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In many real-world applications we have at our disposal a
limited number of inputs in a theoretical database with full
information, and another part of experimental data with in-
complete knowledge for some of their features. These are
cases that can be addressed by a label propagation process.
It is a widely studied approach that may acquire complexity
if new constraints in the new unlabeled data that should be
taken into account are found. This is the case of the member-
ship to a group or community in graphs. The proposal is to
add the Laplacian matrix as well as another different similar-
ity measures (may be not found in the original database) in
the label propagation. A kernel embedding process together
with a simple label propagation algorithm will be the main
tools to achieve this approach by the use of all types of avail-
able information. In order to test the functionality of this
new proposal, this work introduces an experimental study
of biofilm development in drinking water pipes. Then, a la-
bel propagation through pipes belonging to a complete water
supply network is approached. These pipes have their own
properties depending on their network location and environ-
mental co-variables. As a result, the proposal is a suitable
and efficient way to deal with practical data, based on previ-
ous theoretical studies by the constrained label propagation
process introduced.

Keywords: Label propagation, semi-supervised learning,
kernel methods, water supply networks.

Introduction

In many practical applications of pattern classifica-
tion and data mining, one often faces lack of sufficient
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labeled data, since labeling often requires expensive
human labor and much time. Semi-supervised learn-
ing (SSL) is a class of machine learning techniques
that makes use of both labeled and unlabeled data for
training their associated algorithms (typically a small
amount of labeled data with a large amount of unla-
beled data). Thus, it represents a halfway between su-
pervised and unsupervised learning [4], working with
unlabeled data, but providing some supervised infor-
mation [24]. In general, these methods can be catego-
rized into two classes: transductive learning [10] and
inductive learning [1]. The goal of transductive learn-
ing is only to estimate the labels of the given unlabeled
data, whereas inductive learning tries to induce a deci-
sion function which has a low error rate on the whole
sample space.

The key to semi-supervised learning problems is the
prior consistency [24], also called cluster assumption
[3]:

1. nearby points are likely to have the same label;
2. points on the same structure (such as a cluster or

a sub-manifold) are likely to have the same label.

Note that the first assumption is local, while the second
one is global. The cluster assumption compels us to
consider both local and global information contained
in the dataset during learning. Label propagation has
been applied in classification and ranking task in sev-
eral fields as varied as web page classification [11],
genome issues to rank biomarkers [22] or water distri-
bution issues to manage large networks [9] or sectorize
[2], among others.

This work introduces a semi-supervised problem in
which a database of labeled data is available, but the
unlabeled data follow a graph structure. Thus, in the
process of label propagation both the usual pairwise
similarities and the graph constraints related to these
unlabeled data should be taken into account. Then, the
proposal is to work with the Laplacian matrix associ-
ated with the graph together with the similarity matri-
ces, all of them embedded into a kernel space, [20,21].
This is a high dimensional feature space defined by a
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2 Graph constrained label propagation on WSNs

kernel function, i.e. a function returning the inner prod-
uct between the images of two data points in the fea-
ture space. Working with kernels both complex and
nonlinear problems usually can be addressed by eas-
ier even linear methodologies. Label propagation takes
place in this kernel feature space. It uses a simple algo-
rithm, which takes into account different kernel prop-
erties. In addition, it is introduced a methodology for
tuning both weights and parameters which will appear
along this process. Regarding the Laplacian matrix, the
proposal is to address its tuning by a local scaling ap-
proach [23]. The parameters related to dissimilarities
embedded into kernel spaces and the weights to com-
bine these kernels should be tuned by a common pro-
cess based on new trust-regions achievements [17].

To test the availability of this approach, an exper-
imental study of biofilm development in water sup-
ply networks (WSNs) is proposed. In this case, various
studies have been approached by independent pipes
which have been labeled depending on their member-
ship to a cluster. Nevertheless, in the study of a WSN
we have a number of unlabeled pipes but distributed
in a graph related to the WSN layout. The above la-
bel propagation process allows to take into account the
database information but also includes the graph con-
straints into the WSN.

The outline of the paper is as follows. The follow-
ing Section proposes the graph constrained label prop-
agation methodology. It also introduces the main tools
used for this label propagation process. After that, a
method for tuning the corresponding parameters is pro-
posed. Next, an experimental study about biofilm de-
velopment in WSN is developed. The last section is
about conclusions and further challenges for closing
the paper.

The graph constrained label propagation
algorithm

The proposed algorithm has two different parts. The
first one address the kernel embedding process of the
data. The second one approach a label propagation al-
gorithm that takes advantage of the kernel properties
of the space where it works.

Kernel embedding process

To propagate labels on a graph we should take into
account both graph structure and pairwise similarities.
Thus, building the Laplacian matrix, L, associated with

the graph is one of the main processes to achieve. This
matrix is defined as the diffence between the degree di-
agonal matrix, D, of the graph and the affinity matrix,
A. Nevertheless, this basic definition may be slighty
modified in order to exploit the good propierties in
their representation of graphs [15]. Then, the basic ex-
pression of Laplacian matrix, L = D−A, evolves to the
so-called normalized Laplacian L = I−D−1/2AD−1/2

(where I is the identity matrix) which we use in this
work because its symmetry and good properties of its
spectrum [14].

Through the kernel embedding process we can work
in a high dimensionality space where linear methods
work well to solve complex problems. In addition, the
main processes take place in the feature space and
the learning algorithms can be expressed so that the
data points only appear inside dot products with other
points. This is often referred to as the “kernel trick”
[20]. Besides of this, it is possible to add as much in-
formation as we have for this label propagation. This
allows to include the necessary similarities obtained
from vector data to the structure of the graph. Thus, the
process starts embedding the Laplacian of the graph
together with the different similarity matrices into a
kernel matrix for the unlabeled data KU . We can di-
rectly transform similarity matrices into kernel matri-
ces, which should be symmetric and positive semidef-
inite matrices that enconde the relative positions of all
points [12].

Given a set of unlabeled data XU = {x1, ...,xnU } in
Ru, the process steps are as follows:

1. Build the affinity matrix A ∈ Rn×n defined by

Ai j = exp
(
− ||xi−x j ||2

2σ2

)
if i 6= j and Aii = 0.

2. Define D to be the degree diagonal matrix whose
(i, i)-element is the sum of the entries in A’s ith
row.

3. Build the matrix L = I−D−1/2AD−1/2.
4. Embed into a kernel space the Laplacian and dis-

similarity matrices associated with the problem.

(a) Scale data between 0 and 1;
(b) Plug a diagonal of 1’s into the diagonal of

each matrix.
(c) Next, matrices are mirrored through their di-

agonals to make them symmetric.

5. Follow Equation 1 to combine individual kernels.

KU = wLapKLap +∑
i∈I

ωiKi (1)

The scaling parameter of step 1, σ2, controls how
rapidly the affinity Ai j falls within the distance between
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xi and x j [13]. D = diag(d1, . . .dnU ) is the degree ma-
trix, which is the diagonal matrix formed from the ver-
tex degrees and A is the adjacency matrix. Each ωi
(step 5) allows to give different importance to each dis-
similarity matrix, Ki, involved in the performance of
KU . In step 5 and Equation 1 expression ωLap and KLap
are the weight and kernel matrix, respectively, asso-
ciated with the Laplacian. These weights should only
meet the condition of being positive; allowing a conic
combination for Equation 1.

The Ki kernels associated with dissimilarity matri-
ces can directly be these kind of matrices embedded
into a kernel space or their expression can be chosen
between already known kernel expressions (see Table
1). As a suggestion, given the categorical nature of la-
bels, we attempt to check firstly kernels independent
on any specific metric (such as Linear or Polynomial
kernels, Table 1), because they usually offer better re-
sponse working with categorical variables.

Table 1
Short list of some common kernel functions

Name Expression

Gaussian K(x,x′) =exp
(
− ||x−x′||2

2σ2

)
ANOVA K(x,x′) = ∑ exp

(
−σ(xk− x′k)2)d

Linear K(x,x′) = xT x′+ c

Polynomial K(x,x′) = (αxT x′+ c)d

Rational Quadratic K(x,x′) = 1− ||x−x′||2
||x−x′||2+c

There are a number of reasons to justify that the pro-
cess of kernelization of this Laplacian matrix is correct
[8]. There are two key properties that a kernel function
must meet [21]. Firstly, it should capture the measure
of similarity approximate to the particular task and do-
main, and, secondly, its evaluation should require sig-
nificantly less computation than it would be needed in
an explicit evaluation of a corresponding feature map-
ping. Furthermore, as the sum of kernel matrices is an-
other kernel matrix, we propose to build an accumu-
lative matrix, which is the weighted sum of the nor-
malized dissimilarities in the different characteristics
of the data.

Now it is possible to expand KU plugging together
both labeled and unlabeled data into just one matrix K̂
(Equation 2). XL is the set of labeled data with labels
YL. Its kernel mapping, K(XL,XL) of Equation 2, can
be understood as a distance or dissimilarity measure
based on data that engages well with the rest of the
process.

K̂ =

(
KU K(XU ,XL)

K(XL,XU ) K(XL,XL)

)
=

(
KU KUL
KLU KL

)
(2)

Label propagation

After the previous kernel embedding of the problem,
a slight modification of one of the more classical la-
bel propagation algorithms [25] will be enough to ap-
proach the labels for the unlabeled data structured by
a graph. Figure 1 summarizes the process that we will
follow.

Fig. 1. Graph constrained label propagation

Given the number of classes, C, for labeling, an ini-
tial (nL+nU )×C probability label matrix is defined by
an iterative process that starts with Equation 3.

Y 0 =

(
YU
YL

)
(3)

YL corresponds to the probability distribution of la-
beled data and YU to the unlabeled ones. The YU prob-
ability values can be initialized arbitrary by assigning
values of the possible probabilities of the labels in a
random way. An iterative propagation process will up-
date this matrix: Y 0→ Y 1→ . . .→ Y m.

The main propagation idea is based on Equation 4.

YU ← KUYU +KULYL (4)

Then, the iterative process is:

Y 1
U = KUY 0

U +KULYL (5)

Y 2
U = KU (KUY 0

U +KULYL)+KULYL (6)

and so on. Assuming we iterate infinite times then:

YU = lim
n→∞

(
Kn

UY 0)+[ n

∑
i=1

K(i−1)
U

]
KULYL (7)
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The process converges since K̂ is a normalized ma-
trix and KU is a submatrix of K̂. Thus, we can find YU
by solving the assignment of Equation 4 and we finally
have Equation 8.

YU = (I−KU )
−1KULYL (8)

Tuning parameters in kernel label propagation

Once the scaling parameter for the Laplacian ma-
trix has been tuned by well known methods: automat-
ically [16] or by local scaling [23], the tuning process
of the hyper-parameters coresponding to the kernel la-
bel propagation continues. The subjacent label prop-
agation idea is related to the membership to one la-
bel, similarly to the common membership concept used
in clustering. This makes useful to be label propaga-
tion based on similar approaches than we use in clus-
tering to measure the goodness of each label distribu-
tion. The method of silhouette, introduced by [19], is a
cluster validation and interpretation process that com-
bines both cohesion and separation criteria. The value
of the silhouette coefficient can vary between -1 and 1.
A negative value corresponds to a case in which the av-
erage distance to points in the same label is greater than
the minimum average distance to points with a differ-
ent label. The ideal case is that the silhouette coeffi-
cient to be positive, and as close as possible to 1. The
goodness of the final configuration of labels will be re-
lated to the weighted average of the silhouette width
(ASW).

Once the criterion of searching best combination of
parameters is fixed, a methodology based on multi-
start trust region will be launched. Multi-start algo-
rithms are an option if global extrema are searched,
since these algorithms can explore more than a single
basin of attraction of the objective function. The start-
ing points should be enough and well distributed onto
the design space [17].

Since we are interested in tuning weights and pa-
rameters within other optimization process (ASW on
the label propagation, in this case), and we are not
interested in the resulting model, we propose to ap-
ply derivative-free optimization algorithms [17]. Thus,
only the objective function value is required. Our pro-
posal is to adopt a linear second order model to inter-
polate (zones of) the parametric space by a simple sur-
face where we can easily search its extreme. The use
of a surrogate model, instead of the computation of the
real objective function, reduces the computational time

and extends the possible solutions from a set of points
(Grid Search) to an entire surface. Thus, a so-called
Design Of Experiments (DOE) is required at the begin
of the algorithm by a double use: firstly, it searches dif-
ferent zones where locate our trust regions; next, DOE
samples a number of starting locations into each of
these regions.

The basic algorithm is outlined in the following
steps, where the process starts selecting m regions
of the parametric space (trust-regions). These trust-
regions are specified with a center point and a radius,
r. Once initialized, the trust region radius is dynami-
cally adjusted by checking the quality of the clustering
configuration for parameters at a certain distance from
the search point.

1. Compute a number, m, of initial areas from the
whole parametric space (DOE).

2. Sample points (parameters) in the selected re-
gions (DOE).

3. Compute the labels for the sampled weights and
parameters.

4. Create m surrogates based on the sampled points:
weights, parameters, and labels.

5. Search the maximum values of ASW on the m
surrogate surfaces.

6. Compute the label propagation process with the
new selected parameters.

7. Redefine each trust-region and resize it by the
factor h.

8. Repeat steps 4-7 until reach a stop condition.

The rule for redefining these trust-regions depends
on the ASW. Since the ASW is in the [-1,1] interval,
it is possible to calculate its increase, for each combi-
nation of weights and parameters during the iterations.
The trust-region size is updated by the following rule
(taking into account that the value of h will directly
affect each trust-region radius):

– If the value of r is < - 0.1, we set the value of the
growth parameter, h = hshrink.

– If the value of r is > 0.1, we set the value of the
growth parameter, h = hgrow.

– If the value of r is between -0.1 and 0.1, then the
region size is not changed: h = 1.

By default the value of hshrink = 0.5 and hgrow = 2 to
contract and expand the regions, respectively. These
criteria may change depending on the problem to be
solved and its desirable convergence speed.

The trust-region process is stopped if one of the fol-
lowing criteria is met: the new increment is lower than
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0.1 times the initial one; the new solution improves the
last one by a number lower than 1.e-06; the number of
iterations is greater than 30.

Experimental study

Biofilm is formed by a complex mixture of mi-
crobes, organic and inorganic material accumulated
amidst a microbially-produced organic polymer ma-
trix attached to the pipes inner surface. Once devel-
oped, biofilm is very resistant to disinfectant and can
lead to various undesirable problems such as deterio-
ration of bacterial water quality, generation of water
bad tastes and odors, biocorrosion, and disinfectant de-
cay, among others. It is known that, since the physical
and hydraulic characteristics of the WSNs vary within
the distribution systems creating heterogeneous habi-
tats over time and space, biofilm exist at different lev-
els within a WSN. That is why this work focuses on
identifying the WSN’s areas that are more or less prone
to biofilm development according to the physical and
hydraulic characteristics of the distribution system.

For the experimental study we use the biofilm
database of 210 pipes belonging to different WSNs,
proposed and studied by the authors in [18]. In that
paper, a clustering of the biofilm database was ap-
proached, among other analysis. For our new interests,
we keep on using the clustering medoids obtained in
[18], which Table 2 shows. The corresponding cluster-
ing membership will be the labels for the elements of
this study.

Table 2
Medoids of the clusters (labels) from the theoretical database

Medoids Cluster 0 Cluster 1 Cluster 2

H. Regime Turbulent Turbulent Turbulent
Velocity High Medium Medium

P. Material Plastic Cement Metal
P. Age Young Old Medium
Biofilm Low Medium High

Now the interest focuses on propagating these labels
obtained from independent pipes to a set of pipes that
integrate a complete WSN. In order to illustrate how
our label propagation proposal works, we have chosen
the “Example-3” of Epanet [7] (Figure 2). There are
two raw water sources – one that is used continuously
from high quality river water and another used for a
portion of the day that comes from lower quality lake
water. We could be interested in the possible biofilm

Fig. 2. Layout of the case-study WSN.

development in a distribution system like that, follow-
ing the natural constraints of its layout (graph architec-
ture).
This WSN is composed of 91 consumption nodes, 117
pipes, and 5 sources of water (3 tanks, 1 river, and 1
lake); the total pipeline length is 117 Km. The average
elevation and demand of the nodes are 25 m and 31.8
l/s, respectively.

To apply the above described label propagation pro-
cess, we follow the steps to embed in a kernel space the
unlabeled 117 data of the WSN (KU ) and the 210 la-
beled pipes KL. In both cases, dissimilarities related to
pipe variables such as material and age are taken into
account. Other hydraulic variables also are considered
(water velocity and age). Once the main kernel matrix
is provided (Eq. 2), it is possible to calculate the labels
for the WSN under study by Equation 8.

We have different kernels (and parameters to be
tuned) depending on the nature of the variables. As a
summary, we should tune the weight originated by the
Laplacian matrix (wLap) and its parameter α related to
the scale. It is also necessary to take into account the
rest of the information by both, tuning the parameters
of the matrices and tuning the weights to combine all
the information. In this case, the study is focused on the
following 3 variables: pipe material, pipe age, and wa-
ter velocity. Thus, there will be necessary tuning their
related weights: w1,w2,w3; together with wLap. All of
these inputs are categorical, such as the information
of the labels in Table 2. We use Linear kernel for em-
bedding these dissimilarities in the kernel space, then
we are also interested on tuning the parameters associ-
ated with these kernels, such as c1,c2,c3; together with
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α. These 4 weights are positive numbers and we work
without constraints respect to its sum (conic combina-
tion). All these 4 weights and 3 parameters start from
7 different points in their parametric space running the
trust-region process above proposed. The best configu-
ration for label propagation is selected by the criterion
of maximum ASW, which reaches to 0.37 in the final
approach.

As a result, we have 21 pipes labeled by the group
associated with a more likely high biofilm formation
(see Figure 3). A majority of them (in orange) are sit-
uated in the North-East area of the WSN. This area is
composed of pipes of 45 years on average and their
material are mainly asbestos cement and cast iron.
There are another area in the center of the WSN lay-
out marked by this label. It is composed of short pipes
which are also made of asbestos cement and cast iron.
Finding metallic and cement old pipes in the area prone
to high biofilm development agrees with what was ex-
pected from the bibliography. It is known that metal-
lic and cement pipes tend to support more biofilm de-
velopment than plastic pipes. This is because pipes
with rough inner surface have greater potential for
biofilm growth [5]. Rough surfaces provide more area
for biofilm growth and protect biofilm from water shear
forces. The accumulation of corrosion and dissolved
substances in older pipes increase their roughness [6],
thus, old pipes tend also to have greater biofilm devel-
opment.

Fig. 3. Results of the label propagation process

Conclusions

A kernel approach to graph constrained label prop-
agation has been studied. The main advantage of this

methodology is its flexibility to take into account all
the information available in the process of label prop-
agation. In the case of biofilm development in WSNs,
this kernel could gather the graph structure of the un-
labeled data together with other similarities. Thus, the
proposed label propagation is not only an inheritance
process, but it is guided by graph constraints on the
unlabeled data set together with its own similarities.

This paper works also tuning both weights of the
kernel combination and label propagation parameters
by proposals such as the more known local scaling of
the Laplacian matrix or the novel process in which the
tuning is approached by multi-start trust regions. Fur-
ther works in label propagation could be addressed on
how the kernel spectral matrix works in order to use
the more representative eigenvectors to lead the propa-
gation by diminishing computational costs. Also, other
alternatives to this work based on, for example, multi-
agent systems are worth exploring to complete the ap-
proach.

References

[1] M. Belkin, Niyogi, P., Sindhwani, V. On Manifold Regulariza-
tion. Proceedings of the 10th International Workshop on Arti-
ficial Intelligence and Statistics, 2005.

[2] E. Campbell, Ayala-Cabrera, D., Izquierdo J., Pérez-Garcı́a, R.,
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[9] M. Herrera, Izquierdo, J., Pérez-Garcı́a, R., Montalvo, I. Multi-
agent adaptive boosting on semi-supervised water supply clus-
ters, Advances in Engineering Software 50, 2012, pp. 131–136.

[10] T. Joachims, Transductive Inference for Text Classification us-
ing Support Vector Machines, Proceedings of the 16th Interna-
tional Conference on Machine Learning, 1999.



Graph constrained label propagation on WSNs 7

[11] S. M. Kim, Pantel, P., Gaffney, S. Improving web page clas-
sification by label-propagation over click graphs, Proceedings
of Conference on Information and Knowledge Management,
2009.

[12] G. Lanckriet, Cristianini, N., Bartlett, P., El Ghaoui, L., Jor-
dan, M. I. Learning the kernel matrix with semidefinite pro-
gramming. Journal of Machine Learning Research 5, 2004, pp.
27–72.

[13] X. Y. Li, Guo, L. Constructing affinity matrix in spectral clus-
tering based on neighbor propagation. Neurocomputing 97,
2012, pp. 125–130.

[14] U. von Luxburg, A tutorial on spectral clustering. Statistics and
Computing, 17, 2007, pp. 395–416.

[15] M. Newman. Networks: An Introduction. Oxford University
Press, 2010.

[16] A. Ng, Jordan, M., Weiss, Y. On spectral clustering: Analysis
and an algorithm, Proceedings of the Neural Information Pro-
cessing Systems (NIPS) 2001, 14, pp. 849–856.

[17] D. Peri, Tinti, F. A multistart gradient-based algorithm with
surrogate model for global optimization, Communications in
Applied and Industrial Mathematics 3(1), 2012.

[18] E. Ramos-Martı́nez, Herrera, M., Izquierdo, J., Pérez-Garcı́a,
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