu
ible value � belong-ing to the hierar
hy �(Ai) by 
onsidering only thevalues (resp. ground values) belonging to the sub-hierar
hy �(�) of �(Ai) rooted at �.The sets vals and gndvals are de�ned for mani-festations Mj in the same way as for abdu
ibles.We assume that an a-priori probability p(a) isgiven for ea
h leaf value a of an abdu
ible A: infa
t, we assume that di�erent abdu
ibles are inde-pendent. Instead, the probability of an inner nodeis de�ned as the sum of the probabilities of its di-re
t re�nements (whi
h, as said before, are mutu-ally ex
lusive).We also asso
iate 
osts with the (ground) valuesof abdu
ibles and the (abstra
t) values of manifes-tations.The 
ost of a ground abdu
ible value representsthe 
ost of the a
tion needed to remove (e.g., re-pair) it; in general, su
h a 
ost may depend on the
urrent status of the world, however, in this pa-per we assume that for ea
h leaf value a of an ab-du
ible, a 
ost r
(a) is assigned, independently ofthe 
urrent hypotheses.As for the manifestations, let ! be an inter-nal value belonging to the IS-A hierar
hy of Mj(i.e., ! 2 vals(Mj)ngndvals(Mj)); its 
ost o
(!)is the 
ost of making the observation whi
h re�nesthe value ! into one of its 
hildren !1; : : : ; !q in�(Mj).
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tions in 
ost-sensitive abdu
tive problem solving2.2. Explanatory KnowledgeThe hypotheses spa
e S(A) is the set of all ofthe 
ombinations 
 = f�1; : : : ; �rg of values drawnfrom zero or more distin
t hierar
hies �(Ai) (i.e.,we allow the presen
e of multiple abdu
ibles atthe same time) and, similarly, the observationsspa
e S(M) is the set of all of the 
ombinations� = f!1; : : : ; !mg of values drawn from ea
h of thedistin
t hierar
hies �(Mj). In the paper, 
 will bereferred to as a 
andidate explanation (
andidatefor short) and � as an observation.If 
 and 
A are two 
andidates with the samenumber r of abdu
ible values, and ea
h value�i 2 
 is a (possibly improper) re�nement of avalue �A;i 2 
A a

ording to the IS-A hierar
hiesof abdu
ibles, then we say that 
A is an abstra
-tion of 
 and, 
onversely, that 
 is a re�nement of
A. A similar relationship 
an be de�ned betweentwo observations � and �A, by taking into a

ountthe IS-A hierar
hies of manifestations.The relationship between abdu
ibles and man-ifestations is de�ned by the explanatory domainknowledge KE � S(A) � S(M). Given an obser-vation � 2 S(M) and a 
andidate 
 2 S(A), thefa
t that (
; �) 2 KE means that � is a possi-ble observation 
orresponding to 
andidate 
 (and,
onversely, that 
 is a possible explanation for �).Our de�nition of KE as a relation between setsS(A) and S(M) does not imply that su
h a rela-tion should be represented extensionally and thatthe reasoning algorithms should dire
tly manipu-late su
h an extensional representation. In general,KE will be spe
i�ed intensionally with a multi-valued propositional or 
ausal model whose seman-ti
s 
orresponds to the extensional enumeration ofthe tuples in KE (in the next se
tion we dis
ussthe intensional representation to whi
h we will re-fer in this paper). Moreover, also the reasoning in-volving KE may take pla
e at the synta
ti
 level,e.g., as propositional or 
ausal inferen
e.Given the above de�nition of KE , the set � of
andidate explanations (
andidate set) for an ob-servation � 2 S(M) is:� = f
 2 S(A) : (
; �) 2 KEgAn important issue is that there may be too manyground explanations of the given observations.This problem may be solved mu
h more eÆ
ientlythanks to the presen
e of abstra
tions in the modeland, in parti
ular, to the fa
t that abstra
t as well

as ground abdu
ibles may take part in explana-tions.A general 
riterion whi
h is suitable in this settingis the preferen
e for least presumptive explanations[18℄, whi
h generalize minimal (wrt set in
lusion)explanations, in order to avoid both unne
essaryassumptions, when a subset of assumptions is suÆ-
ient to explain the observations, and assumptionsthat are unne
essarily spe
i�
, when a less spe
i�
assumption is suÆ
ient. An explanation 
 is morepresumptive than another explanation 
0 if (alsobased on the IS-A hierar
hies �(Ai)) 
 implies 
0.Guaranteeing that a set of explanations is theset of least presumptive explanations is, in general,
omputationally 
omplex; in the following, we justrequire that the sets of 
andidate explanations �
omputed during the problem solving pro
ess donot 
ontain explanations that are more presump-tive than other members of �.3. A Causal Graph Representation FormalismIn Figure 1 we show a fragment of a �
titiousmedi
al domain model, where we have adopted a
ausal graph formalism inspired by [7℄. In this se
-tion we des
ribe the formalism and relate it to theexplanation knowledge KE through its semanti
s.3.1. Representation FormalismWe des
ribe the formalism (whi
h should befairly intuitive) through the example of Figure 1.On the left, there is the nosologi
al des
ription ofsome diseases, represented as three IS-A hierar-
hies of abdu
ibles (with roots D1 , D2 , and D3).For example, D1 :1 and D1 :2 are two re�nementsof D1 . The a-priori probabilities of the leaves ofabdu
ibles (not shown in the �gure) are assumedto be 128 , ex
ept for p(D1 :1 ) = 127 . The 
osts r
 ofthe a
tions that remove the ground abdu
ibles areshown in the �gure.On the right, there are possible symptoms andpossible medi
al examinations (lab tests) to beperformed, represented as three IS-A hierar
hies ofmanifestations (with roots Sym1 , LT1 , and LT2 ).Observation 
osts o
 asso
iated with ea
h internalnode of manifestation hierar
hies are the 
osts ofperforming the related laboratory test (we assumethat the 
ost of observing the presen
e of symp-toms su
h as Sym1 is 0).
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D1

D1.1 D1.2

D1.2.1 D1.2.2

rc=4 rc=4

D2

D2.1 D2.2

rc=6 rc=8

D3

rc=15

LT1

LT1NegLT1Pos

LabTest1+ LabTest1++

oc=2

oc=8

LT2

LT2NegLT2Pos

oc=8

oc=12

LT2+ LT2++

Sym1Pres

Sym1

Sym1Abs

rc=8

Fig. 1. A (�
titious) medi
al domain model.The relationships between abdu
ibles and man-ifestations are represented by rightwards dashedarrows. For example, D1 
auses LT2 to be posi-tive; D1 :2 
auses LT1 to be positive, and its re-�nements D1 :2 :1 and D1 :2 :2 
ause more spe
i�
positive values of LT1 .3.2. Propositional Semanti
sIn order to map the graph-based formalismadopted in our example to the explanatory knowl-edge KE , we interpret the graph as a propositionaltheory TE ; the tuples of KE will then be straight-forwardly obtained from the logi
al models thatsatisfy su
h a theory (see se
tion 3.3).First of all, ea
h value in a hierar
hy �(Ai) or�(Mj) is mapped to a propositional variable. Ifvalue V has 
hildren v1; : : : ; vq in a hierar
hy, anatural representation in TE would be:V , v1 _ : : : _ vq8i 6= j:(vi ^ vj) (1)expressing the fa
t that an abstra
t value V 
anbe re�ned in exa
tly one of its 
hildren v1; : : : ; vq ,whi
h is what we stated in our dis
ussion in se
-tion 2.1.However, our aim in de�ning TE is to be ableto map its (2-valued) logi
al models as dire
tly aspossible to 
andidate explanations; in this respe
t,

the problem with the above translation is that inea
h logi
al model of formulas (1) where V is true,also one 
hild vi must be true while, for the pur-pose of 
omputing explanations, we want to allow
andidates where none of the 
hildren is true, i.e.,where V alone is an (abstra
t) explanation.Consider, e.g., the graph of Figure 1 and assumethat we know that LT1Pos is true; we would like tohave an explanation where D1 :2 is true but noneof its 
hildren D1 :2 :1 and D1 :2 :2 is true, to avoid
ommitment.In order to handle this issue, for ea
h internalvalue V of ea
h hierar
hy, we add a variable ukVto represent expli
itly, in a 2-valued model, thefa
t that it is unknown whi
h re�nement of V istrue. If value V has 
hildren v1; : : : ; vq , instead offormulas (1), the following formulas are added toTE : V , v1 _ : : : _ vq _ ukV8i 6= j:(vi ^ vj); 8i:(vi ^ ukV ) (2)Note that this translation is not intended as a gen-eral, logi
ally satisfa
tory approa
h to the logi
 ofknowledge; its purpose is to have abstra
t explana-tions as 2-valued propositional interpretations (seese
tion 5.1).The relationships between abdu
ibles and man-ifestations are translated as follows, adapting the
ompletion semanti
s of abdu
tion des
ribed in [8℄to take into a

ount the fa
t that abstra
t assump-



6 G. Torta et al. / Exploiting abstra
tions in 
ost-sensitive abdu
tive problem solvingtions may not be predi
tive enough to entail ob-servations [14℄. Let ! be a value in a manifesta-tion hierar
hy �(M), su
h that in the 
ausal graphthe abdu
ible values �1; : : : ; �k point to ! through
ausal arrows (note that �1; : : : ; �k are, in gen-eral, values belonging to di�erent abdu
ible hier-ar
hies). Moreover, let �1; : : : ; �l be abdu
ible val-ues that point to possibly not distin
t an
estors!1; : : : ; !l of !, su
h that none of the des
endantsof ea
h �i points to ! or an an
estor of ! below!i. Then, we add the following formulas to TE :�1 _ : : : _ �k ) !! ) �1 _ : : : _ �k _ �1 _ : : : _ �l (3)Note that, if for a manifestation value ! there areno �is and no �js satisfying the above 
onditions,we do not add any formula. In other words, ! isinterpreted as a value whi
h is 
onsistent with anyabdu
ible value �, as far as � does not expli
itlypredi
t a value !0 su
h that ! and !0 are mutu-ally ex
lusive a

ording to formulas (2). In Fig-ure 1, this role is played by Sym1Abs , LT1Neg andLT2Neg , whi
h do not have any in
oming 
ausalar
.Let us 
onsider some examples from the model ofFigure 1. Two abdu
ible values point to LT2Pos ,namely D1 and D2 ; sin
e no abdu
ible valuepoints to the (only) an
estor LT2 of LT2Pos (i.e.,there are no �is in formula (3)), we add the fol-lowing formulas:D1 _ D2 ) LT2PosLT2Pos ) D1 _ D2A

ording to the �rst formula, if LT2Pos is false,then also D1 and D2 are false, i.e., neither D1 ,nor D2 , nor any re�nements of su
h diseases 
anbe explanations. If, on the other hand, LT2Pos isobserved to be true, then, a

ording to the se
ondformula, either D1 or D2 must be true; in turn,this may be due to, e.g., the fa
t that the re�ne-ment D1 :2 of D1 is true but, as dis
ussed above, itmay also be the 
ase that ukD1 is true, i.e., we donot need to 
ommit to any parti
ular re�nementof D1 in order to explain LT2Pos .Let us now 
onsider a more 
omplex example,where the �is of formula (3) are involved. The onlyabdu
ible value pointing to LT2+ is D2 :1 ; how-ever, D1 points to the an
estor LT2Pos of LT2+;therefore we add the following formulas:D2 :1 ) LT2+LT2+) D2 :1 _ D1

The se
ond formula states that if LT2+ is true,then D2 :1 or D1 must be true: the �rst one, be-
ause it dire
tly 
auses LT2+; the se
ond one be-
ause it 
auses the an
estor LT2Pos of LT2+ andits des
endants do not predi
t more spe
i�
 values.In this way, although the abdu
ible hierar
hyof D1 predi
ts the value of manifestation LT2 ata 
oarser level of granularity than the abdu
iblehierar
hy of D2 , we still allow D1 to explain some�ne-grained values of LT2 , su
h as LT2+.Adopting the hierar
hi
al formulas (2) with ukVvariables has the bene�t of allowing abstra
t ex-planations, as dis
ussed above, but it also weakensthe theory TE . In parti
ular, let us assume thatan observation value ! is not unknown (i.e., oneof its 
hildren !j is known to be true), and thata 
hild �i of an abdu
ible value � points to oneof the other 
hildren !h of !, h 6= j. A

ording toformulas (2), it may still be possible that uk� istrue, i.e., that � is an abstra
t explanation of !j .We would like to avoid � being an explanation of!j when (at least) one of its 
hildren, namely �i,is 
ertainly not true. To this end, we add to TE theformula::uk! ) (:!h ) :uk�) (4)The formula says that, unless the value of ! isunknown, if value !h is false then abdu
ible value� is not unknown, i.e., � 
annot be an (abstra
t)explanation.To illustrate this point, let us 
onsider valueLT1 in Figure 1, and let us assume that we haveex
luded its 
hild LT1Pos by observing LT1Neg .Thanks to the presen
e of the formula::ukLT1 ) (:LT1Pos ) :ukD1 )the manifestation value LT1Neg 
annot be ex-plained by D1 alone, although it 
an still be ex-plained by one of its re�nements, namely D1 :1 .3.3. Mapping to the Explanatory KnowledgeOn
e the theory TE has been generated from the
ausal graph, its logi
al models are easily mappedto an explanatory knowledge KE � S(A) � S(M)as de�ned in se
tion 2.2.Let � = f!1; : : : ; !mg be any observation. Start-ing from theory TE , we want to de�ne the portionKE(�) of KE whi
h 
ontains the explanations of�. To this end, we start by 
onsidering the propo-sitional theory:
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tive problem solving 7TE(�) = TE [ f!1 ^ : : : ^ !mgwhi
h asserts observation � = f!1; : : : ; !mg in TE .Let us denote asM(�) a logi
al model of TE(�),and restri
t it to a partial modelM(�)A whi
h as-signs truth values only to the variables asso
iatedwith abdu
ibles:M(�)A =MA1 [ : : : [MAnwhere MAi is a truth assignment to ea
h variablein vals(Ai ). Note that M(�)A does not 
ontainthe truth assigments to the unknown variables uk�asso
iated with the abdu
ible values.From ea
h model M(�)A we 
an derive exa
tlyone 
andidate 
 as follows:{ if MAi assigns false to ea
h variable, thennone of the values vals(Ai ) of abdu
ible Aibelongs to 
;{ otherwise, let �i be the most spe
i�
 value ofAi su
h that MAi assigns true to �i; then �ibelongs to 
.The 
andidate derived from M(�)A as we havejust explained is denoted as 
(M(�)A).The relation KE(�) 
ontaining the explanationsof � is thus de�ned as:KE(�) = f(
; �) j 9M(�)A : 
 = 
(M(�)A)gi.e., the explanations of � are the 
andidates de-rived from the (partial) models M(�)A of TE(�).Finally, KE itself is de�ned as the union ofKE(�) for ea
h possible observation �. As statedbefore, our purpose is not that of expli
itly enu-merating all of the tuples of relation KE , whi
hwould be infeasible for all but the smallest domainmodels. Instead, the above dis
ussion implies thatwe 
an 
ompute the explanations of any observa-tion � by dire
tly manipulating the propositionaltheory TE .Let us 
onsider again an example from themodel of Figure 1. We may ask whether, a

ordingto the above de�nitions, 
andidate 
 = fD1 :2gis an explanation of observation � = fSym1Pres ;LT1 ; LT2g, i.e., whether (fD1 :2g; fSym1Pres;LT1 ; LT2g) 2 KE .It is easy to see that the propositional seman-ti
s of the graph in
ludes a logi
al model wherethe only abdu
ible variables that are true areD1 , D1 :2 and ukD1 :2 , while the true manifesta-tion variables are Sym1Pres , LT1 , LT1Pos , LT2 ,LT2Pos plus other unknown variables and vari-ables asso
iated with their re�nements.

input: a set of values '̂ = f!̂1; : : : ; !̂mgrepresenting the initial observations' := '̂� := [℄generate a set � of 
andidates 
 whi
h explain '̂loopif � = f;g then exit� := f� j 9
i 2 � : � 2 
ig� := ChooseNextStep(�, ', �)� := � � �if � = ! 2 '(', �) := Observe(', �, �, !)elseif � = � 2 �(', �) := Remove(', �, �, �)endifendFig. 2. Main loop of the troubleshooting algorithm.Clearly, if � = fSym1Pres ; LT1 ; LT2g, thisis also a logi
al model M(�) of TE(�) = TE [fSym1Pres; LT1 ; LT2g. Let us now 
onsider therestri
tionM(�)A ofM(�) to the A variables; byeliminating all the assignments to uk and mani-festation variables,M(�)A assigns true just to ab-du
ible variables D1 and D1 :2 , both belonging tothe portion MD1 of M(�)A.From the rules for deriving a 
andidate 
 fromM(�)A, it follows that 
(M(�)A) = fD1:2g, so we�nally 
on
lude that (fD1 :2g; fSym1Pres; LT1 ;LT2g) 2 KE .From this example, we easily see that fD1 :2g isalso an explanation for, e.g., fSym1Pres; LT1Pos ;LT2g or fSym1Pres ; LT1Pos ; LT2Posg, wheremore re�ned observation values have been in
ludedinto the observation � that we want to explain.4. Method Des
ription4.1. Troubleshooting AlgorithmThe algorithm shown in Figure 2 illustrates theoverall approa
h to troubleshooting with abstra
-tions we propose in this paper.We de�ne ' = f!1; : : : ; !mg as the 
urrentfringe over the manifestations, 
ontaining the mostspe
i�
 values !j known to be true so far for man-ifestations Mj , j = 1; : : : ;m.Sin
e we assume that at least one ground value of
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tive problem solvingea
h manifestation is true in ea
h situation, if wedo not have any information about the value of amanifestation Mj , its value in ' is the root of thehierar
hy for Mj , i.e., !j = root(�(Mj )); other-wise, !j may be a more spe
i�
 value in vals(Mj ).An initial fringe '̂ of observations is given andthe fringe is updated as the problem solving pro-
ess goes on. We also initialize the sequen
e �of observations/a
tions performed so far to theempty sequen
e [℄. The sequen
e � will be usefulfor ignoring a
tions that have already been per-formed [22℄.Given the set of initial observations '̂, a set of
andidate explanations � are generated.At ea
h iteration of the main loop, we �rst 
he
kwhether � 
ontains just an empty 
andidate ;,meaning that the problem is solved and the algo-rithm 
an terminate. If this is not the 
ase, the set� of abdu
ible values that appear in � is 
omputed.Then, we have to 
hoose whether to perform anobservation, in order to re�ne or dis
riminate the
andidates, or to remove an abdu
ible, by impli
-itly performing the related a
tion (for example arepair a
tion in the troubleshooting 
ontext). Wesele
t what to do next based on the 
urrent 
andi-date set �, the fringe ' and the set of abdu
ibles �.Clearly, this 
hoi
e is in general suboptimal, due tothe prohibitive 
omplexity of making an optimal
hoi
e.If the 
hoi
e is to perform an observation, the
andidate set � and the fringe ' are updated a
-
ording to its out
ome (
all to fun
tion Observe).In parti
ular, if ! is a value in manifestation hier-ar
hy �(M) and the out
ome of observing ! is !k,then ! is repla
ed by !k as the value of M in ';the 
andidate set � is updated by generating the
andidate explanations for the updated fringe.Also when the 
hoi
e is to remove an abdu
iblevalue �, � and ' must be updated (
all to fun
tionRemove). The details of su
h an update are givenin the next se
tion.4.2. Removing Abdu
iblesIn this se
tion we des
ribe how the fringe ' andthe 
andidate set � are updated when an abdu
iblevalue � is removed. We denote as '0 and �0 theupdated fringe and 
andidate set, respe
tively.Let us start by 
onsidering the update of '. Inorder to update ', the �rst step is a transformationof the previous 
andidate set �. In parti
ular, if �

is a ground abdu
ible value a, we 
ompute a set�a by updating ea
h 
andidate 
 2 � as follows:
0 = 
nfag(
learly, if a 62 
 then 
0 = 
; note also that if
 = fag, then 
0 = ;).Ea
h updated 
andidate 
0 will make, in gen-eral, a set of possibly non-deterministi
 predi
-tions f�1; : : : ; �qg on the values of manifesta-tions M, where ea
h predi
tion is a set �i =f!i;1; : : : ; !i;mg. Ea
h 
andidate 
0 represents allof its possible extensions and re�nements; there-fore the predi
tions of 
0 are all the observa-tions �i that 
an be indu
ed by any of its ex-tensions/re�nements. For example, the 
andidate
0 = ; will make essentially no predi
tion (ex
eptthe obvious fa
t that the roots of ea
h manifesta-tion are present), sin
e it 
an be extended to anyother 
andidate.Let us denote with LUB(
0;Mj ) the value in�(Mj) that is the least upper bound of f!1;j ; : : : ;!q;jg (i.e., of the set of values for Mj predi
tedby 
0). The new fringe predi
ted by 
0 will thenbe '(
0) = fLUB(
0;M1 ); : : : ;LUB(
0;Mm)g (re-
all that a value in the fringe for Mj is the mostspe
i�
 value of Mj known to be 
ertainly true).Similarly, we denote with LUB(�a ;Mj ) the valuein �(Mj) that is the least upper bound of the setfLUB(
0;Mj ) : 
0 2 �ag (i.e., of the set of valuesforMj predi
ted by �a). The new fringe predi
tedby �a will therefore be '(�a ) = fLUB(�a ;M1 );: : : ; LUB(�a ;Mm)g.The updated fringe '0 should be set to '(�a);note however that '(�a) may 
ontain very weak(i.e., abstra
t) values for manifestations, sin
e theymust be 
onsistent with all of the possible predi
-tions made by all of the (modi�ed) 
andidates in�a. For this reason, it is useful to assume that, fora (possibly empty) subset M� of manifestations,it is possible to perform at no 
ost an immediate
he
k (at a given level of abstra
tion) after the re-moval of an abdu
ible.In parti
ular, following [23℄, we de�ne a 
utC(M) on a hierar
hy �(M) to be a set of val-ues ! 2 vals(M ) su
h that ea
h ground value ingndvals(M ) is an instan
e of exa
tly one ! 2 C(M)(i.e., a 
ut 
an be seen as a 
urve line whi
h makesan horizontal 
ut of the tree �(M) in two parts bytou
hing a set of values at possibly di�erent levelsof abstra
tion).The immediate 
he
k on ea
h manifestation Mj 2
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tive problem solving 9M� will result in exa
tly one (abstra
t) value!j belonging to the 
ut C�(Mj) asso
iated with�(Mj).For instan
e, in our running example, the manifes-tation Sym1 is asso
iated with the 
ut fSym1Pres ;Sym1Absg, i.e., after performing an a
tion weknow for free whether the symptom persists(Sym1Pres) or it has disappeared (Sym1Abs). Forthe other manifestations LT1 and LT2 , we assumetrivial 
uts 
onsisting just in the roots of the re-spe
tive hierar
hies.Note that a 
ut may in general 
onsist of bothground and abstra
t values: for instan
e, fLT1Pos ;LT1Negg would be a valid 
ut for LT1 , althoughLT1Pos is an abstra
t value, while LT1Neg is aground value.In general, the observed value !j 2 C�(Mj) ofa manifestation Mj 2 M� may be more pre
isethan the predi
ted value LUB(�a ;Mj ) and it willtherefore be in
luded in the new fringe '0.The updated 
andidate set �0 will be 
omputedby generating the explanations for '0, taking intoa

ount that the abdu
ibles in the sequen
e � (in-
luding a) will not be part of any explanation.Let us now 
onsider the exe
ution of an a
tionfor removing an abstra
t abdu
ible value �. Sin
e�, by being abstra
t, is not asso
iated with an a
-tion whi
h 
ould remove it, we need to iterativelyremove the values a : a 2 gndvals(�) until weensure that � has indeed been removed (i.e., hasbe
ome false) in the 
andidates �.The algorithm starts by sele
ting an approxi-mately best value a to remove (see below). Afterthe removal of abdu
ible value a, there are two pos-sible 
ases: either some manifestations inM� have
hanged, or not. In the �rst 
ase, a was 
learly thereal re�nement of �, so the removal of � is 
om-plete. Otherwise, a new approximately best valuea0 is sele
ted, and so on until some manifestationsin M� 
hange. It is possible (in parti
ular whenwe have 
hosen to remove an adbu
ible � that wasnot present in the �rst pla
e), that we need to re-move all the ground values in gndvals(�), sin
e wedon't dete
t any 
hange in the manifestations.The sele
tion of the best value to remove isbased on a slight modi�
ation of the eÆ
ien
ymeasure de�ned in [13℄. In parti
ular, let us denotewith �a the subset of � whose 
andidates 
ontainthe abdu
ible value a (i.e., �a = f
 2 � : a 2 
g);the eÆ
ien
y of value a is de�ned as:

ef (a) = p(�aj�)r
(a)Intuitively, the eÆ
ien
y of a is in
reased by theprobability that the abdu
ible value a is in the
andidate set, and it is de
reased by the 
ost ofremoving it. The value a to be removed next is theone with the highest eÆ
ien
y.Independently of the sequen
e of values (a1; : : : ;aq) whi
h is a
tually removed, on
e the removal of� is 
omplete we 
an pro
eed to update ' and � asin the 
ase of a ground abdu
ible value des
ribedabove.4.3. Estimated Cost of Removing Abdu
iblesIn the previous se
tion we have 
onsidered thea
tual removal of an abdu
ible value, and its ef-fe
ts on ' and �. In this se
tion we 
onsider theproblem of estimating the 
ost of su
h a removalbefore a
tually exe
uting any a
tion. This esti-mate is needed in order to 
hoose what should bedone next, i.e., observe or remove, in the 
all toChooseNextStep in Figure 2; we will explain su
ha 
hoi
e in detail in the next se
tion.If � is a ground abdu
ible value a, then the 
ostr
(a) is de�ned dire
tly in the model, so there isno need to estimate it. If, on the other hand, �is an abstra
t value, its 
ost 
an be estimated byadapting to our setting a simple te
hnique fromthe troubleshooting literature, namely the greedyapproa
h of [16℄. Let (a1; : : : ; aq) be the sequen
eof ground values ai 2 gndvals(�) in de
reasing ef-�
ien
y order a

ording to the formula introdu
edin the previous se
tion. The estimated 
ost of re-moving � from a 
andidate set � is 
omputed asfollows:r
�(�) = qXi=1 r
(ai) � �1� p(�j�) � p(� 62 �ij�)�(5)where �i is the 
andidate set after values a1; : : : ;ai�1 have been removed starting from 
andidateset �. When 
onvenient, we will use the notationr
�(a) to denote the �xed 
ost r
(a) de�ned in themodel for a ground abdu
ible value a.To understand this de�nition, let us �rst notethat the most eÆ
ient ground value a1 will alwaysbe removed at the 
ost r
(a1): indeed, �1 = � andtherefore p(� 62 �1j�) = 0, sin
e � is 
onsideredfor removal just be
ause it appears in �. As for a2,its 
ost r
(a2) will be paid, ex
ept in 
ase, after
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tive problem solvingremoving a1, the resulting 
andidate set �2 doesno longer 
ontain � (i.e., � has been removed byremoving a1, and this fa
t has been dete
ted - seebelow). Similarly, the 
ost of ai; i > 2, will be paidex
ept in 
ase, after removing a1; : : : ; ai�1, the re-sulting 
andidate set �i does no longer 
ontain �.The exa
t way p(� 62 �ij�) is 
omputed de-pends on the set of manifestationsM� that 
an be
he
ked at no 
ost after the exe
ution of ea
h a
-tion, and on the 
uts asso
iated with su
h 
he
ks.One possibility is to make the strong assumptionthat the removal of any value ai (when ai is a
tu-ally present) always makes the manifestations inM� 
hange; in su
h a 
ase:p(� 62 �ij�) = i�1Xj=1 p(aj j�)i.e., �i will not 
ontain � provided one of the valuesa1; : : : ; ai�1 was present.If, on the other hand, we make the weaker as-sumption that the manifestations in M� 
hangeonly when the problem has been solved, then:p(� 62 �ij�) = �0 if f�g 62 �Pi�1j=1 p(aj j�) otherwise (6)sin
e, if there is no 
andidate 
ontaining just f�g,the problem will 
ertainly not be solved by remov-ing � while, otherwise, dete
ting that the prob-lem is solved is equal to dete
ting that � has beenremoved.The assumption we 
hoose to make (the strongor weak ones des
ribed above, as well as otherones) will not a�e
t the 
orre
tness of the algo-rithm, sin
e it is used just for estimating the 
ostof removing �. However, the assumption should re-
e
t as far as possible the 
hara
teristi
s of the do-main (in this 
ase, the number and dis
riminationpower of manifestationsM�), in order to make theestimate as pre
ise (and useful) as possible. Forthe example in se
tion 4.5 and for the experimen-tal evaluation in se
tion 5, we will use the weakerassumption.4.4. Choosing the Next StepAs dis
ussed in se
tion 4.1, at ea
h iterationof the problem solving pro
ess we need to 
hoosewhether to observe a value ! in the fringe ' or toremove an abdu
ible � in the set �.For ea
h ! 2 ', we evaluate the estimated 
ost
(!), whi
h is the sum of the 
ost o
(!) of re�ning

! and the expe
ted 
ost of the 
andidate set afterre�ning !, i.e.:
(!) = o
(!) + qXk=1 p(!kj�) � 
(�k) (7)where �1; : : : ;�q are the possible 
andidate setsthat would result by observing ! and getting val-ues !1; : : : ; !q respe
tively; p(!kj�) is the proba-bility of getting value !k (
omputed based on 
ur-rent 
andidates �); and 
(�k) is the estimated 
ostof �k as detailed below.For ea
h � 2 �, we evaluate the estimated 
ost
(�), whi
h is the sum of the 
ost r
�(�) of remov-ing � and the expe
ted 
ost of the 
andidate setafter removing �, i.e.:
(�) = r
�(�) + X�k2PW (�;�) p(�kj�) � 
(�k) (8)where PW (�; �) (for possible worlds) is an esti-mate of the possible 
andidate sets resulting fromthe removal of � and p(�kj�) is the probabilitythat the a
tual 
andidate set after removing � is�k.Let us 
onsider the set PW (�; �) in more detail.As in the a
tual removal of an abdu
ible value, we�rst 
ompute the 
andidate set �� obtained by re-moving � from ea
h 
andidate in �. In order tosimplify our estimate, we 
onsider that ea
h 
andi-date 
0 2 �� represents just itself, instead of rep-resenting also all of its extensions and re�nements,e.g., we do not interpret ; as the representation ofany possible 
andidate as we do in the a
tual ex-e
ution of a
tions, but just as the representationof the 
ase where none of the abdu
ible values ispresent. This approximation makes the predi
tionsof 
andidates 
0 mu
h more pre
ise, improving theeÆ
ien
y of the estimate as we shall see shortly.We then 
onsider the predi
tions made by the
andidates in �� on the M� manifestations at thelevel of the 
uts C�(Mj), and group all of the 
an-didates 
0 whi
h make the same predi
tions intothe same possible world �k. The set PW (�; �) will
ontain all of the 
andidate sets �k � �� obtainedin this way.In general, the number of possible (non deter-ministi
) predi
tions on manifestationsM� 
an beexponential in jM�j, and therefore PW (� ; �) maybe intra
table to 
ompute if M� is large. How-ever, even when M� is large, it is suÆ
ient thatthe predi
tions made by the 
andidates 
0 2 �� onthe values of manifestations M� are deterministi
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tive problem solving 11at the level of the 
uts C�(Mj); in su
h a 
ase itis easy to see that jPW (� ; a)j is bounded by thenumber of 
andidates j�j.In both equations 7 and 8, we need to be ableto estimate the 
ost of the problem solving pro
essfor a 
andidate set �k.In order to 
ompute su
h a 
ost, we adopt a te
h-nique similar to the one adopted for estimatingr
�(�) (se
tion 4.3), inspired by [16℄. In parti
ular,we start by 
omputing �k, i.e., the set of abdu
iblevalues that appear in �k; then we order su
h ab-du
ibles in de
reasing eÆ
ien
y order using the fol-lowing formula, whi
h was introdu
ed previouslyfor ground abdu
ible values but 
an be straightfor-wardly applied also to abstra
t abdu
ible values:ef�k (�) = p(��j�k)r
�k (�)Let �̂k = (�1; : : : ; �q) be the sequen
e of abdu
iblevalues ordered by de
reasing order of eÆ
ien
y.The 
ost of �k is 
omputed as follows:
(�k) = qXi=1 r
�k (�i) � p(�ik 6= f;g) (9)where �ik is the 
andidate set after abdu
ible val-ues �1; : : : ; �i�1 have been removed starting from
andidate set �k.Note that the 
ost of ea
h abdu
ible �i isweighted with the probability that the a
tion toremove it will a
tually be exe
uted, i.e., that the
andidate set �ik is not equal to f;g, whi
h 
or-responds to the situation where the problem hasalready been solved and this has been dete
ted, sothat the only 
andidate left is ;.As in the 
ase of the estimate of r
�(�), theway p(�ik 6= f;g) is 
omputed depends on the setof manifestations M� and on the 
uts C�(Mj). Ifwe assume that, after ea
h a
tion exe
ution, it ispossible to 
he
k at no 
ost whether the problemhas been solved or not, then:p(�ik 6= ;) = X
02�k:
0 6�f�1;:::;�i�1g p(
0j�k)sin
e, if the real world status is a 
andidate
0 2 � whi
h is 
ompletely removed by remov-ing �1; : : : ; �i�1, we must be aware (through our
he
ks) that the problem is solved, and �i musttherefore be equal to f;g.After we have 
omputed the expe
ted observa-tion 
osts 
(!) and expe
ted a
tion 
osts 
(�), we

simply 
hoose the observation or a
tion � su
hthat:� = argmin�̂2('[�) [
(�̂)℄i.e., the observation or a
tion of minimum ex-pe
ted 
ost.4.5. ExampleIn order to get a better understanding of theproblem solving pro
ess, let us 
onsider in detailthe exe
ution of the algorithm in Figure 2 on themedi
al example in Figure 1. A s
hemati
 view ofthe solution pro
ess is shown in Figure 3.Initial observations. Let us suppose that an ini-tial manifestation of Sym1 is dete
ted, i.e., '̂ =fSym1Pres; LT1 ; LT2g. The initial 
andidate setis � = ffD1g; fD2g; fD3gg, representing the pos-sible alternative diagnoses (in fa
t, D1 , D2 andD3 explain Sym1Pres).First iteration. The abdu
ibles to be 
onsideredfor removal are � = fD1 ; D2 ;D3g, while the fringe' is initially equal to '̂ = fSym1Pres ; LT1 ; LT2g.Figure 3 shows the possible 
hoi
es as dashed ar
sleaving the root of the graph; note that we don't
onsider the observation of Sym1Pres sin
e it isa ground value in the hierar
hy of manifestationSym1 .The 
osts are estimated as follows. Regardingthe observation ! = LT1 , two out
omes are possi-ble: the test is either negative (LT1Neg) or positive(LT1Pos). The 
andidate set �N resulting fromobserving LT1Neg is:�N = ffD1 :1g; fD2g; fD3ggIndeed, a

ording to se
tion 3.2, LT1Neg is ex-plained by any abdu
ible value ex
ept those thatpredi
t LT1Pos , namely D1 :2 and its 
hildren,i.e., exa
tly by the (least presumptive) 
andidates
ontained in �N . Note that these 
andidates alsoexplain the manifestation values already in ', inparti
ular Sym1Pres .On the other hand, if the out
ome is LT1Pos ,the 
andidate set is:�P = ffD1 :2ggsin
e, a

ording to equation (3) in se
tion 3.2, thefollowing holds:LT1Pos ) D1 :2The probability of �N given � is:
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Fig. 3. Graph representing the solution of the example problem. Dashed ar
s represent alternative 
hoi
es to 
onsider, whilesolid ar
s represent a
tual observations and a
tions.p(�N j�) = p(�N )p(�) = � 228 + 228 + 128 �728 = 57Similarly, the probability of �P given � is 27 .In order to estimate the 
ost 
(�N ) we �rst needto estimate r
�N (D2 ) (the other abdu
ible valuesin �N are ground, therefore their 
ost needs notbe estimated). The ground values D2 :1 , D2 :2 ofD2 have the same probability, and D2 :1 
osts lessthan D2 :2 , thus we 
onsider them in the order ofeÆ
ien
y (D2 :1 ; D2 :2 ). We also note that, as soonas we solve the problem, we will immediately de-te
t it at no 
ost from the symptom Sym1 (equa-tion (6)); the estimated 
ost is then 
omputed asfollows a

ording to equation (5):r
(D2 :1 ) = 6; r
(D2 :2 ) = 8p(D2 j�N ) = 25p(D2 62 �1jD2 ) = 0p(D2 62 �2jD2 ) = p(D2 :1 jD2 ) = 12r
�N (D2 ) = r
(D2 :1 ) + r
(D2 :2 ) � �1� 25 � 12 � = 12:4The estimated 
ost 
(�N ) is 
omputed based onthe fa
t that the relative probabilities of the 
andi-dates fD1 :1g, fD2g, fD3g are 2, 2, 1, their 
ostsare 8, 12:4, 15 and therefore the sequen
e in orderof de
reasing eÆ
ien
y is fD1 :1g, fD2g, fD3g.Then, a

ording to equation (9):
(�N ) = 8 + 35 � 12:4 + 15 � 15 = 18:44Let us 
onsider the estimated 
ost of 
(�P ).First of all, we 
ompute r
�P (D1 :2 ) as follows:r
(D1 :2 :1 ) = 4; r
(D1 :2 :2 ) = 4p(D1 :2 j�P ) = 1p(D1 :2 :1 jD1 :2 ) = 12p(D1 :2 62 �1jD1 :2 ) = 0p(D1 :2 62 �2jD1 :2 ) = p(D1 :2 :1 jD1 :2 ) = 12r
�P (D1 :2 ) = r
(D1 :2 :1 ) + r
(D1 :2 :2 ) � �1� 1 � 12 )�= 6

Sin
e, a

ording to equation (9), 
(�P ) =r
�P (D1 :2 ), it follows that 
(�P ) = 6. The totalexpe
ted 
ost asso
iated with observation LT1 istherefore:
(LT1 ) = 2 + 57 � 
(�N ) + 27 � 
(�P ) = 16:89a

ording to equation (7) and re
alling that theimmediate 
ost o
(LT1 ) of performing LT1 is 2.Regarding the observation ! = LT2 , if the out-
ome of this observation is negative (LT2Neg),then the resulting 
andidate set is �0N = ffD3gg.On the other hand, if the out
ome is positive(LT2Pos), the 
andidate set is �0P = ffD1g; fD2gg.The expe
ted 
osts are:
(�0N ) = r
(D3) = 15
(�0P ) = r
�0P (D1) + 13 � r
�0P (D2)= 12:67 + 13 � 12:67 = 16:89and then:
(LT2 ) = 8 + 17 � 15 + 67 � 16:89 = 24:62sin
e the immediate 
ost of performing LT2 is 8and the probabilities of �0N , �0P are, respe
tively,17 and 67 .The expe
ted 
ost asso
iated with removing D1is as follows, a

ording to equation (8):
(D1) = r
�(D1 ) + 37 � 
(ffD2g; fD3gg)sin
e fD1g has probability 47 in �, and, if remov-ing fD1g does not solve the problem, the only re-maining possible world is �D1 = ffD2g; fD3gg.The 
omputation of r
�(D1 ) gives 13:14. As forthe 
ost of �D1, its value is 11:33 + 13 � 15 = 16:33
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tive problem solving 13given that D2 has higher eÆ
ien
y than D3 , andthat r
�D1 (D2) = 11:33 and r
(D3) = 15.The resulting expe
ted 
ost if we 
hoose to re-pair D1 is then:
(D1 ) = 13:14 + 37 � 16:33 = 20:14Similarly, the expe
ted 
osts for removing D2 andD3 are:
(D2 ) = 23:57
(D3 ) = 29:48The estimated 
osts of the alternative 
hoi
esare reported in Figure 3. We 
hoose to observeLT1 , whose expe
ted 
ost of 16:89 is the lowestone. Let us now suppose that the out
ome of LT1is positive (i.e., LT1Pos); the 
andidate set � isupdated to �P = ffD1:2gg and the fringe ' isupdated to fSym1Pres; LT1Pos ; LT2g.Se
ond iteration. We need to estimate the 
ostsof re�ning observations LT1Pos and LT2 , and the
ost of removing abdu
ible D1:2. As shown in Fig-ure 3, the best 
hoi
e is to remove D1:2, with anexpe
ted 
ost of 6. In order to remove D1 :2 , westart removing its ground values D1 :2 :1 , D1 :2 :2in that order (sin
e they have the same 
ost andprobability, they have the same eÆ
ien
y, andthus the order is 
hosen arbitrarily). After remov-ing D1 :2 :1 , symptom Sym1 is still present (i.e.,Sym1Pres is still true), so we also remove D1 :2 :2 .Now, Sym1 disappears, and we 
on
lude that theproblem has been solved. Overall, the 
ost paid forthis solution is 10: 2 for observing LT1 and 8 forremoving D1:2.5. Experimental Evaluation5.1. Implementation of the MethodWe have implemented the proposed approa
has a Perl program. The models 
onsist in 
ausalgraphs G as spe
i�ed in se
tion 3; su
h graphs arestored in the �le system in YAML format, and areloaded into appropriate memory data stru
tureswhen needed.A key part of the program, starting from the
ausal graph G of a model, generates the proposi-tional theory TE 
orresponding with the explana-tory knowledge KE , as des
ribed in se
tion 3.2.Su
h a propositional theory is further 
ompiled

into an OBDD (Ordered Binary De
ision Dia-gram), denoted as O(TE). OBDDs are a spe
ial,
anoni
al form for representing Boolean fun
tions[3℄ that makes some important reasoning tasks2tra
table, with a linear or even 
onstant 
omplex-ity. Due to these features, OBDDs have been su
-
essfully employed for knowledge 
ompilation inseveral AI reasoning tasks, in
luding planning [1℄and diagnosis [5,19℄.The implementation of the problem-solving al-gorithm shown in Figure 2 depends on the avail-ability of an explanation fun
tion that, given afringe ', 
omputes a set � of 
andidates that ex-plain the observations in '. Su
h a fun
tion isneeded both to bootstrap the 
omputation, andto update the 
urrent 
andidate set � after a newobservation is made.Our implementation of the fun
tion is based onsuitable manipulations of OBDD O(TE). In par-ti
ular:1. we assert the truth of the fringe ' in O(TE);this operation 
an be done in linear timew.r.t. to the size of O(TE);2. we assert the (negation of the) removed ab-du
ibles in O(TE) (also in linear time);3. we extra
t explanations from the resultingOBDD by employing a well-known algo-rithm for extra
ting minimal models from anOBDD [9℄ whose 
omplexity is exponential inthe worst 
ase, but usually tra
table in pra
-ti
e; su
h an algorithm is slightly modi�ed inorder to enumerate the models that 
ontain aminimal set (w.r.t. set in
lusion) of true ab-du
ible variables vals(A1) [ : : : [ vals(An),ex
luding ukV variables (in order to eliminatenon-least presumptive 
andidates).Given this fun
tion, the implementation of therest of the algorithm of Figure 2 was straightfor-wardly based on the 
ontents of se
tion 4.5.2. Results of the ExperimentsIn order to empiri
ally evaluate our approa
h,we ran a set of experiments. A main goal was
omparing abdu
tive problem solving performedby exploiting abstra
tions and abdu
tive problemsolving not relying on abstra
tions, i.e., the 
ase2In
luding 
onsisten
y 
he
k, equivalen
e 
he
k, andmost importantly enumeration of logi
al models.
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tions in 
ost-sensitive abdu
tive problem solvingProblem set na nt ns h ba bt eb NaSMALL 5 3 3 2 3 2 3 49.4MEDIUM 8 3 3 2 4 2 6 104.8LARGE 8 3 3 2-3 4 2 7 166.8Table 1Parameters for problem setsProblem set toNOABSvsABS 
oABSvsNOABS toABSvsRND 
oRNDvsABSSMALL 3.829 1.117 4.417 2.166MEDIUM 8.265 1.121 1.789 3.354LARGE 18.622 1.101 1.919 5.663Table 2Comparison with no abstra
tions and with random 
hoi
eswhere the reasoning pro
ess is restri
ted to formu-late only ground hypotheses. Moreover, we evalu-ated the 
ase where further lookahead in 
ost esti-mates is used, to get 
loser to the optimal 
hoi
e.The di�erent approa
hes were 
ompared in termsof 
omputation time and in terms of observationand a
tion 
osts to solve the problem.To this purpose, we implemented a generator ofrandom models. Models are generated based on anumber of parameters, in
luding:{ na, nt, ns number of hierar
hies of abdu
ibles,tests and symptoms;{ h height of the hierar
hies of abdu
ibles andtests;{ ba, bt bran
hing of the hierar
hies of ab-du
ibles and tests;{ eb (explanation bran
hing), number of ab-du
ibles explaining a symptom: a larger ebprovides more 
andidate explanations.Three sets, SMALL, MEDIUM and LARGE, of�ve models ea
h, were generated, with di�erentvalues for parameters, as from table 1, where Na isthe resulting average total number of nodes in theabdu
ible hierar
hies. Observation 
osts in
reasewhen going deeper in the hierar
hies, with an av-erage 50% in
rease from one level to the next one.For ea
h model, a set of 50 
ases was gener-ated randomly, based on the a-priori probabili-ties of abdu
ibles; i.e., for ea
h 
ase, a set 
 ofground abdu
ibles is generated | and, sin
e theirprobabilities are used, in a large fra
tion of 
ases,
 is a singleton (i.e., a single fault in diagno-sis/troubleshooting). The observations � to be ex-plained for solving the 
ase are the 
onsequen
esof 
.Table 2 
ompares the results of three methods:

{ ABS is the method des
ribed in the paper;{ NOABS only uses ground hypotheses and a
-tions;{ RND performs a random 
hoi
e of the nextobservation or a
tion (among the sets � and' of relevant a
tions and observations).The 
omparison is provided in terms of theaverage relative overhead of a method with re-spe
t to one another, in terms of 
omputationtime, and in terms of observation and a
tion 
ostpaid to a
tually solve the problem. For example,toNOABSvsABS provides the average relative timeoverhead of NOABS with respe
t to ABS, and wesee that for the SMALL problems, the 
omputa-tion time of NOABS is almost 4 times with re-spe
t to ABS, while the overhead of ABS in termsof observation and a
tion 
ost (
oABSvsNOABS) is11.7%.We see that the additional 
ost of ABS with re-spe
t to NOABS is around 10% and does not in-
rease with the size of models, while the runningtime of NOABS diverges with respe
t to the onefor ABS. We also see that ABS has an a

ept-able additional running time (less than double, forMEDIUM and LARGE) with respe
t to 
hoosingthe next observation or a
tion at random, whileRND has, as it 
an be expe
ted, una

eptable anddiverging additional 
osts.Table 3 reports results related to using, for theSMALL problem set, additional lookahead for es-timating the best 
hoi
e, i.e., trying to get 
loserto the optimal 
hoi
e.Column to provides the average relative over-head in time with respe
t to the ABS methods forvariants, with lookahead 2, 3 and 4, of the basi
ABS method (whi
h uses lookahead 1). Column
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o2 10.156 1.0463 27.355 1.0484 71.784 1.053Table 3Results for additional lookahead
o provides the average relative overhead in 
ost(for observations and a
tions) of the ABS methodwith respe
t to the additional lookahead methods.As we 
an see, running times in
rease signi�
antlyand only provide minor 
ost savings.The experiments 
on�rm that the approa
h inthe paper provides a

eptable additional observa-tion/a
tion 
osts, with respe
t to not using ab-stra
t hypotheses, with major savings on 
ompu-tation time. The experiments also illustrate thatusing further lookahead provides small savingswhile adding signi�
ant 
omputational 
osts. Asobserved in the introdu
tion, small or at least fea-sible 
omputation time may mean that an a
tion,even though possibly suboptimal, is taken beforeit is too late; in a spe
i�
 setting, the 
ost of de-laying a
tions might be measured in the same unitas observation and a
tion 
osts.6. Con
lusionsIn this paper, we proposed a novel abdu
tiveproblem solving method whi
h extends previouswork on measurement sele
tion in Model-BasedReasoning and on de
ision-theoreti
 troubleshoot-ing. Unlike previous approa
hes to troubleshootingwhi
h do not exploit stru
tured representations ofthe domain (e.g., [13,16℄), our work is based ona representation with abstra
tions where both ab-stra
t observations and abstra
t hypotheses aretaken into a

ount.We present a general abdu
tive problem solv-ing loop where, depending on the 
osts of obser-vations and the 
osts of a
tions to be taken, afurther observation may be 
hosen for dis
rimi-nating or re�ning 
urrent 
andidates, or an a
-tion 
an be taken based on the 
urrent 
andi-date(s). In this respe
t, the paper is also a sig-ni�
ant generalization of previous works whi
huse ontologies or taxonomies of hypotheses forexplanation/interpretation purposes, but assumethat all of the observations are given in advan
e[4,14,7,17,2℄ or 
on�ne a
tions to a se
ond phase

[20℄. Interleaving observations and a
tions requiresmore sophisti
ated reasoning, but the in
reased
exibility in the way the problem is solved allowsfor better solutions to be found; in the diagnosisdomain, this 
orresponds to the di�eren
e between(sequential) diagnosis and troubleshooting.Costs of observations and a
tions may be verydi�erent at di�erent levels of abstra
tion: there isa trade-o� between paying the 
ost of further ob-servations (or more pre
ise observations) and theone of performing unne
essary a
tions, or unne
-essarily general a
tions. Given that in pra
ti
al
ases 
omputing an optimal 
hoi
e is not feasible,we adopt a greedy, approximate approa
h frommodel-based diagnosis and de
ision-theoreti
 trou-bleshooting, basing the 
hoi
e on expe
ted 
osts.The approa
h is aimed at being general, be
auseits motivations 
an be found in several tasks anddomains in
luding te
hni
al and medi
al diagnosisas well as interpretation tasks su
h as plan re
ogni-tion. Di�erent instan
es may be derived with spe-
i�
 approa
hes for representing domain knowl-edge and for generating and updating 
andidateexplanations based on observations.Nevertheless, in the paper we have also de�nedthe syntax and semanti
s of a spe
i�
 knowledgerepresentation formalism based on 
ausal graphs.We have fo
used on su
h a representation for de-riving an algorithm for the 
omputation of expla-nations and for implementing the whole abdu
tiveproblem solving loop. The experiments performedwith the implemented system suggest that the useof abstra
tion results in a very limited overheadon observation/a
tion 
osts, while the savings on
omputation time are major.Referen
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