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Abstract. In this paper the authors propose a new closed contour descriptor that could be seen as a Feature Extractor of closed
contours based on the Discrete Hartley Transform (DHT), its main characteristic is that uses only half of the coefficients required
by Elliptical Fourier Descriptors (EFD) to obtain a contour approximation with similar error measure. The proposed closed con-
tour descriptor provides an excellent capability of information compression useful for a great number of AI applications. More-
over it can provide scale, position and rotation invariance, and last but not least it has the advantage that both the parameterization
and the reconstructed shape from the compressed set can be computed very efficiently by the fast Discrete Hartley Transform
(DHT) algorithm. This Feature Extractor could be useful when the application claims for reversible features and when the user
needs and easy measure of the quality for a given level of compression, scalable from low to very high quality.
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1. Introduction

Features extraction is one of the common steps in a
good number of AI applications, ranging from machine
learning, pattern recognition, data mining or computer
vision. The goal of this step is to represent the in-
formation available in the data, minimizing their re-
dundancy and hence their dimensionality. There are
some approaches to feature extraction that are valid for
many kind of data, like Principal Components Analy-
sis (PCA), however in other cases the feature extrac-
tion can provide a better compression ratio if the fea-
tures are oriented to a specific kind of data or to a spe-
cific use of these data, i.e. the SIFT descriptors for im-
ages and computer vision [17,18]. In this paper we will
focus on a specific kind of data, we are dealing with
silhouettes of objects [30], represented with a raw se-
quence of numbers that are extracted from the (x, y)
graph coordinates of the objects’ outline. All the exam-
ples we will use have a silhouette with a single closed
contour, but a similar approach could be used for sil-
houettes of objects that are represented with multiple
closed contours or even with one or more open con-
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tours, however this issue is out of the scope of this text.
This sequence of x, y coordinates are usually the raw
data for further quantitative shape analysis that is often
required in many applied fields [19] such as agronomy,
medicine, genetics, ecology or taxonomy. In the case of
the analysis of biological shapes, the raw data are usu-
ally extracted from the silhouettes contours of images
[15,19]. In many applications the contours of the sil-
houettes are used to quantify or classify the data auto-
matically, for example [7] and [31] classified soybeans
and flowers from the shape of their leafs or petals; or
even [5], who distinguished fishes species or popula-
tions from their respective otoliths.

One of the major problems when performing a quan-
tification of contour sets automatically is the large
amount of data involved in describing the biologi-
cal shape. With a suitable feature extraction method
the most relevant information for a particular purpose
can be represented with a reduced number of coeffi-
cients, and hence with less dimensions than the origi-
nal data. Although different feature extractors and de-
scriptors from contours or silhouettes have been used:
chain codes [25], radial descriptors [30], Zernike mo-
ments [11], skeletons and Medial Axis Transforms [14]
and many others [32], any of them fulfil all the desir-
able characteristics in such a diverse scope of appli-
cations. Sometimes it is useful that these features are
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scale invariant, rotation invariant and translation invari-
ant, moreover in some applications it is needed that
the extracted features could represent back the origi-
nal contour because an human expert need to verify
which characteristics of the shape are preserved with
the set of selected features. Elliptical Fourier Descrip-
tors (EFD) are one of the reference feature extractors
for biological shape contours [15], especially suited to
describe shapes with high detail and when you need
to differentiate relatively close shapes, other shape de-
scriptors fail in this purpose [32], another one of the
reasons for their intensive use in this field is the popu-
larization of tools like SHAPE [10], moreover they ful-
fil all the previous requirements and they could be ex-
tracted with a fast computation algorithm, by means of
the Fast Fourier Transform (FFT). However EFD are
not appropriate when you deal with non-rigid shapes or
when there are occlusions in the shape, other Features
extractors perform better in these cases, like [13]. El-
liptic Fourier Descriptors (EFD) were first proposed by
[12] and one of the reasons for its wide acceptance is
because EFDs can represent all kinds of close curves as
well as preserve the original shape information when
shape reconstruction is required using only a limited
number of coefficients, providing intuitive information
about the number of coefficients required to preserve
a given level of detail in the shapes, the quality of the
shape can be easy scalable with the number of coef-
ficients used, with the first coefficients you describe
the basic ellipsoids, and with higher orders coefficients
you get the details of the contour. We found some
examples applied to the characterization of biological
contours of animals and plants; see for instance the
works in [9,23,28,29]. Concerning the practical uses
of EFDs, although the reconstruction of any discrete
contour can be perfect with the appropriate number of
EFD coefficients, in real applications it is mandatory
to achieve a good balance between the preservation of
the relevant shape information and the data dimension-
ality reduction, this is done taking the first coefficients
from the EFD. In some automatic classification prob-
lems this feature extraction step is the first data dimen-
sionality reduction applied on the data [19].

1.1. Purpose and contributions of this paper

In this work a new 2D contour features extractor is
presented, it is based on the Discrete Hartley Trans-
form (DHT) applied on the (x, y) outline of a silhou-
ette with a single closed contour. The proposed de-
scriptors – we will name them Hartley Contour De-

scriptors (HCD) – maintain the same good properties
of interpretation and reconstruction as EFDs and, in a
similar way to EFDs, can be applied to all kinds of
close curves, being robust to rotations, translations and
scale of the silhouette if it is required by the appli-
cation, moreover they can provide a quality scalable
feature extractor depending on the number of coeffi-
cients used. The new parameterization, however, out-
performs, by far, the power of information compres-
sion that EFDs have, needing approximately half the
number of coefficients to represent the same level of
contour details. To show these results in this work we
have established an error measure based on the Eu-
clidean distance from the original shape to the recon-
structed counterpart, with this error measure we can
analytically verify the quality of contour approxima-
tions and we can compare its performance with the
EFDs for a given number of coefficients, although the
differences are so clear that this is easily checked by
direct visual inspection. As in the case of EFD there
are fast algorithms available for its calculation.

The work is organized as follows. Section 2 gives
an EFD overview. Section 3 presents the new contour
descriptors. Section 4 introduces a distance measure to
evaluate the performance of the HCD. Section 5 intro-
duces a classification problem with fish otoliths to val-
idate the proposed Feature Extractor. Section 6 evalu-
ates the performance of HCD respect to EFD directly
in the shapes and compares the result of EFD with
HCD in a test classification problem. Finally, in Sec-
tion 7 some conclusions are reported.

This paper is a significant extension of an earlier
and much shorter version [21] presented in CCIA’2013
Congress. First of all with a complete rewriting of the
Introduction, specially focused on an overview of ex-
isting methods in AI related fields, mainly visual pro-
cessing, image classification, preprocessing, patterns
recognition and visual computing; secondly with the
inclusion of Section 5; and finally with the extension
of Section 6, adding the results with the comparison
between different shapes and the classification results
with a Test-dataset of fish otoliths.

2. Elliptical Fourier Descriptors extractor
overview

As it is well-known a continuous closed contour of
a silhouette could be defined by the evolution of the
coordinates of the outline x(t) and y(t) along the vari-
ation of t with period T , the periodicity is due to na-
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ture of the closed contour when the outline reaches
the starting point. Moreover, due to their periodic na-
ture, the contour coordinates can be expanded using
the Fourier series and can be written in their equivalent
real or complex forms as Eqs (1) and (2):

x(t) = a0 +
∞∑
k=1

[
ak cos

(
2πkt

T

)

+ bk sin

(
2πkt

T

)]

=

k=∞∑
k=−∞

ukej
2πkt
T

t, (1)

y(t) = c0 +

∞∑
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[
ck cos

(
2πkt

T

)

+ dk sin

(
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T

)]

=
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2πkt
T
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where:

uk =
1
T

∫
T
x(t)e−j 2πkt

T
t dt

and

vk =
1
T

∫
T
y(t)e−j 2πkt

T
t dt

with:

ak = uk + u∗k and bk = j
(
uk − u∗k

)
,

ck = vk + v∗k and dk = j
(
vk − v∗k

)
.

The real coefficients ak, bk, ck and dk become an alter-
native to perfectly describe the outline of the silhouette
and are known as Elliptic Fourier coefficients. From
[3] it can be seen that the coefficients a0 and c0 only
represent the position of the centroid of the shape. If
a0 and c0 take the value zero the contour is centred
in the origin, and then the features are independent of
the position in the coordinate space. The contour ap-
proximation based on the EFDs is achieved by select-
ing a reduced set of coefficients. This is, by limiting the
number of harmonics in the following way in Eqs (3)

Fig. 1. (a) Image contour. (b) Representation of the contour coordi-
nates yn and xn.

and (4):

x(t) = a0 +

K∑
k=1

[
ak cos

(
2πkt

T

)

+ bk sin

(
2πkt

T

)]
, (3)

y(t) = c0 +
K∑
k=1

[
ck cos

(
2πkt

T

)

+ dk sin

(
2πkt

T

)]
. (4)

The approximation of xK (t) and yK (t) to x(t) and y(t)
is greater as K increases.

The contours from digital 2D silhouettes have a dis-
crete nature and what we really have are the discrete
signals xn and yn which can be thought of as sampled
versions of x(t) and y(t) at the instants t = nT/N
where n goes from 0 to N − 1. In practice, then, we
have the N pairs of points (xn, yn) in a fundamental
period. The discrete versions in Eqs (1)–(4) are ob-
tained first replacing t by the discrete values nT/N
(n = 0, . . . ,N−1) and second, taking into account that
the discrete lowest frequency able to represent, consid-
ering N the fundamental period, is ω = 2π/N and
the rest of frequencies will be multiples of that one:
ωk = 2πk/N . The algorithms to compute the discrete
coefficients are well known and can be found in [15].
Figure 1 shows the contour of a butterfly and its x and
y coordinates. Figure 2 shows a reconstruction of that
contour and coordinates from a reduced set of EFD co-
efficients.

2.1. Schematic steps for the EFD Feature Extractor

The basic algorithm involved in EFD Feature Ex-
tractor of a digital silhouette represented by a closed
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Fig. 2. (a) Contour reconstruction using 74 EFD (real) coefficients.
(b) Representation of the contour coordinates ỹn and x̃n both re-
constructed using 37 real coefficients.

contour could be summarized with 3 steps:

• Outline from the silhouette.
• EFD of the contour.
• Quality measure: selection of K first coefficients.

3. New contour descriptors based on the Discrete
Hartley Transform

3.1. Preliminary

The new Feature extractor substitutes the EFD in
the previous method by another Transform, the Dis-
crete Hartley Transform (DHT). The Discrete Hartley
Transform (DHT) is a linear and a invertible opera-
tion which transforms a sequence of N real numbers
x0, . . . ,xN−1 into a new sequence of N real numbers
H0, . . . ,HN−1 according to the formula in Eq. (5):

Hk =

N−1∑
n=0

xn cas

(
2πnk

N

)
,

k = 0, . . . ,N − 1, (5)

where the function cas(·) is defined as:

cas(θ) = cos(θ) + sin(θ) =
√

2 cos

(
θ − π

4

)
.

The transform is inverted by the following operation of
Eq. (6):

xn =
1
N

N−1∑
k=0

Hk cas

(
2πnk

N

)
,

n = 0, . . . ,N − 1. (6)

In our definition, the factor 1/N is associated with
the inverse transform to maintain consistency with the
DFT (Discrete Fourier Transform). The DHT (Dis-
crete Hartley Transform) was originally proposed by
Bracewell in 1984. The DHT has the advantage with
respect to the DFT of being a purely real transform.
Some of its properties and algorithms can be found in
[2,4] and [3].

3.2. New contour descriptors

Taking all this information into account, we propose
the signal expansion for the contour coordinates xn
and yn in terms of the Hartley coefficients in the form
of Eqs (7) and (8):

xn =
1
N

N−1∑
k=0

ok cas

(
2πnk

N

)
, (7)

yn =
1
N

N−1∑
k=0

pk cas

(
2πnk

N

)
, (8)

n = 0, . . . ,N − 1,

where the coefficients ok and pk are:

ok =

N−1∑
n=0

xn cas

(
2πnk

N

)
, (9)

pk =

N−1∑
n=0

yn cas

(
2πnk

N

)
, (10)

k = 0, . . . ,N − 1.

The new feature extractor with a scalable compression
capability, could be obtained selecting K coefficients
of the Discrete Hartley Transform. The contour ap-
proximation is obtained by a reconstruction of the co-
ordinates limiting the number of coefficients by choos-
ing a K < N . Then, the sequences representing the co-
ordinates of the approximation with K elements, x̃n,K
and ỹn,K , can be written as Eqs (11) and (12):

x̃n,K =
1
N

∑
k∈K

ok cas

(
2πnk

N

)
, (11)

ỹn,K =
1
N

K∑
k=0

pk cas

(
2πnk

N

)
, (12)

n = 0, . . . ,N − 1.
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3.3. Fast algorithms and 3D extension

To measure the complexity of the calculation of the
features, we know that the matrix vector multiplica-
tion requires a number of multiplications proportional
to N2, being N the length of the vector, however there
are some fast algorithms for the DHT that only require
an order of N log2 N multiplications. The DHT can be
computed via FFT or directly via a fast algorithm [27].
Fast algorithms are analogous to the ones existing for
the FFT [27]. Advances in the computation of the DHT
sometimes appear in parallel with advances in the FFT
case; see [6].

The compression strategy can be extended to 3D
contours by performing the same operation on each co-
ordinate. Figure 3 shows a closed 3D curve with its co-
ordinates and Fig. 4, using the coordinates of Fig. 3,
shows some different reconstructions obtained for a
limited number of Hartley coefficients.

Fig. 3. On the left, the x, y and z coordinate of the 3D closed contour
represented on the right. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/AIC-140620.)

Fig. 4. (a) Original closed contour, (b) reconstruction using the
main 9 Hartley coefficients (3 per coordinate), (c) reconstruction us-
ing the main 12 Hartley coefficients (4 per coordinate) and (d) re-
construction using the main 15 Hartley coefficients (3 per coor-
dinate). (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-140620.)

4. Error metrics

There are many measures to compare two different
shapes, one of the most popular is the Chamfer Dis-
tance [1,24], it can be formalized [8] to measure a dis-
tance between two contours, Ca and Cb, that could be
of different lengths Na and Nb:

Ca =
{(

xa1 , ya1
)
,
(
xa2 , ya2

)
, . . . ,

(
xaNa, yaNa

)}
,

Cb =
{(

xb1, yb1
)
, . . . ,

(
xbNb, ybNb

)}
.

First we define the Chamfer Distance D(Ca,Cb) as
the mean Euclidean distance between every point in Ca

to the closest point in Cb, as is represented in Eq. (13):

D(Ca,Cb)

=
1
Na

Na∑
i=1

√(
xai − xbJ (i)

)2
+

(
yai − ybJ (i)

)2

(13)

with the closest point subindex J(i) defined in Eq. (14):

J(i)

= ArgMin
(√(

xai − xbj
)2

+
(
yai − ybj

)2, j
)

,

(14)

where ArgMin[f ,x] gives the position xmin where f is
minimized.

We could define the Chamfer Error between two
contours Ca and Cb as a mean Chamfer Distances from
Ca to Cb and from Cb to Ca; it can be expressed with
Eq. (15):

CE(Ca,Cb)

=
1
2

(
D(Ca,Cb) +D(Cb,Ca)

)
. (15)

However we can introduce a simplified error metric
EK in order to analytically measure the quality of the
approximations for a given number K of coefficients,
the number K could be seen as an inverse value of the
compression. This error metric is a simplified alternate
with complexity O(n), that is only useful if the shapes
are well aligned and have the same number of samples.
The Chamfer Distance and its corresponding Cham-
fer Error defined in Eq. (15), has a complexity O(n2),
although there can be found efficient algorithms that
have complexity O(n · log2 n).
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This error metric is measured between the original
shape and a reconstructed contour (both of the same
length N ), it is based on the Euclidean distance and
produces a measure of the quality of the proposed Fea-
ture Extractor for a given number of coefficients K ex-
pressed in Eq. (16):

EK

=

√√√√ 1
N

N−1∑
n=0

(xn − x̃n,K )2 + (yn − ỹn,K )2.

(16)

In the Eq. (16) the subindex K represents the number
of coefficients used in the contour reconstruction. The
same measure in dBs will be 10 log10 EK . As we will
see, the proposed parameterization HCD outperforms
the power of information compression that EFDs have,
needing approximately half the number of coefficients
to represent the same level of contour details.

5. Classification of fishes species from otoliths

To evaluate the effectiveness of this Feature Extrac-
tion method for closed contours, we will test it in a
complete test-Classifier. In [22] the authors presented
an Automatic Taxon Identification system, reproduced
in the Fig. 5. The ATI is able to classify fish’s species
from the shapes of a query otolith image. The otoliths
of our test-Dataset are obtained from the registers of
AFORO [16], a web based environment for shape anal-
ysis of fish otoliths and at the same time a database of
otoliths. The procedure for each query image is as fol-
low: first a silhouette of the high quality otolith image
is extracted, in these cases a simple segmentation using
Otsu method [20] is enough as the images are highly
contrasted; then the outline of the closed contour is
obtained with a morphologic contour extractor [26];
and previously to the entrance to the classifier a Fea-
ture Extractor is used to reduce the dimensionality of
the data. The experimental classifier distinguishes the
10 classes of the test-Dataset, represented in Table 1,
with a One-versus-all strategy on 10 classifiers based
in linear SVM for each one of the classes. It is impor-
tant to notice that we are interested in the comparison
of the performances of the Feature Extraction phase,
not the absolute values of the classifiers, that is the rea-
son why we have not proved other classifiers maybe
more suitable for the Data composition and their na-

Fig. 5. Scheme of the ATI (Automatic Taxon Identification). Obtains
the best matching otolith from AFORO database from a query of a
high quality otolith image.

Table 1

Otoliths species in the Test Database with the corresponding char-
acteristics: Shape, Size range of the fish in millimetres, number of
elements in the test database

Species Shape Range L N

Coris julis Cuneiform 85–255 11

Engraulis Elliptic 110–155 10

encrasicolus

Merluccius Lanceolated to elliptic 80–730 14/14∗

merluccius

Pomadasys Oval to elliptic 150–350 14

incisus

Scomber colias Kidney-shaped 172–405 11

Trachurus Elliptic to fusiform 80–360 10

mediterraneus

Trisopterus Spindle-shaped 100–240 14

minutus

Umbrina Oval 140–530 10

canariensis

Umbrina cirrosa Oval 140–530 12

ture. The experiment shows the results of the classifica-
tion modifying two configuration values of the global
ATI system: the number of points of the contours N ,
and the order of the Feature Extractors K. The value
N is used to normalize the contours of different speci-
mens, and can usually go from 4 to 1024 when dealing
with otoliths. The value L is the total number of dimen-
sions in the classification space; it is related to the or-
der of the Transformed domain K, either EFD (Elliptic
Fourier Descriptors), with the equation L = 4·(K)−2,
or L = 2 · (K) − 2 if we use the HCD (Hartley Con-
tour Descriptor). When L is low, the contour is repre-
sented with basic ellipsoids, and the selected features
do not represent the detail of the contours, although
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the classifiers have a low dimensional space (and their
search engine is easier to train and generalize). When L
is higher, the contour is represented with more details;
however, the classifier has a higher dimension and thus
becomes unstable and sometimes cannot be general-
ized.

6. Comparative results with Features Extractors
EFD vs HCD

6.1. Error measures results

Figures 6 and 7 compare graphically the power of
information compression of EFD with the power of
the proposed parameterization method HCD. The re-
sults are shown using a butterfly contour. In the top
left section of these two figures the original contour
is plotted while in all the other subplots the recon-
structed contours are simultaneously represented using
both descriptors with the same number of limited co-
efficients. Figure 8 shows the comparison of errors of
reconstruction for EFD and the proposed method for
the same butterfly contour quantified using the error
measure of Eq. (16) in a logarithmic scale. Note that
the same error is achieved with half of the coefficients
when the HCD are used instead of EFD. As an exam-
ple, the quality of the contour approximation given by
the EFDs with 100 coefficients is reached with only
50 coefficients by means of the proposed HCD method.

Fig. 6. Reconstructed contours comparison using EFDs (in gray
line; a red line in coloured versions) and the new descriptors HCD
(in black). From left to right and from top to bottom we have,
the original contour and the reconstructed contours using L = 4,
8, 10, 14, 18, 22, 26, 30, 34, 38 and 42 coefficients. (The col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/AIC-140620.)

Fig. 7. Reconstructed contours comparison using EFDs (in gray line;
a red line in coloured versions) and the new descriptors HCD (in
black). The original contour and the reconstructed contours using
L = 46, 50, 54, 58, 62, 66, 70, 74, 78, 82 and 86 coefficients
are represented from left to right and from top to bottom. (The col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/AIC-140620.)

Fig. 8. Error measurements (dB) for the reconstruction of the butter-
fly contour using a number of coefficients that goes from 4 to 240.
The error performed by EFD reconstructions is represented in the
upper graph curve and the equivalent results performed by the new
HCD descriptor are in the lower graph. (Colors are visible in the on-
line version of the article; http://dx.doi.org/10.3233/AIC-140620.)

In order to provide another example, the next error
measure is performed on one of the fish otolith of the
AFORO Database [16]. In Fig. 9 there is an otolith im-
age and its contour together in the upper side, and in
the bottom you could find the comparison of the errors
of the reconstructions obtained from the EFDs vs the
HCD. Note again that, using the proposed HCD de-
scriptors, the same reconstruction error done by EFDs
is achieved by reconstructions using half the number
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Fig. 9. (Up) The image of an otolith on the left and on his right
there is an image of the silhouette outline. (Down) Error measure-
ments (dB) for the reconstruction of the upper contours using a num-
ber of coefficients that goes from 4 to 240. The EFD contour re-
constructions are represented in the upper graph curve. Equivalent
results with the new HCD descriptors are represented in the lower
graph. (Colors are visible in the online version of the article; http://
dx.doi.org/10.3233/AIC-140620.)

of our proposed coefficients.

6.2. Average errors results for the Test Dataset

In this section we compare the error results with
the two mentioned Error metrics: in Fig. 10 with the
Chamfer Error, and in Fig. 11 with our own Error met-
ric. In order to have a wider representations about these
error measures we consider the average error in the
whole Test Dataset represented in Table 1 using differ-
ent number of reconstructing coefficients K, instead of
a single shape like the one used in Figs 8 or 9.

6.3. Classification results with EFD vs HCD

To finish this series of comparative studies, we ob-
tain a comparison of the classification performances
for the two Feature Extractors (EFD vs. HCD) with the
ATI system proposed in previous Section 5. In Fig. 12
it is represented a tridimensional graph with the mean
value of correct classification results. The graph shows
the fluctuation of the number of correct answers with

Fig. 10. Average error measurements (dB), using Chamfer Error,
using the Test Dataset of the Otoliths contours reconstructed with
K coefficients. The error performed by EFD reconstructions is rep-
resented in the upper graph curve and the equivalent results per-
formed by the new HCD descriptor are in the lower graph. (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/AIC-140620.)

Fig. 11. The average error measurements (dB), with our own Er-
ror Metric, using the Test Dataset of the Otoliths contours recon-
structed with K coefficients. The error performed by EFD recon-
structions is represented in the upper graph curve and the equiv-
alent results performed by the new HCD descriptor are in the
lower graph. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-140620.)

respect to the change in the number of points in the
contours N (they are explored in a range from 4 to
200 samples per contour), and at the same time for
each possible value of N it is registered the evolution
of the classification results with respect to the order
of the Transform K, being K the order of the Trans-
form, with K < N , which is directly related to the di-
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Fig. 12. Mean value of correct answers with ATI system with any
Feature extractor. Results for each N (total length of the con-
tours) and each K (order of the Transformed coefficients). (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/AIC-140620.)

mensionality of the data L. For a deeper explanation
about the Test Dataset and the results for the EFD fea-
ture extractor, readers are referred to [22]. The result-
ing graphic is the same for one Feature extractor or the
other, however the recommended one should be HCD,
because for any given Transform order K, it needs half
of the coefficients respect to the EFD counterpart in
order to obtain similar classification results.

7. Conclusions and future work

In this work we have shown a Features Extrac-
tion Method for two dimensional contours that ex-
hibits more information compression than the elliptic
Fourier Descriptors. From the results reported in this
work we must conclude that, given the same number
of coefficients representing a contour, the new con-
tour descriptors and Feature Extractors based on Dis-
crete Hartley Transform (HCD – Hartley Contour De-
scriptors) clearly outperform the quality and the ac-
curacy in the contour reconstruction than their EFD
counterpart. It must be noted that previously to pre-
senting these results, we had explored other shape de-
scriptors associated with other discrete transforms. The
Fast Fourier transform, which is a complex transform,
have the same performance than the EFD and it is pos-
sible to obtain the EFD coefficients from the FFT ones.
Other discrete real transforms were explored and tested
to evaluate their compression capability as the Walsh
Hadamard Transform (WHT) and the different families
of the Discrete Transforms (DCT). However, contour
shape descriptors based on the DCT have not shown

significant compression capability improvement with
respect to EFDs, and at the same time required a sim-
ilar number of coefficients to reach a similar level of
contour details. The WHT based descriptors, although
they provided some computational advantages because
they can be computed without performing multiplica-
tion, displayed worst results than the EFDs. The use of
the Hartley Discrete Transform was the one that pro-
vided best compression results in the preliminary stud-
ies, this was the reason why it was selected for this
work. We have also shown that this Feature Extrac-
tion ability could be useful for classification problems,
reaching similar results with half of the dimensions in
the Compressed Dataset thanks to the Feature Extrac-
tor. We also guess that the exposed method could be
used in some applications of pattern recognition and
also in computer vision, due to their fast computation
possibilities. And last but not least, this Feature Extrac-
tion method could be prepared to be invariant to trans-
lation, rotation and scale if it is necessary, to do that
you can use similar strategies than the ones used by
its EFD counterpart in [19], moreover due to their re-
versible nature, they offer a straightforward method to
measure the quality for each compression level.
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