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Several explanation and interpretation tasks, such as
diagnosis, plan recognition and image interpretation,
can be formalized as abductive and consistency rea-
soning. The interpretation task is usually executed for
the purpose of performing actions, e.g., in diagnosis,
repair actions or therapy. Some proposals address the
problem based on a task-independent representation
of a domain which includes an ontology or taxonomy
of hypotheses and observations. In this paper we rely
on the same type of representation, and we point out
the role of abstractions in an iterative abduction pro-
cess. At each iteration, as in model-based diagnosis and
troubleshooting, our algorithm chooses to perform fur-
ther observations or actions taking into account their
costs and the likelihood of candidate hypotheses. The
main goal of the algorithm is to ensure discrimination
among hypotheses and, more importantly, to perform
the appropriate actions for the case at hand. We dis-
cuss an implementation of the proposed method and
report experimental results that support the conclu-
sion that abstractions are indeed useful for the consid-
ered task.

Keywords: Abduction, Abstraction, Actions, Costs

1. Introduction

Several explanation and interpretation tasks,
such as diagnosis, plan recognition and image in-

terpretation, can be formalized as abductive rea-
soning or related forms of nonmonotonic reason-
ing. A number of approaches [4,14,7,17,2] address
the problem based on a representation of a do-
main which includes an ontology or taxonomy of
hypotheses.

However, explanation or interpretation is usu-
ally an intermediate step to a final goal, which is
performing actions, such as repair or therapy in
diagnosis, or reacting to the recognized plan, in
plan recognition. In some cases, such actions are
also needed, or, at least, useful, for discriminating
among alternative explanations during the expla-
nation/interpretation process itself (e.g., trying a
repair action would either solve the problem or at
least provide the information that the correspond-
ing hypothesis is not the correct one).

Ontologies have been proposed as the basis for
large knowledge bases to be used also for other
problem solving tasks (including planning, see [21,
11]), but, as noted in [6], they should be shared
among different problem solvers for related tasks;
therefore, they should be developed independently
of the reasoning task!: i.e., their structure should
reflect a natural representation of the domain, but
it might not directly provide the best structure for
diagnosis, interpretation, or planning and acting.

In this paper we propose a novel approach where
a similar representation is adopted in the context
of an iterative abduction process where:

— further observations or actions (e.g. substitut-
ing a suspect component in the system), as in
model-based diagnosis [12] and troubleshoot-
ing [13], can be proposed with the interme-
diate goal of discriminating among candidate
explanations and the ultimate goal of per-
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n perspective, a shared ontology for different reasoning
tasks may be available on the Web.
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forming actions that are appropriate for the
case at hand. Actions may be interleaved with
observations [10].

— The costs of observations are balanced with
reduced costs of the actions performed for
solving the problem.

The costs associated with the results of abduc-
tion, in a diagnostic setting, correspond to the cost
of repair actions or therapy, and are expected to
decrease as long as more information is available
on the hypotheses; similarly, in a plan recognition
or in an interpretation task, the human or soft-
ware agent using the results should achieve an ad-
vantage from a better discrimination of hypothe-
ses or from more specific hypotheses, leading to a
more focused action, possibly with reduced costs
— e.g., if hypotheses are threats to the agent with
costly defense actions. In all settings, we intend
that some actions have to be taken based, in gen-
eral, on the remaining candidate hypotheses. If the
set of candidates is too broad or too abstract, the
agent is expected to incur into higher action costs
due to (a combination of) the following reasons:

— an action which is stronger than necessary is
taken, in order to account for all current pos-
sibilities;

— unnecessary actions are taken, e.g., repairing
the wrong part, taking the wrong therapy, de-
fending from the wrong threat.

The different issues are related: discrimination
may be performed among hypotheses at the same
level of abstraction, but it could also involve re-
fining hypotheses. In any case, discrimination re-
quires more observations, whose cost should be
balanced with the benefits, in terms of more suit-
able actions, of better discrimination.

The presence of a domain representation with
IS-A abstractions has a significant impact on this
trade-off. The cost of observing the same phe-
nomenon at different levels of abstraction is ex-
pected to vary significantly; in fact, it may range
from subjective information from a human (pa-
tient or user) to more or less costly medical or tech-
nical tests, or, in an image interpretation task, it
may involve computationally complex image pro-
cessing, to be performed interactively with the rea-
soning task, as suggested in [15]. Note that, in any
case, the presence of abstractions should not pre-
vent in general the ability to exploit detailed ob-
servations and knowledge when convenient [24].

In several settings, an observation which is itself
expensive, because it consumes resources and time
to be performed, implies additional costs due to
the delay before taking an action: breakdown costs
in diagnosing a physical system, risk of death of
the patient in medical diagnosis, taking defensive
actions too late, missing the opportunity of earn-
ing money. Note that similar drawbacks result, at
least in some scenarios, from time spent in com-
puting an optimal or near-optimal solution, with
respect to performing a suboptimal action earlier.

Moreover, if the knowledge base has been de-
signed independently of the explanation/action
task (e.g., diagnosis and repair), it could include
a detailed description of the domain which is not
necessary for the task; more generally, the useful-
ness of a detailed discrimination may depend on
the specific case at hand.

Finally, human problem solvers have knowledge
and are able to reason on abstract actions, such
as “taking an antibiotic therapy” if the leading
hypothesis is “bacterial infection”, and evaluating
their costs in a broad sense, for example including
side effects, without necessarily reasoning on spe-
cific instances. Of course, an abstract action can-
not be executed directly, but abstract knowledge
may be used to consider it as a candidate “next
step” before committing to a specific instance.

The main expected benefit in explicitly consider-
ing abstractions in the iterative abduction process
is a significant reduction of the computational cost
of deciding what to do next (observe or perform
an action? which observation or action?), without
significantly increasing the total cost of the obser-
vations and actions performed to solve the prob-
lem.

In the following, we first describe the knowledge
we expect to be available and define the concept
of explanation of a set of observations in general
terms. Then, we describe a specific syntax for ex-
pressing the knowledge (based on causal graphs)
and associate a precise semantics with such syntax
in terms of propositional logic. The syntax and the
associated semantics described in the paper are by
no means the only possible choice; however they
make the generic notion of explanation more con-
crete for illustrative purposes, and they are used
for building an implementation of the method.

In the subsequent sections we describe a basic
iterative abductive problem solving loop and we
concentrate on the execution of actions and their
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estimated costs, and on the criterion for selecting
the next step in the loop: either performing a fur-
ther observation at some level of detail, or an ab-
stract or concrete action. Then, we describe the
key points of our implementation of the method
and present experimental results which confirm
the expectations about the advantages of using ab-
stract hypotheses and actions.

For the same purpose of making the framework
concrete, in the problem solving loop we assume
that actions are “repair” actions, in the sense that,
as in most forms of diagnostic problem solving,
they make a corresponding hypothesis false, i.e.,
they remove the cause of the problem (as far as
causes are modeled in the domain), while obser-
vations are evidence of the problem. In other set-
tings, e.g., plan recognition, the purpose of the
action, to be chosen appropriately for the situa-
tion (which can only be assessed through hypo-
thetical reasoning), may be different from making
the hypothesized situation false. However, also in
these settings performing an action is at least use-
ful (like performing further observations) to con-
firm or disconfirm the correctness of the hypothe-
sis, even though computing the predicted effects of
performing the action may be different from “re-
moving symptoms if the hypothesis was correct”,
as in the concrete framework described in the pa-
per.

2. Domain Representation
2.1. Hierarchies

The basic elements of the domain model are a
set of abducibles (i.e., assumptions, hypotheses)
A = {4, ..., A,} and a set of manifestations
(i.e., observables) M = {My, ..., M,}.

Each abducible A; is associated with an IS-A
hierarchy A(A;) containing abstract values of A;
as well as their refinements at multiple levels; sim-
ilarly, each manifestation A/; is associated with an
IS-A hierarchy A(M;).

We assume that the direct refinements vy, ..., v,
of a value V' in a hierarchy (either A(A;) or A(M))
are mutually exclusive, i.e., the A hierarchies are
trees; moreover, in a given situation, exactly one
ground instance (i.e., leaf) of each manifestation
M;j is true while, for each abducible A;, either
one ground instance is true (i.e., the abducible is

present) or none of them is true (i.e., the abducible
is not present). The assumption that there is al-
ways a true leaf for each manifestation A/; is made
just for convenience, so that increasing our knowl-
edge about manifestations can always be viewed
as a refinement of the previous knowledge; clearly,
knowing that the root of a manifestation hierarchy
A(M;) is true represents complete lack of knowl-
edge about M; (see section 3).

The overall goal of our problem solving process
is to perform actions that remove all of the ab-
ducibles which are present in a given situation at
an (approximately) minimum cost.

The abducibles set vals(A;) of an abducible A;
is the set of all of the elements of the hierarchy
A(A;), while gndvals(A;) is the subset of vals(4;)
containing only ground abducibles, i.e., the leaves
of hierarchy A(A4;). The definition of set vals (resp.
gndvals) can be extended to a set of abducibles
by taking the union of the vals (resp. gndvals) of
each abducible in the set; we also define set vals
(resp. gndwvals) for an abducible value a belong-
ing to the hierarchy A(4;) by considering only the
values (resp. ground values) belonging to the sub-
hierarchy A(a) of A(A;) rooted at a.

The sets vals and gndvals are defined for mani-
festations M; in the same way as for abducibles.

We assume that an a-priori probability p(a) is
given for each leaf value a of an abducible A: in
fact, we assume that different abducibles are inde-
pendent. Instead, the probability of an inner node
is defined as the sum of the probabilities of its di-
rect refinements (which, as said before, are mutu-
ally exclusive).

We also associate costs with the (ground) values
of abducibles and the (abstract) values of manifes-
tations.

The cost of a ground abducible value represents
the cost of the action needed to remove (e.g., re-
pair) it; in general, such a cost may depend on the
current status of the world, however, in this pa-
per we assume that for each leaf value a of an ab-
ducible, a cost rc(a) is assigned, independently of
the current hypotheses.

As for the manifestations, let w be an inter-
nal value belonging to the IS-A hierarchy of M;
(i.e., w € vals(M;)\gndvals(Mj)); its cost oc(w)
is the cost of making the observation which refines
the value w into one of its children wy,...,w, in
A(M;).
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2.2. Explanatory Knowledge

The hypotheses space S(A) is the set of all of
the combinations v = {ay,...,a,} of values drawn
from zero or more distinct hierarchies A(A4;) (i.e.,
we allow the presence of multiple abducibles at
the same time) and, similarly, the observations
space S(M) is the set of all of the combinations
u={wi,...,wn} of values drawn from each of the
distinct hierarchies A(Mj). In the paper, v will be
referred to as a candidate explanation (candidate
for short) and u as an observation.

If v and y4 are two candidates with the same
number r of abducible values, and each value
a; € v is a (possibly improper) refinement of a
value a4,; € ya according to the IS-A hierarchies
of abducibles, then we say that y4 is an abstrac-
tion of v and, conversely, that «y is a refinement of
~v4. A similar relationship can be defined between
two observations p and p 4, by taking into account
the IS-A hierarchies of manifestations.

The relationship between abducibles and man-
ifestations is defined by the explanatory domain
knowledge K C S(A) x S(M). Given an obser-
vation u € S(M) and a candidate v € S(A), the
fact that (v,u) € Kg means that p is a possi-
ble observation corresponding to candidate 7y (and,
conversely, that v is a possible ezplanation for p).

Our definition of Kg as a relation between sets
S(A) and S(M) does not imply that such a rela-
tion should be represented extensionally and that
the reasoning algorithms should directly manipu-
late such an extensional representation. In general,
Kg will be specified intensionally with a multi-
valued propositional or causal model whose seman-
tics corresponds to the extensional enumeration of
the tuples in Kg (in the next section we discuss
the intensional representation to which we will re-
fer in this paper). Moreover, also the reasoning in-
volving K may take place at the syntactic level,
e.g., as propositional or causal inference.

Given the above definition of Kg, the set T’ of
candidate explanations (candidate set) for an ob-
servation p € S(M) is:

['={yeSA):(1,n) €Kr}

An important issue is that there may be too many
ground explanations of the given observations.
This problem may be solved much more efficiently
thanks to the presence of abstractions in the model
and, in particular, to the fact that abstract as well

as ground abducibles may take part in explana-
tions.
A general criterion which is suitable in this setting
is the preference for least presumptive explanations
[18], which generalize minimal (wrt set inclusion)
explanations, in order to avoid both unnecessary
assumptions, when a subset of assumptions is suffi-
cient to explain the observations, and assumptions
that are unnecessarily specific, when a less specific
assumption is sufficient. An explanation v is more
presumptive than another explanation +' if (also
based on the IS-A hierarchies A(A4;)) v implies 7'
Guaranteeing that a set of explanations is the
set, of least presumptive explanations is, in general,
computationally complex; in the following, we just
require that the sets of candidate explanations I'
computed during the problem solving process do
not contain explanations that are more presump-
tive than other members of I'.

3. A Causal Graph Representation Formalism

In Figure 1 we show a fragment of a fictitious
medical domain model, where we have adopted a
causal graph formalism inspired by [7]. In this sec-
tion we describe the formalism and relate it to the
explanation knowledge Kg through its semantics.

3.1. Representation Formalism

We describe the formalism (which should be
fairly intuitive) through the example of Figure 1.
On the left, there is the nosological description of
some diseases, represented as three IS-A hierar-
chies of abducibles (with roots DI, D2, and D3).
For example, D1.1 and D1.2 are two refinements
of DI. The a-priori probabilities of the leaves of
abducibles (not shown in the figure) are assumed
to be 5, except for p(D1.1) = 3-. The costs rc of
the actions that remove the ground abducibles are
shown in the figure.

On the right, there are possible symptoms and
possible medical examinations (lab tests) to be
performed, represented as three IS-A hierarchies of
manifestations (with roots Sym?!, LT1, and LT2).
Observation costs oc associated with each internal
node of manifestation hierarchies are the costs of
performing the related laboratory test (we assume
that the cost of observing the presence of symp-
toms such as Sym1 is 0).
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Fig. 1. A (fictitious) medical domain model.

The relationships between abducibles and man-
ifestations are represented by rightwards dashed
arrows. For example, DI causes LT?2 to be posi-
tive; D1.2 causes LTI to be positive, and its re-
finements D1.2.1 and D1.2.2 cause more specific
positive values of LT1.

3.2. Propositional Semantics

In order to map the graph-based formalism
adopted in our example to the explanatory knowl-
edge Kg, we interpret the graph as a propositional
theory Tg; the tuples of Kg will then be straight-
forwardly obtained from the logical models that
satisfy such a theory (see section 3.3).

First of all, each value in a hierarchy A(A;) or
A(Mj) is mapped to a propositional variable. If
value V' has children vy,...,v, in a hierarchy, a
natural representation in 7z would be:

V<:>’U1\/...\/Uq (1)
Vi;éj—'(vi/\vj)

expressing the fact that an abstract value V' can
be refined in exactly one of its children vy, ..
which is what we stated in our discussion in sec-
tion 2.1.

However, our aim in defining 7 is to be able
to map its (2-valued) logical models as directly as
possible to candidate explanations; in this respect,

> Ug,

the problem with the above translation is that in
each logical model of formulas (1) where V' is true,
also one child v; must be true while, for the pur-
pose of computing explanations, we want to allow
candidates where none of the children is true, i.e.,
where V' alone is an (abstract) explanation.

Consider, e.g., the graph of Figure 1 and assume
that we know that LT1Pos is true; we would like to
have an explanation where D1.2 is true but none
of its children D1.2.1 and D1.2.2 is true, to avoid
commitment,.

In order to handle this issue, for each internal
value V of each hierarchy, we add a variable uky
to represent explicitly, in a 2-valued model, the
fact that it is unknown which refinement of V' is
true. If value V' has children vy, ..., v,, instead of
formulas (1), the following formulas are added to

Te:

Veu V...V Vuky @)
Vi # j=(vi Avg); Vim(v; A uky)

Note that this translation is not intended as a gen-
eral, logically satisfactory approach to the logic of
knowledge; its purpose is to have abstract explana-
tions as 2-valued propositional interpretations (see
section 5.1).

The relationships between abducibles and man-
ifestations are translated as follows, adapting the
completion semantics of abduction described in [8]
to take into account the fact that abstract assump-
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tions may not be predictive enough to entail ob-
servations [14]. Let w be a value in a manifesta-
tion hierarchy A(M), such that in the causal graph
the abducible values ay, ..., af point to w through
causal arrows (note that «q,...,q; are, in gen-
eral, values belonging to different abducible hier-
archies). Moreover, let 31,. .., 3; be abducible val-
ues that point to possibly not distinct ancestors
w1, ...,w; of w, such that none of the descendants
of each (3; points to w or an ancestor of w below
w;. Then, we add the following formulas to 7g:

arV...Vap > w (3)
w=aV...Vap V3 V...V

Note that, if for a manifestation value w there are
no «a;s and no f;s satisfying the above conditions,
we do not add any formula. In other words, w is
interpreted as a value which is consistent with any
abducible value «, as far as a does not explicitly
predict a value w’ such that w and w' are mutu-
ally exclusive according to formulas (2). In Fig-
ure 1, this role is played by Sym1Abs, LT1Neg and
LT2Neg, which do not have any incoming causal
arc.

Let us consider some examples from the model of
Figure 1. Two abducible values point to LT2Pos,
namely DI and D2; since no abducible value
points to the (only) ancestor LT2 of LT2Pos (i.e.,
there are no f;s in formula (3)), we add the fol-
lowing formulas:

D1V D2 = LT2Pos
LT2Pos = D1V D2

According to the first formula, if LT2Pos is false,
then also DI and D2 are false, i.e., neither DI,
nor D2, nor any refinements of such diseases can
be explanations. If, on the other hand, LT2Pos is
observed to be true, then, according to the second
formula, either DI or D2 must be true; in turn,
this may be due to, e.g., the fact that the refine-
ment D1.2 of DI is true but, as discussed above, it
may also be the case that ukp; is true, i.e., we do
not need to commit to any particular refinement
of D1 in order to explain LT2Pos.

Let us now consider a more complex example,
where the f;s of formula (3) are involved. The only
abducible value pointing to LT2+ is D2.1; how-
ever, D1 points to the ancestor LT2Pos of LT2+;
therefore we add the following formulas:

D2.1 = LT2+
LT2+ = D2.1V D1

The second formula states that if LT2+ is true,
then D2.1 or D1 must be true: the first one, be-
cause it directly causes LT2+; the second one be-
cause it causes the ancestor LT2Pos of LT2+ and
its descendants do not predict more specific values.

In this way, although the abducible hierarchy
of D1 predicts the value of manifestation LT2 at
a coarser level of granularity than the abducible
hierarchy of D2, we still allow DI to explain some
fine-grained values of LT2, such as LT2+.

Adopting the hierarchical formulas (2) with uky
variables has the benefit of allowing abstract ex-
planations, as discussed above, but it also weakens
the theory 7Tg. In particular, let us assume that
an observation value w is not unknown (i.e., one
of its children w; is known to be true), and that
a child «; of an abducible value a points to one
of the other children wy, of w, h # j. According to
formulas (2), it may still be possible that uk, is
true, i.e., that a is an abstract explanation of w;.
We would like to avoid « being an explanation of
w; when (at least) one of its children, namely o,
is certainly not true. To this end, we add to Tg the
formula:

-k, = (Cwp, = uky) (4)

The formula says that, unless the value of w is
unknown, if value wy, is false then abducible value
a is not unknown, i.e., @ cannot be an (abstract)
explanation.

To illustrate this point, let us consider value
LT1 in Figure 1, and let us assume that we have
excluded its child LT1Pos by observing LT1Neg.
Thanks to the presence of the formula:

—ukrr = (‘!LTIPOS = —|ukD1)

the manifestation value LT1Neg cannot be ex-
plained by DI alone, although it can still be ex-
plained by one of its refinements, namely D1.1.

3.83. Mapping to the Ezxplanatory Knowledge

Once the theory Tg has been generated from the
causal graph, its logical models are easily mapped
to an explanatory knowledge Kg C S(A) x S(M)
as defined in section 2.2.

Let p = {ws,...,wn} be any observation. Start-
ing from theory 7g, we want to define the portion
Kg(p) of Kr which contains the explanations of
. To this end, we start by considering the propo-
sitional theory:
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Te(p) =TeU{wi A... Awpy}

which asserts observation p = {wi,...,wn} in Tg.

Let us denote as M (u) a logical model of Tg(u),
and restrict it to a partial model M (u) 4 which as-
signs truth values only to the variables associated
with abducibles:

M(pu)a = Mg, U...UMyu,

where M 4, is a truth assignment to each variable
in wvals(A;). Note that M(u)4 does not contain
the truth assigments to the unknown variables uk,,
associated with the abducible values.

From each model M (u)4 we can derive exactly
one candidate 7 as follows:

— if M4, assigns false to each variable, then
none of the values wals(A;) of abducible A;
belongs to v;

— otherwise, let a; be the most specific value of
A; such that My, assigns true to a;; then o
belongs to .

The candidate derived from M (u)4 as we have
just explained is denoted as y(M(u) 4).

The relation Kg(p) containing the explanations
of p is thus defined as:

Ke(p) ={(v,p) | IM(p)a:y=~yM(u)a)}

i.e., the explanations of u are the candidates de-
rived from the (partial) models M (u)4 of T (u).

Finally, Kg itself is defined as the union of
Kg(u) for each possible observation u. As stated
before, our purpose is not that of explicitly enu-
merating all of the tuples of relation g, which
would be infeasible for all but the smallest domain
models. Instead, the above discussion implies that
we can compute the explanations of any observa-
tion u by directly manipulating the propositional
theory Tg.

Let us consider again an example from the
model of Figure 1. We may ask whether, according
to the above definitions, candidate v = {D1.2}
is an explanation of observation u = {SymIPres,
LT1, LT2}, ie., whether ({DI.2},{Sym1Pres,
LT1, LT2}) € K.

It is easy to see that the propositional seman-
tics of the graph includes a logical model where
the only abducible variables that are true are
D1, D1.2 and ukp; .2, while the true manifesta-
tion variables are Sym1Pres, LT1, LT1Pos, LT2,
LT2Pos plus other unknown variables and vari-
ables associated with their refinements.

input: a set of values ¢ = {&1,...,0n}
representing the initial observations

pi=9
L=
generate a set I' of candidates v which explain ¢
loop
if I = {0} then exit
p=Ha|Tv; eT:ae}
o := ChooseNextStep(T', ¢, p)
Yi=%-.0
fo=weyp
(p, T') := Observe(p, T', ¥, w)
elseifc =a € p
(¢, I') := Remove(p, I, &, o)
endif

end

Fig. 2. Main loop of the troubleshooting algorithm.

Clearly, if 4 = {Symi1Pres, LT1, LT2}, this
is also a logical model M(u) of Tg(p) = Te U
{Sym1Pres, LT1, LT2}. Let us now consider the
restriction M (u) 4 of M(p) to the A variables; by
eliminating all the assignments to uk and mani-
festation variables, M (p) 4 assigns true just to ab-
ducible variables D1 and DI1.2, both belonging to
the portion Mp; of M(u).a.

From the rules for deriving a candidate v from
M(p) 4, it follows that y(M(u) 4) = {D1.2}, s0 we
finally conclude that ({D1.2}, {Sym1Pres, LTI,
LT2}) € Kg.

From this example, we easily see that {D1.2} is
also an explanation for, e.g., {Sym1Pres, LT1Pos,
LT2} or {Symi1Pres, LT1Pos, LT2Pos}, where
more refined observation values have been included
into the observation p that we want to explain.

4. Method Description
4.1. Troubleshooting Algorithm

The algorithm shown in Figure 2 illustrates the
overall approach to troubleshooting with abstrac-
tions we propose in this paper.

We define ¢ = {wi,...,wn} as the current
fringe over the manifestations, containing the most
specific values w; known to be true so far for man-
ifestations M;, j =1,...,m.

Since we assume that at least one ground value of
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each manifestation is true in each situation, if we
do not have any information about the value of a
manifestation Mj, its value in ¢ is the root of the
hierarchy for M;, i.e., w; = root(A(M;)); other-
wise, w; may be a more specific value in vals(M;).

An initial fringe ¢ of observations is given and
the fringe is updated as the problem solving pro-
cess goes on. We also initialize the sequence X
of observations/actions performed so far to the
empty sequence [|. The sequence ¥ will be useful
for ignoring actions that have already been per-
formed [22].

Given the set of initial observations ¢, a set of
candidate explanations I' are generated.

At each iteration of the main loop, we first check
whether I' contains just an empty candidate (),
meaning that the problem is solved and the algo-
rithm can terminate. If this is not the case, the set
p of abducible values that appear in I is computed.

Then, we have to choose whether to perform an
observation, in order to refine or discriminate the
candidates, or to remove an abducible, by implic-
itly performing the related action (for example a
repair action in the troubleshooting context). We
select what to do next based on the current candi-
date set T, the fringe ¢ and the set of abducibles p.
Clearly, this choice is in general suboptimal, due to
the prohibitive complexity of making an optimal
choice.

If the choice is to perform an observation, the
candidate set I' and the fringe ¢ are updated ac-
cording to its outcome (call to function Observe).
In particular, if w is a value in manifestation hier-
archy A(M) and the outcome of observing w is wy,
then w is replaced by wy as the value of M in ;
the candidate set I' is updated by generating the
candidate explanations for the updated fringe.

Also when the choice is to remove an abducible
value «, I' and ¢ must be updated (call to function
Remove). The details of such an update are given
in the next section.

4.2. Removing Abducibles

In this section we describe how the fringe ¢ and
the candidate set I are updated when an abducible
value « is removed. We denote as ¢’ and I the
updated fringe and candidate set, respectively.

Let us start by considering the update of . In
order to update ¢, the first step is a transformation
of the previous candidate set I'. In particular, if

is a ground abducible value a, we compute a set
I'z by updating each candidate v € " as follows:

7 =7\{a}
(clearly, if a & v then 4 = +; note also that if
v = {a}, then 7' =0).

Each updated candidate v will make, in gen-
eral, a set of possibly non-deterministic predic-
tions {p1,...,1q} on the values of manifesta-
tions M, where each prediction is a set p; =
{wi1s.-.,wim}. Bach candidate 4" represents all
of its possible extensions and refinements; there-
fore the predictions of ~' are all the observa-
tions pu; that can be induced by any of its ex-
tensions/refinements. For example, the candidate
7" = 0 will make essentially no prediction (except
the obvious fact that the roots of each manifesta-
tion are present), since it can be extended to any
other candidate.

Let us denote with LUB(y', M;) the value in
A(Mj) that is the least upper bound of {wy j, ...,
wq,j} (i-e., of the set of values for M; predicted
by 7). The new fringe predicted by ' will then
be ¢(v') = {LUB(Y', My),...,LUB(Y', Mp)} (re-
call that a value in the fringe for M; is the most
specific value of M; known to be certainly true).
Similarly, we denote with LUB(Ig, M;) the value
in A(M;) that is the least upper bound of the set
{LUB(Y', M;) : 7' € 'z} (i.e., of the set of values
for M predicted by I'z). The new fringe predicted
by 'z will therefore be p(I'g) = {LUB(I'z, M;),
..., LUB(I'g, M,,,)}.

The updated fringe ¢’ should be set to ¢(I'z);
note however that ¢(I'z) may contain very weak
(i.e., abstract) values for manifestations, since they
must be consistent with all of the possible predic-
tions made by all of the (modified) candidates in
I'z. For this reason, it is useful to assume that, for
a (possibly empty) subset M* of manifestations,
it is possible to perform at no cost an immediate
check (at a given level of abstraction) after the re-
moval of an abducible.

In particular, following [23], we define a cut
C(M) on a hierarchy A(M) to be a set of val-
ues w € wvals(M) such that each ground value in
gndvals(M) is an instance of exactly one w € C(M)
(i.e., a cut can be seen as a curve line which makes
an horizontal cut of the tree A(M) in two parts by
touching a set of values at possibly different levels
of abstraction).

The immediate check on each manifestation M; €
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M* will result in exactly one (abstract) value
w; belonging to the cut C*(M;) associated with
A(M;).

For instance, in our running example, the manifes-
tation SymI is associated with the cut {Sym1Pres,
Sym1Abs}, i.e., after performing an action we
know for free whether the symptom persists
(Sym1Pres) or it has disappeared (Sym1Abs). For
the other manifestations LT1 and LT2, we assume
trivial cuts consisting just in the roots of the re-
spective hierarchies.

Note that a cut may in general consist of both
ground and abstract values: for instance, { LT1Pos,
LTINeg} would be a valid cut for LT, although
LT1Pos is an abstract value, while LT1Neg is a
ground value.

In general, the observed value w; € C*(M;) of
a manifestation M; € M™ may be more precise
than the predicted value LUB(Ig, M;) and it will
therefore be included in the new fringe ¢’.

The updated candidate set I'' will be computed
by generating the explanations for ¢', taking into
account that the abducibles in the sequence ¥ (in-
cluding a) will not be part of any explanation.

Let us now consider the execution of an action
for removing an abstract abducible value «. Since
«, by being abstract, is not associated with an ac-
tion which could remove it, we need to iteratively
remove the values a a € gndvals(a) until we
ensure that a has indeed been removed (i.e., has
become false) in the candidates T'.

The algorithm starts by selecting an approxi-
mately best value a to remove (see below). After
the removal of abducible value a, there are two pos-
sible cases: either some manifestations in M™* have
changed, or not. In the first case, a was clearly the
real refinement of «, so the removal of « is com-
plete. Otherwise, a new approximately best value
a' is selected, and so on until some manifestations
in M* change. It is possible (in particular when
we have chosen to remove an adbucible a that was
not present in the first place), that we need to re-
move all the ground values in gndvals(«), since we
don’t detect any change in the manifestations.

The selection of the best value to remove is
based on a slight modification of the efficiency
measure defined in [13]. In particular, let us denote
with T', the subset of I' whose candidates contain
the abducible value a (i.e., Ty ={y €' : a € 7});
the efficiency of value a is defined as:

ef(a) _ p(Fa|F)

Intuitively, the efficiency of a is increased by the
probability that the abducible value a is in the
candidate set, and it is decreased by the cost of
removing it. The value a to be removed next is the
one with the highest efficiency.

Independently of the sequence of values (ay, ...,
a,) which is actually removed, once the removal of
« is complete we can proceed to update ¢ and I' as
in the case of a ground abducible value described
above.

re(a)

4.3. Estimated Cost of Removing Abducibles

In the previous section we have considered the
actual removal of an abducible value, and its ef-
fects on ¢ and I'. In this section we consider the
problem of estimating the cost of such a removal
before actually executing any action. This esti-
mate is needed in order to choose what should be
done next, i.e., observe or remove, in the call to
ChooseNextStep in Figure 2; we will explain such
a choice in detail in the next section.

If « is a ground abducible value a, then the cost
re(a) is defined directly in the model, so there is
no need to estimate it. If, on the other hand, «
is an abstract value, its cost can be estimated by
adapting to our setting a simple technique from
the troubleshooting literature, namely the greedy
approach of [16]. Let (a1, ...,aq) be the sequence
of ground values a; € gndvals(a) in decreasing ef-
ficiency order according to the formula introduced
in the previous section. The estimated cost of re-
moving a from a candidate set I' is computed as
follows:

a .
rec(@) = 3 re(a;) - [1 - plal) - pla ¢ T'la)] (5)

i=1

where I'? is the candidate set after values aq, ...,
a;—1 have been removed starting from candidate
set I'. When convenient, we will use the notation
rer(a) to denote the fixed cost re(a) defined in the
model for a ground abducible value a.

To understand this definition, let us first note
that the most efficient ground value a; will always
be removed at the cost rc(ay): indeed, I'' =T and
therefore p(a € I'|a) = 0, since « is considered
for removal just because it appears in I'. As for as,
its cost rc(az) will be paid, except in case, after
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removing a;, the resulting candidate set I'? does
no longer contain « (i.e., @ has been removed by
removing aj, and this fact has been detected - see
below). Similarly, the cost of a;,i > 2, will be paid
except in case, after removing ay,...,a; 1, the re-
sulting candidate set I' does no longer contain a.

The exact way p(a ¢ I['‘|a) is computed de-
pends on the set of manifestations M* that can be
checked at no cost after the execution of each ac-
tion, and on the cuts associated with such checks.
One possibility is to make the strong assumption
that the removal of any value a; (when «a; is actu-
ally present) always makes the manifestations in
M* change; in such a case:

i—1

pla € Ta) = plaj|e)

Jj=1

i.e., I'¥ will not contain o provided one of the values
ai,...,Q;—1 was present.

If, on the other hand, we make the weaker as-
sumption that the manifestations in M* change
only when the problem has been solved, then:

pla g o) = {§ f{of €T

Z;;ll p(aj|a) otherwise

(6)

since, if there is no candidate containing just {a},
the problem will certainly not be solved by remov-
ing a while, otherwise, detecting that the prob-
lem is solved is equal to detecting that a has been
removed.

The assumption we choose to make (the strong
or weak ones described above, as well as other
ones) will not affect the correctness of the algo-
rithm, since it is used just for estimating the cost
of removing a. However, the assumption should re-
flect as far as possible the characteristics of the do-
main (in this case, the number and discrimination
power of manifestations M*), in order to make the
estimate as precise (and useful) as possible. For
the example in section 4.5 and for the experimen-
tal evaluation in section 5, we will use the weaker
assumption.

4.4. Choosing the Next Step

As discussed in section 4.1, at each iteration
of the problem solving process we need to choose
whether to observe a value w in the fringe ¢ or to
remove an abducible « in the set p.

For each w € ¢, we evaluate the estimated cost
¢(w), which is the sum of the cost oc(w) of refining

w and the expected cost of the candidate set after
refining w, i.e.:

q
c(w) = oc(w) + Y plwk|T) - ¢(Tk) (7)

k=1
where I'y,...,I', are the possible candidate sets
that would result by observing w and getting val-
ues wi,...,w; respectively; p(wg|I') is the proba-

bility of getting value wy (computed based on cur-
rent candidates I'); and ¢(T'x) is the estimated cost
of I'y, as detailed below.

For each a € p, we evaluate the estimated cost
¢(a), which is the sum of the cost rep(a) of remov-
ing a and the expected cost of the candidate set
after removing a, i.e.:

c(a) = rer(a) + Z

TwePW(T,a)

p(Lk|T) - e(Tx)  (8)

where PW (T, «) (for possible worlds) is an esti-
mate of the possible candidate sets resulting from
the removal of a and p(T'x|T") is the probability
that the actual candidate set after removing « is
.

Let us consider the set PW (T, &) in more detail.
As in the actual removal of an abducible value, we
first compute the candidate set I'z obtained by re-
moving «a from each candidate in I'. In order to
simplify our estimate, we consider that each candi-
date 7' € 'y represents just itself, instead of rep-
resenting also all of its extensions and refinements,
e.g., we do not interpret () as the representation of
any possible candidate as we do in the actual ex-
ecution of actions, but just as the representation
of the case where none of the abducible values is
present. This approximation makes the predictions
of candidates 4’ much more precise, improving the
efficiency of the estimate as we shall see shortly.

We then consider the predictions made by the
candidates in 'z on the M* manifestations at the
level of the cuts C*(M;), and group all of the can-
didates 7' which make the same predictions into
the same possible world I'y,. The set PW (T, a) will
contain all of the candidate sets I'j, C I'g obtained
in this way.

In general, the number of possible (non deter-
ministic) predictions on manifestations M* can be
exponential in | M*|, and therefore PW (I", a) may
be intractable to compute if M* is large. How-
ever, even when M* is large, it is sufficient that
the predictions made by the candidates v’ € I'z on
the values of manifestations M* are deterministic
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at the level of the cuts C*(M;); in such a case it
is easy to see that |PW(I', a)| is bounded by the
number of candidates |T|.

In both equations 7 and 8, we need to be able

to estimate the cost of the problem solving process
for a candidate set ['j.
In order to compute such a cost, we adopt a tech-
nique similar to the one adopted for estimating
rer (o) (section 4.3), inspired by [16]. In particular,
we start by computing py, i.e., the set of abducible
values that appear in I'y; then we order such ab-
ducibles in decreasing efficiency order using the fol-
lowing formula, which was introduced previously
for ground abducible values but can be straightfor-
wardly applied also to abstract abducible values:

. p(Fa|Fk)
efpk(a) - T'CI‘k(Oé)

Let pi, = (o, ..., ay) be the sequence of abducible
values ordered by decreasing order of efficiency.
The cost of I'y, is computed as follows:

co(ly) = Zrm (i) - p(T), # {0}) 9)

where I} is the candidate set after abducible val-
ues ai,...,a;_1 have been removed starting from
candidate set I';.

Note that the cost of each abducible «; is
weighted with the probability that the action to
remove it will actually be executed, i.e., that the
candidate set I} is not equal to {@}, which cor-
responds to the situation where the problem has
already been solved and this has been detected, so
that the only candidate left is (.

As in the case of the estimate of rer(a), the
way p(I'i # {0}) is computed depends on the set
of manifestations M* and on the cuts C*(M;). If
we assume that, after each action execution, it is
possible to check at no cost whether the problem
has been solved or not, then:

p(Ty #0) = >

Y €Ty Z{a1,--,ai—1}

p(Y'|Tx)

since, if the real world status is a candidate
~' € T' which is completely removed by remov-
ing a1,...,a;—1, we must be aware (through our
checks) that the problem is solved, and I'* must
therefore be equal to {0}.

After we have computed the expected observa-
tion costs ¢(w) and expected action costs ¢(«), we

simply choose the observation or action o such
that:

0 = argmingc(pup) [¢(0)]

i.e., the observation or action of minimum ex-
pected cost.

4.5. Ezample

In order to get a better understanding of the
problem solving process, let us consider in detail
the execution of the algorithm in Figure 2 on the
medical example in Figure 1. A schematic view of
the solution process is shown in Figure 3.

Initial observations. Let us suppose that an ini-
tial manifestation of Sym1 is detected, i.e., ¢ =
{Sym1Pres, LT1, LT2}. The initial candidate set
isT' = {{D1},{D2},{D3}}, representing the pos-
sible alternative diagnoses (in fact, D1, D2 and
D3 explain Sym1Pres).

First iteration. The abducibles to be considered
for removal are p = {D1, D2, D3}, while the fringe
 is initially equal to ¢ = {Sym1Pres, LT1, LT2}.
Figure 3 shows the possible choices as dashed arcs
leaving the root of the graph; note that we don’t
consider the observation of SymIPres since it is
a ground value in the hierarchy of manifestation
Sym1.

The costs are estimated as follows. Regarding
the observation w = LT, two outcomes are possi-
ble: the test is either negative (LT1Neg) or positive
(LT1Pos). The candidate set I'y resulting from
observing LT1Neg is:

'y ={{D1.1},{D2},{D3}}

Indeed, according to section 3.2, LTI1Neg is ex-
plained by any abducible value except those that
predict LT1Pos, namely D1.2 and its children,
i.e., exactly by the (least presumptive) candidates
contained in I'y. Note that these candidates also
explain the manifestation values already in ¢, in
particular Sym1Pres.

On the other hand, if the outcome is LT1Pos,
the candidate set is:

Ip = {{D1.2}}

since, according to equation (3) in section 3.2, the
following holds:

LT1Pos = DI1.2
The probability of I'y given I is:
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Fig. 3. Graph representing the solution of the example problem. Dashed arcs represent alternative choices to consider, while

solid arcs represent actual observations and actions.

p(Cn) _ (st +a) 5

p(T) o B

p(I'n|T) =
(TnIT) 2 :

Similarly, the probability of I'p given I' is %

In order to estimate the cost ¢(I'y) we first need
to estimate rcr, (D2) (the other abducible values
in I'y are ground, therefore their cost needs not
be estimated). The ground values D2.1, D2.2 of
D2 have the same probability, and D2.1 costs less
than D2.2, thus we consider them in the order of
efficiency (D2.1, D2.2). We also note that, as soon
as we solve the problem, we will immediately de-
tect it at no cost from the symptom Sym1 (equa-
tion (6)); the estimated cost is then computed as
follows according to equation (5):

re(D2.1) = 6;re(D2.2) =8
p(D2|l'y) =2
p(D2 ¢THD2) =0
p(D2 ¢ 1?|D2) =p(D2.1|D2) = %
rery (D2) =re(D2.1) +re(D2.2) - [1— 2 - 1] =124
The estimated cost ¢(I'y) is computed based on
the fact that the relative probabilities of the candi-
dates {D1.1}, {D2}, {D3} are 2, 2, 1, their costs
are 8, 12.4, 15 and therefore the sequence in order
of decreasing efficiency is {D1.1}, {D2}, {D3}.
Then, according to equation (9):

3

c(l'n) =8+ 5 12.4 + % -15 =18.44

Let us consider the estimated cost of ¢(I'p).
First of all, we compute rcp, (D1.2) as follows:

rce(D1.2.1) = 4;r¢(D1.2.2) =
p(D1.2|Ilp) =1
p(D1.2. 1|D1 2) =

p(D1.2 ¢ T'|D1.2)

p(D1.2 ¢ T?|D1.2)

rerp (D1.2) =re(D1
=6

1
2

0
p(D1.2.1|D1.2) = %
2.1) +re(D1.2.2) - [1 -

N =
~
—

Since, according to equation (9), ¢(T'p) =
rerp(D1.2), it follows that ¢(I'p) = 6. The total
expected cost associated with observation LT1 is
therefore:

e(LT1) =2+ g c(Tn) + % -¢(Tp) = 16.89
according to equation (7) and recalling that the
immediate cost oc(LT1) of performing LTI is 2.

Regarding the observation w = LT2, if the out-
come of this observation is negative (LT2Neg),
then the resulting candidate set is Iy = {{D3}}.
On the other hand, if the outcome is positive
(LT2Pos), the candidate set isT', = {{D1},{D2}}.
The expected costs are:

c(I'y) =re(D3) =15
¢(T’p) = repy, (D1) + § - repy, (D2)
= 12.67 + 5 - 12.67 = 16.89

and then:

1
¢(LT2) =8+ 2 15+ g - 16.89 = 24.62

since the immediate cost of performing LT2 is 8
and the probabilities of I'y, I', are, respectively,
Land &
7 and .

The expected cost associated with removing D1
is as follows, according to equation (8):

-o({{D2},{D3}})

since {D1} has probability z in I, and, if remov-
ing {D1} does not solve the problem, the only re-
maining possible world is I'sy = {{D2},{D3}}.
The computation of rep (D1) gives 13.14. As for
the cost of I'py, its value is 11.33 + £ - 15 = 16.33

¢(D1) =rep(D1) +

D1
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given that D2 has higher efficiency than D3, and
that rep__(D2) = 11.33 and re(D3) = 15.

The resulting expected cost if we choose to re-
pair D1 is then:

¢(D1) =13.14 + % -16.33 = 20.14

Similarly, the expected costs for removing D2 and
D3 are:

(D2) = 23.57
c(D3) = 29.48

The estimated costs of the alternative choices
are reported in Figure 3. We choose to observe
LT1, whose expected cost of 16.89 is the lowest
one. Let us now suppose that the outcome of LT'1
is positive (i.e., LT1Pos); the candidate set I is
updated to I'p = {{D1.2}} and the fringe ¢ is
updated to {Sym1Pres, LT1Pos, LT2}.

Second iteration. We need to estimate the costs
of refining observations LT1Pos and LT2, and the
cost of removing abducible D1.2. As shown in Fig-
ure 3, the best choice is to remove D1.2, with an
expected cost of 6. In order to remove DI.2, we
start removing its ground values DI1.2.1, D1.2.2
in that order (since they have the same cost and
probability, they have the same efficiency, and
thus the order is chosen arbitrarily). After remov-
ing D1.2.1, symptom Sym1 is still present (i.e.,
Sym1Pres is still true), so we also remove D1.2.2.
Now, Sym1 disappears, and we conclude that the
problem has been solved. Overall, the cost paid for
this solution is 10: 2 for observing LT1 and 8 for
removing D1.2.

5. Experimental Evaluation
5.1. Implementation of the Method

We have implemented the proposed approach
as a Perl program. The models consist in causal
graphs G as specified in section 3; such graphs are
stored in the file system in YAML format, and are
loaded into appropriate memory data structures
when needed.

A key part of the program, starting from the
causal graph G of a model, generates the proposi-
tional theory Tg corresponding with the explana-
tory knowledge Kpg, as described in section 3.2.
Such a propositional theory is further compiled

into an OBDD (Ordered Binary Decision Dia-
gram), denoted as O(7g). OBDDs are a special,
canonical form for representing Boolean functions
[3] that makes some important reasoning tasks?
tractable, with a linear or even constant complex-
ity. Due to these features, OBDDs have been suc-
cessfully employed for knowledge compilation in
several Al reasoning tasks, including planning [1]
and diagnosis [5,19].

The implementation of the problem-solving al-
gorithm shown in Figure 2 depends on the avail-
ability of an explanation function that, given a
fringe ¢, computes a set I' of candidates that ex-
plain the observations in ¢. Such a function is
needed both to bootstrap the computation, and
to update the current candidate set I' after a new
observation is made.

Our implementation of the function is based on
suitable manipulations of OBDD O(7g). In par-
ticular:

1. we assert the truth of the fringe ¢ in O(Tg);
this operation can be done in linear time
w.r.t. to the size of O(Tg);

2. we assert the (negation of the) removed ab-
ducibles in O(Tg) (also in linear time);

3. we extract explanations from the resulting
OBDD by employing a well-known algo-
rithm for extracting minimal models from an
OBDD [9] whose complexity is exponential in
the worst case, but usually tractable in prac-
tice; such an algorithm is slightly modified in
order to enumerate the models that contain a
minimal set (w.r.t. set inclusion) of true ab-
ducible variables vals(A;) U ... U vals(4,),
excluding uky variables (in order to eliminate
non-least presumptive candidates).

Given this function, the implementation of the
rest of the algorithm of Figure 2 was straightfor-
wardly based on the contents of section 4.

5.2. Results of the Experiments

In order to empirically evaluate our approach,
we ran a set of experiments. A main goal was
comparing abductive problem solving performed
by exploiting abstractions and abductive problem
solving not relying on abstractions, i.e., the case

2Including consistency check, equivalence check, and
most importantly enumeration of logical models.
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Problem set | ng | ne | ns h ba | bt | eb Ng
SMALL 3 3 2 3 49.4
MEDIUM 3 3 2 4 104.8
LARGE 3 3 2-3 | 4 166.8
Table 1

Parameters for problem sets

Problem set | toNoABSvsABS | COABSvsNOABS | 10OABSvsRND | CORNDuvsABS
SMALL 3.829 1.117 4.417 2.166
MEDIUM 8.265 1.121 1.789 3.354
LARGE 18.622 1.101 1.919 5.663
Table 2

Comparison with no abstractions and with random choices

where the reasoning process is restricted to formu-
late only ground hypotheses. Moreover, we evalu-
ated the case where further lookahead in cost esti-
mates is used, to get closer to the optimal choice.
The different approaches were compared in terms
of computation time and in terms of observation
and action costs to solve the problem.

To this purpose, we implemented a generator of
random models. Models are generated based on a
number of parameters, including:

— ng, N¢, N number of hierarchies of abducibles,
tests and symptoms;

— h height of the hierarchies of abducibles and
tests;

— b,, by branching of the hierarchies of ab-
ducibles and tests;

— eb (explanation branching), number of ab-
ducibles explaining a symptom: a larger eb
provides more candidate explanations.

Three sets, SMALL, MEDIUM and LARGE, of
five models each, were generated, with different
values for parameters, as from table 1, where N, is
the resulting average total number of nodes in the
abducible hierarchies. Observation costs increase
when going deeper in the hierarchies, with an av-
erage 50% increase from one level to the next one.

For each model, a set of 50 cases was gener-
ated randomly, based on the a-priori probabili-
ties of abducibles; i.e., for each case, a set « of
ground abducibles is generated — and, since their
probabilities are used, in a large fraction of cases,
v is a singleton (i.e., a single fault in diagno-
sis/troubleshooting). The observations u to be ex-
plained for solving the case are the consequences
of ~.

Table 2 compares the results of three methods:

— ABS is the method described in the paper;

— NOABS only uses ground hypotheses and ac-
tions;

— RND performs a random choice of the next
observation or action (among the sets p and
¢ of relevant actions and observations).

The comparison is provided in terms of the
average relative overhead of a method with re-
spect to one another, in terms of computation
time, and in terms of observation and action cost
paid to actually solve the problem. For example,
toNoABSvsABS provides the average relative time
overhead of NOABS with respect to ABS, and we
see that for the SMALL problems, the computa-
tion time of NOABS is almost 4 times with re-
spect to ABS, while the overhead of ABS in terms
of observation and action cost (coaBsysNOABS) 1S
11.7%.

We see that the additional cost of ABS with re-
spect to NOABS is around 10% and does not in-
crease with the size of models, while the running
time of NOABS diverges with respect to the one
for ABS. We also see that ABS has an accept-
able additional running time (less than double, for
MEDIUM and LARGE) with respect to choosing
the next observation or action at random, while
RND has, as it can be expected, unacceptable and
diverging additional costs.

Table 3 reports results related to using, for the
SMALL problem set, additional lookahead for es-
timating the best choice, i.e., trying to get closer
to the optimal choice.

Column to provides the average relative over-
head in time with respect to the ABS methods for
variants, with lookahead 2, 3 and 4, of the basic
ABS method (which uses lookahead 1). Column
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to co
10.156 | 1.046
27.355 | 1.048
71.784 | 1.053

Table 3

Results for additional lookahead

co provides the average relative overhead in cost
(for observations and actions) of the ABS method
with respect to the additional lookahead methods.
As we can see, running times increase significantly
and only provide minor cost savings.

The experiments confirm that the approach in
the paper provides acceptable additional observa-
tion/action costs, with respect to not using ab-
stract hypotheses, with major savings on compu-
tation time. The experiments also illustrate that
using further lookahead provides small savings
while adding significant computational costs. As
observed in the introduction, small or at least fea-
sible computation time may mean that an action,
even though possibly suboptimal, is taken before
it is too late; in a specific setting, the cost of de-
laying actions might be measured in the same unit
as observation and action costs.

6. Conclusions

In this paper, we proposed a novel abductive
problem solving method which extends previous
work on measurement selection in Model-Based
Reasoning and on decision-theoretic troubleshoot-
ing. Unlike previous approaches to troubleshooting
which do not exploit structured representations of
the domain (e.g., [13,16]), our work is based on
a representation with abstractions where both ab-
stract observations and abstract hypotheses are
taken into account.

We present a general abductive problem solv-
ing loop where, depending on the costs of obser-
vations and the costs of actions to be taken, a
further observation may be chosen for discrimi-
nating or refining current candidates, or an ac-
tion can be taken based on the current candi-
date(s). In this respect, the paper is also a sig-
nificant generalization of previous works which
use ontologies or taxonomies of hypotheses for
explanation/interpretation purposes, but assume
that all of the observations are given in advance
[4,14,7,17,2] or confine actions to a second phase

[20]. Interleaving observations and actions requires
more sophisticated reasoning, but the increased
flexibility in the way the problem is solved allows
for better solutions to be found; in the diagnosis
domain, this corresponds to the difference between
(sequential) diagnosis and troubleshooting.

Costs of observations and actions may be very
different at different levels of abstraction: there is
a trade-off between paying the cost of further ob-
servations (or more precise observations) and the
one of performing unnecessary actions, or unnec-
essarily general actions. Given that in practical
cases computing an optimal choice is not feasible,
we adopt a greedy, approximate approach from
model-based diagnosis and decision-theoretic trou-
bleshooting, basing the choice on expected costs.

The approach is aimed at being general, because
its motivations can be found in several tasks and
domains including technical and medical diagnosis
as well as interpretation tasks such as plan recogni-
tion. Different instances may be derived with spe-
cific approaches for representing domain knowl-
edge and for generating and updating candidate
explanations based on observations.

Nevertheless, in the paper we have also defined
the syntax and semantics of a specific knowledge
representation formalism based on causal graphs.
We have focused on such a representation for de-
riving an algorithm for the computation of expla-
nations and for implementing the whole abductive
problem solving loop. The experiments performed
with the implemented system suggest that the use
of abstraction results in a very limited overhead
on observation/action costs, while the savings on
computation time are major.
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