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E-mail: osapena@dsic.upv.es 

 
In this paper, we present FLAP, a partial-order planner that 

accurately applies the least-commitment principle that gov- 

erns traditional partial-order planning. FLAP fully exploits 

the partial ordering among actions of a plan and hence it 

solves more problems than other similar approaches. The 

search engine of FLAP uses a combination of different state- 

based heuristics and applies a parallel search technique to 

diversify the search in different directions when a plateau   

is found. In the experimental evaluation, we compare FLAP 

with OPTIC, LPG-td and TFD, three state-of-the-art non- 

linear planners. The results show that FLAP outperforms 

these planners in terms of number of problems solved; in ad- 

dition, the plans of FLAP represent a good trade-off between 

quality and computational time. 
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Introduction 
 

Until the late 90s, Partial-Order Planning (POP) was 

the most popular approach to AI planning. POP fol- 

lows the least-commitment principle by which deci- 

sions about action orderings and parameter bindings 

are postponed until a decision must be taken. This is 

an attractive idea as avoiding premature commitments 

requires less backtracking during the search. Never- 

theless, the most recent state-based forward planners, 

such as LAMA [28] or SGPlan [6], have shown to    

be more efficient than partial-order planners,  because 

(1) state-based planners can benefit from the existence 

of powerful heuristics and (2) generating a plan is far 

more costly than generating a state due to the need of 

conflict-checking mechanisms. 

However, the general move towards state-based for- 

ward search ignores some important benefits of partial- 

order planning: 

 

– A partial-order plan offers more flexibility in ex- 

ecution. 

– The search can be easily guided to reduce the plan 

length; i.e., exploit the parallel execution of ac- 

tions. 

– It is a very suitable approach in multi-agent plan- 

ning systems, either with loosely [21] or tightly 

coupled [32] agents. 

– It can be easily extended to deal with temporal 

planning [1]. 

These desirable properties have led many researchers 

to adopt a POP approach and have motivated the re- 

vival of the investigation on partial-order planning. 

The objective of this paper is to present FLAP, a 

partial-order forward chaining planner that follows the 

least-commitment strategy of POP except the delayed 

parameter binding. Unlike other planners, FLAP fully 

exploits delaying commitment to the order in which 

actions are applicable, thus achieving flexibility, re- 

ducing the need of backtracking and minimizing the 

length of the plans by promoting the parallel execution 

of actions. Although all these advantages come at an 

increase of the computational cost, FLAP applies an 

effective parallel search technique that allows solving 

more problems than other partial-order planners and 

returns plans that represent a good trade-off between 

quality and time in many domains. 

In the remainder of the paper we present some re- 

lated work and background, the planning approach of 

FLAP and a discussion on its limitations and possible 

extensions. Finally, we present an empirical evaluation 

of FLAP versus other partial-order planners, and we 

conclude with some final remarks. 

 
Related work 

 
With the aim of preserving  POP  benefits  with-  

out sacrificing performance, some recent works focus 

on the generation of partial-order plans in forward- 

planning frameworks. The new planners that arise 

within this mixed framework have relaxed (or    aban- 
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doned) the least-commitment strategy. Particularly, 

most POP planners work with fully instantiated actions 

rather than delaying parameter binding. This has been 

a predominant trend since the great success of Graph- 

Plan [2], a graph-based planning approach which com- 

putes all ground (fully instantiated) atoms and actions 

in a pre-processing stage. 

Practicing a least-commitment strategy also implies 

recording only the essential action orderings, but this 

aspect has also been relaxed to a certain extent. One 

of the first works in this direction was FLECS [34]. 

This planner combines delayed and eager operator- 

ordering commitments. It can vary its commitment 

strategy across different problems and also during the 

course of a single planning problem. Since sequential 

execution is assumed, committing to an arbitrary to- 

tal orderings is not considered harmful if it improves 

planning performance. 

The MAPL [4] framework for temporal multi-agent 

planning subsumes a partial-order plan structure within 

a forward-search algorithm. MAPL records state infor- 

mation in a partial plan like the achieved state vari- 

able assignments. This information is called the fron- 

tier state, as it is built on the frontier of a partial-order 

plan. Additionally, it keeps the achiever of each vari- 

able assignment in order to check the plan validity. 

MAPL only considers the actions whose preconditions 

hold in the frontier state, so it can efficiently determine 

the actions that can be inserted in the current plan. Each 

new action is inserted after its precondition achievers 

and additional constraints are added to ensure that po- 

tential threats are resolved. The resulting algorithm is 

sound but incomplete. 

More recently, the POPF planner [7] was devel- 

oped following a similar approach to MAPL. POPF 

uses a partial-order plan construction within a forward- 

planning framework, working with time, numbers and 

continuous effects. Particularly, it inherits the forward- 

chaining search from CRIKEY [8], which works sim- 

ilarly to FF [17]. POPF records state information in 

each step of the plan (frontier state), like the negative 

interactions among the variable assignments, and up- 

dates the state accordingly. Like MAPL, the frontier 

state is used to determine the set of applicable actions 

at each step of the plan. The late-commitment approach 

of POPF is based on delaying commitment to order- 

ing decisions on the frontier state, thus ignoring other 

alternative choices that would come earlier, i.e. before 

the frontier state. Completeness, however, is ensured 

as search performs backtracking to find an alternative 

plan when necessary. 

OPTIC, the latest version of POPF, also handles soft 

constraints and preferences [1]. OPTIC has demon- 

strated to be one of the most relevant state-of-the-    

art planners in many domains. The key of its good 

performance is the fast  generation  of  the  succes-  

sor states during the search and  the  use  of  effec- 

tive domain-independent heuristics. OPTIC follows 

the same partial-order forward-planning approach of 

POPF. The frontier state information is used to add 

temporal constraints over the action only if they are 

required to ensure that preconditions are met. This 

approach represents a compromise between the total- 

ordering commitment of standard forward search and 

the least-commitment approach in partial-order plan- 

ning, since it only commits to ordering choices that en- 

sure consistency of the plan. 

Combining a forward-search and a partial-order 

construction is a flexible approach that reports a very 

good performance, as OPTIC has demonstrated. This 

success is achieved by means of an eager parameter 

binding and an eager commitment to some ordering de- 

cisions to reduce the search overhead. Despite the suc- 

cess of this mixed approach, in this paper we want to 

address the following question: is it necessary to give 

up the application of the least-commitment strategy   

to guarantee a successful POP performance? Delay- 

ing decisions about when individual actions are to be 

scheduled is convenient in several contexts. The MAP- 

POP [32] multi-agent planner, for example, needs the 

ability to add new actions at any step of the current 

plan, not just when their preconditions hold in the fron- 

tier state, because this is the mechanism that agents use 

to tell the others they can contribute in the construction 

of the joint plan. On the other hand, delaying commit- 

ment of choices on the ordering of the actions reduces 

the need of backtracking. 

 

 
Background 

 
In this section, we provide some definitions of plan- 

ning concepts, partial-order planning and landmarks, 

which will be used throughout the manuscript. 

 

Preliminary notions on planning 

 
In this work, we use a state-variable representa- 

tion of the planning problem instead of the traditional 

propositional representation. Specifically, the planning 

language used in FLAP is based on PDDL3.1 [20],  

the latest version of PDDL. Unlike the previous PDDL 
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versions, which model planning tasks through predi- 

cates, PDDL3.1 incorporates state variables that map 

to a finite domain of objects of the planning task. 

A planning task is a tuple T = (V, A, I, G). V is a fi- 
nite set of state variables, each of which is associated to 

a finite domain, Dv, of mutually exclusive values that 

refer to the objects of the planning task. A is the set of 

deterministic actions of the agent. I is the set of initial 

values assigned to the state variables in V , and repre- 

sents the initial state of the task T . G is the set of goals 

of the task, i.e., the values that the state variables are 

expected to take in the final state. 

Variables in V are used to model the states of the 

world (problem states). When a value is assigned    to 

a state variable, the pair (variable, value) acts as a 
ground atom in propositional planning. 

 
Definition 1. (Fluent) A ground atom or fluent is a 
tuple of the form (v, d) where v ∈ V and d ∈ Dv, which 

indicates that the variable v takes the value d. 

A fluent relates a variable with one of the values in 

its domain. For instance, let us assume that a planning 

task features a truck object called t1 which can be lo- 

cated at three different locations loc1,loc2 or loc3. 

Then, the position of the truck t1 is a variable named 

of POP is that an action ai is ordered wrt another ac- 

tion a j if ai is needed to satisfy a precondition of a j , 

or viceversa, or when a conflict appears between them. 

In any other case, no ordering is established between 

ai and a j , thus avoiding an early commitment on the 

ordering of the actions [27]. 

POP operates on partial-order plans. The two key 

POP operations are introducing an action to satisfy the 

precondition of another action in the plan and solv- 

ing a conflict between actions of the plan. Initially,   a 

POP procedure starts from a goal (fluent) g ∈ G   and 
finds an action a that supports or satisfies g; that is, it 
finds an action a such that g ∈ EFF(a). In turn,    the 

fluents in PRE(a) must also be satisfied by finding an 

action of the plan, or introducing a new action, which 

effects support these fluents. As long as actions are in- 

troduced in the plan, negative interactions may arise as 

a consequence of conflicting preconditions and effects 

of the actions. Supporting a precondition of an action 

requires to insert a causal link, and solving a conflict 

involves checking the existence of threats [14]. 

Definition 3. (Causal link) A causal link is a rela-  

tion between two actions, ai  and a j , represented    by 

a  
(v,d) 

i j j − → a , meaning that the precondition (v, d) of a  is 
at-t1 which can take on any value from its   domain 

Dat-t1 = {loc1,loc2,loc3}, and (at-t1,loc1) is a 

fluent denoting that truck t1 is located at the spot loc1. 

A problem state S is a set of fluents. Consequently, 

the initial state I and the goal state G of a planning task 

T are defined through a set of fluents. The set of actions 

A is also defined in terms of variables and their values. 

Definition  2.  (Action)  An  action  a ∈ A  is  a tuple 

(PRE(a), EFF(a)) where PRE(a) = { p1, . . . , pn} is a 
set of fluents that represents the preconditions of a and 

EFF(a) is a set of variable assignments of the    form 

v = d that model the effects of a. 
 

Executing an action a in a world state S leads to a 
new world state Sr as a result of applying EFF(a) in S. 
An effect of the form v = dr assigns the value dr to the 
variable v; i.e., it adds the fluent (v, dr) to state Sr and 

any fluent in S of the form (v, d), d ƒ= dr , is removed in 

Sr (to eliminate any fluent that contradicts (v, dr)). 

 

Partial-Order Planning (POP) 

 
Partial-Order Planning (POP) comes up in the early 

90’s as an approach to overcome the limitations of 

state-based planners, mainly the restrictive linear or- 

dering of the plan actions (total-order). The basic idea 

supported by an effect v = d of ai. ai  is said to be  the 

producer action and a j the consumer action. 

A causal link between ai and a j implicitly estab- 

lishes an ordering between both actions as the producer 

action ai must be ordered before the consumer a j . 

Definition 4. (Threat) A threat represents a conflict be- 

tween an action of the plan and a causal link. An   ac- 

tion a   causes a threat over a causal link a   
(v,d)  

a   if 

v = dr ∈ EFF(ak) and d ƒ= dr , and ak  is unordered with 

respect to ai and a j . Then, it is said that ak threatens 

the causal link a   
(v,d)  

a . 

A threat can be solved by promoting or    demoting 

the threatening action with respect to the causal link. 

Specifically, promotion implies introducing an  order- 
ing constraint of the form ak ≺ ai, and demotion im- 

plies introducing the ordering constraint a j ≺ ak. 

Definition 5. (Partial-order plan) A partial-order plan 
is a tuple Π = (∆, OR,CL). ∆ ⊆ A is the set of actions 
in Π. OR is a set of ordering constraints (≺) on ∆  and 

CL is a set of causal links over ∆. 

This definition of a partial-order plan represents the 

mapping of a plan into a directed acyclic graph, where 

∆ represents the nodes of the graph (actions) and   OR 
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and CL are the sets of directed edges that describe the 

precedences and causal links among these actions, re- 

spectively. 

A partial-order plan Π = (∆, OR,CL) is a  solution 

plan if the preconditions of all the actions in ∆ are sup- 
ported, i.e., there exists a causal link for each precon- 

dition, and Π does not contain any threats. 

Unlike state-based planners, where the nodes in the 

search tree represent problem states, the nodes of a 

POP search tree are partial-order plans. The root node 

of a POP tree is the minimal initial plan, which con- 

tains two fictitious actions: the initial action ainit , with 

no preconditions and EFF(ainit ) = I, and the goal ac- 

tion agoal , with no effects and PRE(agoal ) = G. In the 

initial plan of the root node there is only one ordering 

relation, ainit ≺ agoal . The POP search algorithm works 

by following these four steps: 1) select a node Π of the 

tree; 2) select one precondition of an action in Π that is 

not supported yet (subgoal); 3) choose an action to sup- 

port the selected subgoal and introduce the correspond- 

ing causal link (the selected action can be one that al- 

ready exists in Π or a newly inserted action in Π);  and 

4) solve the threats that arise in Π as a consequence of 

the new data. These four operations are repeated until 

a solution plan (a node of the tree) is found. 

POP performs a plan-based, backward search pro- 

cess, refining partial plans through the addition of ac- 

tions, causal links and ordering constraints. POP is 

based on the least commitment strategy [35], which de- 

fers planning decisions during the search process and 

introduces partial-order relations among actions rather 

than enforcing a concrete order among them. 

 

Forward-chaining in POP 

 
Forward-chaining in POP is aimed at preserving  

the benefits of partial-order plan construction within 

the forward-search framework. Like traditional partial- 

order planners, each node in the search tree represents 

a partial-order plan. Forward-chaining POP is moti- 

vated by the observation that the forward search ap- 

proach can be seen as committing to a sequence of 

choices of actions, but not necessarily to the order of 

their application. By reducing the ordering constraints 

that are imposed during the construction of the se- 

quence of action choices we retain elements of the 

least-commitment approach and are able to produce 

partially-ordered plans with the robustness and flexi- 

bility that they can offer. 

MAPL [4] and POPF [7] are the first planners that 

follow this approach. They select a node of the search 

tree, which is a partial-order plan, and generate a suc- 

cessor node for each new action that can be inserted  

in the selected plan. When an action is inserted in the 

plan, these planners only seek to introduce the order- 

ing constraints needed to resolve threats, rather than 

enforcing an ordering between the new action and all 

the actions that are already in the plan. The mechanism 

that MAPL and POPF use to find the actions that can 

be inserted in a plan Π is as follows: they infer a state 

from the plan Π and check the actions whose precon- 

ditions hold in such a state. This state is called frontier 

state. 

 
Definition 6. (Frontier state) The frontier state SΠ  of  
a partial-order plan Π = (∆, OR,CL) is the set of flu- 

ents (v, d) achieved in Π by an action a ∈ ∆/(v = d) ∈ 
EFF(a), such that any action ar ∈ ∆ that modifies the 

value of v ((v = dr ) ∈ EFF(ar ), d ƒ= dr ) is not reachable 

from a by following the orderings and causal links  in 

Π. 

 

Landmarks 

 

A landmark is defined as a fluent that must be true at 

some point during the execution of any solution plan 

[18]. A landmark denotes an indispensable informa- 

tion that needs to be achieved in every solution plan, 

like the initial and goal fluents, which are trivial land- 

marks. From this point on, more indispensable infor- 

mation can be deduced through a process aimed at dis- 

covering new more landmarks and landmark ordering 

constraints. For the purpose of this work, we will use 

the extraction method as explained in [18] based on the 

relaxation of a planning task [3]. 

Planning tasks usually have inherent constraints 

concerning the best order in which to achieve the 

goals. The extraction and analysis of landmarks has 

proved to be very helpful to discover such constraints 

and use them for guiding search. For this reason, 

many planning systems, which follow different plan- 

ning paradigms, use landmark-based heuristics [28]. 

 

 

Planning algorithm of FLAP 

 

FLAP follows a forward-chaining POP approach 

but, unlike MAPL and POPF, FLAP does not require 

to compute the frontier state of a plan to determine the 

actions that can be inserted in a plan (generation of  

the successor nodes). In FLAP, frontier states are only 

used for evaluation purposes and not for determining 

the expansion of a node in the POP tree. 
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The search in FLAP starts with an initial plan Π0  = 

({ainit}, 0/  , 0/  ). Although Π0  does not contain the   fic- 

titious goal action agoal , this action is available to     
be added to the plan as the rest of actions in A, i.e. 

agoal  ∈ A. In fact, a solution plan is found when  agoal 

is inserted in the plan. 

A node of the POP tree represents a partial-order 

plan; the root node is the plan Π0. Given a node Πi, 

FLAP expands a node Πi by adding all possible actions 

that can be supported with the actions of Πi and solv- 

ing the corresponding threats. This way, we consider 

that Π j is a successor of Πi if the following conditions 

are met: 

– Π j adds a new action a j to Π j , i.e., ∆ j = ∆i ∪{a j} 
– All preconditions of a j are supported with actions 

of Πi  by inserting the corresponding causal links: 
p 

∃ai  −→ a j  ∈ CL j, ai  ∈ ∆i, ∀p ∈ PRE(a j ). 

– All threats in Π j  are solved through promotion or 
demotion by adding new ordering constraints; the 

result is that Π j is a conflict-free plan, that is, a 

plan with no threats. 

FLAP works similarly to a classical POP algorithm: 

it supports the preconditions of the new action a j 

through causal links and solves the threats originated 

by a j through ordering constraints. FLAP works dif- 

ferently to a classical partial-order planner since it per- 

forms forward-chaining search instead of backward 

reasoning. Particularly, when expanding a node Πi, 

FLAP generates a successor node Π j for each possible 

combination of supporting the preconditions of a j with 

the actions in Πi. Note that FLAP only creates Π j if all 

preconditions of a j are solved with the actions in Πi 

and the added causal links do not provoke a threat in 

Π j . Hence, a node in FLAP always represents a threat- 

free partial-order plan. 

FLAP applies an A∗  search by using the   standard 

function f (n) = g(n)+ h(n) [30]. From the set of open 

nodes, which initially only contains the plan Π0, we 

select the best node according to the evaluation of f (n), 
where g is the cost to reach the node n measured as 

the number of actions of the plan in n, and h is the 

heuristic estimate to reach the goal from n. Once a node 

Π is selected for expansion, all possible successors of 

Π are generated, evaluated and added to the list of open 

nodes. 

The planning algorithm of FLAP is sound and com- 

plete since it generates all the successors of every ex- 

panded node. This way, when agoal is added to the plan, 

all the goals of the planning task are supported and the 

plan consistency is guaranteed. Unlike classical   POP 

algorithms, the search process in FLAP may gener- 

ate many repeated plans. This is a common problem 

that appears in most forward-search planners and that 

FLAP avoids by applying a memoization technique. 

 
Heuristic evaluation 

 
One of the strengths of a forward state-space search 

over a regressive plan-space search is that state-based 

heuristics are more informed than classical POP-based 

heuristics. Given a partial-order plan Π, FLAP applies 

a combination of state-based heuristics in the frontier 

state SΠ. 

The heuristic evaluation in FLAP is carried out   by 

using two different heuristic functions that also incor- 

porate information obtained from a landmarks extrac- 

tion of the planning task [18]. The following subsec- 

tions provide a thorough explanation on the heuristic 

evaluation. 

hDTG: a DTG-based heuristic function 

A Domain Transition Graph (DTG) of a state vari- 

able is a representation of the ways in which the vari- 

able can change its value [15]. The transitions of the 

graph are labelled with the conditions that are neces- 

sary for a variable change its value. These conditions 

are the common preconditions to all the actions that in- 

duce the transition. DTGs are independent of the fron- 

tier state of the plan, which avoids the need of calculat- 

ing a DTG in each node of the search tree. This implies 

that a heuristic based on the information of the DTGs, 

hDTG, is less costly to compute than the traditional FF 

heuristic (hFF ) [17], which requires the construction of 

a relaxed planning graph to evaluate each search node. 

Algorithm 1 details the procedure for computing the 

hDTG value of a given frontier state S. hDTG(SΠ) is an 

estimate of the number of actions of a relaxed plan to 

reach the goals G of the planning task from the frontier 

state SΠ. 

hDTG performs a backward search from G consecu- 

tively introducing actions in the relaxed plan until the 

preconditions of all actions are supported. The proce- 

dure for building the relaxed plan handles a list of flu- 

ents, openGoals, initially set to G. The process itera- 

tively extracts a fluent from openGoals and supports it 

through the insertion of an action in the relaxed plan. 

The preconditions of such action are then included in 

the openGoals list, and so on. 

For each variable v ∈ V , we use a list of values, 

Valuesv, which is initialized to the value of v in the 

frontier state S. For each action inserted in the relaxed 
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Algorithm 1 hDTG heuristic calculation of a frontier 

state S  
hDTG ← 0 

openGoals ← G 

for all (v, d) ∈ G do 

Valuesv ← {dr
/(v, dr) ∈ S} 

end for 

while openGoals ƒ= 0/ do 

Algorithm 2 distMin(v,Valuesv, d) function 

dini ← argmin |Di jkstra(v, dr
, d)| 

dr∈Valuesv 

return |Di jkstra(v, dini, d)| 
 

 

 

Algorithm 3 getMinCostAction(v, di, d j ) function 

(v, dend ) ← argmax distMin(vr
,Valuesvr , d

r ) Ai j ← a ∈ A/(v, di) ∈ PRE(a) ∧ (v, dj) ∈ EFF(a) 
(vr ,dr )∈openGoals amin ← argmin ∑ distMin(vr

,Valuesvr , d
r ) 

openGoals ← openGoals\ {(v, dend )} 
dini ← argmin |Di jkstra(v, d, dend )| 

d∈Valuesv 

minPath ← Di jkstra(v, dini, dend ) 
for i ← 0 to |minPath| − 1 do 

amin ← getMinCostAction(v, di, di+1 )/(di, di+1 ) ∈ minPath 
openGoals ← openGoals∪ {(vr

, dr) ∈ PRE(amin )/dr ƒ∈ Valuesvr } 
for all (vr

, dr ) ∈ EFF(amin ) do 

Valuesvr ← Valuesvr ∪ {dr} 
end for 

hDTG ← hDTG + 1 
end for 

end while 

return hDTG 

 

plan that has an effect (v, dr), dr is stored in Valuesv, 

meaning that variable v achieves the value dr in the re- 

laxed plan. Hence, the values in Valuesv can be used 

to support the preconditions of the actions that will be 

inserted in the relaxed plan in the next iterations. Given 

a frontier state S, hDTG  is computed in two stages: 

–Open goal selection : At this stage, we select a 
fluent (v, dend) from openGoals. Similarly to hFF , 

which selects a subgoal in the last fact layer of 

the relaxed planning graph, hDTG also selects the 

most costly fluent in first place. hDTG evaluates 

the cost of a fluent through the length of the short- 

est path, minPath, of a variable value modification 

in its DTG, using the classical Dijkstra algorithm 

(see Algorithm 2). 

–Relaxed plan construction  : minPath is the num- 

ber of value transitions for v to change its value 
from dini to dend , that is, minPath = ((dini, di), 
(di, di+1), . . ., (di+n, dend )). For each value tran- 

sition (di, di+1) ∈ minPath, the minimum-cost ac- 

tion amin that generates the value transition is 
introduced in the relaxed plan; that is, (v, di)  ∈ 

PRE(amin) and  (v, di+1) ∈ EFF(amin). The cost 
of an action is estimated as the sum of the cost of 

achieving all its preconditions, as shown in Algo- 

rithm 3. 

The unsupported preconditions of every amin in- 

serted in the relaxed plan are stored in openGoals, 
so they will be supported in forthcoming     itera- 
tions. For each effect (vr

, dr) ∈ EFF(amin), the 

value dr is stored in Valuesvr , and thus dr can be 

used in the following iterations to support the sub- 

sequent fluents of openGoals. 

a∈Ai j ∀(vr ,dr )∈PRE(a) 

return amin 
 

 

 

The iterative evaluation  procedure  goes  on  un-  

til all the open goals have been supported, that is, 

openGoals = 0/ . When this occurs, hDTG returns the 

number of actions in the relaxed plan. 

hFF : FF heuristic function 
FLAP also makes use of the traditional FF heuris- 

tic function hFF [17], which builds a relaxed plan by 

ignoring the delete effects of the actions. hFF (SΠ) re- 

turns, as well as hDTG(SΠ), an estimate of the number 

of actions necessary to reach the goal state G from SΠ. 

The calculation of hFF is most costly than hDTG be- 

cause hFF needs to build a relaxed planning graph in 

each node Π of the search tree. There is no an efficient 

way to compute this graph in an incremental way be- 
cause it would require to propagate the changes in the 

frontier state SΠ across the graph. However, building a 

new relaxed planning graph at each node provides an 

updated heuristic information and, therefore, hFF often 

offers more accurate evaluations than hDTG. 

hLAND: Landmarks heuristic 

Landmarks are fluents that must be achieved in ev- 

ery solution plan [18,31]. Like the LAMA planner 

[28], FLAP computes a landmark graph (considering 

only necessary and reasonable orderings) and uses this 

information to calculate heuristic estimates. Since all 

landmarks must be achieved in order to solve the plan- 

ning task, the value of hLAND(Π) can be estimated 

through the set of landmarks that still need to be 

achieved to reach the goal state G from the frontier 

state SΠ. 

A plan Π can be seen as a sequence of states that 

are traversed to reach the frontier state SΠ from the ini- 

tial state I. Then, we consider that a landmark l is ac- 

cepted in Π if it holds in one of these states and all 

landmarks ordered before l have been already accepted 

in that state. Once a landmark is accepted, it remains 

accepted in all successor states. When the set of non- 

accepted landmarks is calculated, hLAND(Π) is the re- 

sult of estimating the cost of reaching these landmarks 

with either hDTG or hFF . Hence, we have two versions 
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of the landmarks heuristic, which we call    hLAND  DTG 

and hLAND  FF , respectively. 

Combination of heuristic functions 

For evaluating a plan Π = (∆, OR,CL), FLAP   de- 

fines two different evaluation functions: 

– fFF (Π) = w1 ∗ g(Π) + w2 ∗ hLAND FF (Π) + w3 ∗ hFF (SΠ) 

– fDTG(Π) = w1 ∗ g(Π) + w2 ∗ hLAND DTG(Π) + w3 ∗ hDTG(SΠ) 

 
g(Π) measures the cost of Π as the number of ac- 

tions  in  Π;  i.e.,  g(Π) = |∆|.  We  learned  the values 

w1 = 1, w2 = 4 and w3 = 2 by a trial-and-error empir- 

ical evaluation over the planning benchmark problems 

(see the section Experimental results). Heuristics func- 

tions are given more weight than the cost function to 

obtain a greedy-like search. Additionally, the weight of 

the landmarks heuristic is twice as much as the weight 

of hFF or hDTG because the values of hLAND are typi- 

cally lower than the estimates of hFF or hDTG, particu- 

larly in problems where the number of extracted land- 

marks is rather small. 

FLAP uses both evaluation functions, fFF and fDTG, 

to simultaneously explore different parts of the search 

space and hence have more chances to escape from 

plateaus, as it is described in the following subsection. 

 
Parallel searches for plateau escaping 

 
In heuristic planning, search nodes are often inac- 

curately evaluated and the search may be misled into 

large local minima/plateaus, thus resulting in a per- 

formance degradation. The problem of escaping from 

plateaus has been addressed in different ways: 

– Several approaches use greedy best-first search to 

avoid plateaus. They tackle this issue by adding  

a diversity to search [19,22], which is an ability 

in simultaneously exploring different parts of the 

search space to bypass large errors in heuristic 

functions. 

– A different strategy lies in combining/alternating 

different heuristics (or search parameters) to di- 

versify the search directions [29,33]. 

– Other approaches adding a diversity with an ap- 

plication to planning include a restarting proce- 

dure combined with local search [9] and random 

walk [25]. 

In FLAP,  we apply a new strategy for plateau    es- 

caping based on the ideas proposed in the aforemen- 
tioned works. The main A∗ search starts from the  ini- 

tial empty plan, Π0, by using the fFF evaluation func- 

tion. Although  fDTG  is actually faster to compute than 

 

 

Fig. 1. Parallel A∗ child search started when the main search gets 

stuck in a plateau. 

 
fFF , our current implementation of hDTG is not as ro- 

bust as hFF (see section Limitations and extensions of 

FLAP). 

For any A∗  search in FLAP, the plan with the   best 

heuristic value reached so far, Πbest , is stored. For the 
main A∗ search, Πbest is initially set to the initial empty 

plan, Π0, but, when another plan is found with a strictly 

better heuristic value, Πbest is set to that plan. We con- 
sider the main A∗ search is stuck in a plateau when 

Πbest is not updated in several iterations. In this case, 
two new A∗ child searches are started in parallel from 

Πbest , as it can be observed in Figure 1. One process 

uses fDTG whilst the other one uses fFF , in order to 

diversify the search in two different directions. 

The goal of a child search is not to escape from the 

plateau, but to find a solution plan from the frontier 

state of Πbest , which is likely to be closer to the goal. 

If a child search is successful in finding an exit    to 

the plateau of its parent search, it will continue search- 

ing for a solution plan. If this child search is stuck in  

a plateau again, it repeats the same diversification pro- 

cess and starts its own two parallel searches to speedup 

the progress towards a solution. 

Since any search can potentially start two new child 

processes, it is necessary to control the possible expo- 

nential growth in the number of parallel search pro- 

cesses. Then, a search process is terminated when one 

of the following circumstances occur: 

– A solution plan is found. The current version of 

FLAP stops when a solution is found instead of 

finding more solutions. 

– If a search manages to exit from a plateau, i.e.  

its Πbest is updated, then all its descendant search 

processes are cancelled. The only exception to 

this rule applies to the child search which has the 

best global heuristic value. 
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init  −− −→ new 

 
In practice, the number of simultaneous search pro- 

cesses does not usually exceed the number of process- 

ing cores (8 in our test computer) in the tested prob- 

lems. 

 

 
Comparison between FLAP and OPTIC 

 
OPTIC, the most recent version of POPF, is a 

forward-chaining POP that also handles temporal plan- 

ning problems, soft constraints and preferences [1]. In 

this section we compare the planning algorithms of 

OPTIC and FLAP and we show the characteristics that 

make FLAP be more flexible than OPTIC. 

There are three main differences between FLAP 

and OPTIC. In the first place, unlike our parallel A*- 

search algorithm, OPTIC uses the same enforced hill- 

climbing (EHC) algorithm as FF [17]. EHC finds a first 

plan very quickly but it may often yield low-quality so- 

lutions. When the EHC search fails, OPTIC switches 

to a best-first search to ensure completeness. 

In the second place, regarding the heuristic evalu- 

ation, OPTIC uses an extended version of hFF while 

FLAP uses the combination of heuristics explained in 

the previous section. 

The third difference between the two planners re- 

lies on the generation of the successor nodes. This is 

the key feature that allows FLAP to fully exploit the 

least-commitment principle of POP. Given a partial- 

order plan Π, OPTIC only considers the actions whose 

preconditions hold in the frontier state SΠ whereas 

FLAP considers the actions whose preconditions are 

supported with the actions in Π. The approach of OP- 

TIC is a simple and straightforward process for the fol- 

lowing reasons: 

– Checking whether the preconditions of an action 

hold in a state is processed very quickly. 

– No threats arise when the new action is added to 

Π because this action is inserted after all the ac- 

tions of Π which the new action may have con- 

flicts with. 

– The number of actions that can be supported in 

SΠ is usually smaller than the number of actions 

that can be added throughout Π, thus leading to a 

smaller branching factor during the search. 

Obviously, expanding a node in FLAP is a more 

costly operation since any action in Π is a potential 

support for the preconditions of the new action and, 

additionally, it is necessary to fix the threats caused by 

new action. However, the approach of FLAP has   two 

 

 
 

Fig. 2. Scenario example of the DriverLog domain. 

 
advantages; it reduces the need of backtracking, and it 

improves the plan parallelism. 

In order to illustrate the advantages of FLAP, we 

use a particular example of the DriverLog domain 

represented in Figure  2.  In  this  domain,  presented 

in the 2002 International Planning Competition (IPC) 

[11,24], a collection of trucks is used to deliver some 

packages to their destination cities, and trucks require 

a driver to move. 
The goal of this problem is to have package    pkg1 

at city c2,  i.e. G = {(at-pkg1,  c2)}. Let us suppose 

that both planners, OPTIC and FLAP, reach a   search 

node that contains the plan shown in Figure 3. This 

plan consists of three sequential actions: 1) the driver 

d1 walks from the village vill1 to city c1, 2) d1 gets 

on truck t1 and 3) d1 moves t1 to c2. As it can be 

observed, these three actions are necessary to solve the 

problem. 

In order to reach the goal, it is necessary to insert 

the action load pkg1 t1 c1, which we will call anew, 

to load pkg1 on t1 in city c1. The frontier state of the 

plan in Figure 3 does not support the preconditions of 

anew because the truck is no longer in c1. This way, 

OPTIC needs to take the truck back to c1, reaching a 

repeated frontier state which is pruned by the memo- 

ization mechanism. Then, OPTIC’s solution is to back- 

track to a node of the search tree in which anew is ap- 

plicable. 

FLAP, however, seeks producer actions in the plan 

that support the preconditions of anew, and it finds one 

way of doing this as shown in Figure 4. Specifically: 

– The preconditions of anew are supported by the 

existing actions in the plan. In this case, its    two 

preconditions (at-pkg1,c1) and (at-t1,c1) are 

produced by the initial fictitious action, ainit . 

– A conflict appears with the action drive t1 c1 

c2 d1 of  the  plan,  since  this  action threatens 

the causal link a 
(at−t1,c1)  

a This threat is 

solved by demotion through the insertion of the 
ordering constraint anew ≺ drive t1 c1 c2 d1. 



9 
 

 

 
 

Fig. 3. Partial plan computed for the DriverLog problem example. For each action, its preconditions are shown at the top of its box and its effects 

at the bottom. The frontier state of the plan is displayed on the right. 

 

 
Fig. 4. Partial plan computed for the DriverLog problem example. Solid lines represent causal links and dashed lines represent orderings. 

 

– The resulting successor plan, shown in Figure 4, 

is not a repeated node because the frontier state of 

this plan contains the new fluent (at-pkg1,t1). 

Finding actions that support the preconditions of a 

new action all along the plan requires an extra compu- 

tational cost but, on the other hand, it avoids backtrack- 

ing since the new generated plan (Figure 4) can be eas- 

ily extended to reach a solution plan. In simple prob- 

lems, where no backtracking is often required, FLAP 

is usually slower due to the additional calculations but, 

in hard problems, this approach allows FLAP to signif- 

icantly outperform OPTIC. 

The second advantage of the approach followed by 

FLAP is that it can generate plans with a smaller 

makespan (plan duration) than OPTIC. To illustrate 

this, we show in Figure 5 the solution plans provided 

by OPTIC and FLAP for the second problem of the 

Rovers domain used in the IPC 2006. In this domain, a 

collection of rovers with different equipment navigate 

a planet surface to collect and analyse samples of soil 

and rock, take pictures of diverse objectives and com- 

municate the results to a lander. 

As it can be observed, both plans have the same 

eight actions. However, the plan produced by OPTIC 

has a makespan of 5 time steps, one more than the 

plan of FLAP. This is because, in OPTIC, the order  

in which the actions are inserted in the plan is de- 

terminant: action communicate rock data is inserted 

when action communicate image data was already in 

the plan, hence ordering the first one after the  second 

one (communications cannot be done in parallel). In 

contrast, the insertion order is not important in FLAP 

as it does not prevent it to get the best-quality solutions. 

In summary, we can conclude that the forward- 

chaining POP approach of FLAP is more flexible than 

the one used in OPTIC since FLAP does not restrict it- 

self to only inserting actions in the frontier state. More 

specifically, the late-commitment approach of OPTIC 

is based on delaying commitment to ordering decisions 

on the frontier state, which makes it lose flexibility as 

it ignores the possibility of exploiting white knights [5] 

or considering the demotion strategy for an action that 

interferes with a fluent in the frontier state. 

 

 
Limitations and extensions of FLAP 

 
FLAP was designed as a general and flexible plan- 

ner, which can easily been extended to handle prob- 

lems with complex features. Our next step is to im- 

plement a new version of FLAP to deal with temporal 

planning problems. In these type of problems, actions 

may have different durations, their preconditions may 

be required to hold during the whole action duration, 

and their effects can also occur at the beginning of the 

action. 

One of the limitations of the current version of 

FLAP is that the goal distance is estimated as the num- 

ber of actions required to reach the goals: both hFF 

and hDTG return the number of actions in the computed 
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Fig. 5. Solution plan computed by a) OPTIC and b) FLAP for the second problem file of the Rovers domain. 

 

relaxed plans. This is a valid approach to guide the 

search towards a solution but makes it more difficult to 

find good-quality plans regarding the plan duration or 

makespan, which is the main metric used in temporal 

planning. Then, a first modification to handle tempo- 

ral problems is to adjust the heuristic functions to es- 

timate the makespan, returning the duration of the ob- 

tained relaxed plans instead of the number of actions. 

This change does not imply a significant increase in 

the computational cost of these heuristics, as it only re- 

quires to record the time points in which the effects are 

achieved. 

Another limitation is that hDTG does not identify 

dead-end states properly, returning values different 

from ∞ in these cases. The reason is that hDTG is only 

able to detect a dead-end state if the DTG of a vari- 

able does not contain a transition path from the current 

value of the variable to its goal value. Then, hDTG does 

not consider the interactions between different vari- 

ables to detect dead-ends. This problem can be miti- 

gated by computing mutex fluents in a preprocessing 

stage since they can be used to detect conflictive inter- 

actions among fluents. 
Finally, an additional extension of FLAP is to con- 

sider the use of a portfolio approach [26]. This ap- 

proach is based on the following idea: several plan- 

ning algorithms are executed in sequence with shorter 

timeouts, expecting that at least one of them will find 

a solution in its allotted time. FLAP combines several 

techniques and heuristic functions, and none of them 

clearly dominates the other ones, so a portfolio ap- 

proach could be easily implemented to check if it re- 

ports a significative improvement in the planning per- 

formance. 

 

Experimental results 
 

In this section, we address two issues. On the one 

hand, we look into the reasons that led us to use    fFF 

as the evaluation function for the main search in FLAP. 

For this purpose, we compared the performance of fFF 

and fDTG to show the advantages and drawbacks of 

both functions. This comparison is presented in the fol- 

lowing subsection. 

On the other hand, we also present some experimen- 

tal results to show the performance of FLAP in terms of 

plan quality and computational time. For this purpose, 

we compared FLAP with three well-known planners 

that return plans with parallel actions: OPTIC, LPG-td 

and Temporal Fast Downward (TFD). A brief descrip- 

tion of these planners and the results of this compari- 

son are discussed in the second subsection. 

We selected ten propositional domains from the In- 

ternational Planning Competitions (IPC) [24,11]. The 

IPCs provide a wide set of benchmarking problems to 

assess the performance of the planners [23]. The tested 

domains are described below: 

– Blocksworld: this domain, from the 2000 IPC, 

consists of a set of blocks that must be arranged 

to form one or more towers. We have used a vari- 

ation of this domain where several robot arms are 

used to handle the blocks, thus allowing parallel 

actions in the plans. 

– Depots: this domain, introduced in the 2002 IPC, 

combines a transportation-style problem with the 

Blocksworld domain. 

– Driverlog: this domain, used in the 2002 IPC, in- 

volves transportation, but vehicles need a driver 

before they can move. 

– Elevators: in this domain, used in the 2011 IPC, 

several elevators of different types must transport 

several passengers to their floors. 

– Logistics: in this domain, introduced in the IPC 

2000, several airplanes and trucks cooperate to 

deliver some packages to their destinations. 

– Openstacks: in this domain, from the 2011 IPC, a 

manufacturer has a number of orders to produce, 

each one consisting of a combination of products. 
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– Satellite: this domain, used in the 2004 IPC, in- 

volves satellites collecting and storing data using 

different instruments to observe a set of targets. 

– Rovers: used in the 2006 IPC, the objective is to 

use a collection of mobile rovers to traverse be- 

tween waypoints on the planet, carrying out a va- 

riety of data-collection missions and transmitting 

data back to a lander. 

– Woodworking: used in the 2011 IPC, the goal is to 

manufacture some wood pieces by using a set of 

different machines in a production chain. 

– Zenotravel: in this domain, presented in the 2002 

IPC, people must embark onto planes, fly between 

locations and then debark, with planes consuming 

fuel at different rates according to their speed of 

travel. 

Testing was performed on a 2.3 GHz i7 computer 

with 16 GB of memory running Ubuntu 64-bits. 

 

Comparison of the evaluation functions 

 

As we have described before, FLAP uses two evalu- 

ation functions, fFF and fDTG, to guide the search pro- 

cesses. fFF uses the classical heuristic of the FF plan- 

ner, while fDTG uses a new heuristic based on the com- 

putation of shortest paths in the DTGs of the variables. 

To compare the performance of both functions, we de- 

veloped a simple version of FLAP that only uses a sin- 

gle A∗ search (no parallel search). First, we used   fFF 

to guide the search and, then, we used fDTG to check 
the differences. 

Regarding the time performance, measured in ex- 

panded nodes per second, the search is always faster 

with fDTG. One of the advantages of hDTG is that it  

can be computed several times faster than hFF , as hDTG 

does not require to build a new graph in each search 

node. We observed that, for example, hFF takes 0.85 

ms. in average to evaluate a plan in a problem with 

about 5000 ground actions, while hDTG takes only 0.12 

ms. However, the speed up of fDTG is more notice- 

able in problems where the size of the relaxed plan- 

ning graphs of hFF is rather large. For this reason, we 

only compared the search performance in the largest 

problems (the last 7 problems of each domain). The re- 

sults are depicted in Table 1. The domains in which the 

speed up of fDTG is less significant are Blocksworld, 

Satellite and Logistics. On the contrary, the domains in 

which the performance increase is more noticeable are 

Woodworking, Openstacks and Zenotravel. 

We  thus confirmed that the use of  fDTG  instead  of 

fFF  speeds up the search to a greater or lesser  extent. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
Table 1 

Search speed (in nodes per second) and average number of expanded 

nodes, using the fDTG or the fFF  evaluation function. 

 
Therefore, the decision of using fFF instead of  fDTG  

in the main search of FLAP is only motivated because 

hFF is a better informed heuristic than hDTG. As it can 

be observed in Table 1, fDTG only guides the search 

better, i.e. needs to expand fewer nodes to find a so- 

lution, in three out of the ten domains: Driverlog, Lo- 

gistics and Zenotravel. In these domains, the DTGs of 

some variables are quite large and sparse (for example, 

DTGs of the position of the trucks and the drivers in the 

Driverlog domain), which allows us to obtain longer 

and more informative paths of value transitions. 

However, fFF  is more accurate in the evaluations  

of the remaining seven domains. In particular, it sig- 

nificantly outperforms fDTG in the Woodworking do- 

main, for which fDTG was not able to obtain any solu- 

tion. This is a non-reversible domain, which causes that 

many of the frontier states reached during the search 

are dead-ends, and hDTG is not able to identify dead- 

ends properly. The better behaviour of fFF in most of 

the domains led us to use this evaluation function for 

the main search of FLAP. Nevertheless, the alternation 

of both evaluation functions, fFF and fDTG, as a mech- 

anism to rapidly escape from the plateaus is one of the 

keys of the good performance of FLAP. 

 
Comparison between parallel planners 

 
The goal of this comparison is to demonstrate that 

FLAP, a planner compliant with the least-commitment 

principle, can be competitive with other state-of-the-art 

planners capable of generating parallel plans. For this 

purpose, we have selected two partial-order planners, 

LPG-td [13] and Temporal Fast Downward (TFD) 

[10], aside from OPTIC. 

 
Domain 

fDTG fFF 

nodes/sec. exp.nodes nodes/sec. exp.nodes 

Blocksworld 58.86 241,00 58.35 31,43 

Depots 118.89 245,14 101.64 33,14 

Driverlog 517.26 97,00 431.84 160,29 

Elevators 367.96 32,14 234 30,43 

Logistics 72.45 110,86 69.08 115,86 

Openstacks 45.11 117,86 21.88 117,71 

Rovers 141.4 2576,86 111.82 239,29 

Satellite 4.8 144,86 4.2 50,14 

Woodworking 158.27 − 52.89 − 

Zenotravel 3.9 67,43 2.1 83,86 
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LPG-td is an extended version of the LPG planner 

[12]. The basic search scheme of LPG was inspired by 

Walksat, an efficient procedure to solve SAT-problems. 

The search space of LPG consists of action graphs, 

particular subgraphs of the planning graph represent- 

ing partial plans. The search steps are certain graph 

modifications transforming an action graph into an- 

other one. We have selected LPG-td for the compari- 

son since action graphs are an alternative way for rep- 

resenting partial-order plans, thus allowing to gener- 

ate plans with parallel actions. LPG-td is sub-optimal 

and incomplete, due to its stochastic local-search ap- 

proach, but it can find a first solution very quickly. We 

have used LPG-td with a fixed seed of 0 for the ran- 

dom number generator in order to obtain reproducible 

results. 

Temporal Fast Downward (TFD) is a variant of the 

propositional Fast Downward planning system [16]. 

TFD uses a greedy best-first search approach enhanced 

with deferred heuristic evaluation. Besides the values 

of the state variables, the time-stamped states in the 

search space contain a real-valued time stamp as well 

as information about scheduled effects and conditions 

of currently executed actions. This integrated process 

of action selection and time scheduling yields very 

good results in terms of plan quality according to the 

makespan. 

We have run all the benchmark problems from the 

ten selected domains with these planners. Each experi- 

ment was limited to 30 minutes of wall-clock time and 

to the 16Gb of available memory. For this comparison, 

we have only considered the first plan returned by the 

planners. 

As it can be observed in Table 2, FLAP is able to 

solve all tested problems. The problem in which FLAP 

took longer to find a solution was the last one of the 

Zenotravel domain, and it was solved in 65.82 seconds. 

LPG-td only fails one problem, concretely the prob- 

lem 16 of the DriverLog domain. On the contrary, OP- 

TIC fails to solve many of the Depots and Blocksworld 

problems. In these problems, with a large number of 

interactions between the goals, the use of landmarks 

would have helped OPTIC be more effective. It has 

also difficulties to deal with the latest problems of 

Driverlog, Satellite and Zenotravel, due to the size of 

these problems and the complexity of the plateaus that 

appear (above all in the Driverlog domain). TFD also 

has difficulties with the Depots domain and with the 

latest problems of DriverLog and Rovers. 

As for the plan quality, Table 3 shows the average 

makespan of the solution plans obtained by these five 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 
 

Table 2 

Number of problems solved in the tested domains. 

 
planners. For computing these values we have only 

taken into account the problems that the planners were 

able to solve. 

TFD is the planner that yield better shorter plans in 

most of the tested domains. It only produces slightly 

worse solutions than FLAP in the Logistics, Rovers and 

ZenoTravel domains. As it can be observed, the quality 

of FLAP is very similar to the one of OPTIC. These are 

very promising results as we have to take into account 

that FLAP is currently designed to optimize the num- 

ber of actions in the plans. We expect to get a signifi- 

cant improvement in the durations of the plans through 

the introduction of some modifications in the heuristic 

functions to optimize the makespan in a future version 

of FLAP. LPG-td is the planner that performs worse in 

this regards since it generates a 164% longer plans than 

TFD and a 152% than FLAP on average. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Average makespan of the solution plans for the tested domains. 

 
Regarding the running time, Figure 6 show the used 

time by these planners to find a first solution in all the 

Domain (#problems) FLAP OPTIC LPG-td TFD 

BlocksWorld (34) 34 24 34 34 

Depots (20) 20 11 20 10 

DriverLog (20) 20 15 19 16 

Elevators (30) 30 30 30 30 

Logistics (20) 20 20 20 20 

OpenStacks (30) 30 30 30 30 

Rovers (20) 20 20 20 17 

Satellite (20) 20 16 20 20 

WoodWorking (30) 30 28 30 30 

ZenoTravel (20) 20 16 20 20 

Total (244) 244 210 243 227 

Coverage 100% 86,07% 99,59% 93,03% 

 

Domain FLAP OPTIC LPG-td TFD 

BlocksWorld 15,21 20,85 43,01 9,59 

Depots 26,80 30,01 29,63 22,41 

DriverLog 29,35 28,16 47,25 28,66 

Elevators 12,90 14,37 35,54 12,50 

Logistics 16,50 18,03 36,39 16,86 

OpenStacks 53,87 49,14 55,68 48,72 

Rovers 14,05 16,26 23,82 17,06 

Satellite 18,50 13,29 16,99 16,31 

WoodWorking 6,33 4,12 6,18 5,75 

ZenoTravel 11,00 10,69 15,49 11,70 

Average 20,45 20,49 31,00 18,96 
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Fig. 6. Search time in second used by FLAP, OPTIC, LPG-td and TFD in the tested domains. 
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tested problems. As it can be observed, LPG-td is the 

faster planner. FLAP only obtains a better average time 

than LPG-td in the Elevators domain: 0,1 vs. 0,16 sec- 

onds per plan. In the BlocksWorld domain the average 

time is also similar: 0,64 and 0,5 seconds by FLAP 

and LPG-td, respectively. The local-search approach of 

LPG-td allows it to find a first solution plan very fast in 

most of cases, but the quality of these solutions is not 

very good as Table 3 has shown. 

FLAP is faster than OPTIC except on the Open- 

Stacks and Rovers domains. In these domains the num- 

ber of explored nodes is smaller in FLAP, so the addi- 

tional temporal cost is due to the overhead in the com- 

putation of the successors of a node: a higher number 

of actions can be added to the current plan and, more- 

over, one same action can be inserted in different po- 

sitions in the plan, so the number of successors of a 

plan is usually higher in FLAP. Nevertheless, the run- 

ning times in these domains are quite small and do not 

prevent FLAP from being about 19 times faster than 

OPTIC in the tested problems on average. 

FLAP is also about 12 times faster than TFD on av- 

erage. FLAP is able to find solutions in all the tested 

domains in less time than TFD. On the contrary, the 

solutions found by TFD are usually shorter, as we have 

mentioned above. 

Aside from the use of a powerful combination of 

heuristics, one of the key of the performance of FLAP 

is the mechanism of parallel searches to escape from 

plateaus. As each search process can launch another 

two child searches when gets stuck in a plateau, there 

exists a potential possibility of an exponential growth 

in the number of parallel processes. However,  an as  

it can be observed in Table  4, the maximum num-  

ber of simultaneous searches remains at very accept- 

able levels in all the domains. Woodworking is the do- 

main that needs a higher number of parallel searches, 

mainly due to the lack of accuracy of the hDTG heuris- 

tic in these problems. Even so, eight-core processors 

are very common at present and they can manage five 

parallel search processes seamlessly. 

Finally, we show in Table 4 the memory usage statis- 

tics of FLAP for the tested domains. FLAP uses several 

A∗ search processes and one of the main drawback of 

this type of algorithms is the high memory consump- 

tion. As it can be observed, the memory consumption 

is quite restrained since it does not require more than 

2GB. in any of the tested problems. This is mainly due 

to the good heuristic guidance, which helps FLAP find 

a solution without exploring a large number of nodes. 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
Table 4 

Average number of maximum parallel search processes (threads) and 

memory consumption in MB. by FLAP for each domain. 

 
Conclusions 

 

This paper presents FLAP, a hybrid planner that 

combines partial-order plans with forward search and 

uses state-based heuristics. FLAP is  fully  compli-  

ant with the least-commitment strategy, avoiding an 

early commitment to the ordering of the actions. This 

achieves flexibility, reduces the need of backtracking 

and produces shorter plans at the expense of a more 

costly search process. In order to alleviate the search 

burden, FLAP implements a parallel search technique 

that diversifies the search when a plateau is found.  

We also presented an exhaustive analysis to show the 

differences between the late-commitment approach of 

OPTIC and the least-commitment approach of FLAP. 

We compared FLAP with three modern planners, 

OPTIC, LPG-td and TFD. Experimental results show 

that FLAP is able to solve more problems than the 

other three planners in the tested domains. FLAP also 

offers a very good trade-off between the quality of  

the solutions regarding the makespan and the running 

time. TFD returns the best solutions wrt makespan and 

FLAP outperforms both OPTIC and LPG-td in this re- 

spect. This is a promising result as the current version 

of FLAP is not focused on optimizing the makespan. 

With regard to the running time, only LPG-td is faster 

than FLAP from the tested planners. We can conclude 

then that FLAP is very competitive when compared 

with some of the top-performing planners. 

As a future extension, we will investigate on the 

adaptation of FLAP heuristics to optimise the makespan 

and to mitigate the problem of hDTG with dead-end 

states in non-reversible domains. We are also working 

on a temporal version of FLAP, extending the repre- 

sentation to durative actions and adapting the planning 

algorithm of FLAP to reasoning about time. 

 
Domain 

 
Threads 

Memory usage 

Min. Max. Average 

BlocksWorld 2,18 13 94 22,94 

Depots 4,15 14 297 65,10 

DriverLog 2,95 12 980 147,40 

Elevators 1,13 13 28 14,77 

Logistics 2,00 18 104 47,15 

OpenStacks 2,07 17 69 35,03 

Rovers 3,55 16 566 101,60 

Satellite 1,05 13 65 29,10 

WoodWorking 5,27 18 1774 128,00 

ZenoTravel 1,05 12 118 27,95 
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