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Abstract. Clustering techniques find homogeneous and distinguishable prototypes. Careful interpretation of these prototypes
is crucial to assist the experts to better organize this know-how and to really improve their decision-making processes. The
Traffic Lights Panel was introduced in 2009 as a postprocessing tool to provide understanding of clustering prototypes. In this
work, annotated Traffic Lights Panel (aTLP) is presented as an enrichment of the TLP to manage the intrinsic uncertainty
related with prototypes themselves. The aTLP handles uncertainty through a quantification of the prototypes’ purity based on
the variation coefficients (VC) and an associated color-based uncertainty model, with two dimensions – tone and saturation –
representing nominal trend and purity of the prototype. An application to a waste-water treatment plant in Slovenia, in a discrete
and continuous approach, suggests that aTLP seems a useful and friendly tool able to reduce the gap between data mining and
effective decision support, towards informed-decisions.
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1. Introduction and related work

It is well known that Knowledge Discovery in
Databases (KDD) approach provides a good frame-
work to analyse complex phenomena [17]. The core
of KDD addresses to get novel and valid knowledge
which can improve the corpus doctrinae of the target
domain [4]. Fayyad’s proposal marked the beginning
of a new paradigm where both prior and posterior anal-
ysis becomes important: “Most previous work on KDD
has focused on [. . . ] Data Mining (DM) step. However,
the other steps are of considerable importance for the
successful application of KDD in practice” [4]. Indeed,
posterior analysis or postprocessing tasks are crucial to
complete the interpretation of data mining results and
establish proper bridges between data-driven models
and real decision making activities [3,13]. This seems

*Corresponding author. E-mail: karina.gibert@upc.edu.

to be in the core of current interests for the scientific
community. Very recently, Alex “Sandy” Pentland, the
head of MediaLab Entrepreneurship Programm MIT
declared the need “to be general literacy about data
interpretation” in his keynote of Campus Party Europa
September 4th 2013 [20], where he stressed the impor-
tance of big data and the urgency to overcome the cur-
rent lack of properly formed data scientists, as other
scientists also claim [21].

Water Management in general and waste-water
treatment in particular are among those phenomena
that can benefit from KDD, as classical modelling
approaches perform poorly due to the complexity of
the related phenomena. The KDD approach might
help to better understand waste-water treatment plants
(WWTPs) processes, which is crucial to protect the en-
vironment [7]. An efficient WWTP should guarantee
the effluent water quality (as well as fitting to legal re-
quirements and government policies), in order to re-



store the natural environmental balance which is dis-
turbed by industry wastes, domestic waste-waters, etc.
The process used to achieve this goal is really complex
and delicate; on the one hand, because of the intrinsic
features of waste-water treatment, whose correct be-
haviour depends on a number of numerical and non-
numerical factors; on the other hand, because of the
bad environmental consequences of an incorrect man-
agement of the plant [6]. When the plant is not op-
erating under normal conditions, decisions have to be
taken to modify some parameters of the waste-water
treatment process in order to re-establish the normal-
ity as soon as possible. The management of these pro-
cesses highly relies on the expertise of the decision-
maker, even if he is currently well supported by moni-
toring data.

Learning a reduced set of typical situations that can
be found in a WWTP might help to make better deci-
sions and can contribute to standardisation of treatment
protocols. Clustering techniques are, in fact, one of the
most frequently used KDD tasks in real applications
[14,19] and are useful to identify such a set of typical
situations. Traditionally, the clustering results are ex-
pressed as a partition of the set of elements to be clus-
tered. So, several groups of objects are listed as final
result. The analyst is the responsible to identify the par-
ticularities of every group to assist the expert discov-
ering the underlying clustering criteria that will allow
a semantic interpretation of the resulting classes. This
interpretation process is the key to obtain effective,
valid and useful knowledge, typical situations happen-
ing in WWTP that might help to better organize the
background domain knowledge and, as a consequence,
to improve the associated decision-making processes.
The expertise of both the end-user and the data miner
are required for this purpose (Fig. 1). It is known
that unless end-users/experts understand and trust data

mining results, they are reluctant to use them in their
daily decision-making [5,15,16,18]. Research oriented
towards improving the interpretation processes in data
mining contexts will contribute to guarantee the impact
of knowledge extracted from data in the target domain.
Although few authors pay attention to that topics, post-
processing are among the tools that can play this role,
by reducing the gap between data mining and effective
decision support [2,3,13].

Traffic Lights Panel (TLP) is a symbolic postpro-
cessing of the clustering results [11] proved extremely
useful and well-accepted by domain experts in several
real applications [8–10]. TLP exploits the association
between the traffic light colours and the general trend
of the variables in every class to help the expert to un-
derstand the clusters and to support the conceptualiza-
tion of the discovered classes. Going further, authors
have been working on the automatic construction of
the TLP [8,9]. However, being TLP a symbolic repre-
sentation of the prototypical patterns characterizing the
classes, uncertainty propagation to final decisions is in-
trinsically involved, since the prototypes describe cen-
tral class trends, by disregarding individual deviations
from the main patterns. Indeed, the main principle gov-
erning the original TLP construction was to identify
3 qualitative labels over the variables representing the
central trend of every variable inside every class and
associate them to the traffic lights colors (red, green
and yellow) accordingly. This construction is abstract-
ing the contents of the class into a single indicator re-
lated to the central trend of the class, which might be
too reductionists, by ignoring whereas the class is more
or less homogeneously distributed around its central
trend.

The annotated TLP (aTLP) was introduced in [8]
in order to mitigate this effect. The aTLP enriches the
original TLP with the uncertainty associated to the

Fig. 1. Interpretation support tools bridging the gap between data mining and decision support. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/AIC-140611.)



class prototypes. The variability within classes is rep-
resented by means of a degradation of the basic TLP
colours, guided by a quantification of the heterogene-
ity of the class. In our first approach variation coeffi-
cients (VC) is used as a quantifier of heterogeneity. In
the original formulation presented in [8], a cut-off over
the VC is used to parameterize the aTLP and three lev-
els of uncertainty are represented by using three lev-
els of darkening the basic colors. This parameteriza-
tion in three levels of darkening is useful, as the human
eye cannot distinguish small variations on the light of
a color, but seems somehow artificial and might be
avoided. So, in this work a continuous approach for the
uncertainty color-based modelling used to enrich the
TLP is provided and a refinement of the original aTLP
into a non-parametric tool is presented. Both TLP and
aTLP either in the parametric or continuous form ap-
pear as useful and friendly tools to help the experts to
understand the discovered profiles.

In this paper, an application to understanding of
typical situations in a waste water treatment plant in
Slovenia is presented. The paper has the following
structure: Section 2 describes the application domain
and previous work; Section 3 addresses the intrin-
sic ambiguity of TLP related with variability within
classes; then in Section 4 the annotated TLP (aTLP) is
presented as a tool to manage uncertainty depending
on two parameters k1, k2 that the user has to choose ac-
cording to the cost associated to wrong decisions in the
target domain. In Section 5 the non-parametric version
of the aTLP is introduced. The results regarding the
Slovenian WWTP are presented and discussed along
the paper after introducing the corresponding concepts.
The paper ends with conclusions and future works in
Section 6 where the impact, advantages and drawbacks
of TLP and both parametric and non-parametric ver-
sions of aTLP are analyzed.

2. Application domain and previous work

This research regards a waste-water treatment plant
(WWTP) placed in Slovenia, the Domzale-Kamnik
waste-water treatment plant which is one of the largest
Slovenian plants in operation (200,000 PE), treating
municipal and industrial waste-water from four mu-
nicipalities. It is placed near Ljubljana, the capital of
the country and the receiving body is river Kamniska
Bistrica. The waste-water treatment has become cru-
cial and leader for the Slovenian environment protec-
tion. In Domzale-Kamnik, there is a second line where
pilot methodologies are tested. In this case, the dataset
is composed by a sample of 365 observations coming
from the pilot plant during the period June 2005–May
2006, when a new technology (moving bed biofilm
removal MBBR) was being tested in the process of
upgrading the waste water treatment to also include
nitrogen removal (see Fig. 2). The records represent
the daily averages of 16 variables considered relevant
by the experts (see Table 1). Those measurements are
computed as the daily averages of the data recorded ev-
ery hour (24 observations per day) by the monitoring
system of the plant.

In [9] this dataset has been clustered and 4 classes
were identified and validated by the experts. The as-
sociation between the values of the variables and the
traffic lights colours is made by taking into account the
meaning of the variables themselves, and according to
that, the experts provided the polarity semantics table
(PST) where direct or reverse sense of the association
is assigned depending on the semantics of the variable.
In this particular case of study, a latent concept related
with water quality or with the good operation of the
plant permits to associate red colours to highest con-
centration of pollutants in water or non-efficient oper-

Fig. 2. Architecture of the Domzale-Kamnik pilot plant. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
AIC-140611.)



Table 1
List of variables measured in the Domzale-Kamnik pilot plant

Phase of the process Variable Unit Description

Influent NH4-influent mg/l Ammonia concentration at the influent of the pilot plant

Q-influent m3/h Wastewater influent flow rate

FRI-DOTOK-20S Hz Frequency of the influent flow rate meter

TN-influent mg/l Concentration of the total nitrogen at the influent of the pilot plant

TOC-influent mg/l Total organic carbon concentration at the influent of the pilot plant

Nitritox-influent mg/l Measurement of the inhibition at the influent of the pilot plant

2nd anoxic h-waste-water m Height of the waste-water in the reactor

reactor

1st aerobic O2-1 aerobic mg/l Dissolved oxygen concentration in the 1st aerobic reactor

reactor Valve-air % Openness of the air valve in percentage

Q-air m3/h Total air flow that is dosed in both aerobic reactor

2nd aerobic NH4-2 aerobic mg/l Ammonia concentration in the second aerobic reactor

reactor O2-2 aerobic mg/l Dissolved oxygen concentration in the 2nd aerobic reactor

Effluent TN-effluent mg/l Concentration of the total nitrogen at the effluent (outflow) of the pilot plant

Temp-waste-water °C Temperature of the waste-water

TOC-effluent mg/l Total organic carbon concentration at the effluent of the pilot plant

Other Freq-rec Hz Frequency of the internal recycle flow rate meter (internal recycle flow rate)

Fig. 3. Polarity semantics table for the set of variables considered in the WWTP pilot plant. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-140611.)

ation of the plant, depending on the variable. Figure 3
shows the assignment for the case study.

An automatic procedure to build the TLP based
on conditional Medians of variables with respect to
classes was used and the information transferred to the
system through the PST was integrated in the color-
ing process [9]. The result is the TLP shown in Fig. 4,
where the quality of the water typically represented in
every class can be suddenly understood.

In previous works, it was realized that the TLP con-
stitutes a symbolic abstraction of the classes providing

information closer to the expert knowledge and mak-
ing easier the process of recognizing the concepts rep-
resented by the profiles. The conceptualization process
performed by the experts upon the TLP from Fig. 4
provided the following description of the classes:

C353: Represents the plant operation under the high
load. Influent nitrogen concentrations are
high and influent flow rate is quite high as
well. Even though the oxygen concentration
in the aerobics reactors is high, aeration in
1st aerobic tank is higher than other classes;



Fig. 4. Complete TLP for the whole set of variables considered in the WWTP pilot plant. (Note: for black and white versions, darker cells cor-
respond to red, lighter to yellow and intermediate to green). (The colors are visible in the online version of the article; http://dx.doi.org/10.3233/
AIC-140611.)

still the effluent nitrogen concentrations re-
main medium. It means that when the plant is
overloaded non-low effluent concentrations
at the effluent of the plant can be expected.

C357: Represents the situation of high load when
the influent flow rate is low, that is, when the
hydraulic retention time of the plant is high.
In this case, middle effluent nitrogen concen-
tration is obtained even if oxygen concentra-
tion in the 2nd aerobic tank is the lowest and
internal recycling rate is higher than other
classes. This means that when the influent
flow rate to the plant is low the effluent con-
centrations of the plant could be obtained at
the low level if the oxygen concentration in
the aerobic tanks is high.

C358: Explains the situation when the waste-water
temperature is low and internal recycling rate
is low. In this case nitrogen removal effi-
ciency of the plant is still not enough. This is
happens because microorganisms in the re-
actors do not work so intensively in cold con-
ditions and therefore non-low concentrations
of the nitrogen at the effluent of the plant can
be expected.

C360: Shows the situation when the waste-water
temperature is high. In warmer conditions
the microorganisms in the plant work faster,
so the effluent nitrogen concentrations can be
low even when the oxygen concentrations in
the 1st aerobic tank is not so high as in other
classes.

3. The intrinsic uncertainty associated to TLP

As said before, TLP was introduced in [11] and dis-
plays the qualitative dominant levels of a set of vari-

ables through a set of classes. TLP is based on the iden-
tification of qualitative levels on the variables. When
3 levels are used, it is very interesting to assign the
colours of a traffic light to those levels, according to
some latent concept (red for the negative value, yel-
low for the medium or neutral value and green for the
positive value), being the negative values the higher
or lower values of the variable depending on the vari-
able’s semantics expressed in the polarity semantics ta-
ble. It is important to keep red and green as non-verbal
codes for positive and negative values to connect with
the expert’s implicit codes for interpreting. Thus, in the
presented application, red is associated to lower water
quality or worse plant operation and in Fig. 4, class
C360 is composed by those days where the concentra-
tion of nitrogen at the influence tends to be, on aver-
age, lower than in other classes.

TLP assigns colours to the cells taking only into ac-
count central trends presented in the classes by disre-
garding individual deviations from main patterns. The
TLP is in fact a symbolic abstraction of the class panel
graph (CPG) a previous tool introduced in [12] which
displays the conditional distributions of the variables
against classes. The abstraction provided through the
TLP is much closer to the interpretation codes of a
non-technical expert, like a physician, biologist, chem-
ical engineer or psychologist than CPGs and permits
a better class-conceptualization process. However, as
TLP ignores variability within classes, it inherently in-
troduces some uncertainty into the interpretation that
is propagated to the later decision-making process. To
better illustrate this limitation, Fig. 5 shows the CPG
corresponding to the target application.

The ambiguity is associated to the meaning of the
yellow colour. As an example, observe that in Fig. 4,
yellow colour has been assigned to variable Temp-
ww for both classes C353 and C357. Figure 5 shows



Fig. 5. Class panel graph for the whole set of variables in WWTP pilot plant.

the CPG where the local distribution of the variables
within classes can be inspected. Getting the details pro-
vided by the CPG, it can be seen that C353 contains
values distributed all along the range of the variable,
so, for this case, the corresponding yellow cell in the
TLP indicates that one can find all kind of temperatures
in C353. For C357 situation is slightly different, a clear
bimodal distribution is found there, giving an interme-
diate class average, located in a place where no real
observations are found. The corresponding yellow cell
should mean either low or high temperatures, but never
intermediate. Another ambiguity appears in Q-air for
classes C353 and C357: while C353 provides a yellow
cell in the TLP indicating no clear trend in the class,
whereas C357 provides a yellow cell really indicating
a group of days where quite homogeneous intermedi-
ate values appear. The yellow cell of Nitritox-influent
for class C357 is representing an even more homo-
geneous distribution around intermediate values. This
phenomenon is somehow observable also for green
and red cells. Looking at the TLP, as it was originally
conceived in [11], one can learn that TN-Influent has
smaller values in C360 than in other classes; the same
situation happens for variable O2-aerobic. However,

the uncertainty associated to both variables is radically
different, as overlapping of local class-distributions is
very small in O2-aerobic, whereas this is not the case
for TN-influent. As a consequence, decisions related to
low TN-influent in class C360 will involve higher risks
than those associated with low O2-aerobic.

This arises the limitation that the original concep-
tion of TLP did not give enough information to disam-
biguate the risk associated to the colours interpretation.

4. The annotated TLP (aTLP): Uncertainty
management

The annotated TLP (aTLP) was developed by the
authors [8] as an enrichment of the original TLP
that added to the representation sufficient information
about the uncertainty associated to the class proto-
type, so that the previously related ambiguities dis-
appeared. First of all a quantification of the homo-
geneity of the local distributions inside the classes is
required. The variation coefficient conditioned to the
classes is taken as a measure of uncertainty, because
it is more robust than standard deviations or variances



and it behaves adimensionally, even if it is not upper-
bounded. Given a numerical variable Xk, and a parti-
tion P = {C1, . . . ,Cξ} of the I set of target individu-
als, and being sXk|C the standard deviation of Xk lo-
cally to class C and X̄k|C the mean of Xk taken inside
class C, the conditioned variation coefficient is:

VCk|C =
sXk|C
X̄k|C

. (1)

VC is expected to perform better than direct vari-
ability measures like classical standard deviation (sk)
since VC is a normalized coefficient, adimensional,
with a common interpretation of its values for all the
variables. This permits to establish a single gradation
of variability levels for all variables (from low to high
variability). The aTLP is based on darkening basic
colours cells according to VC levels. Darker colours
will be associated to less pure classes (with higher VC,
and darker colours). The degree of darkening can be
determined upon the VC associated to the cell.

In the original formulation of aTLP, three lev-
els of darkening where considered, by associating
pure colours to low VC, slightly darkened colours to
medium degrees of VC and strong darkened colours
to high levels of VC, as it can be seen in Fig. 6. The
first row of the figure shows the original pure colors
used in the classical TLP, whereas the colors in second
and third row where determined by finding darkened
colors that were clearly distinguishable by human eyes

Fig. 6. Basic rank for gradation in the aTLP (in relation to VC lev-
els). (Colors are visible in the online version of the article; http://
dx.doi.org/10.3233/AIC-140611.)

without loosing the character of the three colors con-
sidered. This association implicitly required the defini-
tion of a cut-off over the VC values in three intervals
that associated to low, middle and high variation lev-
els. For this cut-off, two cutpoints (k1, k2) on the VC
where required. The association worked such that left
hand side VC interval (VC � k1) associates with ba-
sic TLP colour; central VC interval (VC ∈ (k1, k2))
associates with light darkening and right hand side VC
interval (VC � k2) associates with hard darkening [1].

The key concept is that the darker a cell is, the
higher the heterogeneity of class individuals in that
variable, and the more uncertainty about the standard
behaviour of that variable in that class is propagated. In
general, a darker aTLP can be associated with higher
uncertainty related to the final profiles derived. This
tells the experts that the induced profiles can involve
high individual variability and decision-making should
be corrected accordingly. In other words, strong deci-
sions should be justified on the basic colour cells (pure
classes) whereas major caution is required when deci-
sions involve darker cells. For the target application,
the variation coefficients of all cells are computed and
displayed in Table 2.

Rules for determining the darkening of the TLP
cells depend on the parameters k1, k2. Figure 7 con-
tains the resulting aTLP for three different parameter-
izations, that go to a more conservative scenario to-
wards the bottom of the figure. The aTLP(0.3, 0.9),
in the top figure, displays basic original colours in all
cells with VC < 0.30, hard darkening in all cells with
VC > 0.90, and slight darkening in between. Com-
paring the aTLP(0.3, 0.9) with the original TLP dis-
played in Fig. 4 one can observe firstly that red cells
remain as pure colours, indicating that low variabil-
ity is associated to worse performance of the plant
in all the variables. NH4-aerobic is the only vari-
able displaying darker cells, those with higher degrees

Table 2

Variation coefficients (VC) associated to TLP shown in Fig. 4

Class mc Influent Aerobic Tanks 1 and 2 – Anoxic Tank 2 Effluent Other

Q NH4 TN TOC Ni- FR1 h- Q- Val- Q2-1 Q2-2 NH4 TN TOC Temp Freq-

tri- DO- ww air ve aerobic aerobic aerobic ww rec

tox TOK air

C360 100 0.04 0.31 0.24 0.43 0.54 0.02 0.01 0.24 0.15 0.17 0.11 2.48 0.28 0.30 0.06 0.04

C358 93 0.18 0.31 0.28 0.33 0.46 0.06 0.00 0.29 0.17 0.08 0.10 0.95 0.45 0.34 0.17 0.25

C353 122 0.14 0.19 0.19 0.31 0.34 0.04 0.01 0.23 0.19 0.14 0.12 0.86 0.28 0.34 0.22 0.24

C357 50 0.03 0.14 0.13 0.20 0.25 0.02 0.01 0.17 0.15 0.18 0.09 1.33 0.22 0.20 0.22 0.06

Global VC 0.16 0.31 0.28 0.35 0.46 0.05 0.01 0.29 0.21 0.19 0.12 1.41 0.43 0.33 0.23 0.21



of variability, indicating that it is better not to use
this variable for decision-making. Caution is required
on decisions made upon influent-NH4; influent-TOC,
influent-Nitritox and Effluent TOC as a majority of
cells on those variables have non-neglectable degrees
of uncertainty. Influent Q, Influent-TN, influent FR1-
DOTOK, all variables from 1st Aerobic Tank, O2-
aerobic in the 2nd Aerobic Tank, temperature on the ef-
fluent and Freq-Rec are the variables that show reliable
information and permit decisions with small risk.

However, according to the cost of wrong decisions,
one could decide to be more or less conservative for
the aTLP by controlling the cut points on VC levels.
Thus, a more conservative aTLP would be obtained
whereas the cut points are decreased. Thus, the cen-
tral TLP in Fig. 4 is the aTLP(0.1, 0.5), and depicts
a scenario where the risk of decisions is moderate for
variables with VC > 0.10 and high when VC > 0.5.
Here, intermediate uncertainty levels dominate. Only
two variables, FR1-DOTOK and h-ww, remain with

pure colours. Q-influent and temperature in C360, 2nd
Aerobic Tank-oxygen for C358 and Q and oxygen in
2nd aerobic tank for C357 keep sufficient purity to
support non-risky decisions. Remaining variables in-
creased their colour gradation going to light darkening
colours. However, in this scenario, hard darkening is
still scarce; indicating that high risk of decisions is still
limited.

At the bottom of Fig. 7, an even more restrictive
situation is provided, with the aTLP(0.1, 0.3), which
would represent a situation in which decisions can-
not be based upon variables registering VC > 0.3 in
some class, and obviously, this aTLP looks much more
darker than the others. In this scenario, hard darken-
ing is much present, indicating that no decisions should
be taken regarding variables NH4, TOC or Nitritox at
influent, NH4-2-aerobic, TOC-effluent and moderate
risk will be associated to decisions regarding all other
variables, except for 4 isolated cells in the aTLP.

Fig. 7. Annotated TLP (aTLP) for different risk scenarios: (top) aTLP(0.3, 0.9); (center) aTLP(0.1, 0.5); (bottom) aTLP(0.1, 0.3) (Note: colours
gradation should be interpreted in the same way as in TLP, Fig. 3.) (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/AIC-140611.)



Whereas the experts would consider that VC > 0.30
implies a non-assumable cost for wrong decisions,
the aTLP(0.1, 0.3) should be used as a reference. The
aTLP provides a tool to visualize the risk of decisions
depending on two parameters k1, k2; values of param-
eters should be chosen according to the assumable risk
of wrong decisions in every particular application.

5. A continuous non-parametric approach for
aTLP

However, determining k1, k2 is introducing some
kind of arbitrariness into the aTLP that can be over-
came by finding a model providing a continuous gra-
dation of the colors on the basis of the variability indi-
cator that moves the three levels of darkening proposed
in previous section to a continuous darkening scale.

In fact, the darkening is performed by de-saturating
the basic colours used for low, intermediate and high
values of the variables. One can say that in the origi-
nal TLP a color-based model is using the tone to refer
to the nominal value of the variables in each class. In
the aTLP, a second dimension is included, the satura-
tion of the tone is used to represent the variability, in
a clear mapping with the sufficient statistics required
to describe a probability distribution (mean and vari-
ance). In our proposal, mean, or central trends are asso-
ciated to tones, whereas variances (or heterogeneities)
are associated to de-saturation of the tones. Originally,
a discrete model is proposed in both dimensions, with
three possible values for tones and also for saturations.
Here, a generalization of the model is proposed in such
a way that the saturation moves to a continuous space,
whereas the tone remains in the discrete space with
three possible values.

The idea is to associate a continuous function that
given the value of the VC, provides the level of de-
saturation of the corresponding color, also in a con-
tinuous form. To this purpose, the RGB color model
will be used to describe the colours in such a way that
they can be computed automatically. The RGB model
describes all colors as a 3-component vector, decom-
posing each color in the quantities of Red, Green and
Blue required to form it. Each color can contribute with
a quantity going from 0 to 255, which represents the
saturation of the corresponding colour. In our formal-
ization of the original basic TLP, two basic colours
are used (Red, with RGB specification (255, 0, 0) and
Green, with RGB specification (0, 255, 0)) and the yel-
low is a composed color, also with maximum satura-

tion, with RGB specification (255, 255, 0). In the para-
metric aTLP, the darker levels of red and green are ob-
tained by diminishing the saturation for some quan-
tity. However, the gradation of yellows, that was ad-
justed visually, do not correspond to these principle
and changes tone at the same time as diminishes satura-
tion. Also, the desaturation provided between basic red
and light dark red is much lower than the one occurring
between the light dark red and the hard dark red. This
happens in accordance with the fact that the human eye
do not work linearly and can distinguish better close
brightening colours than close dark colours.

Thus, in the formulation of the continuous saturation
component, a function S :� → � is searched, such
that:

• Increases inversely w.r.t. VC,
• behaves non-linearly w.r.t. VC.

The RGB definition of the 9 colours used in Fig. 6
is in Table 3.

For red and green colors, a single non-null compo-
nent appears in the colour definition. Basic tones are
associated with null VC, darker colours with VC = 1
and mid colours with VC = 0.5. The values for red
and green colors (Table 3) are used to fit a quadratic
function S, giving the desaturation degree associated
to a certain VC:

S(x) = 80 + 125(1 − x) + 50(1 − x)2. (2)

To find function S a quadratic regression has been
estimated by using the non-null values of color defini-
tion as the response variable and associating the three
tonalities to three critic values of the CV used as ex-
planatory variable (0 for basic color, 0.5 for light dark-
ening and 1 for hard darkening).

Thus, given a cell in the TLP, where the row repre-
sents class C ∈ I and the column is associated to the

Table 3

RGB definition of colours used in parametric aTLP

Color R G B

Pure red 255 0 0

Mid red 200 0 0

Dark red 100 0 0

Pure yellow 255 255 0

Mid yellow 240 188 0

Dark yellow 200 95 0

Pure green 0 255 0

Mid greed 0 150 0

Dark green 0 90 0



variable Xk, the cell colour is denoted as hCk, and it is
expressed under the RGB model (a 3-dimensional vec-
tor with red, green and blue components) in the follow-
ing way:

• hCk(x) = (S(VCXk
|C), 0, 0) for all the cells with

negative values of the variables (corresponding to
red colour).

• hCk(x) = (0,S(VCXk
|C), 0) for all the cells with

positive values of the variables (corresponding to
red colour).

The corresponding gradation described by this func-
tions is shown in the first and second scales of Fig. 9,
and represents a vertical top down walk over the satu-
ration scale of the Pantone based on pure red and green
colors respectively (see Fig 8).

Accordingly, and taking into account that the basic
yellow colour used in the original TLP contains the
same quantity of red and green, one could think of

Fig. 8. Walk of the gradation of defined colours over the Pan-
tone. (Colors are visible in the online version of the article; http://
dx.doi.org/10.3233/AIC-140611.)

defining the gradation of yellow colours as

hCk(x) =
(
S(VCXk

|C),S(VCXk
|C), 0

)
. (3)

However, this provides the gradation shown in Fig. 9
right, which tends too much to the green for CV greater
than 0.3 and do not distinguishes well enough from
the green scale itself, specially when thinking of big
aTLPs where cells seem small pixels. In fact, the
colours used in Fig. 4 for the yellow scale do not main-
tain the same proportions of red and green. Following
the same principle, a second function has been esti-
mated for the quantity of the red component in yellow
gradation and the following function was found:

S′(x) = 180 + 180(1 − x) − 143(1 − x)2

+ 38(1 − x)3. (4)

Thus, for the cells with intermediate or neutral val-
ues in the TLP, where yellow tone must be used, the
following definition of the colour is used:

hCk(x) =
(
S′(VCXk

|C),S(CVXk
|C), 0

)
. (5)

In this case, two non-null components are used, one
to define the basic tone, and the other defining satura-
tion. See Fig. 8 to note the non-linear walks of those
components over the Pantone.

As said before, Fig. 9 provides the gradation of the
three colours in the interval [0, 1]. The models are cho-
sen such that for x = 0.5 intermediate degrees of
darkening are visually observed (what means about a
30% of desaturation of the basic tone, instead of 50%).
Even when the VC is not upper bounded, the model

Fig. 9. Gradation of colours. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-140611.)



Fig. 10. aTLP non-parametric. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-140611.)

stays valid, as for VC greater than one, the values of S
and S′ will approach to 0, providing darker and darker
colours. In the limit, for 0 values, the black colour will
be displayed, which will represent the highest variabil-
ity and no availability of that variable for the decision-
making.

Using the proposed model, the enriched non-para-
metric aTLP for the case study is shown in Fig. 10.
From the figure, intermediate levels of heterogeneity
are observed in general, except for NH4-aerobic that
shows darker colours in most variables. In this non-
parametric approach, the responsibility of assuming or
not the cost of wrong decisions relies again on the ex-
pert. He must have in mind some threshold of darken-
ing that becomes non-assumable according to his do-
main and operate accordingly.

6. Discussion

On the basis of the TLP presented for the first time
in [11], the annotated TLP (aTLP) is introduced as an
enriched tool to interpret classes obtained in a clus-
tering process. While the TLP represent prototypes,
giving information of the central pattern associated to
each profile, the aTLP [8] takes into account the un-
certainty associated to prototypes, which is directly re-
lated with the risk of involved decisions. In fact, the
aTLP proposes a color-based model to represent pro-
totypes, which includes two dimensions for the color-
ing:

• Tone: which is associated with central trend of the
variable inside the class, in a simplified represen-
tation where three qualitative levels (low, interme-
diate or high values) are considered.

• Saturation: which is associated with the purity or
homogeneity of the cell, and is based on the de-
gree of variability of the variable around the cen-
tral trend.

Those two dimensions are, indeed, visualizing the
two sufficient characteristics, from a statistical point
of view, to describe a distribution, and become, in
turn, sufficient to understand the model and to support
informed-decisions associated to prototypes. In the
presented proposal, medians conditioned to classes are
used to quantify central trends, whereas variation co-
efficients are used to quantify dispersion in a more ro-
bust representation than the classical one using means
and standard deviations.

As in the original TLP, the central trend inside ev-
ery cell is represented in a discrete space with three
qualitative levels, associated to the basic traffic lights
colours (red, green and yellow). In previous works
[8,9], automatic methods are proposed to automatically
determine the tone of every cell. The direct or revers
assignment between colours and values of the variables
includes the semantics associated to the polarity of the
variable itself, and expressed by the experts in the po-
larity semantics table, a concept introduced in [9] to
allow the expert an easy transfer to the system of that
characteristic.

Pure colors are associated with no variability (or
low), whereas aTLP introduces darkening to indicate
increasing in heterogeneity, and, in consequence, lower
reliability of associated decisions.

One of the main contributions of the paper is formal-
izing a model for the darkening of the cells. Darken-
ing is implemented through desaturation of basic col-
ors and two different models are provided in the paper:

• On the one hand a discrete modelling provides
three levels of darkening (pure colour, light dark-
ening and hard darkening), associated with three
ranges of VC. Those three ranges are defined on
the basis of two parameters k1, k2 ∈ [0, 1]2 in-
ducing a cut-off over the VC range. Darker aTLPs
are associated with higher uncertainty and less re-
liable decision support, as reliable decisions are
supported by pure colour’ cells. The values of k1,



k2 are provided by the expert according to the
cost of wrong decisions. The lower the values of
the parameters, the darker the aTLP and the more
conservative the interpretation of the profiles.

• On the other hand, a continuous modelling pro-
vides real functions to determine the levels of
desaturation on the basis of the values of VC.
Here, a non-parametric approach appears, in the
sense that the darkening do not depend on cut-
offs induced over the VC range, but on their sin-
gle values. The RGB colour-model has been used
to find the desaturation function S, and colours
of cells can be automatically determined on the
basis of VC, provided that the medians indicates
the basic tone to be graduated with S values. Fit-
ting techniques have been used to find a quadratic
function for S, according to the non-linear per-
ception of the human eye. A correction had to
be introduced for the yellow scale by introduc-
ing S′, a cubic function moving the yellow scale
from a basic yellow to a more brown color, per-
ceived as a darker one by human eyes, but avoid-
ing confusing effects with intermediate colours of
the green scale. As in the previous formulation,
darker aTLPs indicates less reliable decisions.

In a quick insight, the aTLP shows to the decision-
maker which prototypes in which groups involve less
variability and, in consequence, are more reliable. This
permits to evaluate the risks of associated decisions.
For both models, darkness is interpreted as low relia-
bility of associated decisions, or higher risk of wrong
decisions. However, there is a fundamental difference
between the parametric aTLP and the non-parametric
version. In the former, the colour of a cell depends, not
properly on the value of their corresponding VC, but on
the associated cut-offs, whereas a single colour is asso-
ciated to a certain value of a VC in the non-parametric
approach. Thus, the non-parametric approach provides
an objective modelling that associates a single aTLP to
a certain TLP and the expert must decide which level
of darkness can be acceptable in his domain to iden-
tify which subset of cells can be good supports for
his decisions. On the other hand, the parametric ver-
sion of the aTLP, permits to introduce in the visualiza-
tion the expert criteria themselves. More or less con-
servative aTLPs can be obtained by determining the
cut points on the VC to be used for colour-gradation,
thus enabling to adjust the uncertainty representation
to the real costs of wrong decisions in the target ap-
plication. When the cost of wrong decisions is clear,
and experts can formulate consensual values for k1, k2,

the aTLP(k1, k2) permits to standardize decisions over
a set of experts, by homogenization of decision rules.
In the parametric version of the aTLP, darker cells rep-
resent non-assumable risks, whereas pure cells repre-
sent reliability, and intermediate colours represent as-
sumable risk in a rigid scheme.

In the paper, three different scenarios of the para-
metric version of the aTLP have been presented for
the Slovenian WWTP, from a more permissive situa-
tion (risk levels 0.30–0.90) where quite high degrees of
variability within classes are considered not critical for
decisions, to a more conservative situation (risk levels
0.10–0.30) where small degrees of variability (0.3) are
associated to non-assumable risk. Thus, the aTLP of-
fers a friendly paradigm for bringing together the rep-
resentation of typical situations in a system, with the
risk evaluation. For the parametric version, the cost of
wrong decisions is given by the experts and VC cut
points determined accordingly, whereas for the non-
parametric one, the assumable darkness is managed
implicitly by the expert.

7. Conclusions and future work

Interpretation oriented tools are required to bridge
the gap between raw data mining results and effec-
tive decision-making. Post-processing tools might con-
tribute to this topic. Although understandability of data
mining patters was highlighted from the seminal pa-
per of KDD [4], unfortunately, not much works are
found in this direction yet [3,13], although some of
the most relevant members of the scientific commu-
nity still stress the importance of developing these kind
of tools linked to the urgent need of data scientists
[20,21]. This paper proposes two different approaches
to post-processing tools in the particular field of clus-
tering that provide understanding of discovered pro-
files, and, as a consequence, better support to further
decision-making processes.

The aTLP proposes a two-dimensional color-based
model to represent prototypes, based on tone and satu-
ration to respectively represent central trend and vari-
ability, thus enriching the original conceptualization of
TLP with the uncertainty associated to prototypes.

Our conclusion, after discussing with several experts
is that, both models are perceived as friendly tools,
contributing to understand the profiling, and both are
useful for different scenarios depending on the appli-
cation goals.



In conclusions, when the aTLP is analyzed as a
global picture of the domain, human eye is greatly
powerful to catch the aTLP dominance and simple in-
terpretation rules provide high information about the
target phenomenon:

• Dominant green tone: profiles associated with be-
nign situation. The meaning of benign depending
on the context. In the particular application pre-
sented here, benignity is associated with correct
plant operation and higher water quality.

• Dominant yellow tone: Neutral profiles, associ-
ated either to intermediate values or lack of trend
depending on the darkening degree.

• Dominant red tone: profiles associated with ma-
lign situation. In the case study, lower water qual-
ity or abnormal plat operation.

For the parametric aTLP version, the lower the k1, k2
values the more conservative the aTLP; also:

• Dominance of pure colours: non-risky profiles,
associated with well supported decisions.

• Dominance of light darkening cells: moderate risk
for associated decisions.

• Dominance of hard darkening cells: non-
assumable risks.

For the non-parametric aTLP version

• Dominance of pure, or highly saturated colours:
non-uncertain profiles, associated with well sup-
ported decisions.

• Dominance of intermediate colours: moderate
levels of uncertainty associated to classes, ill-
supported decisions, the darker the colour, the
higher the uncertainty, the user must decide which
level of darkening represents non-assumable costs
of wrong decisions, according to his background
knowledge.

• Dominance of hard darkening cells: high levels of
uncertainty, associated with too risky decisions.

Experts can quickly identify which variables have
too high variations to make decisions based on them,
which of them concentrates malignities and require
more attention without requiring any technical skills
to understand neither the clustering techniques nor the
formal properties of the clusters. Both parametric and
non-parametric versions of aTLP were used in a real
application over the Slovenian WWTP and were per-
ceived by the expert as a friendly and comprehensible
tool to the decision-makers, which can contribute to
reduce the gap between data mining and effective de-

cision support. The aTLP also contributes to integrate
the expert in the KDD process itself.

New criteria to improve automatic identification of
the reference tone for each aTLP cell are in progress
with the aim of standardising a general rule to find
TLPs. Also, a general survey is in progress to build
TLPs and both parametric and non-parametric versions
of aTLP over different real datasets, to verify the con-
cordance between the decisions suggested by those
tools and reliability perceptions of the domain experts.
In the long term, the possibility to generalize the tone
model to a continuous space will also be explored.
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