
1

Integrating Argumentation and Sentiment
Analysis for Mining Opinions from Twitter

Kathrin Grosse a, Maŕıa P. González b Carlos I. Chesñevar b Ana G. Maguitman b

a Institut für Kognitionswissenschaft – Universität Osnabrück. Osnabrück, Germany
b Artificial Intelligence Research and Development Laboratory, Department of Computer Science and
Engineering, Universidad Nacional del Sur, Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina
Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Social networks have grown exponentially in use and
impact on the society as a whole. In particular, mi-
croblogging platforms such as Twitter have become im-
portant tools to assess public opinion on different is-
sues. Recently, some approaches for assessing Twitter
messages have been developed, identifying sentiments
associated with relevant keywords or hashtags. How-
ever, such approaches have an important limitation, as
they do not take into account contradictory and po-
tentially inconsistent information which might emerge
from relevant messages. We contend that the informa-
tion made available in Twitter can be useful to extract
a particular version of arguments (called “opinions”
in our formalization) which emerge bottom-up from
the social interaction associated with such messages.
In this paper we present a novel framework which al-
lows to mine opinions from Twitter based on incre-
mentally generated queries. As a result, we will be able
to obtain an “opinion tree”, rooted in the first original
query. Distinguished, conflicting elements in an opin-
ion tree lead to so-called “conflict trees”, which resem-
ble dialectical trees as those used traditionally in de-
feasible argumentation.1

Keywords: argumentation, opinion mining, social me-
dia

1. Introduction and motivations

Social networks have grown exponentially in use
and impact on the society as a whole, aiming at
different communities and providing differentiated
services. In particular, microblogging has become a
very popular communication tool among Internet

1This paper extends preliminary work [10] presented at
the First Intl. Conf. on Agreement Technologies (AT 2012),

held in Dubrovnik, Croatia, in Oct. 2012.

users, being Twitter1 by far the most widespread
microblogging platform. Twitter, created in 2006,
enables its users to send and read text-based posts
of up to 140 characters, known as “tweets”. It has
grown into a technology which allows to assess
public opinion on different issues. Thus, for exam-
ple, nowadays it is common to read newspaper ar-
ticles referring to the impact of political decisions
measured by their associated positive or negative
comments in Twitter. Symmetrically, policy mak-
ers make public many of their claims and opinions,
having an influence on the citizenry,2 prompting
their “tweeting back” with further comments and
opinions. As the audience of microblogging plat-
forms and services grows everyday, data from these
sources can be used in opinion mining and sen-
timent analysis tasks. Indeed, the scientific study
of emotions in opinions associated with a given
topic has become relevant, consolidating a new
area known as sentiment analysis [6,12], with ap-
plication in several real-world problems such as e-
government [4,5] and stock market analysis [14],
among others.

As pointed out in [17], microblogging platforms
(in particular Twitter) offer a number of advan-
tages for opinion mining. On the one hand, Twitter
is used by different people to express their opinion
about different topics, and thus they are a valuable
source of people’s opinions. Given the enormous
number of text posts, the collected corpus can be

1www.twitter.com
2E.g. the current UK Prime Minster David Cameron, the

current US President Barack Obama and the Pope Fran-
cis I can be followed on Twitter at @Number10gov, @Barack-
Obama, and @pontifex, respectively.

AI Communications

ISSN 0921-7126, IOS Press. All rights reserved

2

arbitrarily large. On the other hand, Twitter’s au-
dience varies from regular users to celebrities, com-
pany representatives, politicians, and even coun-
try presidents. Therefore, it is possible to collect
text posts of users from different social and inter-
ests groups. According to Merriam Webster online
dictionary,3 an opinion can be seen as: a) a view,
judgment, or appraisal formed in the mind about
a particular matter; b) belief stronger than im-
pression and less strong than positive knowledge;
a generally held view; c) a formal expression of
judgment or advice by an expert. Clearly, there is
a natural link between opinion and argument. In
many cases, opinions by themselves do not pro-
vide arguments, as they do not necessarily imply
giving reasons or evidence for accepting a partic-
ular conclusion. However, from a meta-level per-
spective, policy makers devote much effort in ana-
lyzing the reasons underlying complex collections
of opinions from the citizenry, as they indicate the
willingness of the people to accept or reject some
particular issue. A well-known example in this set-
ting is the analysis of public opinion (e.g. through
the quantitative measurement of opinion distribu-
tions through polls and the investigation of the in-
ternal relationships among the individual opinions
that make up public opinion on an issue).

A fundamental need for policy makers is to back
their decisions and agreements on reasons or opin-
ions provided by citizens. They might even argue
with other policy makers about why making a par-
ticular decision is advisable (e.g. “according to the
last poll, 80% of the people are against the health
system reform; therefore, the reform should not be
carried out”). From this perspective, social net-
works like Twitter provide a fabulous knowledge
base from which information could be collected
and analyzed in order to enhance and partially au-
tomatize decision making processes. In particular,
tweets have a rich structure, providing a number
of record fields which allow to detect provenance of
the tweet (author), number of re-tweets, followers,
etc. We contend that the information made avail-
able from such tweets can be useful for modeling
opinions which emerge bottom-up from the social
interaction existing in Twitter.

In this article we present a novel framework
which allows to mine opinions from Twitter based
on incrementally generated queries. Given a query

3http://www.merriam-webster.com

Q (corresponding to one or more keywords or hash-
tags), our approach allows to collect those dis-
tinguished tweets referring to Q, according to an
aggregation criterion (also provided as an input).
This collection of tweets will be called a Twitter-
based argument A for Q, associated with a pre-
vailing sentiment (computed on the basis of the
tweets involved). 4 By expanding Q in different
ways, we can obtain other, more specific argu-
ments, which might be in conflict with A. These
counter-arguments might be in turn in conflict
with other more specific arguments. This will re-
sult in the characterization of an “opinion tree”,
rooted in the first original query. By considering
distinguished nodes in an opinion tree we can de-
fine so-called “conflict trees”, which resemble di-
alectical trees as those used traditionally in defea-
sible argumentation. We also provide theoretical
results which account for a lattice-based character-
ization of our proposal, using equivalence classes to
minimize the representation space to be analyzed
when contrasting arguments.

The rest of the article is structured as follows.
In Section 2 we present our proposal for character-
izing Twitter-based arguments and their interrela-
tionships. We will formalize the notion of opinion
tree, which can be constructed from user queries,
allowing to assess alternative opinions associated
with incrementally generated queries. A high-level
algorithm for computing opinion trees is presented,
along with a case study to illustrate our proposal.
Section 3 discusses the relationship emerging from
opinions in conflict, modeled as a conflict tree. Sec-
tion 4 generalizes previous results using superior
lattices, for both opinion and conflict trees. Then,
in Section 5, we present an example showing the
practical use of our approach. The benefits of ap-
plying this mathematical approach are discussed
in Section 6. Section 7 reviews related work, and
finally Section 8 summarizes the conclusions.

2. Twitter-based Argumentation Framework:
viewing aggregated tweets as arguments

In this Section we will describe how different el-
ements in Twitter can be captured under an argu-

4Several software tools have been recently developed
for such an association, such as www.sentiment140.com or

tweetsentiments.com.

3

mentative perspective [3,18]. First we will charac-
terize distinguished collections of tweets (obtained
on the basis of a given query) as arguments with an
associated prevailing sentiment. Such arguments
will be called TB-arguments (Twitter-based argu-
ments). Then, we will formalize interrelationships
between TB-arguments, which lead to the notion
of opinion tree.

2.1. Formalizing Aggregation of Twitter Messages

Twitter messages (Tweets) are 140 character
long, with a number of additional fields which
help identify relevant information within a mes-
sage (sender, number of retweets associated with
the message, etc.). In particular, we will focus on
the presence of descriptors which are either hash-
tags (words or phrases prefixed with the symbol #,
a form of metadata tag) or terms that tend to oc-
cur often in the context of a given topic. Hashtags
are used within IRC networks to identify groups
and topics and in short messages on microblog-
ging social networking services such as Twitter,
identi.ca or Google+ (which may be tagged by in-
cluding one or more hashtags with multiple words
concatenated). Other good descriptors can be dy-
namically found by looking for terms that are fre-
quently used in tweets related to the topic at hand.
In the sequel we will assume that the term “de-
scriptor” refers to either actual hashtags in Twit-
ter or to relevant keywords found in tweets.

Definition 2.1 [Tweet. Twitter Query] We define
a tweet T as a bag (or multiset) of terms {t1,
t2, . . . tk }, where every ti ∈ T is a string. A
Twitter query (or just query) is a non-empty set
Q = {d1, d2, . . . , dk} of descriptors, where every
di ∈ Q is a string.

In the analysis that follows, we will assume that
a tweet is just a bag of words, not taking into ac-
count the actual order of terms in the tweet. Ad-
ditionally, we assume that the set of all currently
existing tweets corresponds to a snapshot of Twit-
ter messages at a given fixed time, as the Twit-
ter database is highly dynamic. In our approach,
a query Q is any set of descriptors used for fil-
tering some relevant tweets from the set of exist-
ing tweets Tweets based on a given criterion C.
In order to abstract away how such selection is
performed, we will define an aggregation operator
AggTweets(Q,C). Formally:

Definition 2.2 [Tweet set. Aggregation Operator]
Let Tweets be the set of all currently existing

tweets. We will write 2Tweets to denote the set
of all possible subsets of Tweets. Any element in
2Tweets will be called a tweet set. Given a query
Q, and a criterion C, we will define an aggrega-
tion operator AggTweets(Q,C) which returns an el-
ement (tweet set) in 2Tweets based on Q and C.

The aggregation operator could be defined in
several ways. For instance, suppose that C1 is a
criterion that indicates that only tweets posted
between time timestamp1 and timestamp2 are to
be selected. Then AggTweets(Q,C1) =def { T ∈
Tweets such that Q ⊆ T and T satisfies C1 } will
be the set of tweets that contain all the terms of
query Q and have been posted in the time period
[timestamp1,timestamp2]. Other examples of crite-
ria that can be naturally applied are, for instance,
requiring that those tweets T were retweeted more
than n times, requiring that every user that posted
tweets T has at least m followers, etc.

Note that for the same query Q, different al-
ternative criteria (C1, C2, . . . , Ck) can lead to
different distinguished elements in 2Tweets. As ex-
plained before, tweet sets can be associated with
different feelings or sentiments. Even if in real life
there may be a lot of emotions in tweets (such as
anger, happiness, and so on), we will assume here
that there is a distinguished set S of possible sen-
timents. Thus, given a query Q and a criterion C,
we assume that the tweet set AggTweets(Q,C) is
associated with a prevailing sentiment in S.5 We
will consider that some sentiments might convey
different, possibly conflicting feelings or emotions
(e.g. anger and happiness; boredom and excite-
ment, etc.). As before, we will abstract away which
are potentially conflicting sentiments as follows.

Definition 2.3 [sent and conflict mappings] Let
T ∈ 2Tweets be a tweet set, and let sent : 2Tweets →
S and conflict : S → 2S be mappings. The sen-
timent sent(T) will be called the prevailing sen-
timent (or just sentiment) for T. For any senti-
ment s ∈ S, we will define conflict(s) as a sub-
set of S, such that: a) s 6∈ conflict(s) (a sen-
timent is not in conflict with itself); b) for any

5A possible range for S could be positive, nega-
tive and neutral (as done for example in platform
Sentiment140.com). In this platform, prevailing sentiments

associated with a tweet set are expressed by percentages.

4

s′ ∈ conflict(s), then s ∈ conflict(s′) (the notion
of conflict is symmetrical). Given two sentiments
s1 and s2, we will say that they are in conflict
whenever s2 ∈ conflict(s1). For simplicity, given
a sentiment s ∈ S, we will write s to denote any
s′ ∈ conflict(s).

The previous elements will allow us to character-
ize the notion of TB-framework and TB-argument
as follows:

Definition 2.4 [TB-framework] A Twitter-based ar-
gumentation framework (or TB-framework) is a
5-tuple (Tweets, C,S, sent, conflict), where Tweets
is the set of available tweets, C is a selection cri-
terion, S is a non-empty set of possible sentiments
and sent and conflict are sentiment prevailing
and conflict mappings.

Definition 2.5 [TB-argument] Given a TB-frame-
work (Tweets,C,S,sent,conflict), a Twitter-based
argument (or TB-argument) for a query Q is a 3-
tuple 〈Arg,Q, Sent〉, where Arg is AggTweets(Q,C)
and Sent is sent(AggTweets(Q,C)).

Example 2.1 Consider a TB-framework (Tweets,
C, S, sent, conflict), where Q = {“abortion”,
“murder”}, C is defined as “all T ∈ Tweets |
timestamp(T)≥ 2012-01-01T00:00:00”, and S =
{pos, neg, neutral}, such that:

– conflict(pos) =def {neg, neutral},
– conflict(neg) =def {pos, neutral} and
– conflict(neutral) =def {pos, neg}.

Then Arg = AggTweets(Q,C) is the set of all possi-
ble tweets containing {“abortion”, “murder”} that
have been published since January 1, 2012. Sup-
pose that sent(AggTweets(Q,C)) = negative. Then
〈Arg, {“abortion”, “murder”}, negative〉 is a TB-
argument.

2.2. Specificity in a TB-framework. Opinion trees

In the previous section we have shown how to
express arguments for queries associated with a
given prevailing sentiment. Such arguments might
be attacked by other arguments, which on their
turn might be attacked, too. In argumentation the-
ory, this leads to the notion of dialectical analy-
sis [18], which can be associated with a tree-like
structure in which arguments, counter-arguments,
counter-counter-arguments, and so on, are taken

into account. Our approach will be more generic,
in the sense that for a given argument, the children
nodes will correspond to more specific arguments
that are not necessarily in conflict with the parent
argument. Next we will formalize these notions.

A natural relation that arises between TB-ar-
guments is derived from the inclusion relation be-
tween their associated queries. This is formalized
by the following definition.

Definition 2.6 [Argument Selectivity] Consider a
TB-framework (Tweets, C, S, sent, conflict) and
let 〈Arg1, Q1, Sent1〉 and 〈Arg2, Q2, Sent2〉 be two
TB-arguments. We say that 〈Arg2, Q2, Sent2〉 is
more selective than 〈Arg1, Q1, Sent1〉, and we de-
note it 〈Arg2, Q2, Sent2〉 �Q 〈Arg1, Q1, Sent1〉, if
Q1 ⊆ Q2.

If two distinct queries Q1 and Q2 result in the
same set of retrieved tweets, it is useful to identify
Q1 and Q2 as equivalent queries. This gives rise to
the following definition.

Definition 2.7 [Query Equivalence] Let (Tweets,
C, S, sent, conflict) be a TB-framework. Given
two queries Q1 and Q2, we will say that Q1 is
equivalent to Q2 whenever AggTweets(Q2, C) =
AggTweets(Q1, C).

While it is clear that whenever Q1 ⊆ Q2, it will
hold that AggTweets(Q2, C) ⊆ AggTweets(Q1, C),
it may be the case that for certain queries Q1

and Q2, AggTweets(Q2, C) ⊆ AggTweets(Q1, C) but
Q1 6⊆ Q2. In order to define a broader notion than
query inclusion, we provide the following definition
of query subsumption.

Definition 2.8 [Query Subsumption] Given a TB-
framework (Tweets, C, S, sent, conflict) and two
queries Q1 and Q2, we will say that Q1 subsumes
Q2 whenever it holds that AggTweets(Q2, C) ⊂
AggTweets(Q1, C).

Example 2.2 A query Q1 formed by {“abortion”}
subsumes the query Q2 formed by {“abortion”,
“murder”}, as all the tweets that are returned by
Q2 will be part of the tweets returned by Q1, but
not the other way around.

Note that the subsumption relation is more gen-
eral than the inclusion relation, since Q1 subsumes
Q2 whenever Q1 ⊂ Q2 (as AggTweets(Q2, C) ⊂
AggTweets(Q1, C)). However, it is possible that Q1

subsumes Q2 even when Q1 6⊂ Q2.

5

Definition 2.9 [Argument Specificity] Consider a
TB-framework (Tweets, C, S, sent, conflict) and
let 〈Arg1, Q1, Sent1〉 and 〈Arg2, Q2, Sent2〉 be two
TB-arguments. We say that 〈Arg2, Q2, Sent2〉 is
strictly more specific than 〈Arg1, Q1, Sent1〉, and
we denote it 〈Arg2, Q2, Sent2〉 ≺ 〈Arg1, Q1, Sent1〉,
if Q1 subsumes Q2. We will write 〈Arg2, Q2, Sent2〉
� 〈Arg1, Q1, Sent1〉 when Q1 subsumes Q2 or Q1

is equivalent to Q2.

Suppose that a TB-argument supporting the
query “abortion” is obtained, with a prevailing sen-
timent negative. If the original query Q is ex-
tended in some way into a new query Q′ that is
more specific than Q (i.e. Q′ = Q ∪ {d}), it could
be the case that a TB-argument supporting Q′ has
a different (possibly conflicting) prevailing senti-
ment. For example, more specific opinions about
abortion are related to other topics, like for exam-
ple ethics, social problems or programs, religious
issues, etc. To explore all possible relationships as-
sociated with TB-arguments returned for a speci-
fied query Q and criteria C, we can define an al-
gorithm to construct an “opinion tree” recursively
as follows:

1. We start with a TB-argument A obtained
from the original query Q (i.e., 〈Arg,Q, Sent〉),
which will be the root of the tree.

2. Next, we compute within A all relevant de-
scriptors that might be used to “extend” Q,
by adding a new element (NewTerm) to the
query, obtaining Q′ = Q ∪ {NewTerm}.

3. Then, a new argument for Q′ is obtained,
which will be associated with a subtree
rooted in the original argument A.

The high-level algorithm can be seen in Fig-
ure 1. As stated before, note that our approach
to opinion trees is more generic than the one used
for dialectical trees in argumentation (as done e.g.
in [9]), in the sense that for a given argument, the
children nodes will correspond to more specific ar-
guments that are not necessarily in conflict with
the parent argument.

It is also easy to see that for any query Q, the
algorithm BuildOT finishes in finite time: given
that a tweet may not contain more than 140 char-
acters, the number of contained descriptors is fi-
nite, and therefore the algorithm will eventually
stop, providing an opinion tree as an output.

2.3. Case study

As discussed before, the algorithm shown in Fig-
ure 1 allows to obtain an opinion tree from a given
query Q, a criterion C, and the set Tweets of all
possible tweets. An additional parameter R al-
lows us to specify the set of tweets to be consid-
ered when searching for a new descriptor. Initially,
R = Tweets. The cardinality of R determines the
threshold associated with the depth of the tree.

Consider the query Q = “abortion”, and a cri-
terion C = { T ∈ Tweets | T was posted less
than 48 hours ago }. A root TB-argument is com-
puted for Q, C and Tweets, obtaining an asso-
ciated prevailing sentiment (negative). If |R| is
above a given threshold value, the algorithm com-
putes the most frequent word d in R whenever d
is not already present in Q ∪ Stopwords. The un-
derlying idea is that any new descriptor used to
extend the query associated with a node of the
opinion tree should not appear in previous nodes
at the same level (from left to right) or in ances-
tors of previous nodes at the same level. The set
Stopwords will usually include terms such as the,
as, which, etc. In our example, d = “michigan”.6

A new TB-argument can now be built for query
Qnew = {“abortion”} ∪ {“michigan”}, criterion C
and the preserving sentiment calculated for the
new subset of tweets TweetsQnew

. In the recur-
sive call, the most frequent word is calculated for
this subset (obtaining the result “senate”), so that
a new TB-argument for the query {“abortion”,
“michigan”, “senate”} is obtained, with a new as-
sociated prevailing sentiment. Note that within a
particular instance of the recursive call, the RE-
PEAT loop takes care of alternative ways of “ex-
tending” Q. This is accomplished by selecting a
particular descriptor d from the set of tweets in
R. The process is repeated until the threshold has
been reached. At the end, the resulting opinion
tree OTQ is returned.

Figure 2 illustrates how the construction of
an opinion tree for the query Q = {“abortion”}
looks like. Distinguished symbols (“+”, “-”, “=”)
are used to denote positive, negative and neu-
tral sentiments, respectively. Note that the orig-
inal query Q has cardinality 1, and further lev-

6This example was obtained from Twitter in December
2012, when Michigan legislature was debating several reg-

ulations on abortion practices.

6

ALGORITHM BuildOT
INPUT: Tweets, R, Q, C

{ Initially, R = Tweets. Each Ti ∈ Tweets is represented as a multiset }
OUTPUT: Opinion Tree OTQ

{ opinion tree rooted in RootOTQ
}

RootOTQ
:= 〈Arg,Q, Sent〉,

where Arg is AggTweets(Q,C) and Sent is sent(AggTweets(Q,C)).
IF |R| > threshold { Cardinality of R determines maximum depth level }
THEN

REPEAT
W := { d | d is the most frequent word in

⊎
Ti∈R Ti

such that d /∈ Q ∪ Stopwords }a
IF W 6= ∅
THEN
Qnew := Q ∪W
TweetsQnew

:= AggTweets(Qnew, C)
OTQnew

:= BuildOT (TweetsQnew
,R, Qnew, C)

OTQ = PutSubtree(RootOTQ
,OTQnew

)

R := R− TweetsQnew

UNTIL W = ∅
RETURN OTQ

aFor simplicity, we assume W is a singleton. In a more general case, a distinguished element from W could be selected
according to some criterion (e.g. overall frequency in Twitter, etc.). The operation

⊎
is the union operation on multisets.

Fig. 1. High-level algorithm for computing an opinion trees OTQ from Twitter

abortion

abortion
michigan abortion mi

abortion
murder

abortion
option

abortion
michigan

senate

abortion
legalization

abortion
wish

abortion
mi

nation‘s

abortion
michigan
decision

abortion
mi
law

postive
negative
neutral

Original Query
 Q = abortion

Fig. 2. Opinion Tree based on query “abortion”. The associated conflict tree for the same query is shown in dotted lines.

7

els in the opinion tree refer to incrementally ex-
tended queries (e.g. {“abortion”, “michigan”}, or
{“abortion”, “murder”}). Leaves correspond to ar-
guments associated with a query Q which can-
not be further expanded, as the associated num-
ber of tweets is too small for any possible query
Q∪W . Furthermore, we can identify some subtrees
in OT{“abortion”} which consist of nodes which

have all the same sentiment. In other words, fur-
ther expanding a query into more complex queries
does not change the prevailing sentiment associ-
ated with the root node. In other cases, expanding
some queries results in a sentiment change (e.g.
from {“abortion”} into {“abortion”, “option”} or
{“abortion”, “wish”}). This situation will allow
us to characterize conflict trees, in which we take
into account opinions that attack each other, as
discussed in the next Section.

3. Conflict trees

Next we will provide a formal definition of con-
flict between TB-arguments. Intuitively, a con-
flict will arise whenever two arguments for simi-
lar queries lead to conflicting sentiments assuming
that the involved queries are related to each other
by the subsumption relationship.

Definition 3.1 [Argument Attack] Consider a TB-
framework (Tweets, C, S, sent, conflict) and let
〈Arg1, Q1, Sent1〉 and 〈Arg2, Q2, Sent2〉 be two
TB-arguments such that Q1 subsumes Q2, we say
that 〈Arg2, Q2, Sent2〉 attacks 〈Arg1, Q1, Sent1〉
whenever Sent1 and Sent2 are in conflict.

Example 3.1 Consider query Q1 = {“abortion”}
and query Q2 = {“abortion”, “option”} with as-
sociated TB-arguments 〈Arg1, Q1, negative〉 and
〈Arg2, Q2, neutral〉. Then 〈Arg2, Q2, neutral〉 at-
tacks 〈Arg1, Q1, negative〉, and vice versa.

Note that in the previous situation, adding
the descriptor “option” to the the original query
“abortion” involves a sentiment change. We will
formalize this situation as follows:

Definition 3.2 [Sentiment-Preserving Descriptor.
Sentiment-Shifting Descriptor] Let 〈A1, Q, Sent1〉
be a TB-argument. We say that a keyword or hash-
tag d is a sentiment-preserving (resp. sentiment-
shifting) descriptor wrt Q whenever there ex-

ists a TB-argument 〈A2, Q ∪ {d}, Sent2〉 such that
Sent1 and Sent2 are non-conflicting (resp. con-
flicting). TB-argument 〈A2, Q ∪ {d}, Sent2〉 will
be called sentiment-preserving (resp. sentiment-
shifting argument).

Given a particular query Q, note that several al-
ternative expansions (supersets of Q) can be iden-
tified. We are interested in identifying which is the
smallest superset of Q which is associated with a
sentiment-shifting argument. This gives rise to the
following definition:

Definition 3.3 [Minimal-Shift Descriptor. Minimal-
Shifting Relation] Let (Tweets, C, S, sent, conflict)
be a TB-framework. Given two conflicting ar-
guments 〈Arg1, Q1, Sent〉 and 〈Arg2, Q2, Sent〉,
we will say that Q2 is a minimal shift descrip-
tor wrt Q1 iff 〈Arg2, Q2, Sent〉 is a sentiment-
shifting argument wrt Q1 and @Q′ ⊂ Q2 such that
〈Arg′, Q′, Sent〉 is a sentiment-shifting argument
wrt Q1.

We define a minimal-shifting relation “�min
Q ”

as follows: 〈Arg1, Q1, Sent1〉 �min
Q 〈Arg2, Q2, Sent2〉

iff 〈Arg2, Q2, Sent2〉 attacks 〈Arg1, Q1, Sent1〉 and
Q2 is a minimal-shifting descriptor wrt Q1.

Definition 3.4 [Conflict tree] Let (Tweets, C, S,
sent, conflict) be a TB-framework. Given a query
Q, and its associated argument 〈Arg,Q, Sent〉 we
will define a conflict tree for Q (denoted CTQ) re-
cursively as follows:

1. If there is no 〈Argi, Qi, Senti〉 such that
〈Arg,Q, Sent〉 �min

Q 〈Argi, Qi, Senti〉, then
CTQ is a conflict tree consisting of a single
node 〈Arg,Q, Sent〉.

2. Let 〈Arg1, Q1, Sent1〉, 〈Arg2, Q2, Sent2〉, . . . ,
〈Argk, Qk, Sentk〉 be those arguments in
(Args,Tweets, C,S, s) such that 〈Arg,Q, Sent〉
�min

Q 〈Argi, Qi, Senti〉 (for i = 1 . . . k).
Then CTQ is a conflict tree consisting of
〈Arg,Q, Sent〉 as the root node and CTQ1

,
. . .CTQk

are its immediate subtrees.

Intuitively, a conflict tree depicts all possible
ways of extending the original query Q such that
every extension (child node in the tree) corre-
sponds to a sentiment change. Figure 2 illustrates
how a conflict tree for the query Q = {“abortion”}
looks like, depicting nodes and arcs with dotted
lines. Every node in the tree (except the root) is as-
sociated with a TB-argument which is a sentiment-
shifting argument wrt its parent. Leaves corre-
spond to nodes for which no further sentiment shift
can be found.

8

4. Generalizing Opinion and Conflict Trees as
Superior Lattices

Next we will show a formal lattice-based char-
acterization of our approach and propose an ef-
fective procedure to compute conflict superior lat-
tices, which can be regarded as a a generalization
of conflict trees. Superior lattices will account for
a more generic view of opinion and conflict trees,
identifying relevant sublattices based on an equiv-
alence relation between TB-arguments. First we
will review some background definitions to make
our presentation self-contained.

Definition 4.1 [Partial Order. Partially Ordered
Set] A partial order is a binary relation “�” over a
set A which is reflexive, antisymmetric, and tran-
sitive, i.e., for all a, b, and c in A, we have that
(1) a � a (reflexivity); if a � b and b � a then
a = b (antisymmetry); if a � b and b � c then
a � c (transitivity). A set with a partial order is
called partially ordered set (or just ordered set).

Definition 4.2 [Cover Relation] Given an ordered
set (A,�), for two elements a, b ∈ A we use a ≺ b
to specify that a � b and a 6= b. Let (A,�) be an
ordered set. Then for any a, b ∈ A we say that a
covers b if b ≺ a and there is no c ∈ A such that
b ≺ c ≺ a.

Definition 4.3 [Tree Order] An ordered set (A,�)
is a tree if (1) there is a unique a ∈ A such that
b � a for all b ∈ A, and (2) for all a, b, c ∈ A, if b
covers a and c covers a, then b = c.

Definition 4.4 [Superior Lattice. Inferior Lattice.
Lattice] Let (A,�) be an ordered set. Then for any
a, b ∈ A, we will say that c ∈ A is the least upper
bound of a and b (also called the join of a and b),
denoted c = a∨ b, whenever i) a � c and b � c; ii)
if for x ∈ A, it holds that a � x and b � x, then
c � x. An ordered set (A,�) is a superior lattice
whenever for any pair of elements a, b ∈ A there is
a least upper bound element in A. The notions of
greatest lower bound (or meet), denoted c = a∧b,
and inferior lattice are defined analogously as the
duals of the notions of least upper bound and su-
perior lattice. An ordered set (A,�) that is both a
superior lattice and an inferior lattice is called a
lattice.

Definition 4.5 [Join-Homomorphism. Meet-Homo-
morphism. Lattice Homomorphism] The mapping
h from (X,�) to (Y,�) is a join-homomorphism
provided that for any a, b ∈ x, h(a ∨ b) = h(a) ∨
h(b). It is also said that “h preserves joins.”
The notion of meet-homomorphism is defined
analogously as the dual of the notion of join-
homomorphism. The mapping h is a lattice homo-
morphism if it is both a join-homomorphism and
a meet-homomorphism.

In the rest of this section we will show that
the above definitions provide a solid mathematical
foundation for the study of TB-arguments. Note,
in the first place, that the ordered set (2Tweets,⊆)
is a lattice, as is the case for any power set of a
given set, ordered by inclusion. The join is given by
the union and the meet by the intersection of the
subsets. More interestingly, it can be shown that
for any query Q, the resulting opinion tree OTQ

associated with a query Q defines a tree order (see
Def. 4.3).

Lemma 4.1 Let Q be a query and let OTQ be an
opinion tree for Q in a TB-framework (Tweets, C,
S, sent, conflict). Then (OTQ,�Q) defines a tree
order.

Proof: In order to prove that (OTQ,�Q) is a tree
order, we first need to prove that (OTQ,�Q) is an
ordered set. This is straightforward since the “�Q”
relation is defined in terms of the “⊇” relation as
follows. 〈Arg1, Q1, Sent1〉 �Q 〈Arg2, Q2, Sent2〉, if
and only if Q1 ⊇ Q2. Given that the “⊇” relation
defines a partial order on the set of queries, it is
clear that that (OTQ,�Q) is an ordered set.

To complete the proof we need to show that
(1) there is a unique TB-argument 〈Arg,Q, Sent〉
such that 〈Arg′, Q′, Sent′〉�Q〈Arg,Q, Sent〉 for
all 〈Arg′, Q′, Sent′〉 in OTQ, and (2) for all TB-
arguments 〈Arg1, Q1, Sent1〉, 〈Arg2, Q2, Sent2〉,
〈Arg3, Q3, Sent3〉 in OTQ, if 〈Arg2, Q2, Sent2〉
covers 〈Arg1, Q1, Sent1〉 and 〈Arg3, Q3, Sent3〉 cov-
ers 〈Arg1, Q1, Sent1〉, then 〈Arg2, Q2, Sent2〉 =
〈Arg3, Q3, Sent3〉. Part (1) follows from the con-
struction of the opinion tree in algorithm BuildOT
by taking 〈Arg,Q, Sent〉 as RootOTQ

. Then it

is clear that RootOTQ
is the only TB-argument

such that 〈Arg′, Q′, Sent′〉�QRootOTQ
for all

〈Arg′, Q′, Sent′〉 in OTQ. In order to prove (2),
assume 〈Arg2, Q2, Sent2〉 covers 〈Arg1, Q1, Sent1〉

9

and 〈Arg3, Q3, Sent3〉 covers 〈Arg1, Q1, Sent1〉.
According to the BuildOT algorithm, this means
that Q1 = Q2 ∪ {d} and Q1 = Q3 ∪ {d′}, with
d 6∈ Q2 and d′ 6∈ Q3. The descriptor selection
mechanism for extending queries implemented in
the algorithm guarantees that any query is ex-
tended by selecting a descriptor not appearing al-
ready as part of a query in a previous node at
the same level (from left to right) or in ances-
tors of previous nodes at the same level. Assume,
without loss of generality, that Q2 is a prede-
cessor of Q3. Then, according to the restriction
on the descriptor selection mechanism mentioned
above, we can conclude that d′ 6∈ Q2. As a re-
sult it must be the case (from Q1 = Q2 ∪ {d},
Q1 = Q3 ∪ {d′} and d′ 6∈ Q2) that Q2 = Q3 and
therefore 〈Arg2, Q2, Sent2〉 = 〈Arg3, Q3, Sent3〉.
This concludes the proof.

Once the opinion tree OTQ is built, it is
possible to identify and merge equivalent TB-
arguments. The equivalence relation between TB-
arguments is induced by the equivalence of the cor-
responding queries, i.e., 〈Argi, Qi, Senti〉 ∼query

〈Argj , Qj , Sentj〉 if and only if Qi is equivalent to
Qj (see Definition 2.7). The algorithm for merging
equivalent TB-arguments is presented in Figure 3.
As we will see later, this algorithm returns an
opinion superior lattice as a result. Figure 4 illus-
trates the application of this algorithm on an opin-
ion tree. For the sake of simplicity, we use labels
Q1, . . . , Q27 to represent 〈Arg1, Q1, Sent1〉, . . . ,
〈Arg27, Q27, Sent27〉. On the left hand side of this
figure we can see an opinion tree as a tree or-
der (OTQ,�Q). Note that each element in OTQ

is of the form 〈Argi, Qi, Senti〉, while the order
relation “�Q” is defined as 〈Arg1, Q1, Sent1〉 �
〈Arg2, Q2, Sent2〉 if and only if Q2 ⊆ Q1 (see
Def. 2.6). In this figure we have indicated that
some queries are equivalent. As a consequence,
based on the given algorithm, we can identify a
quotient set, where each member is an equiva-
lence class [〈Argi, Qi, Senti〉] defined as the set
{〈Argj , Qj , Sentj〉 | Qj is equivalent to Qi}.

We show on the right-hand side of Figure 4 the
quotient set resulting from the given opinion tree.
Note that this new set is a superior lattice (see
Def. 4.4). In general, any opinion tree induces a su-
perior lattice OLQ, which we will refer to as opin-
ion (superior) lattice. This is formally stated in the
following lemma:

Lemma 4.2 Let Q be a query and let OLQ be the
quotient set of OTQ by the query equivalence rela-
tion. Then (OLQ,�) is a superior lattice.

Proof: In order to prove that (OLQ,�) is a su-
perior lattice we need to prove that for any pair
of TB-argument classes [〈Arg1, Q1, Sent1〉] and
[〈Arg2, Q2, Sent2〉] in OLQ, [〈Arg1, Q1, Sent1〉] ∨
[〈Arg2, Q2, Sent2〉] is a TB-argument in OLQ.
Since OLQ is the quotient set of OTQ by the query
equivalence relation, and by Lemma 4.1 OTQ is
a tree order, we have that 〈Arg1, Q1, Sent1〉 ∨
〈Arg2, Q2, Sent2〉 is the most specific common an-
cestor of 〈Arg1, Q1, Sent1〉 and 〈Arg2, Q2, Sent2〉.
Then, for the given pair of TB-argument classes,
we take [〈Arg1, Q1, Sent1〉]∨ [〈Arg2, Q2, Sent2〉] =
[〈Arg1, Q1, Sent1〉 ∨ 〈Arg2, Q2, Sent2〉]. This con-
cludes the proof.

Although an opinion (superior) lattice is typi-
cally more compact than an opinion tree, we might
be interested in finding in a computationally effec-
tive way the minimal structure that reflects all ex-
isting conflicts between opinions for a given query
Q. In other words, we want to build a minimal su-
perior lattice (CLQ,�) such that it is possible to
define a join-homomorphism h (see Def. 4.5) from
(OLQ,�) to (CLQ,�). In addition, we will require
that if h(〈Argi, Qi, Senti〉) = 〈Argj , Qj , Sentj〉
then Senti and Sentj are non-conflicting. We will
call CLQ the conflict (superior) lattice for Q. By
applying a partitioning algorithm it is possible to
obtain a conflict (superior) lattice from any opin-
ion (superior) lattice. The algorithm for comput-
ing conflict (superior) lattices for a given opinion
(superior) lattice is presented in Figure 5.

Figure 6 illustrates the transformation of an
opinion (superior) lattice into a conflict (superior)
〈Arg1, Q1, Sent1〉, . . . , 〈Arg27, Q27, Sent27〉. Ini-
tially, the 0-equivalent classes are computed based
on the polarity of the sentiment associated with
each TB-argument. Therefore, 〈Argi, Qi, Senti〉
and 〈Argj , Qj , Sentj〉 are in the same 0-equivalent
class if and only if Senti = Sentj .

This results in the following classes:

0-equivalent classes:
{Q1, Q2, Q3, Q5, Q8, Q10, Q12, Q13, Q14, Q18, Q19, Q20}
{Q4, Q6, Q7, Q9, Q15, Q16, Q17}
{Q21, Q22}

As specified in Algorithm BuildCL, the n-
equivalent classes are computed as a refinement

10

ALGORITHM BuildOL
INPUT: Opinion Tree OTQ

OUTPUT: Opinion (Superior) Lattice OLQ
{ opinion (superior) lattice derived from OTQ }

For each pair of TB-arguments 〈Argi, Qi, Senti〉 and 〈Argj , Qj , Sentj〉 in
the Opinion Tree OTQ, we define the ∼query equivalence relation as follows:
〈Argi, Qi, Senti〉 ∼query 〈Argj , Qj , Sentj〉 if and only if Qi is equivalent to Qj

Define OLQ as the quotient (superior) lattice of OTQ modulo ∼query

RETURN OLQ

Fig. 3. High-level algorithm for computing opinion (superior) lattices from opinion trees

+

+ +

+

=
-

+

-

+

-

-
+

+

-

-

-
+

+

- +

+

+

-

-

-
=

+

+

+ + +

- + = + -

+

- -

- -

-

+

+

+

+

+

=

Q3

Q2

Q1

Q10 Q13

Q19

Q9

Q4 Q8

Q5

Q6

Q7

Q11

Q12

Q14

Q20

Q22

Q15

Q16

Q17

Q18

Q23

Q21 Q24

Q25

Q27

Q26

Q1

Q2 Q10 Q13

Q19

Q3 Q9

Q4

Q5

Q6 Q7

Q8

Q9 ~query Q11

Q15 ~query Q24

Q16 ~query Q27

Q17 ~query Q26

Q18 ~query Q25 ~query Q23

Q12 Q14
Q15

Q16

Q17

Q18

Q21 Q20

Q22

Fig. 4. Opinion tree (left) and its corresponding opinion (superior) lattice (right).

of the (n-1)-equivalent classes. This will be char-
acterized as follows: we will say that two TB-
arguments 〈Argi, Qi, Senti〉 and 〈Argj , Qj , Sentj〉
are n-equivalent if and only if (1) 〈Argi, Qi, Senti〉
and 〈Argj , Qj , Sentj〉 are (n-1)-equivalent, and
(2) for every 〈Argk, Qk, Sentk〉 in OLQ it holds
that 〈Argi, Qi, Senti〉 ∨ 〈Argk, Qk, Sentk〉 and
〈Argj , Qj , Sentj〉 ∨ 〈Argk, Qk, Sentk〉 are (n-1)-
equivalent.

In order to compute the 1-equivalent classes, we
take each pair of 0-equivalent TB-arguments Qi

and Qj and verify whether Qi ∨Qk is 0-equivalent
to Qj∨Qk for all Qk. If this is the case, then Qi and
Qj remain in the same 1-equivalent class. Other-
wise, these two TB-arguments are distinguishable
and each one is included in a different 1-equivalent
class.

To Illustrate this, take for instance Q3 and Q20.
Since for all Qk, Q3∨Qk is 0-equivalent to Q20∨Qk,

we can assert that Q3 and Q20 are 1-equivalent
(i.e., they are not distinguishable at this stage).
On the other hand, take the pair Q1 and Q5. We
have that Q1 ∨Q6 = Q1 and Q5 ∨Q6 = Q4. Fur-
thermore, we know that Q1 is not 0-equivalent to
Q4. Since there is at least a Qk such that Q1 ∨Qk

is not 0-equivalent to Q5 ∨Qk, Q1 and Q5 are in-
cluded in separate 1-equivalent classes (i.e., they
are distinguishable at this stage). After perform-
ing a similar analysis with the remaining pairs of
TB-arguments, we obtain the following classes:

1-equivalent classes:
{Q1, Q2, Q3, Q8, Q10, Q12, Q13, Q14, Q19, Q20}
{Q5}
{Q18}
{Q4, Q6, Q7}
{Q9}
{Q15, Q16, Q17}

11

ALGORITHM BuildCL
INPUT: Opinion (Superior) Lattice OLQ
OUTPUT: Conflict (Superior) Lattice CLQ

{ conflict (superior) lattice derived from OLQ }
For each pair of TB-arguments 〈Argi, Qi, Senti〉 and 〈Argj , Qj , Sentj〉 in

the Opinion (Superior) Lattice OLQ, we define the ∼0 equivalence relation as follows:
〈Argi, Qi, Senti〉 ∼0 〈Argj , Qj , Sentj〉 if and only if Senti = Sentj

Compute the 0-equivalent classes based on the ∼0 equivalence relation
n = 0
REPEAT

n = n+1
Compute the n-equivalent classes as a refinement of the (n-1)-equivalent classes:
〈Argi, Qi, Senti〉 ∼n 〈Argj , Qj , Sentj〉 if and only if

1. 〈Argi, Qi, Senti〉 ∼n−1 〈Argj , Qj , Sentj〉, and
2. For all 〈Argk, Qk, Sentk〉 in OLQ
〈Argi, Qi, Senti〉 ∨ 〈Argk, Qk, Sentk〉 ∼n−1 〈Argj , Qj , Sentj〉 ∨ 〈Argk, Qk, Sentk〉

UNTIL the n-equivalent classes are equal to the (n-1)-equivalent classes
Define CLQ as the quotient (superior) lattice of OLQ modulo ∼n

RETURN CLQ

Fig. 5. High-level algorithm for computing conflict (superior) lattices from opinion (superior) lattices

{Q21, Q22}

If we attempt to compute the 2-equivalent
classes, we found out that they are identical to
the 1-equivalent classes. Therefore the process ter-
minates and the conflict (superior) lattice shown
on the right-hand side of Figure 6 is returned.
Note that in addition, it is possible to verify that
the canonical mapping, that maps each element in
OLQ to its equivalence class in CLQ, defines a join
homomorphism.

5. Application

In this section, we show how our framework can
be applied in a real-world situation by presenting
a possible user scenario. The described scenario
shows ways in which a policy maker could recog-
nize opinions from mass deliberations of citizens
expressing their views on “taxes”. The topic of
taxes is typically a trendy one in Twitter, in par-
ticular among United States citizens commenting
on current tax legislation or on tax changes pro-
posals advocated by their government.

The topic of taxes can be analyzed form var-
ious perspectives. A possible perspective would
be by looking at opinions that address the is-
sue of taxes on property. A second perspective
could focus on the topic of the IRS scandal. A

third perspective is provided by analyzing how the
health care reform affects taxes. Yet another per-
spective emerges from analyzing the new tax law,
which imposes higher taxes on families earning
over $250, 000 a year, without changing the situa-
tion for the middle class.

The proposed tool facilitates the exploration of
these various perspective by imposing a rich struc-
ture on a large set of unstructured tweets. In ad-
dition, it allows to easily recognize the polarity of
each group of opinions (TB-arguments) as well as
conflict relations between them. Figure 7 presents
a conflict superior lattice for the query “taxes”.
In this scenario, certain emerging TB-arguments
could shed light on the general desires of citizens.
For instance, the fact that the sentiment polarity
of “taxes pay companies” is positive may be indi-
cating that the general public expect companies to
pay higher corporate taxes. In addition, the use of
the tool to identify current topics, such as those
associated with the queries “taxes irs scandal” or
“taxes health” could greatly help decision and pol-
icy makers define priorities and better address cit-
izens’ present-day concerns

We have developed a Java prototype 7 as a beta
version of a software tool for mining opinion from
Twitter. This prototype was used for the analysis

7Available to download from http:\\cs.uns.edu.ar\

~cic\twitter.zip.

12

+

+ + +

-

+

=

+

-

+

- -
-

- -

+ +

+

+

+

=

+

- - - =

+ +

Q1

Q2 Q10
Q13 Q19

Q20

Q3

Q8 Q12

Q14

Q9

Q4

Q6
Q7

Q5

Q15

Q16 Q17

Q21

Q22

Q18

Q1

Q4

Q5

Q9 Q15 Q21

Q18

Fig. 6. From an opinion superior lattice (left) to a conflict superior lattice (right).

taxes

pay
#obamacarein

threewords
health property irs lower

own companies scandal

Taxes pay health
#obamacarein

threewords

own companies property Irs scandal lower

Positive

Negative

Neutral

Fig. 7. Opinion Tree and Conflict Lattice for the query “taxes”. Results are simplified (4 nodes were left out).

13

of the abortion case (section 2.3) and the previous
tax example.

6. Discussion

Our mathematical characterization of opinion
and conflict trees as superior lattices provides a
natural foundation for the analysis of important
concepts prevailing in argumentation theory. In
particular, the use of conflict (superior) lattices to
represent diverging arguments leads to the identi-
fication of the minimal structure that reflects the
existing collective positions with respect to a topic
of interest.

From the user viewpoint, conflict lattices are in-
tended to provide the theoretical basis for develop-
ing an explorative tool in a decision making plat-
form. Consider for example the opinion tree based
on the query “abortion”. By having the conflict tree
at hand, an analyst8 would be able to easily iden-
tify which are the terms or keywords that induce a
sentiment shift when considering different tweets.
For the case in Fig.2, it can be noted that we get
a conflict tree (which can be considered as partic-
ular case of conflict lattice). In a more general sit-
uation, conflict superior lattices provide a suitable
mathematical structure for avoiding redundancies
when considering attacks in conflict trees. For ex-
ample, in Fig. 6(right), the analyst will be able
to identify a single argument (Q18) which simul-
taneously attacks two other arguments (Q15 and
Q21).

Argument specificity is a key notion in argu-
mentation theory, as it is the first purely syntac-
tic preference criterion proposed to compare argu-
ments. In our framework, specificity can be asso-
ciated with the “�” relation identified in the re-
sulting superior lattices. The use of minimal struc-
tures to represent conflicting views facilitates the
identification of specificity relations as well as the
recognition of relevant (or irrelevant) elements in
the argumentation space, as it is formalized by
the notions of sentiment-shifting descriptors (or
sentiment-preserving descriptors). Similarly, the
minimal-shift relation “�min

Q ” can be intuitively
studied in the light of the resulting mathematical
structures. It must be remarked that our dialec-

8Possible users could be e.g. a journalist, a deputy ana-

lyzing a law proposal, etc.

tical analysis of TB-arguments aims at modeling
the possible space of alternatives associated with
different (incrementally more specific) queries. In
contrast, the dialectical analysis in standard argu-
mentation frameworks [3,18] aims at determining
the ultimate status of a given argument at issue
(in terms of some acceptability semantics).

It is important to mention that our analysis was
done for the English language only. This is due to
the fact that English is the lingua franca world-
wide, being widely used in Twitter. In addition,
most existing sentiment analysis tools assume En-
glish as the underlying language. We are currently
developing a sentiment analysis tool for the Span-
ish language, which will allow us to extend the
capabilities of the system. We will also investi-
gate the benefits of using a stemming algorithm
for Spanish.

7. Related Work

Our approach is inspired by recent research
in integrating argumentation and social networks
(e.g. [21,11]). In the last years, there has been
growing interest in assessing meaning to streams
of data from microblogging services such as Twit-
ter, as well as some recent research on using argu-
mentation for social networks.

To the best of our knowledge, Torroni & Toni [21]
were the first to combine social networks and ar-
gumentation in a unified approach, coining the
term bottom-up argumentation for the grass-root
approach to the problem of deploying computa-
tional argumentation in online systems. In this
novel view, argumentation frameworks are ob-
tained bottom-up starting from the users’ com-
ments, opinions and suggested links, with no top-
down intervention of or interpretation by “argu-
mentation engineers”. As the authors point out
“topics emerge, bottom-up, during the underly-
ing process, possibly serendipitously”. In contrast
with that proposal, in this paper we generalize
this view by identifying arguments automatically
from Twitter messages, establishing as well con-
flict relationships in terms of sentiment analysis
(and not specified at the meta-level using rules,
as it is the case in [21]). This proposal was re-
cently extended (see [7]), leading towards so-called
“microdebates” to help organizing and confronting
users’ opinions in an automated way. A microde-

14

bate is a stream of tweets where users annotate
their messages by using some special tags. In con-
trast with this approach, in our proposal we are
not explicitly searching for debates containing ar-
guments and counterarguments. Rather, different
opinions emerge automatically based on collect-
ing tweets associated with a particular topic (TB-
arguments), and interrelationships among opin-
ions are obtained on the basis of sentiment shift-
ing/preserving descriptors.

In [1], Abbas and Sawamura formalize argument
mining from the perspective of intelligent tutor-
ing systems. In contrast with our approach, they
rely on a relational database, and their aim is
not related with identifying arguments underly-
ing social networks as done in this paper. In [11],
Leite and Martins introduce a novel extension
to Dung’s abstract argumentation model, called
Social Abstract Argumentation. Their proposal
aims at providing a formal framework for social
networks and argumentation, incorporating social
voting and defining a new class of semantics for
the resulting frameworks. In contrast with our
approach, the automatic extraction of arguments
from social networks data is not considered (as
done in this paper), nor the modeling of conflicts
between arguments in terms of sentiment analy-
sis. In [2], Amgoud and Serrurier propose a for-
mal argumentation-based model for classification,
which generalizes the well-known concept learning
model based on version spaces [13]. The framework
shares some structural similarities with our ap-
proach (as a lattice-based characterization is also
involved when contrasting hypotheses). However,
the aims of the two approaches are different, as
our proposal is not focused on solving classification
tasks in a machine learning sense.

A related research area is formal concept analy-
sis [8], which is a method for deriving conceptual
structures out of data. As done in our approach,
the theory of partial orders is used to formally
characterize these structures. However, it differs
from our proposal in dealing with concepts rather
than opinions and in not attempting to associate
sentiments with the elements of the partial order.
In addition, it does not deal with notions such as
arguments, conflict and attack.

It must be remarked that the rise of social me-
dia such as blogs and social networks has fueled
interest in sentiment analysis. With the prolifer-
ation of reviews, ratings, recommendations and

other forms of online expression, online opinion
has turned into a kind of virtual currency for busi-
nesses looking to market their products, identify
new opportunities and manage their reputations.
Several research teams in universities around the
world currently focus on understanding the dy-
namics of sentiment in e-communities through sen-
timent analysis. The EU funded Cyberemotions
consortium9 was created in 2009 to better un-
derstand collective emotional phenomena in cy-
berspace, with the help of knowledge and meth-
ods from natural, social, and engineering sciences.
Within this project, Thelwall et al.[20,19] carried
out a number of experiments to assess the feasi-
bility of sentiment analysis within social networks,
with a particular focus on Twitter. In contrast
with our approach, no opinion mining was consid-
ered in this context, nor the analysis of alterna-
tive opinions (as modeled by conflict trees in our
proposal).

8. Conclusions and Future Work

In this paper we have presented a novel ap-
proach which integrates argumentation theory and
microblogging technologies, with a particular fo-
cus on Twitter. To the best of our knowledge, no
other approach has been developed in a similar di-
rection. We have also presented a definition of a
Twitter-based argument for a query Q that con-
siders as a support the bunch of tweets which are
associated with Q according to a given criterion.
For such an argument, we also define a prevailing
sentiment, obtained in terms of sentiment analysis
tools. This allowed us to characterize the notion of
opinion tree, which can be recursively built by con-
sidering arguments associated with incrementally
extended queries. We have implemented a proto-
type of our proposal as a proof of concept, which
was used to compute the opinion tree for the case
study presented in the paper.

We have also presented a theoretical setting for
analyzing Twitter-based arguments, associating a
superior lattice rooted in the initial argument for
the first given query. Based on the notion of at-
tack between arguments, we have established as
well a refined order relationship between conflict-
ing arguments. As a result, from every superior

9http://www.cyberemotions.eu/

15

lattice associated with a given query Q, a conflict
tree rooted in Q can be built, in which alternating
opinions can be better contrasted. Given a node A
(argument) associated with query Q′ with a pre-
vailing sentiment s, every children node for A in
a conflict tree corresponds to an argument for a
more specific query Q′, which is in conflict with A
as it is associated with a sentiment shift. Conflict
trees allow us to explore the space of possible con-
fronting opinions associated with a given opinion,
using the specificity principle as traditionally used
in argumentation for preferring arguments.

The prototype that we have implemented so far
is intended to be used as a proof of concept. The
development of a full-fledged software tool will re-
quire tackling several issues, mostly related with
user-interface and usability aspects. We believe
that before embarking on that stage, it is crucial to
investigate and provide a full account of the func-
tional capabilities of the proposed system, both
based on a theoretical study and by validating its
behavior through simulations with realistic data.
Part of our future work will focus on improving
the existing prototype, aiming at the deployment
of a software tool for real-world users. As a ba-
sis for such deployment, visual tools for displaying
and analyzing dialectical trees have been already
developed for Defeasible Logic Programming [15].
We expect to use the underlying algorithms from
this tool in our framework. Additionally, we expect
to perform different experiments with hashtags as-
sociated with relevant topics, assessing the appli-
cability of our approach in a real-world context.

Another future research avenue would be to
take advantage of existing semantic information
sources, such as dictionaries, topic directories or
ontologies, to better explore query space, either
by using synonyms of existing terms or other im-
portant terms for the domain under analysis. In
addition, we anticipate that the proposed frame-
work could be integrated with mechanisms that
allow weighting TB-arguments based on different
aspects, such as provenance of the tweets, number
of associated tweets, opinion strength, etc.

Finally, we are working on extending the current
Twitter-based model to a more generic setting, in
which opinions are collected from other social net-
works (such as Facebook).10 Research in this di-
rection is currently being pursued.

10http://www.facebook.com

Acknowledgments:
This research work is funded by Projects LACCIR

R1211LAC004 (Microsoft Research, CONACyT and

IDB), PIP 112-200801-02798, PIP 112-200901-00863

(CONICET, Argentina), PGI 24/ZN10, PGI 24/N006,

PGI 24/N029 (SGCyT, UNS, Argentina) and Univer-

sidad Nacional del Sur.

References

[1] Safia Abbas and Hajime Sawamura. Argument mining

based on a structured database and its usage in an
intelligent tutoring environment. Knowl. Inf. Syst.,

30(1):213–246, 2012.

[2] Leila Amgoud and Mathieu Serrurier. Agents that ar-

gue and explain classifications. Autonomous Agents

and Multi-Agent Systems, 16(2):187–209, 2008.

[3] P. Besnard and A. Hunter. The Elements of Argumen-

tation. The MIT Press. London, UK, 2008.

[4] Qing Cao, Mark A. Thompson, and Yang Yu. Senti-

ment analysis in decision sciences research: An illus-
tration to it governance. Decision Support Systems,

54(2):1010–1015, 2013.

[5] Carlos Iván Chesñevar, Ana Gabriela Maguitman, Elsa

Estevez, and Ramón F. Brena. Integrating argumenta-

tion technologies and context-based search for intelli-
gent processing of citizens’ opinion in social media. In

David Ferriero, Theresa A. Pardo, and Haiyan Qian,

editors, ICEGOV, pages 166–170. ACM, 2012.

[6] Ronen Feldman. Techniques and applications for sen-

timent analysis. Commun. ACM, 56(4):82–89, April
2013.

[7] Simone Gabbriellini and Paolo Torroni. Large scale
agreements via microdebates. In Ossowski et al. [16],

pages 366–377.

[8] Bernhard Ganter and Rudolf Wille. Formal concept

analysis - mathematical foundations. Springer, 1999.

[9] Alejandro Javier Garćıa and Guillermo Ricardo

Simari. Defeasible logic programming: An argumenta-

tive approach. TPLP, 4(1-2):95–138, 2004.

[10] Kathrin Grosse, Carlos Iván Chesñevar, and

Ana Gabriela Maguitman. An argument-based ap-
proach to mining opinions from twitter. In Ossowski

et al. [16], pages 408–422.

[11] João Leite and João Martins. Social abstract argu-

mentation. In Toby Walsh, editor, IJCAI, pages 2287–
2292. IJCAI/AAAI, 2011.

[12] Justin Martineau. Identifying and Isolating Text Clas-
sification Signals from Domain and Genre Noise for
Sentiment Analysis. PhD thesis, University of Mary-
land, Baltimore County, USA, 2011.

[13] Tom M. Mitchell. Generalization as search. Artif. In-
tell., 18(2):203–226, 1982.

16

[14] Keisuke Mizumoto, Hidekazu Yanagimoto, and Michi-

fumi Yoshioka. Sentiment analysis of stock market

news with semi-supervised learning. In Huaikou Miao,
Roger Y. Lee, Hongwei Zeng, and Jongmoon Baik, ed-

itors, ACIS-ICIS, pages 325–328. IEEE, 2012.

[15] Sanjay Modgil, Francesca Toni, Floris Bex, Ivan

Bratko, Carlos Chesñevar, Wolfgang Dvořák,
Marcelo A. Falappa, Sarah Alice Gaggl, Alejandro J.

Garćıa, Maŕıa P. Gonzalez, Thomas F. Gordon, Joao

Leite, Martin Mozina, Chris Reed, Guillermo R.
Simari, Stefan Szeider, Paolo Torroni, and Stefan

Woltran. Handbook of Agreement Technologies, chap-

ter The Added Value of Argumentation: Examples
and Challenges, page (in press). Springer, 2012.

[16] Sascha Ossowski, Francesca Toni, and George A.

Vouros, editors. Proceedings of the First Interna-

tional Conference on Agreement Technologies, AT
2012, Dubrovnik, Croatia, October 15-16, 2012, vol-

ume 918 of CEUR Workshop Proceedings. CEUR-

WS.org, 2012.

[17] Alexander Pak and Patrick Paroubek. Twitter as a

corpus for sentiment analysis and opinion mining. In
Nicoletta Calzolari, Khalid Choukri, Bente Maegaard,

Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike
Rosner, and Daniel Tapias, editors, LREC. European

Language Resources Association, 2010.

[18] I. Rahwan and G. Simari. Argumentation in Artificial

Intelligence. Springer Verlag, 2009.

[19] Mike Thelwall, Kevan Buckley, and Georgios Pal-

toglou. Sentiment in twitter events. JASIST,
62(2):406–418, 2011.

[20] Mike Thelwall, Kevan Buckley, and Georgios Pal-
toglou. Sentiment strength detection for the social web.

JASIST, 63(1):163–173, 2012.

[21] P. Torroni and F. Toni. Bottom up argumentation. In

Prof. of First Intl. Workshop on Theoretical and For-
mal Argumentation (TAFA). IJCAI 2011, Barcelona,

Spain, 2011.

