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Rapidly-exploring random trees (RRTs) are data structures
and search algorithms designed to be used in continuous
path planning problems. They are one of the most successful
state-of-the-art techniques in motion planning, as they offer a
great degree of flexibility and reliability. However, their use
in other fields in which search is a commonly used approach
has not been thoroughly analyzed. In this work we propose
the use of RRTs as a search algorithm for automated plan-
ning. We analyze the advantages and disadvantages that this
approach has over previously used search algorithms and the
challenges of adapting RRTs for implicit and discrete search
spaces.
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1. Introduction

Currently most of the state-of-the-art planners are
based on the heuristic forward search paradigm first
employed by HSP [5]. While this represented a huge

leap in performance compared to previous approaches,
this kind of planners also suffers from some shortcom-
ings. In particular, certain characteristics of the search
space of planning problems hinder their performance.
Large plateaus for h values, local minima in the search
space and areas in which the heuristic function is mis-
leading represent the main challenges for these plan-
ners. Furthermore, most successful planners use tech-
niques that increase the greediness of the search pro-
cess, which often exacerbates this problem. A cou-
ple of examples of these approaches are pruning tech-
niques like helpful actions introduced by FF [23] and
greedy search algorithms like Enforced Hill Climbing
(EHC) used by FF and greedy best-first search used by
HSP and Fast Downward [21].

Motion planning is an area closely related to auto-
mated planning. Problems in motion planning consist
on finding a collision-free path that connects an initial
configuration of geometric bodies to a final goal con-
figuration. Some examples of motion planning prob-
lems are robotics [28,11], animated simulations [12],
drug design [13] and manufacturing [15] to name a
few. A broad range of techniques have been used in
this area, although the current trend is to use algorithms
that randomly sample the search space due to their
reliability, simplicity and consistent behavior. Proba-
bilistic roadmaps (PRMs) [25] and Rapidly-exploring
Random Trees (RRTs) [29] are the most representative
techniques based on this approach.

Algorithms based on random sampling have two
main uses: multi-query path planning, in which several
problems with different initial and goal configurations
must be solved in the same search space, and single-
query path planning, in which there is only a single
problem to be solved for a given search space. In the
case of single-query path planning, RRT-Connect [27],
a variation of the traditional RRTs used in multi-query
path planning, is one of the most widely used al-
gorithms. RRT-Connect builds a tree from the initial
and the goal configurations by iteratively extending to-
wards sampled points while trying to join the newly
created branches with the goal or with a node belong-
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ing to the opposite tree. This keeps a nice balance be-
tween exploitation and exploration and it is often more
reliable than previous methods like potential fields,
which tend to get stuck in local minima.

Single-query motion planning and satisficing plan-
ning have many points in common. However, bringing
techniques from one area to the other is not straight-
forward. The main difference between the two areas
is the defining characteristics of the search space. In
motion planning, the original search space of these
problems is an euclidean explicit continuous space,
whereas in automated planning the search space is a
multi-dimensional implicit discrete space composed of
the states reachable from the initial state and the goal
states. This has lead to both areas being developed
without much interaction despite the potential benefits
of an exchange of knowledge between the two commu-
nities.

In this work, we try to bridge the gap between the
two areas by proposing the use of an RRT in auto-
mated planning. The motivation is that RRTs may be
able to overcome some of the shortcomings that for-
ward search planners have while keeping most of their
good properties. This paper builds on previous work by
the same authors [2], mainly extending the sampling
methods and presenting a much more extensive experi-
mentation; the major contributions of this paper are the
following:

– We describe how to implement a search algorithm
for domain-independent planning based on RRTs.

– We propose a general and efficient way of em-
ploying domain-independent reachability heuris-
tics for their use as the distance estimator in the
RRT.

– We present a method based on constraint satisfac-
tion to sample implicit search spaces at random.

– We perform experimentation over a broad set of
domains analyzing the impact of the different pa-
rameters that characterize the algorithm.

This document is organized as follows: first, some
background and an analysis of previous works will
be given; next, the advantages of using RRTs in au-
tomated planning will be presented as well as a de-
scription of how to overcome some problems regard-
ing their implementation; later, some experimentation
will be done to back up our claims; and, finally, some
conclusions and future lines of research will be added.

2. Background

In this section we will present both automated plan-
ning and RRTs. Regarding RRTs, this includes both
the original definition as a data structure and its subse-
quent evolution as a single-query search algorithm in
motion planning.

2.1. Automated Planning

A propositional formalization of a planning task is
defined as a tuple P = (S,A, I,G), where S is a set of
atomic propositions (also known as facts), A is the set
of grounded actions derived from the operators of the
domain, I ⊆ S is the initial state, G ⊆ S the set of goal
propositions. We also define c(a) as the cost of apply-
ing action a ∈ A in any state s ⊆ S. Each action a ∈ A
is defined as a triple (pre(a), add(a), del(a)) (precon-
ditions, add effects and delete effects) where pre(a),
add(a), del(a) ⊆ S.

Finding a solution to a planning problem P con-
sists of generating a sequence of actions (a1,a2, . . . ,an)
where ai ∈ A. The solution plan is related to a sequence
of states (s0,s1,s2, . . . ,sn) such that si ⊆ S, s0 = I ,
G ⊆ sn and si results from executing the action ai ∈ A
in the state si−1, ∀i = 1..n. The cost of a plan is defined

by
n
∑

i=1
c(ai).

2.2. Rapidly-exploring Random Trees

RRTs [29] were proposed as both a sampling al-
gorithm and a data structure designed to allow fast
searches in high-dimensional spaces in motion plan-
ning. RRTs are progressively built towards unexplored
regions of the space from an initial configuration. Con-
figurations describe the position, orientation and veloc-
ity of the movable objects in motion planning and are
equivalent to states in other search applications.

At start, the algorithm creates a tree containing the
initial configuration. At every step, a random qrand con-
figuration is chosen from all the configuration space
and for that configuration the nearest configuration al-
ready in the tree qnear is computed. For this a defini-
tion of distance is required (in motion planning the eu-
clidean distance is usually chosen as the distance mea-
sure). When the nearest configuration is found, a lo-
cal planner tries to join qnear with qrand with a limit
distance ε. If qrand was reached, it is added to the tree
and connected with an edge to qnear. If qrand was not
reached, then the configuration qnew obtained at the end
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Fig. 1. Progressive construction of an RRT.

of the local search is added to the tree in the same
way as long as there was no collision with an obsta-
cle during search. In the search literature, the term lo-
cal search refers to search algorithms that do not keep
track of all the states that they have visited. The most
representative algorithm of this kind is Hill Climbing,
although many others exist. Here, though, whenever
we use the term local search we mean the process of
solving the subproblem needed to create a new branch
of the tree. This operation is called the Extend step,
illustrated in Figure 2. This process is repeated until
some criterion is met, like a limit on the size of the tree.
Algorithm 1 gives an outline of the process.

Fig. 2. Extend phase of an RRT.

Once the RRT has been built, multiple queries can
be issued. For each query, the nearest configurations
(node) of the tree to both the initial and the goal con-
figurations of the query are found. Then, the initial and
final configurations are joined to the tree to those near-
est configurations using the local planner and a path is
retrieved by tracing back edges through the tree struc-
ture.

The key advantage of RRTs is that they are intrin-
sically biased towards regions with a low density of

Algorithm 1: Description of the building process
of an RRT.

Data: Search space S, initial configuration qinit ,
limit ε, ending criteria end

Result: RRT tree
begin

tree←− qinit
while ¬ end do

qrand ←− sampleSpace(S)
qnear←− nearest(tree,qrand ,S)
qnew←− join(qnear,qrand ,ε,S)
if reachable(qnew) then

addConfiguration(tree,qnear,qnew)

return tree
end

configurations in their building process. This can be
explained by looking at the Voronoi diagram at every
step of the building process. The Voronoi diagram is
composed by Voronoi regions; Voronoi regions associ-
ated to a given node q of the tree are areas such that
every point in the area is closer to q than to any other
node q′ of the RRT. The Voronoi region of a given
node is larger when the area around that node has not
been explored. This way, the probability of a configu-
ration being sampled in an unexplored region is higher
as larger Voronoi regions will be more likely to con-
tain the sampled configuration [3]. This has the advan-
tage of naturally guiding the tree by extending nodes at
the edge of unexplored regions with a higher probabil-
ity while just performing uniform sampling. Besides,
the characteristics of the Voronoi diagram are indica-
tive of the adequateness of the tree. For example, a tree
whose Voronoi diagram is formed by regions of sim-
ilar size covers uniformly the search space, whereas
large disparities in the size of the regions mean that the
tree may have left big areas of the search space unex-
plored. Apart from this, another notable characteristic
is that RRTs are probabilistically complete, as they will
cover the whole search space if the number of sam-
pled configurations tends to infinity. Figure 3 shows
the Voronoi diagrams of the RRTs previously shown in
Figure 1.

2.3. RRT-Connect

After corroborating how successful RRTs were for
multi-query motion planning problems, researchers in
motion planning realized that using multi-query RRTs
was often more efficient and robust than using spe-
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Fig. 3. Voronoi Diagram of an RRT.

cific single-query motion planning algorithms even
for a single query. Motivated by this fact and aim-
ing to develop a more suitable RRT-like algorithm
for the single-query case, a variation for single-query
problems called RRT-Connect was proposed [27]. The
modifications introduced were the following:

– Two trees are grown at the same time by alter-
nately expanding them. The initial configuration
of the trees are the initial and the goal configura-
tion respectively.

– The trees are expanded towards randomly sam-
pled configurations with a probability p, and to-
wards the nearest node of the opposite tree with a
probability 1− p. Hence, with a probability 1− p
the closest distance among the m× n distances
between nodes from both trees is found and the
node of the expanding tree is expanded towards
the node of the non-expanding tree. With a prob-
ability p a random configuration is sampled and
both trees are expanded as usual.

– The Expand phase is repeated several times until
an obstacle is found. The resulting nodes from the
local searches limited by ε are added to the tree.
This is called the Connect phase.

Growing the trees from the initial and the goal con-
figurations and towards the opposite tree gives the al-
gorithm its characteristic single-query behavior. The
Connect phase was added after empirically testing that
the additional greediness that it introduced improved
the performance in many cases. A common modifica-
tion is also extending the tree towards the opposite tree
after every qnew is added when sampling randomly, ex-
tending from that qnew configuration towards the op-

posite tree. This helps in cases in which both trees are
stuck in regions of the search space that are close as
per the distance measure, but in which local searches
consistently fail due to obstacles.

3. Previous Work

Although RRTs have not been frequently used in ar-
eas other than motion planning, there is previous work
in which they have been employed for problems rel-
evant to automated planning. In particular, an adapta-
tion of RRTs for discrete search spaces and a planning
search algorithm similar to RRT-Connect have been
proposed.

3.1. RRTs in Discrete Search Spaces

Despite RRTs being designed for continuous search
spaces, researchers from other areas proposed their im-
plementation for search problems in discrete search
spaces [33]. The main motivation of this work was
adapting the RRTs to grid worlds and similar clas-
sical search problems. Its authors analyzed the main
challenges of adapting RRTs, in particular the need of
defining an alternative measure of distance to find the
nearest node of the tree to a sampled state and the is-
sues related to adapting the local planner that must sub-
stitute the Expand phase of the traditional RRTs. The
proposed alternative to the widely used euclidean dis-
tance was an “ad-hoc” heuristic estimation of the cost
of reaching the sampled state from a given node of the
tree. As for the local planner, the limit ε that was used
to limit the reach of the Expand phase was substituted
by a limit on the number of nodes expanded by the lo-
cal planner. In this case, once the limit ε was reached
the node in the local search with the best heuristic es-
timate towards the sampled space was chosen, and ei-
ther only that node or all the nodes on the path leading
to it were added to the tree.

While the approach was successful for the proposed
problems, there are two main problems that make it im-
possible to adapt it to automated planning in a straight-
forward way. First, the search spaces in the experimen-
tation they performed are explicit, whereas in auto-
mated planning the search space is implicit. This adds
an additional complexity to the sampling process that
must be dealt with in some way. Second, the heuristics
for both the distance estimation and the local planners
were designed individually for every particular prob-
lem and thus are not useful in the more general case of
automated planning.
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3.2. RRT-Plan

Directly related to automated planning, the planner
RRT-Plan [9] was proposed as a stochastic planning al-
gorithm inspired by RRTs. In this case, the EHC search
phase of FF [23], a deterministic propositional planner,
was used as the local planner. The building process of
the RRT was similar to the one proposed for discrete
search spaces; that is, to impose a limit on the number
of nodes as ε and add the expanded node closest to the
sampled state to the tree. In this case, though, the tree
was built only from the initial state due to the difficulty
of performing regression in automated planning.

The key aspects in this work are two: the computa-
tion of the distance necessary to find the nearest node
to the sampled or the goal state, and sampling in an
implicit search space. In RRTs one of the most criti-
cal points is the computation of the nearest node in ev-
ery Expand step, which may become prohibitively ex-
pensive as the size of the tree grows with the search.
The most frequently used distance estimations in auto-
mated planning are the heuristics based on the reach-
ability analysis in the relaxed problem employed by
forward search planners, like the hadd heuristic used
by HSP [5] or the relaxed plan heuristic introduced by
FF [23]. The problem with these heuristics is that, al-
though computable in polynomial time, they are usu-
ally still relatively expensive to compute, to the point
that they usually constitute the bottleneck in satisficing
planning. To avoid recomputing the reachability anal-
ysis from every node in the tree, every time a new lo-
cal search towards a state is done, the authors propose
caching the cost of achieving every goal proposition
from a node whenever that node is added to the tree.
This way, by adding the costs of the propositions that
form the sampled state, hadd can be obtained without
needing to perform a reachability analysis.

Regarding sampling, RRT-Plan does not sample the
search state uniformly. Instead, it chooses a subset of
propositions s ⊆ S from the goal set such that s ⊆ G
and uses s as qrand . This is due to the fact that, although
sampling a state by choosing random propositions in
automated planning is trivial, determining whether a
given sampled state belongs to the search space is
PSPACE-complete, as it is as hard, in terms of com-
putational complexity, as solving the original problem
itself. This problem is avoided by the sampling tech-
nique of RRT-Plan in the sense that, if the problem is
solvable, G must be reachable. Hence, any of its pos-
sible subsets is also reachable. In addition, RRT-Plan
performs goal locking; i.e., when a goal proposition p

that was part of a given sampled state s ⊆ G | p ∈ s is
achieved, any subsequent searches from the added qnew
node and its children nodes are not allowed to delete p.

Whereas RRT-Plan effectively addresses the prob-
lem of sampling states in implicit search spaces, this
kind of sampling limits most of the advantages RRTs
have to offer. By choosing subsets of the goal set in-
stead of sampling more uniformly the search space, the
RRT does not tend to expand towards unexplored re-
gions. Thus, it loses the implicit balance between ex-
ploration and exploitation during search that character-
izes them. In fact, by choosing this method, RRT-Plan
actually benefits from random guesses over the order
of the goals instead of exploiting the characteristics of
RRTs. As a side note, this could actually be seen as a
method similar to the goal agenda [26], albeit with ran-
dom selection of subsets and the possibility in this case
to recover from wrong orderings.

4. Advantages of RRTs in Automated Planning

As mentioned in the introduction, during the last
years there has been a big improvement in performance
in the area of propositional planning. The most repre-
sentative approach among those that contributed to this
improvement is the use of forward heuristic search al-
gorithms along with reachability heuristics and other
associated techniques. However, heuristic search plan-
ners suffer from several problems that detract from
their performance. These problems are related mainly
to the characteristics of the search space that most com-
mon planning domains have. Search spaces in auto-
mated planning tend to have big plateaus in terms of
the h value. The high number of transpositions and the
high branching factor that are characteristic of many
domains aggravate this fact. Heuristic search planners
that use best-first search algorithms are particularly af-
fected by this, as they consider total orders when gen-
erating new nodes and are mostly unable to detect sym-
metries and transpositions during search. It has been
shown that techniques that increase the greediness of
the search algorithm, like helpful actions from FF and
look-ahead states from YAHSP [40], tend to partially
alleviate these problems. However, even though reach-
ability heuristics have proved to be relatively reliable
for the most part, in some cases they can also be quite
misguided. This increased greediness can be disadvan-
tageous at times.

Figure 4 shows a typical example of a best-first
search algorithm getting stuck in an h plateau due
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to inaccuracies in the heuristic. In this example, the
euclidean distance used as heuristic ignores the ob-
stacles. Because of this, the search advances forward
until the obstacle is found. Hence, the search algo-
rithm must explore the whole striped area before it
can continue advancing towards the goal. This high-
lights the imbalance between exploitation and explo-
ration these approaches have. This problem has been
previously studied, and several methods that tried to
minimize its negative impact on search have been pro-
posed [30,38]. However, this imbalance still remains
as one of the main shortcomings of best-first search al-
gorithms. To partially address this issue, we consider
expanding nodes towards randomly sampled states so
a more diverse exploration of the search space is done.
In this example, a bias that would make the search
advance towards qrand could avoid the basin flooding
phenomenon that greedier approaches suffer from.

Fig. 4. Simple example of a best-first search algorithm greedily ex-
ploring an h plateau due to the heuristic ignoring the obstacles. Ad-
vancing towards some randomly sampled state like qrand can allevi-
ate this problem.

RRTs incrementally grow a tree towards both ran-
domly sampled states and the goal. Therefore, they are
less likely to suffer from the same problem as best-first
search algorithms. The main advantages that they have
over other algorithms in automated planning are the
following:

– They keep a better balance between exploration
and exploitation during search.

– Local searches minimize exploring plateaus, as
the maximum size of the search is bounded.

– They use considerably less memory, as only a rel-
atively sparse tree must be kept in memory.

– They can employ a broad range of techniques dur-
ing local searches.

All in all, the alternation of random sampling and
search towards the goal that single-query RRTs have is
their most characterizing aspect. Thanks to this, they
do not commit to a specific area of the search space and
hence they tend to recover better than best-first search
from falling into local minima. In terms of memory, the

worst case is the same for best-first search algorithms
and RRTs. However, RRTs must keep in memory only
the tree and the nodes from the current local search.
Trees are typically much sparser than the area explored
by best-first algorithms, which makes them much more
memory efficient on average. Memory is usually not
a problem in satisficing planning because of the time
needed for the heuristic computation, although in some
instances it can be an important limiting factor.

5. Implementing the RRT

Due to the differences in the search space, adapting
RRTs from motion planning to automated planning is
not trivial. In this work we propose an implementation
partially based on RRTs for discrete search spaces and
RRT-Plan with some changes critical to their perfor-
mance.

5.1. Sampling

The main reason why RRTs have not been consid-
ered for automated planning is the difficulty of prop-
erly sampling the search space. The difficulty arises
from the fact that choosing propositions from S at ran-
dom may lead to generating spurious states. Spurious
states were initially defined as states that are not reach-
able from I [5], although other definitions exist [44]. In
fact, there may be the case that a state reachable from I
is unreachable from G in regression (such a state would
be a dead end in progression), so a more general def-
inition of spurious state is a state that cannot belong
to any solution path of the problem. RRT-Plan circum-
vented this by substituting uniform sampling with sub-
sets of goal propositions. However, this negates some
of the advantages that RRTs have, as explained before.

Checking whether a state is spurious or not is as
hard as solving the problem itself [10], so an approx-
imative approach must be used instead. Here we pro-
pose the use of state invariants as constraints to re-
duce the chances of obtaining a spurious state when
uniformly sampling the search space. In particular,
we propose the use of mutually exclusivity between
propositions [5] (already employed by evolutionary
planners like DAEX [4], which decomposes the prob-
lem using sampling techniques) and “exactly-1” in-
variant groups.
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5.1.1. Mutually Exclusivity Between Propositions
First, we will define mutually exclusivity between

propositions.

Definition 1. (Mutex) A set of propositions M =
{p1, . . . , pm} | pi ∈ S is mutually exclusive of size m
(mutex of size m) if there is no state s ⊆ S that may
belong to a solution path such that M ⊆ s.

A common example of mutex is the location of an
object in a transportation problem. For instance, in the
Logistics domain, the propositions (at truck1 loc1) and
(at truck1 loc2) are mutex, as a truck cannot be in two
places at the same time. The previous example is a mu-
tex of size 2 (also known as a binary mutex), but mu-
texes of greater size are also possible. An example of
mutex of size 3 in the Blocksworld domain is a tower of
three blocks that forms a cycle, i.e. M={(on A B), (on
B C), (on C A)}. An important remark is that no subset
of two elements of M is a mutex, which means that mu-
texes of greater size cannot be built parting from sets
of mutexes of smaller size.

The most common method to find mutexes is the
hm heuristic [5]. hm performs a reachability analysis in
Pm [20], a semi-relaxed version of the original prob-
lem in which the atoms are actually sets of m propo-
sitions. This way, if the value of an m atom is infinite
(which means that it is unreachable in Pm), then we can
conclude that the unreachable atom is a mutex of size
m. However, the time needed to compute hm grows ex-
ponentially with m, so in most cases it is impractical
to compute mutexes of size greater than two. In fact,
increasing the size of m is a clear case of diminishing
returns, as the bigger the size of the mutex the fewer
spurious states will tend to contain it, and thus the less
useful it will probably be to detect spurious states.

Another method for finding binary mutexes is the
monotonicity analysis generally employed to gener-
ate a multi-valued formalization of the problem [22].
This monotonicity analysis ensures that the number
of propositions true at the same time that belong to
a set Ig = {p0, p1, . . . , pn} can never increase. Hence,
if the number of propositions of Ig true in the ini-
tial state is one (formally, |Ig ∩ I| = 1), then all pos-
sible pairs of propositions of Ig are binary mutexes
(∀Pm = {pi, p j}|pi, p j ∈ Ig ∧ pi 6= p j, Pm is a binary
mutex). For example, in a Logistics problem in which a
truck can move between three different locations loc1,
loc2 and loc3, the number of propositions true in the
set Ma={(at truck1 loc1), (at truck1 loc2), (at truck1
loc3)} can never increase, as whenever a truck moves
to a location it must leave the location of origin. There-

fore, we can infer that {(at truck1 loc1), (at truck1
loc2)}, {(at truck1 loc1), (at truck1 loc3)} and {(at
truck1 loc2), (at truck1 loc3)} are binary mutexes.

In terms of efficiency, computing the monotonicity
analysis is in most cases much more efficient that com-
puting h2, as it works exclusively with the domain defi-
nition and the initial state. However, the set of mutexes
found by the monotonicity analysis is a strict subset of
the set of mutexes found by h2. For this reason, in this
work we will use h2 to compute mutexes.

Another advantage of h2 is that it can be computed
backwards too in order to find extra mutexes [19].
This is done by reversing the domain as proposed by
Massey [32] and performing a backwards reachability
analysis in P2 after deducing which propositions are
false in s? with mutexes computed forward. Mutexes
computed backward, as opposed to regular mutexes,
are violated in spurious states reached forward during
search.

5.1.2. “exactly-1” Invariant Groups
Mutexes alone may not suffice to prune spurious

states [1]. For instance, in the Floortile domain, cells
can be either clear, painted or occupied by some robot.
One can sample a state s⊆ S by choosing propositions
from S at random and discarding propositions mutex
with the chosen ones, like DAEX does. By doing this it
is possible to obtain a state s in which there are fewer
occupied cells than robots. In such a state at least one
robot would not be at any location at all because all
cells are either clear or occupied by another robot, and
hence s would be spurious. Figure 5 shows a state of
the Floortile domain in which a robot cannot be placed
anywhere.

Fig. 5. Example of spurious sampled state in the Floortile domain.
The second robot has no valid location, because all cells are either
clear or occupied by another robot.

In order to avoid this, “exactly-1” invariant groups
can be used.

Definition 2. (“exactly-1” invariant group) An “exactly-
1” invariant group is a set of propositions I1 =
{p1, . . . , pm}|pi ∈ S such that in every non-spurious
state s⊆ S there is exactly one proposition p ∈ I1 such
that p∈ s. Formally, ∀s⊆ S such that s is non-spurious,
|I1∩ s|= 1.
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By using “exactly-1” invariant groups one can infer
an additional state invariant: if Ig = {p0, p1, . . . , pn} is
an “exactly-1” invariant group, then (p0∨ p1∨ . . .∨ pn)
is a state invariant of the problem. “exactly-1” invari-
ant groups can be derived from any binary mutex com-
putation method. Candidate sets of propositions are
sets Ig = {p0, p1, . . . , pn} such that all possible pairs of
propositions of Ig are binary mutexes, like the invari-
ant groups obtained from the aforementioned mono-
tonicity analysis. For a candidate set of propositions
Ig to be an “exactly-1” invariant group, every action
a ∈ A that adds a proposition p ∈ Ig must also delete
exactly one proposition p′ ∈ Ig and vice versa. Then,
Ig is an “exactly-1” invariant group. Formally, Ig is
an “exactly-1” invariant group if ∀pi, p j ∈ Ig|i 6= j
then pi, p j are mutex and ∀a ∈ A : |add(a) ∩ Ig| =
|del(a)∩ Ig|= 1.

5.1.3. Selecting Propositions
Sampling a state using state invariants as constraints

is analogous to solving a Constraint Satisfaction Prob-
lem (CSP). A CSP is formally defined as a triple
CSP=(V,D,C), where V are the variables of the prob-
lem, D are the domains of the variables in D and C
are the constraints of the problem. In this CSP the
“exactly-1” invariant groups are the variables in V, the
propositions of the “exactly-1” invariant groups are the
domain D of the variables in V and the binary mutexes
of the problem are the constraints of C. The objective
is to choose a proposition p ∈ S from every “exactly-
1” invariant group I1 such that it is not mutex with any
other chosen proposition p′ ∈ S. This ensures that the
complete sampled state s ∈ S satisfies all “exactly-1”
invariant groups and does not violate any binary mutex.

Solving a CSP is NP-complete. Actually, for some
planning instances solving the CSP that represents the
sampling process may be on average very time con-
suming if it is done naively. In our implementation we
use forward checking [18] to improve the performance
of the backtracking procedure needed for solving the
CSP. The order of the variables (the order in which the
“exactly-1” invariant groups are selected to be satis-
fied) is static, although it may vary between different
sampling processes. “exactly-1” invariant groups with
the highest cardinality are chosen first, with ties broken
randomly every time a new state is sampled. Ordering
of values of variables is chosen at random. This aims to
reproduce the behavior of the degree (most constrain-
ing variable) heuristic [6] while trying to obtain sam-
pled states as diverse as possible.

5.1.4. Ensuring the Reachability of Goals
Even after using state invariants, it may happen that

the goal is not reachable from the sampled state. For
example, a sampled state in the Sokoban domain may
contain a configuration of blocks such that some block
cannot be moved anymore. While this sampled state
may not violate any state invariant, the sampled state is
a dead end unless the unmovable blocks are at a goal
location, since the original goal is not reachable. To ad-
dress this problem, a regular reachability analysis can
be done from the sampled state. If some proposition
p ∈ G is unreachable, then the sampled state can be
safely discarded. This is again an incomplete method,
but in cases such as the aforementioned one it is useful
to detect spurious states.

5.2. Distance Estimation

One of the most expensive steps in an RRT is finding
the closest node to a sampled state. Besides, the usual
distance estimation in automated planning, the heuris-
tics derived from a reachability analysis, are also com-
putationally costly. RRT-Plan solved this by caching
the cost of achieving a goal proposition from every
node of the tree and using that information to com-
pute hadd , just like HSPr does [5] when searching back-
wards. Despite being an efficient solution, this shares
the same problem as HSPr: only hadd can be computed
using that information. hadd tends to greatly overesti-
mate the cost of achieving the goal set and other heuris-
tics of the same kind, like the FF heuristic, are on av-
erage more accurate [16]. Therefore, in our implemen-
tation, best supporters, that is, actions that first achieve
a given proposition in the reachability analysis, are
cached as proposed by Alcázar et al. [1]. This allows
to compute not only hadd but also other heuristics like
the FF heuristic (by tracing back the relaxed plan using
the cached best supporters). The time of computing the
heuristic once the best supporters are known is usually
very small compared to the time needed to perform the
reachability analysis - linear in the size of the relaxed
plan -, so this approach allows to get more accurate (or
diverse) heuristic estimates without incurring a signif-
icant overhead.

5.3. Tree Construction

RRTs can be built in several ways. The combina-
tion of the Extend and Connect phases, the possibility
of greedily advancing towards the goal with a proba-
bility 1− p instead of sampling with a probability p,
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the way new nodes are added (only the closest node to
the sampled state or all the nodes on the path to that
state),. . . allow for a broad range of different options.
In this work, we have chosen to build the tree in the
following way:

– the tree is built from the initial state I only, as re-
gression is overall not as efficient as progression
in automated planning [1];

– every node in the tree contains a state, a link to
its parent, a plan that leads from its parent to the
state, and the cached best supporters for every
proposition q ∈ S so hFF can be computed effi-
ciently;

– ε limits the number of expanded nodes in every
local search (limiting the time is another possi-
ble stopping criterion, but we preferred to use the
same implementation as RTT-Plan);

– there is a probability p of advancing towards a
sampled state and a probability 1− p of advancing
towards the goal from the closest node to the orig-
inal goal G. It may happen that the closest node to
G was already expanded towards G in an earlier
iteration and the new generated node qnew from
that expansion is farther from the goal than G; that
is, hFF(qnew)> hFF(qnear). Since planners are for
the most part deterministic, it does not make sense
to repeat the search - it would lead to the same
qnew -, so in fact the node selected with a proba-
bility 1− p is the closest node among those that
have never served as the origin of a local search
towards the goal before;

– a single node is added to the tree after every local
search (instead of all the nodes along the solution
path) to try to obtain a sparse yet representative
enough tree;

– when performing a local search, if a solution for
the subproblem was not found, the last expanded
node is added to the tree (be it when expanding
towards a sampled state or the original goal G it-
self) to add to the tree the most promising node
among those generated during the local search;

– after adding a new node qnew from the local search
towards a sampled state, a new local search from
qnew to qgoal is performed.

No Connect phase is performed. This is because the
Connect phase is probably counter-productive if it is
done towards sampled states - sampled states may be
completely irrelevant to the solution and the main ben-
efit obtained from them is the additional bias towards
exploration anyway - and partially overlaps with the
expansions towards the goal with a probability 1− p.

This configuration is the basis of the planner pre-
sented in this paper; we called this planner Randomly-
exploring Planning Tree (RPT). Algorithm 2 describes
the whole process.

Algorithm 2: Search process of RPT.
Data: Search space S, limit ε, initial state qinit ,

goal qgoal
Result: Plan solution
begin

tree←− qinit
while ¬ goalReached() do

if random()< p then
qrand ←− sampleSpace(S)
qnear←− nearest(tree,qrand ,S)
qnew←− join(qnear,qrand ,ε,S)
addNode(tree,qnear,qnew)
qneargoal ←− qnew

else
qneargoal ←− nearest(tree,qgoal ,S)

qnewgoal ←− join(qneargoal ,qgoal ,ε,S)
addNode(tree,qneargoal ,qnewgoal )

solution←− traceBack(tree,qgoal)
return solution

end

5.4. Choice of the Local Planner

The choice of the planner used in the local search
is subject to some restrictions. First, after every Ex-
tend phase a new node to the tree is added even if a
solution for the subproblem could not be found. This
means that the local planner must be able to return
an executable plan also when no solution was found,
which rules out some planning paradigms like partial-
order planners [43] and SAT-based planners [37]. Sec-
ond, the tree is built forward, so the local planner
must return a forward-executable plan. Again, back-
ward search planners like HSPr [5] and FDr [1] cannot
be used for this reason. Another important point is the
preprocessing time. Since multiple local searches may
be done, it is desirable that the time spent by the lo-
cal planner prior to search is as short as possible. For
example, the use of heuristics that require a relatively
long preprocessing time and depend on either the ini-
tial state or the goals, like Pattern Databases [14], are
discouraged.

In this work, the Fast Downward planning sys-
tem [21] was used as the local planner. It was config-
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ured to use greedy best-first search with lazy evalu-
ation as its search algorithm. The heuristic is the FF
heuristic [23]. Preferred operators obtained from the
FF heuristic were enabled.

6. Experimentation

In this section, we test the proposed approach
against other state-of-the-art planners. The maximum
available memory was set to 6GB and the time limit
was 1800 seconds, as in the last International Planning
Competition (IPC-2011). The selected domains were
all the domains from the deterministic track of the past
IPCs. In the cases in which a domain appeared in more
than one competition, we selected the instances from
the hardest set. The criteria are the same as the ones
used by Rintanen [37]. Additionally, we used the test
problems from the learning track of the 2008 and 2011
IPCs for those domains that were not used in the deter-
ministic track. The exception is the Sokoban domain;
the definition of the domain and the structure of the
problems are significantly different from the ones of
the deterministic track, so we employed both versions.
We call the version from the learning track Sokoban-
learning. In this section, we will focus on the number
of problems solved (also known as coverage), so all
actions will be treated as if they had unit cost.

RPT was implemented on top of Fast Downward [21].
Since RRTs are stochastic algorithms, the experiments
are repeated five times and the arithmetic mean and
standard deviation are reported. The computation of h2

was implemented in Fast Downward and the mutexes
obtained from the computation of h2 forward and back-
ward. “exactly-1” invariant groups were obtained from
the monotonicity analysis done by the translator of Fast
Downward. To further exploit the state invariants, spu-
rious actions were pruned by disambiguating their pre-
conditions [1]. We set a limit of 300 seconds for the h2

computation and the disambiguation of actions.
The planners we compare against are the local plan-

ner itself described in Section 5.4, that we call FD, and
the first phase of the LAMA planner [36], the winner of
the IPCs held in 2008 and 2011. We used the last revi-
sion from Fast Downward’s public repository for both
planners.1 In fact, LAMA is the same as FD, but also
uses an additional landmark counting heuristic com-
bined with the regular FF heuristic. Preferred operators
are obtained from the landmark heuristic too and the fi-

1As of December 2013, revision 3288.

nal set of preferred operators is the union of the sets of
preferred operators obtained from both heuristics. Both
heuristics are combined in an alternation queue. This
queue expands the best node as per the correspondent
heuristic alternatively at every node expansion.

There are two critical parameters that affect the be-
havior of RPT in our implementation: the limit on the
number of expanded nodes in the local search ε and
the probability p of expanding towards a sampled state
instead of towards the original goal G. In the experi-
mentation we tried six different combinations resulting
from combinations of ε and p. The values used for ε

were ε = 10000,100000. The values used for p were
p = 0.2,0.5,0.8. By experimenting with different ver-
sions we aim to understand which are the factors that
can have an impact on the performance of the algo-
rithm.

Additionally and for the sake of completeness, we
compare the aforementioned configurations of RPT
against a configuration with an artificially low ε of
ε = 1000 and p = 0.5 and with a version named
goals which, instead of sampling as described in Sec-
tion 5.1.3, samples by choosing random subsets of
goals. This is so to compare our sampling approach
with the sampling approach originally proposed by
RRT-Plan. The goals version has ε = 10000 and p =
0.5 as parameters.

6.1. Coverage

Table 1 shows the coverage (mean and standard de-
viation over 5 runs) of all the evaluated planners. Re-
sults show that RPT is overall better than the base plan-
ner FD and competitive with the state-of-the-art plan-
ner LAMA. Total coverage favors all the tested config-
urations of RPT but the one with ε = 1000 and goals
over both FD and LAMA.

A more detailed comparison on a per domain ba-
sis shows that performance depends in a significant
number of cases on the domain. For instance, RPT is
notably better in Airport, Floortile, Sokoban-learning
and Storage, whereas FD and LAMA are better in Bar-
man and N-puzzle. The domains in which RPT per-
forms better are often those in which there are dead
ends undetectable by reachability heuristics, which
cause FD and LAMA to explore big sterile plateaus.
Note that Floortile, Sokoban-learning and Storage
have a similar structure, as achieving the closest goal
proposition first often leads to a dead end; in this case
the additional exploration induced by the sampling
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Planners: FD LAMA 10k 0.2 10k 0.5 10k 0.8 100k 0.2 100k 0.5 100k 0.8 1k 0.5 goals

Airport(50) 35 32 45±1.41 45.6±0.55 46±0 41.6±1.67 43.8±0.84 43±2.12 46±0 40.4±1.52

Barman(20) 20 20 3±0.71 3±1.58 2.4±1.14 9.8±0.84 8.2±1.1 8.2±1.1 1.4±0.89 19.8±0.45

Blocks(35) 35 35 35±0 35±0 35±0 35±0 35±0 35±0 35±0 35±0

Depot(22) 18 21 20.2±0.84 20.8±0.84 20±1.22 19.6±0.89 19.6±0.89 19.8±0.84 18.2±0.84 22±0

Driverlog(20) 20 20 20±0 20±0 20±0 20±0 20±0 20±0 18±0 19±0

Elevators(20) 19 20 20±0 20±0 20±0 19.8±0.45 19.8±0.45 19.8±0.45 19.4±0.89 20±0

Floortile(20) 7 6 20±0 20±0 20±0 20±0 20±0 20±0 19.8±0.45 20±0

Freecell(80) 79 79 80±0 80±0 80±0 80±0 80±0 80±0 80±0 77.8±1.3

Gold-miner(30) 30 30 30±0 30±0 30±0 30±0 30±0 30±0 30±0 30±0

Grid(5) 5 5 5±0 5±0 5±0 5±0 5±0 5±0 5±0 5±0

Gripper(20) 20 20 20±0 20±0 20±0 20±0 20±0 20±0 20±0 20±0

Logistics(35) 34 35 35±0 35±0 35±0 34.4±0.55 34.6±0.55 34.8±0.45 34.6±0.55 35±0

Matching-bw(30) 20 25 30±0 30±0 30±0 30±0 30±0 30±0 30±0 30±0

Miconic(150) 150 150 150±0 150±0 150±0 150±0 150±0 150±0 150±0 150±0

Movie(30) 30 30 30±0 30±0 30±0 30±0 30±0 30±0 30±0 30±0

Mprime(35) 35 35 35±0 35±0 35±0 35±0 35±0 35±0 35±0 34.8±0.45

Mystery(20) 16 19 19±0 19±0 19±0 19±0 19±0 19±0 19±0 17.2±0.45

Nomystery(20) 9 13 12.2±0.84 11±1 10.8±0.84 10.6±0.89 10.8±0.84 10±1 12.4±1.14 7±0.71

N-puzzle(30) 28 30 20.6±1.34 21.2±0.84 20.4±0.89 25.4±0.55 25.8±0.84 26±1 10.2±1.92 30±0

Openstacks(20) 20 20 19.8±0.45 20±0 20±0 19.6±0.89 19.2±0.84 17.6±1.34 20±0 20±0

Parcprinter(20) 20 20 20±0 20±0 20±0 20±0 20±0 20±0 20±0 20±0

Parking(20) 20 20 19.8±0.45 19.8±0.45 20±0 19.8±0.45 19.6±0.55 19±1.22 20±0 20±0

Pathways-noneg(30) 30 30 30±0 30±0 30±0 30±0 30±0 30±0 29.8±0.45 29.6±0.55

Pegsol(20) 20 20 20±0 20±0 20±0 19.8±0.45 20±0 20±0 20±0 19.4±0.55

Pipesworld-notank(50) 43 44 43.2±0.45 43.4±0.55 44.2±1.3 43.8±0.45 43.4±0.55 43.4±0.89 44.2±1.1 43.4±1.14

Pipesworld-tank(50) 39 41 40.2±0.84 40.4±0.89 40.4±1.52 41.2±0.84 39.8±1.3 39.6±1.34 41.4±0.89 38.4±1.67

PSR-small(50) 50 50 50±0 50±0 50±0 50±0 50±0 50±0 50±0 50±0

Rovers(40) 40 40 40±0 40±0 40±0 40±0 40±0 40±0 39.8±0.45 40±0

Satellite(36) 36 36 35.6±0.55 35.4±0.55 35.4±0.55 35.8±0.45 35.2±0.84 34.4±0.89 35.2±0.45 36±0

Scanalyzer(20) 19 20 19.8±0.45 20±0 20±0 19.2±0.45 20±0 19.8±0.45 19.8±0.45 20±0

Sokoban(20) 19 17 12.8±1.1 14.2±0.84 14.6±1.14 16.4±1.14 16.4±1.14 17.2±0.84 12±1 5.4±0.55

Sokoban-learning(30) 24 21 30±0 30±0 30±0 30±0 30±0 30±0 30±0 11±1.22

Spanner(30) 0 0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Storage(30) 20 19 25.8±0.84 26±1 26.6±1.14 24.2±1.3 24.4±1.14 25.6±0.89 25.6±0.89 19.4±0.89

Tidybot(20) 13 14 18±1 17.4±0.55 18±0 17.6±0.55 17.4±1.14 17.6±0.55 17.8±0.45 19.2±0.84

Tpp(30) 30 30 30±0 30±0 30±0 30±0 30±0 30±0 30±0 30±0

Transport(20) 11 17 13±0.71 13.2±1.1 14±0.71 11.8±0.84 11.2±0.84 9.6±1.67 12.8±1.3 17.6±1.34

Trucks-strips(30) 19 18 22±1 23.2±0.45 23±1 20.8±1.48 21.8±1.1 23±1 21.2±0.84 9.4±0.55

Visitall(20) 3 20 14.6±1.14 13.4±1.52 10.8±0.45 11.8±0.45 10.8±0.45 7.6±0.55 2.6±0.55 13.8±0.45

Woodworking(20) 20 20 20±0 20±0 20±0 20±0 20±0 20±0 20±0 20±0

Zenotravel(20) 20 20 20±0 20±0 20±0 20±0 20±0 20±0 20±0 20±0

Total 1125 1162 1174.6 1177 1175.6 1177 1175.8 1170 1146.2 1145.6

Table 1
Comparison between FD, LAMA and the different configurations of
RPT. Numbers in parentheses represent the total number of problems
in the domain. Mean and standard deviation over 5 runs reported.
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method and the limit on the number of expanded nodes
by the local search ε prove to be very beneficial.

Some domains in which RPT is outperformed by
LAMA are domains in which state invariants do not
suffice to avoid spurious states. Barman is the most
notable example, because the current definition allows
some unintended things to happen (such as a glass
containing a drink and being clean at the same time),
which reduces the number of mutexes found by in-
variant computation methods. Another very relevant
case is Visitall, in which FD is able to solve only 3
problems, LAMA solves the whole set of problems
and RPT is somewhere in the middle. The difference
between FD and LAMA is explained by the heuris-
tics they use: Visitall is a domain designed to induce
plateaus when the FF heuristic is used, but it is other-
wise easily solved with heuristics that employ additive
schemes such as the goal-counting and the landmark-
counting heuristics. However, this does not explain
why RPT behaves like it does. An important fact is
that sampling in Visitall is very problematic, as it is
possible to sample a state in which a visited cell can
be surrounded by not-visited cells, which is unreach-
able from I. However, RPT still solves more problems
than FD, which shows that the possibility of recover-
ing from exploring plateaus that RPT has compensates
the added difficulty of sampling the search space ade-
quately.

In a few domains RPT is also significantly helped by
pruning spurious actions. Floortile, Matching-bw and
Tidybot are such domains. In a modified version of FD
that performs the same preprocessing as RPT, pruning
spurious actions reduces the difference in coverage in
these domains by a large margin even if state invariants
are not exploited explicitly by FD during search.

6.2. Parameters of RPT

In this work we experiment with the two parameters
of RPT ε and p to analyze their impact. Higher values
of ε mean that the local searches are larger, whereas
p determines the balance between exploration and ex-
ploitation. Prior to the experimentation we expected to
have very different results depending on the parameters
of RPT; however, Table 1 shows that in reality the dif-
ferences are not that big. Although different configura-
tions of RPT have different coverage, their overall be-
havior compared to FD and LAMA is consistent. Also,
there is no overall winner configuration, with different
values of ε and p being more appropriate in some do-
mains than in others.

The exception to this phenomenon is the Barman
domain. As mentioned before, sampling in this domain
is more complicated due to the frequent generation of
spurious states. Because of this, larger values of ε and
smaller values of p are preferable, since they reduce
the sampling tendency of RPT and allow reproducing
a behavior closer to FD’s and LAMA’s.

The lower coverage of the configuration with ε = 1k
shows that our choice of parameters is overall ade-
quate. Nevertheless, even inadequate values of ε in
terms of total coverage may still be good for some spe-
cific domains, such as Airport and both versions of
Pipesworld, in which the ε= 1k configuration achieves
the maximum coverage. This suggests that the choice
of parameters is a complicated problem on itself and
should be analyzed for specific cases.

6.3. Tree Size

RPT builds the solution plans by concatenating the
tree edges (sequences of actions that lead from one
node of the tree to one of its children) that compose
a path from the initial node to a goal node. Table 2
shows the number of tree edges that the solution with
the highest number of tree edges in that domain has.
This information is important because it is representa-
tive of the size of the tree in the cases in which it is able
to scale up to bigger problems. The most obvious con-
clusion is that RPTs are significantly smaller than the
RRTs used in motion planning, as the local searches
are computationally much costlier in automated plan-
ning. However, in some domains in which the heuris-
tic evaluation is not as costly, like Visitall, RPT is able
to solve problems by building trees with hundreds of
edges. A notable case is the reported 587 edges that
RPT 10k 0.5 has to trace back to recover the solution
of the hardest instance that it is able to solve in Visi-
tall. Actually, several solution plans returned by RPT
in Visitall have well over 10000 actions, which high-
lights the robustness and scalability of RPT.

As expected, the size of the tree appears to be in-
versely proportional to ε. The version with ε = 1k has
consistently bigger trees than the rest of the configu-
rations, barring some domains in which the ε = 10000
version could not solve bigger instances than other
configurations could.

Another relevant fact is that many problems are
solved with a single extension even with ε = 10k.
For example, a total of 946 problems were solved by
RPT 10k 0.5 with a single extension out of the 1177
that it can solve overall. This is due to two reasons:
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Planners: 10k 0.2 10k 0.5 10k 0.8 100k 0.2 100k 0.5 100k 0.8 100k 0.5 goals

Airport(50) 5 7 4 3 3 3 14 4

Barman(20) 2 2 2 11 21 13 - 45

Blocks(35) 1 1 1 1 1 1 3 2

Depot(22) 28 32 16 9 6 7 50 12

Driverlog(20) 5 13 10 5 7 6 45 9

Elevators(20) 10 9 4 5 5 4 32 8

Floortile(20) 22 12 4 2 2 1 35 83

Freecell(80) 5 2 2 2 2 3 7 5

Gold-miner(30) 1 1 1 1 1 1 2 1

Grid(5) 2 2 2 1 1 1 5 3

Gripper(20) 1 1 1 1 1 1 2 2

Logistics(35) 6 7 3 3 2 5 18 7

Matching-bw(30) 1 1 1 1 1 1 5 7

Miconic(150) 1 1 1 1 1 1 2 2

Movie(30) 1 1 1 1 1 1 2 2

Mprime(35) 1 1 1 1 1 1 2 2

Mystery(20) 2 2 2 2 2 2 6 2

Nomystery(20) 4 5 4 4 4 4 10 2

N-puzzle(30) 5 4 9 4 4 9 28 40

Openstacks(20) 4 3 2 1 1 1 9 5

Parcprinter(20) 1 1 1 1 1 1 2 2

Parking(20) 4 4 5 2 2 2 5 9

Pathways-noneg(30) 1 1 1 1 1 1 5 2

Pegsol(20) 3 3 2 2 3 2 5 6

Pipesworld-notankage(50) 29 4 4 5 5 5 14 4

Pipesworld-tankage(50) 27 7 10 6 6 7 16 4

PSR-small(50) 1 1 1 1 1 1 7 2

Rovers(40) 1 1 1 1 1 1 8 4

Satellite(36) 4 4 2 1 1 1 10 3

Scanalyzer(20) 2 3 3 2 2 2 6 9

Sokoban(20) 11 12 12 6 5 4 20 11

Sokoban-learning(30) 5 5 5 4 3 4 13 2

Spanner(30) - - - - - - - -

Storage(30) 9 10 10 10 6 5 25 4

Tidybot(20) 5 4 3 3 3 5 14 17

Tpp(30) 1 1 1 1 1 1 6 2

Transport(20) 13 8 10 3 3 5 117 18

Trucks-strips(30) 7 7 9 5 3 4 9 2

Visitall(20) 519 587 203 137 97 42 494 225

Woodworking(20) 6 5 4 2 2 2 46 9

Zenotravel(20) 1 1 1 1 1 1 3 2

Table 2
Number of tree edges that the solution with the highest number of tree edges in that domain has.
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first, many of the domains come from old IPCs and
thus are relatively easily solved by current state-of-the-
art planners; second, most problems in planning are
solved either very quickly or not at all due to the expo-
nential blow up of the requirements in time and space
as the size of the problems increase, which is also re-
flected by the size of the tree.

6.4. Sampling

As described in Section 5.1.3, sampling a state in
an implicit search space requires solving a CSP. This
CSP tends to be very small and the time spent solv-
ing it is on average negligible. Some exceptional cases
occur though, when sampling a state takes a consider-
able amount of time. In the first run, in two problems
of Airport, two problems of Tidybot and in the whole
set of Barman problems sampling requires more than
one second. In particular, for the first four cases it re-
quires 699.55s (problem 46 of Airport), 21.88s (prob-
lem 47 of Airport), 152.53s (problem 19 of Tidybot)
and 301.75s (problem 20 of Tidybot). In the Barman
domain times range from 0.8s to not being able to sam-
ple a state under the time limit of 1800 seconds. How-
ever, in all these cases the problem is not the time re-
quired to solve the CSP, but rather that G is unreach-
able from the sampled states - which is detected by the
reachability analysis from the sampled state. For exam-
ple, in problem 46 of Airport more than 18000 states
had to be sampled before a state from which G could
be reached was found, which explains the long time
spent sampling.

To ascertain that the heuristics proposed to solve
the CSP are indeed necessary, we did some infor-
mal experimentation without them. After disabling for-
ward checking and using a random ordering of the
“exactly-1” invariant groups, in some domains solving
the CSP was just not possible. For example, in many
instances of Sokoban the backtracking algorithm was
not able to sample a random state under the time limit
of 1800 seconds. Such cases tend to occur in domains
in which there are “exactly-1” invariant groups highly
constrained by mutexes and other “exactly-1” invari-
ant groups.

Finally, the relatively worse performance of the
goals configuration, which implements RRT-Plan’s
sampling method, shows that random trees benefit
more from random sampling than from choosing sub-
sets of goals, even if the latter overcomes most prob-
lems derived from sampling in implicit search spaces.
Again, there are exceptions to this, which means that

RPT may benefit from switching from one method to
the other randomly or when sampling by solving a CSP
is not feasible.

6.5. Other Measurements

Although memory is usually not a bottleneck in sat-
isficing planning, it is interesting to test whether the
claims about the efficiency in terms of memory of RPT
are true. In the experimentation we measured the mem-
ory necessary to store the tree and the auxiliary struc-
tures that allow a faster computation of the heuristic
from the nodes of the tree. In all the problems, the
amount of memory is smaller than the memory neces-
sary to ground the problem and to compute h2. This
means that the memory needed during search by RPT
is in practice determined by ε. As a final note and to
confirm this fact, during the experimentation FD and
LAMA run out of memory before running out of time
in 40 and 25 problems respectively, whereas this never
happened with RPT.

Regarding quality, the plans returned by RPT were
consistently longer than the ones returned by FD and
LAMA whenever more than one edge was needed to
trace back the solution in RPT. Such is the case in
both versions of Sokoban, in Visitall and in N-puzzle.
For example, and using the quality score from the last
IPC, RPT 10k 0.5’s quality score in the first run is 8
points lower than FD’s in Sokoban and very similar in
Sokoban-learning despite it being able to solve 6 prob-
lems more in the latter domain. This was to be expected
though, as the added exploration and the uniform sam-
pling often cause RPT to take detours on its way to
a goal state. The same case was observed with time.
Besides, the preprocessing made by RPT can in some
cases be longer than the time spent by FD and LAMA
during search, which further skews the time score in
favor of the latter.

7. Related Work

Stochastic search has also been employed by other
planners. A prominent example is LPG [17], a plan-
ner inspired by random walk search algorithms. LPG
searches in the space of plans employing a structure
known as the action graph, choosing neighbor graphs
based on a parametrized heuristic function. The main
relation between LPG and RPT is that LPG tries to bal-
ance exploration and exploitation by performing ran-
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dom restarts. These restarts help LPG to avoid explor-
ing plateaus and local minima.

Random exploration has also been proposed in the
context of forward-chaining planning. This includes
the use of Monte-Carlo Random Walks to select a
promising action sequence [34], local search combined
with random walks [42] and the triggering of random
walks when the planner detects that it has fallen into a
heuristic plateau [31,41].

Lastly, inspired by real-time versions of RRTs [8],
an RRT-like algorithm that stochastically interleaves
search and plan reuse [39] has been proposed in [7].
In this case, the increased exploration comes from em-
ploying information from past plans instead of from
sampled states. This includes reusing both plans and
goals from previous searches.

8. Conclusions and Future Work

In this paper, we have analyzed how to adapt RRTs
for their use in automated planning. Previous work has
been studied and the challenges that the implementa-
tion of RRTs in contexts other than motion planning
posed have been presented. In the experimentation we
have shown that this approach has much potential, be-
ing able to outperform the state of the art. Besides, we
have identified the major flaws of this approach, which
may allow to obtain better results in the future.

The main challenge of the use of RRTs in automated
planning, the design of an algorithm able to sample an
implicit search space randomly, has been thoroughly
studied. This novel problem has been tackled by ex-
ploiting state invariants of the problem extensively and
formulating it as a CSP. The results show that, in do-
mains in which current methods can find most relevant
invariants, sampling is both efficient and useful.

Another of the drawbacks of RRTs, the estimation
of the closest node, has also been analyzed. In this case
we have generalized the cost-caching scheme previ-
ously proposed by the authors of RRT-Plan. Here we
employ a more general definition of caching of reacha-
bility heuristics, inspired by recent work on regression
in automated planning.

We have also examined the characteristics of the lo-
cal planners that can be used along with RPT. We iden-
tified their requirements and defined the limit ε of the
local search in terms of state-space planning.

In the experimental evaluation we have run tests
over a broad set of benchmarks. We focused on both
overall and per domain coverage, with an special em-

phasis on the defining features of the domains that
may affect the performance of RPT in comparison with
other state-of-the-art planners. Other measures have
been presented, including some specific to RRT-like al-
gorithms like tree size and sampling performance.

After this analysis, several lines of research remain
open. First, some approaches like growing two trees at
the same time in a bidirectional manner and the im-
plementation of a proper Connect phase are still un-
explored. Additionally, given how the time to compute
reachability heuristics per node varies greatly depend-
ing on the problem in automated planning, using a time
limit as ε may be an interesting approach. Besides,
an anytime version of RPT that gradually covers the
search space improving the quality of the best solution
found so far may prove useful for setting in which both
coverage and quality matters, as in the IPC.

In terms of sampling, several improvements are left
as future work. First, using landmarks [24] to bias the
sampling process could yield more representative sam-
pled states, allowing a faster convergence towards a
solution. This in fact could be seen as an intermedi-
ate step between sampling subsets of goals and our
sampling method, as goals are landmarks themselves.
Another interesting possibility is biasing how proposi-
tions are chosen using the distance to I and to G in a
delete-free formulation of the problem, or learning on
the fly which sampled propositions could not be easily
reached in previous iterations of the tree construction.

From a planning perspective, techniques like caching
the heuristic value of explored states to avoid recom-
putation when they are expanded several times [35]
may prove interesting for this kind of algorithms. An-
other interesting possibility is the usage of portfolios of
search algorithms or portfolios of heuristics combined
with RRTs in order to compensate the flaws of both
best-first search algorithms and RRTs.

As a last remark, another possible future line of re-
search includes adapting this algorithm for a dynamic
setting in which interleaving of planning and execu-
tion is necessary. This approach looks promising for
domains in which exogenous events and partial infor-
mation may force the planner to replan in numerous
occasions.
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