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Abstract. The task of determining labels of all network nodes based on the knowledge about network structure and labels of
some training subset of nodes is called the within-network classification. It may happen that none of the labels of the nodes is
known and additionally there is no information about number of classes (types of labels) to which nodes can be assigned. In such
a case a subset of nodes has to be selected for initial label acquisition. The question that arises is: “labels of which nodes should
be collected and used for learning in order to provide the best classification accuracy for the whole network?”. Active learning
and inference is a practical framework to study this problem.

In this paper, set of methods for active learning and inference for within-network classification is proposed and validated. The
utility score calculation for each node based on network structure is the first step in the entire process. The scores enable to rank
the nodes. Based on the created ranking, a set of nodes, for which the labels are acquired, is selected (e.g. by taking top or bottom
N from the ranking). The new measure-neighbour methods proposed in the paper suggest not obtaining labels of nodes from the
ranking but rather acquiring labels of their neighbours. The paper examines 29 distinct formulations of utility score and selection
methods reporting their impact on the results of two collective classification algorithms: Iterative Classification Algorithm (ICA)
and Loopy Belief Prorogation (LBP).

We advocate that the accuracy of presented methods depends on the structural properties of the examined network. We claim
that measure-neighbour methods will work better than the regular methods for networks with higher clustering coefficient and
worse than regular methods for networks with low clustering coefficient. According to our hypothesis, based on clustering
coefficient of a network we are able to recommend appropriate active learning and inference method.

Experimental studies were carried out on six real-world networks. In order to investigate our hypothesis, all analysed networks
were categorized based on their structural characteristics into three groups. In addition, the representativeness of initial set of
nodes for which the labels are obtained and its influence on classification accuracy was examined.

Keywords: Complex networks, network analysis, classification, classification in networks, within-network classification, active
learning, selection of starting nodes for classification, ICA, LBP

1. Introduction

In many real-world networks, a set of nodes and
connections between them are known but the informa-
tion about their characteristics can be fragmentary and
not coherent. On many occasions, however, the infor-
mation about nodes’ labels is essential, e.g. knowing
users’ preferences or demographic profile is needed in
the process of personalised recommendation of prod-
ucts or services. Of course, all labels can be obtained
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by asking everybody about them but, due to the scale
of some networks and anonymity of many users in
the online world, it may be a very time-consuming,
costly and ineffective process. In order to reduce the
resources required for manual acquisition of labels for
all nodes, more sophisticated method, which enables
to uncover labels of only limited number of nodes and
based on this knowledge to perform the automatic clas-
sification for the rest of nodes, is needed. The research
presented in this paper aims at addressing this issue by
proposing an effective method for selection of starting
nodes and acquisition of their labels that will serve as
a training set for within-network classification task.
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We also claim that there is no method that will work
accurately in all cases and we show in our experiments
that the accuracy of different methods strongly depend
on some of the structural characteristics of a network.

For the illustration purposes we present an exam-
ple of marketing campaign that will help to under-
stand presented research. Let us assume that a market-
ing campaign has to be addressed to a given commu-
nity of customers. The knowledge about relationships
between customers is available (e.g. derived from their
monitored interactions), hence, we can create a cus-
tomer social network. The main purpose of the cam-
paign is to propose new product only to those who
are likely to buy it within the next year. However, the
top management allocates to the campaign only a fixed
amount of resources, which is not sufficient to target
all community members. Thus, the question is which
customers should be initially targeted in order to opti-
mise the return on investment (ROI) of the entire cam-
paign. ROI strongly depends on the quality of classifi-
cation of community members into two classes: (i) cus-
tomers and (ii) non-customers as we save resources by
not sending the offer to non-customers.

One of the approaches to model the campaign is to
use collective classification. In order to perform collec-
tive classification task, it is required to retrieve class la-
bels for an initial population of nodes and next to use it
in the inference process. Before classifying the whole
network, some selected nodes need to be provided with
the offer and their positive and negative responses to-
gether with the response rate should be collected. Af-
terwards, based on theirs behaviour as well as relation-
ships between social network nodes, collective classifi-
cation could model responses for the remaining nodes.
The main issue is to determine which nodes should be
selected to acquire their labels in order to maximise
the performance of classification. An intuitive answer
is that we should start with the nodes estimating the
whole network most accurately. The solutions of the
problem of which nodes’ labels should be obtained in
order to perform the collective classification are called
active learning or active inference approaches because
they actively, not randomly, support selection of the
learning set.

The problem of selecting appropriate nodes in or-
der to start collective classification process is studied
in this paper. First, the literature review in the areas of
(i) collective classification, as well as (ii) active learn-
ing and inference methods is described in Section 2.
Section 3 presents the method for selection of initial
nodes for classification purposes proposed in this paper

and in Section 4 there are revoked basic collective clas-
sification algorithms. The experiments using the pro-
posed method and the datasets used in the process are
described in Section 5 and discussed in Section 6. Fi-
nally, Section 7 summarises the main contribution of
the paper.

2. Related work

The research area that is in the focus of this paper
is active learning and inference methods for within-
network classification and the literature that relates to
this topic is presented below. However, first the prob-
lem of collective classification is discussed to give a
general background of the field and facilitate the un-
derstanding for non-expert readers.

2.1. Collective classification

Although problem of classification in traditional ma-
chine learning is not new, together with the explosion
of Web-based social networks [23], the new branch
in this area called collective (relational) classification
has emerged. The main difference between collective
classification and traditional approach to classification
problem is that the former one allows data to be de-
pendent whereas the latter one assumes independent
and identically distributed data (i.i.d.). Collective ap-
proach allows to consider both characteristics of nodes
and topology of the network in the process of assign-
ing node to a specific class. It means, that not only
features of a node to be classified are taken into ac-
count but also the attributes and labels of related nodes
(e.g. direct neighbours) can be considered [16]. Two
approaches can be distinguished for classification of
nodes in the network (i) within-network (Fig. 1) and
(ii) across-network inference (Fig. 2). In the within-
network classification [10] training nodes are directly

Fig. 1. An illustration of within-network classification task. (Colors
are visible in the online version of the article; http://dx.doi.org/10.
3233/AIC-150686.)
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Fig. 2. An illustration of across-network classification task. (Colors
are visible in the online version of the article; http://dx.doi.org/10.
3233/AIC-150686.)

connected to nodes whose labels are to be assigned in
the classification process. In the across-network clas-
sification [22] models learnt from one network are ap-
plied to another similar network.

One of the issues in collective classification is to de-
termine set of features that should be used in order to
maximize the classification accuracy. Recent research
in this area shows that the values of new attributes de-
rived from structural properties of the graph, such as
betweenness centrality, may improve the accuracy of
the classification task [14]. Another confirmation of
that fact and some more discussion about it comes from
other research [18]. Another element that should be
considered in the collective classification is the order
of visiting nodes in the graph to perform re-labelling.
The order of visiting the nodes influences the values
of input values derived from the structure. To address
that problem variety algorithms have been proposed.
Random ordering [20] is a simple strategy used with
iterative classification algorithms and can be quite ro-
bust. Another and most popular examples of collective
classification methods are: Iterative Classification Al-
gorithm (ICA) and Gibbs Sampling Algorithm (GSA),
introduced by Geman & Geman in the image process-
ing context [15]. Both of them belong to so called ap-
proximate local inference algorithms that are based on
local conditional classifiers [30]. Next technique is a
Loopy Belief Propagation (LBP) [28] that is a global
approximate inference method used for collective clas-
sification. But, according to recent studies [17], above
mentioned methods are not robust enough to work ef-
ficiently and accurately in sparsely labelled and large-
scale environments. This is a very important conclu-
sion as majority of Web- and technology-based social
networks are very sparse and large. Another drawback
is that they cannot be easily deployed within-multi-
dimensional networks [19], what creates space for de-
veloping new, robust collective classifiers.

According to [12], a very promising area of re-
search, which may contribute to solve the issues iden-
tified above, is building compound ensemble collec-
tive classifiers. As it has been already shown, despite
the fact that ensemble methods are performing accu-
rately for i.i.d. data, there is a lack of similar analy-
sis for relational data. For instance, in [7] it was pre-
sented that bagging reduces total classification error
in i.i.d. data by reducing the error due to variance.
The extension of i.i.d. ensembles to improve classifica-
tion accuracy for relational domains has been shown in
[11]. That includes a method for constructing ensem-
bles while accounting for the increased variance of net-
work data and an ensemble method for reducing vari-
ance in the inference process. Another promising work
[13] showed that different ensemble method – stack-
ing – improves collective classification by reducing in-
ference bias.

2.2. Active learning and inference in networks

As mentioned above active learning and inference
are methods used to select nodes for which labels
should be acquired in order to perform collective clas-
sification [1,2,29,31,32]. The main goal of these meth-
ods is to improve classification accuracy by choos-
ing nodes in a non-random way. In contrast to passive
methods where all labels are obtained once, active
methods perform this task iteratively. Research results
show, that in order to achieve similar accuracy, in some
cases number of nodes to be queried for labels is log-
arithmic when comparing to passive methods [4]. It
should also be emphasized that the goal of active infer-
ence and learning methods is different than e.g. seed-
ing strategies where the most influential nodes are se-
lected. Active inference and learning in the context of
collective classification aims at selecting nodes that en-
able to minimize the classification error for the whole
network. The main drawback of active learning and in-
ference methods is that the set of queried labels is los-
ing its i.i.d. characteristics, what may lead to spending
querying budget on bias sampling [34] or propagating
the information in areas, where surrounding nodes may
cover the inner “islands” that are labeled differently
[5].

To overcome some of the discussed limitations ac-
tive inference and learning offer different approaches
when dealing with separable and non-separable data,
e.g. agnostic active learning [3] or query by committee
[33].

http://dx.doi.org/10.3233/AIC-150686
http://dx.doi.org/10.3233/AIC-150686


126 T. Kajdanowicz et al. / Learning in unlabeled networks – An active learning and inference approach

One of the approaches to active learning in relational
data is Reflect and Correct (RAC) method introduced
in [5] and further developed in [6]. It is based on a sim-
ple intuition that the misclassified nodes are gathered
close to each other; they are clustered together. Thus,
misclassifying one node might cause wrong labelling
of neighbours. Therefore, it is reasonable to acquire the
actual label of representative nodes from such clusters
and use it in the inference. In order to find these clus-
ters a label utility function can be applied [6]. Authors
introduce three types of features – local, relational and
global – which are used as a learner of the classifier.
These features measure three different aspects of mis-
classification. Local feature focuses on the attributes of
a node, the relational takes into consideration its neigh-
bourhood and the global feature measures the differ-
ence between the prior belief about the class distribu-
tions and posterior distributions based on the predic-
tions. Having all these features available, authors of [6]
use a training graph and the predictions of a collective
model on this graph to learn the distribution of labels.
This approach presents a reasonable assumption that
we are having some budget to spend for acquiring la-
bels. Authors compared the results of the introduced
RAC method against two other approaches including
their viral marketing approach and greedy acquisition
showing that RAC method outperforms the others.

Another approach was proposed in [25]. The paper
introduces a technique for node selection in an active
learning framework. It selects a set of nodes that should
be used in the collective classification based on a given
limited budget. Using the idea of smoothness (similar
distributions of independent attributes as well as rela-
tional features between nodes) it decides which nodes
to select. The smoothness idea incorporates high util-
ity from nodes that are close to each of the queried
nodes. It is also proposed how to compute utility for
each non-surveyed node and how to sample within the
budget. However, in this method, authors assumed that
network structure may not be available a priori, so the
queries may reflect the labels and the neighbourhood
of the node. A similar approach has been introduced
in relational active learning proposal in [21]. The key
idea behind this approach was to select these nodes
to acquire the label, whose predictions are potentially
most certain. It is worth to emphasize that this is incon-
sistent with many conventional utility metrics used in
i.i.d. settings, which favour labelling nodes with high
uncertainty.

3. Relational active learning and inference

3.1. The method for active learning and inference in
within-network classification based on node
selection

The proposed method for active learning and infer-
ence in within-network classification task consists of
five main steps, see Fig. 3. First, for a given unlabelled
network, the utility scores for each network node are
obtained by calculating the node’s structural measures
such as degree centrality, closeness centrality, etc. In
general, the utility score should reflect the usefulness
of the node’s label in the process of within-network
classification. Further discussion on considered util-
ity scores is provided in Section 3.2. In addition, new
‘measure’-neighbour approaches for assessment of the
nodes’ utility have been proposed in Section 3.3.

Afterwards, the previously obtained utility scores
are sorted in the ascending or descending order; it en-
ables to form nodes’ ranking. Depending on the type
of the utility score, the most useful nodes are these
with the highest or smallest score value. In the next
step, the method selects nodes for which the label will

Fig. 3. Major steps of the active learning and inference method for
within-network classification. (Colors are visible in the online ver-
sion of the article; http://dx.doi.org/10.3233/AIC-150686.)

http://dx.doi.org/10.3233/AIC-150686
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be queried based on top N items in the ranking. Once
the process of label acquisition is completed, the ap-
propriate relational classification algorithm can be ap-
plied to perform within-network classification. Note,
that this last step is not the main contribution of the
paper and many different classification algorithms can
be applied. In this research two of them were selected
as the most representative and widely used, i.e. Itera-
tive Classification Algorithm (ICA) and Loopy Belief
Prorogation (LBP).

3.2. Utility scores

Utility scores reflect the usefulness of the node’s la-
bel in the process of within-network classification. It
is expected that learning the relational classification
model using some previously acquired labels will re-
sult with small classification error. The process of label
acquisition in active learning should be expressed as
simple optimization problem of nodes selection, but in
the within-network classification setting it is not pos-
sible. The general requirement of the selection mech-
anism is to pick those nodes’ labels from label set L

whose usage in relational inference will result in the
smallest possible misclassification error E .

In general terms, the expected misclassification er-
ror for all unlabelled nodes vi ∈ V UK on their labels
YUK

i with xi attributes depends on abilities of rela-
tional classification algorithm � that is learnt on pre-
viously acquired labels YK for the initial node set:

∑

Yi\YK

E
(
Yi |X = xi, Y

K,�
(
YK

))
. (1)

Therefore, the main problem is to obtain unknown val-
ues of YK for which classification algorithm � will
provide proper results. Then, the aggregated error must
reflect an expectation over all possible values of YK :

∑

Yi\YK

∑

l∈L

P
(
YK = l

)

× E
(
Yi |X = xi, Y

K = l, �
(
YK = l

))
, (2)

where P(YK = l) is the chance that YK takes a value
of label l. Although the presented error is in general
suitable for across-network classification, it does not
comply with within-network classification. It is impos-
sible to assess the correctness of classification for all
nodes related to Yi \YK due to the lack of these labels.

Thus, it is impossible to propose any utility score that
will directly lead to classification error minimization.

Nevertheless, it is still possible to make use of other
utility scores that reflect structural properties of nodes,
relying on the assumption that classification error de-
pends on these measures. Depending on the charac-
teristics of the underlying network, a proper measure
can be chosen from the vast variety of nodes struc-
tural measures [24] such as indegree centrality, outde-
gree centrality, betweenness centrality, clustering coef-
ficient, hubness, authority, page rank.

3.3. A new ‘measure’-neighbour approach to utility
score

To extend the typical structural measures approach,
enumerated in Section 3.2, authors proposed and eval-
uated another method. Assuming that some nodes with
the highest measures’ values may actually be located
on the border of ‘classes’, it may be useful to pick
not this node itself, but its neighbours. The intuition
suggests that it may hold especially for the between-
ness or page rank measures, since nodes with high be-
tweenness and page rank may be located at the bor-
der of clusters or groups or may even play the role of
bridges. In this case, it may be worth acquiring the la-
bel of the neighbour instead of the bridge label itself.
For example, in the case of betweenness, we identify
nodes with the highest value of betweenness and se-
lect their neighbours for label acquisition. By analogy,
we can create indegree-neighbour utility score, page
rank-neighbour utility score, etc. All of them focus on
neighbours of nodes with a given property.

In order to confirm or reject the above concept, the
authors performed set of experiments comparing the
results of this approach with the typical measure-based
methods, see e.g. Tables 4 and 6.

The neighbour selection heavily depends on the
structure of the network. It may happen that in partic-
ular cases some nodes selected from rankings do not
have neighbours. Therefore actual number of neigh-
bouring nodes may be smaller than the size of sampled
ranking. It was assumed that for each selected node
from ranking it is selected only one neighbour. Thus,
for instance if it is selected 10% of nodes from the net-
work according to particular ranking, we may end up
with smaller than 10% population of network consti-
tuted by neighbours (see Fig. 13). Moreover, for the
propagation algorithm (LBP) when a node from the
training set has no neighbours, the information about
the label during the classification process will not be
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propagated. On the contrary the ICA method does not
depend on network structure in the sense that even if
the labelled node has no neighbours, the label may be
assigned to nodes in other, even disconnected, compo-
nents.

However, in general, this did not have adverse ef-
fect on the obtained results. The exception was one
dataset (CS_PHD) where the network was highly dis-
connected and almost no nodes were labelled in the
neighbour algorithm. In other cases, despite the fact
that less nodes were used as an input to classification
algorithm, LBP-neighbour method outperformed clas-
sical LBP in both approaches – top and bottom (i.e.
when initial nodes were selected from top and bottom
of the rankings created based on the utility scores re-
spectively).

4. Within-network classification algorithms

There exist several algorithms for within-network
classification. Two of them were utilized in experi-
ments in Section 5.

The first algorithm is the Iterative Classification Al-
gorithm (ICA). The basic idea behind ICA is quite sim-
ple. Considering a node vi ∈ V UK , where V UK is a
set of nodes with unknown labels, V UK ⊂ V and V is
the set of all nodes in the network, we aim at discover-
ing vi’s label li . Having labels of vi’s neighbourhood
known, ICA utilizes a local classifier � that takes the
attribute values of nodes with known labels (V K ) and
returns the most appropriate label value li for vi from
the class label set L, i.e. li ∈ L. If the knowledge of
the neighbouring labels is only partial, the classifica-
tion process needs to be repeated iteratively. In each
iteration, labelling of each node vi is done using cur-
rent best estimates of local classifier � and continues
until the label assignments stabilize. A local classifier
might be any function that is able to accomplish the
classification task. It can range from simple to complex
models like Naive Bayes, decision tree or SVM.

Algorithm 1 depicts the ICA algorithm as a pseudo-
code where the local classifier is trained using the ini-
tially labelled nodes V K . It can be observed that the
attributes utilized in classification depend on the cur-
rent label assignment (lines 8 and 9 in Algorithm 1).
Thus, the repetition of classification phase needs to
be performed until labels stabilize or the maximum
number of iteration is reached. Computation of nodes’
attributes (lines 2 and 8) is the calculation of vari-
ous nodes’ structural measures describing profile of

Algorithm 1. Iterative Classification Algorithm (ICA), the
idea based on [30]

1: for each node vi ∈ V UK do
2: compute xi , i.e. vi’s attributes using the ob-

served (known) nodes from V K

3: end for
4: train classifier � by � optimization using the at-

tributes of V K nodes
5: repeat
6: generate ordering O over nodes in V UK

7: for each node vi ∈ O do
8: compute xi , i.e. vi’s attributes using current

assignments
9: li ← �(xi,�)

10: end for
11: until label stabilization or the maximum number

of iterations is reached

each node, including label-dependent and/or label-
independent features [18]. Note that optimization of
the model (line 4) is based on the local knowledge,
since xi attribute of vi reflects only local information
with vi’s perspective.

Another method applied in experiments was the
Loopy Belief Propagation algorithm (LBP). It is an al-
ternative to ICA approach to perform collective classi-
fication. The main difference is that it defines a global
objective function to be optimized, instead of perform-
ing local classifier optimization (ICA).

LBP is an iterative message-passing algorithm. The
messages are transferred between all connected nodes
vi and vj ; where vi, vj ∈ V , (vi, vj ) ∈ E, E is the set
of network edges. These messages might be interpreted
as belief to what extent vj label should be based on vi

label.
The global objective function, which is optimized in

LBP, is derived from the idea of pairwise Markov Ran-
dom Field (pairwise MRF) [35]. In order to calculate
the message for propagation, the calculation presented
in Eq. (3) is performed.

mi→j (lj ) = α
∑

li∈L

�ij (li , lj )φ(li)

×
∏

vk∈V UK\vj

mk→i (li), (3)

where mi→j (lj ) denotes a message to be sent from
node vi to vj , α is the normalization constant that en-
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Algorithm 2. Loopy Belief Propagation (LBP), the idea
based on [30]

1: for each edge (vi, vj ) ∈ E, vi, vj ∈ V UK do
2: for each class label li ∈ L do
3: mi→j (l) ← 1
4: end for
5: end for
6: //perform message passing
7: repeat
8: for each edge (vi, vj ) ∈ E, vi, vj ∈ V UK do
9: for each class label li ∈ L do

10: mi→j (lj ) ← α
∑

li∈L �ij (li , lj )φ(li)

11:
∏

vk∈V UK\vj
mk→i (li )

12: end for
13: end for
14: until stop condition
15: //compute beliefs
16: for all vi ∈ V UK do
17: for all li ∈ L do
18: bi(li) ← αφ(li)

∏
vj ∈V UK mj→i (li )

19: end for
20: end for

sures each message to sum to 1, � and φ denote the
clique potentials. For further details please see [30].

The calculation of believe b(li) for node vi can be
expressed as in Eq. (4):

b(li) = αφ(li)
∏

vj ∈V UK

mj→i (li ). (4)

The LBP algorithm consists of two main phases:
message passing that is repeated until the messages are
stabilized and believe computation, see Algorithm 2.

5. Experiments

5.1. Experimental set-up

In order to evaluate the proposed method for ac-
tive learning and inference in terms of classification
accuracy, the Iterative Classification (ICA) and Loopy
Belief Propagation (LBP) algorithms were tested with
various utility scores. The experimental scenario aims
at examining the following structural measures used as
utility scores:

– indegree centrality,
– outdegree centrality,

– betweenness centrality,
– clustering coefficient,
– hubness,
– authority,
– page rank.

All of them were applied in two selection meth-
ods: nodes with the top (the greatest) and bottom (the
smallest) values of individual scores. Independently,
another new ‘measure’-neighbour method proposed in
Section 3.3 was also evaluated. Its idea is to chose the
neighbours of the node with the greatest/smallest value
of a given utility score.

In total, 29 selection methods were tested: 14 for
original structural measures (7 measures; ‘top’ or ‘bot-
tom’ for each), 14 for ‘measure’-neighbour methods
and a random selection. The random selection was re-
peated 14 times and the average error was taken as its
final validation result.

The experiments were carried out on original dataset
with labels acquired according to particular setting of
selection method and utility score. Thanks to that, each
dataset was split into known and unknown node sets.
The models were learnt on acquired labels in nine dis-
tinct proportions (from 10% to 90% of known labels)
and tested on the remaining part. In order to evalu-
ate the quality of classification, the classification error
was recorded. According to previously gathered expe-
rience on the configuration of the classification algo-
rithms [17] the implementation of ICA was based on
Random Forest base classifier [8] and it we used 50 it-
erations or 0.01 as relative change of labels in the LBP
as the stop condition. ‘Measure’-neighbour version of
training set selection (Section 3.3) used a draw with the
uniform distribution from adjacent nodes.

5.2. Datasets

The experiments were carried out on six datasets.
The AMD_NETWORK graph presents attendance at
the conference seminars. The dataset was a result of
the project that took place during “The Last HOPE”
Conference held in July 18–20, 2008 in New York
City, USA. The Radio Frequency Identification devices
were distributed among participants of the conference
that allowed to identify them uniquely and to track
what sessions they attended. The dataset was built from
the information about descriptions of participants’ in-
terests, their interactions via instant messages, as well
as their location over the course of the conference. Lo-
cation tracking allowed to extract a list of attendances
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for each conference talk. In general, the most interest-
ing data from the experiment point of view are: infor-
mation about conference participants, conference talks
and presence on the talks.

Another genealogy dataset CS_PHD is the network
that contains ties between PhD students and their ad-
visors in theoretical computer science field where the
arcs lead from advisors to students [27].

The third dataset NET_SCIENCE contains a co-
authorship network of scientists working in the area of
network science [26]. It was extracted from the bibli-
ographies of two review articles on networks.

Another biological dataset YEAST is a protein–
protein interaction network [9].

The PAIRS_FSG dataset is a dictionary from the
University of South Florida with word association,
rhyme and word fragment norms. Its graph reflects cor-
relations between nouns, verbs and adjectives. In the
experiments we use the original PAIRS_FSG data as
well as its reduced version PAIRS_FSG_SMALL.

The profiles of all datasets were shortly depicted in
Table 1. In order to investigate our hypothesis that the

accuracy of classification depends on network charac-
teristics, the datasets were divided into three groups
(see column ‘Group’ in Table 1 as well as descrip-
tion of groups in Table 2). It was done based on the
commonly used network’s characteristics, such as av-
erage node degree, average path length, modularity,
graph density, network diameter, and average cluster-
ing coefficient of nodes. Based on those characteris-
tics, networks that belong to Group 1 are small-world
networks, those that belong to Group 2 are non-small-
world modular networks and those in Group 3 are ran-
dom networks that are very sparse (at the edge of phase
transition condition for random networks).

The graphs that belong to the first group have short
average path length, the smallest network diameter
out of all analysed networks, and clustering coeffi-
cient larger than 0.3. With relatively large clustering
coefficient and short average path length networks in
Group 1 exhibit characteristics of small-world net-
works. The second group contains networks with mod-
erate average path length, modularity from the range
(0.5; 0.9), graph density from the range (0.01; 0.1) and

Table 1

Basic properties of datasets utilized in experiments

Dataset Group Nodes Edges Directed Classes
(labels)

Avg.
node

degree

Avg.
path

length

No. of
connected

components

Modularity Graph
density

Network
diameter

Avg.
nodes

clustering
coeff.

AMD_NETWORK 1 319 34,385 no 16 215.58 1.322 1 0.102 0.678 2 0.824

NET_SCIENCE 1 1588 2742 yes 26 1.727 1.997 395 0.955 0.001 7 0.319

PAIRS_FSG 2 4931 61,449 yes 3 12.462 4.278 1 0.594 0.003 10 0.122

PAIRS_FSG_SMALL 2 1972 12,213 yes 3 6.193 5.358 13 0.688 0.003 14 0.127

YEAST 2 2361 7182 yes 13 3.042 4.648 59 0.59 0.001 16 0.065

CS_PHD 3 1451 924 yes 16 0.636 2.265 531 0.967 0 10 0.001

Table 2

The description of groups of datasets and profiles of their collective classification results

Group Datasets Network profile Results profile

1 AMD_NETWORK,
NET_SCIENCE

small-world profile-like, short avg. path length; the
smallest network diameter; clustering coeff. > 0.3

high error level decreasing with for increasing % of
training set; good performance of
‘measure’-neighbour methods; LBP neighbour
(bottom page rank) outperforms the others; most of
‘measure’-neighbour methods outperform random

2 YEAST, PAIRS_FSG,
PAIRS_FSG_SMALL

non-small-world modular networks, moderate avg.
path length; modularity ∈ (0.5; 0.9); graph density ∈
(0.01; 0.1); clustering coeff. < 0.15

relatively small variance of results; the more classes,
the worst results; for smaller modularity and density,
and greater clustering coeff. LBP-neighbour
outperforms the others

3 CS_PHD random-like network with very low probability of
edges between nodes, highly disconnected; many
isolated nodes (avg. node degree < 0.7); density 0;
clustering coeff. close to 0

LBP error > 0.8; ICA better than LBP, but still poor;
‘measure’-neighbour methods worse than original
and random
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clustering coefficient smaller than 0.15. Those charac-
teristics indicate that networks in this group are non-
small-world modular networks. Group 3 contains only
one dataset which is highly disconnected, with many
isolated nodes, density and clustering coefficient ap-
proaching zero, and over 400 nodes with node degree
equal to 0. This group represents random networks
with very low probability that the link will exist be-
tween two randomly selected nodes, which means that
the giant component is not present and such networks
consist of many small connected components. Further
detailed characteristics of the networks followed by in-
formation about number of distinct classes are avail-
able in the Online Supplemental Material in Sections 1
and 2.

6. Experimental results and discussion

As the experiments were performed using large
number of parameters, the obtained results can be anal-
ysed from many different perspectives. Overall, it can
be noticed that accuracy of the investigated approaches
varies and the methods themselves cannot be com-
pared in a straightforward way. This is clearly visible
in Fig. 4 depicting results obtained for the best combi-
nation of ICA, ICA neighbour, LBP, and LBP neigh-
bour settings and compared with random selection. All
of the results are presented in Tables 3, 4, 5 and 6.

There are three basic factors that influence the out-
put. The first one is the structural profile of the net-
work, the second is the method of selecting nodes for
the initial label acquisition (seed selection strategy),
and the third one is the method of within-network col-
lective classification. Also, the percentage of uncov-
ered classes during the initial selection process con-
tributes to the classification accuracy.

In general, there is no single node selection method
combined with inference concepts that would be best
for every kind of network and every size of initial node
set. However, some approaches and combinations of
the reasoning algorithms with seed acquisition meth-
ods are better than others for particular network pro-
files, see Section 6.1. This would suggest that the re-
sults depends on the network profile.

One of the observations that can be derived from
the experimental results is the better performance of
node selection methods based on ‘measure’-neighbour
approach described in Section 3.3 compared with the
original rankings, especially for datasets in Groups 1
and 2. This suggests that the bigger the clustering co-

efficient of the network, i.e. the higher probability that
the clusters will exist in the network, the better the clas-
sification results. It is visible, if we juxtapose results
for individual measures from Table 3 with Table 4 and
from Table 5 with Table 6. The comparison showing
how often top or bottom of ranks for given measures
outperformed each other is presented in Table 7. As a
result, ‘measure’-neighbour methods more often sur-
pass random selection than the measure-based meth-
ods, see the last column in Tables 4 and 6. Moreover,
while analysing the last column in Tables 3, 4, 5, and 6,
we can find out that there is always at least one ICA
and at least one LBP node selection method outper-
forming the random approach. In some cases, e.g. for
AMD and PAIRS_FSG (Tables 4 and 6), all or almost
all ‘measure’-neighbour methods are better than ran-
dom selection. The proof for existence of some meth-
ods better than random in any case is very important
from practical point of view. It justifies that searching
for more effective inference methods can always be
successful.

Experimental results also revealed that, regardless of
the kind of nodes’ selection method in active learning
(degree, betweenness, etc.) and selection strategy (top
or bottom of the ranking), none of the methods was
able to satisfactory generalize networks that are very
sparse and random by nature (especially for network
CS_PHD which belongs to Group 3, see Section 5.2).
For such problem, the results were quite similar to ran-
dom seeding, see Tables 3, 4, 5 and 6.

When analysing the active learning method giv-
ing the best results for ICA, in most cases, the in-
ference results were not as much susceptible to the
percentage of known nodes as for the LBP method.
It means that the global network propagation of in-
formation applied by LBP is more dependent on the
size of the training set than ICA method. In general,
acquisition of labels by means of the best proposed
methods (e.g. nodes with the greatest degree or neigh-
bours of nodes with the lowest page rank) in con-
junction with ICA and LBP algorithms, in most cases,
outperformed random results. However, when using
LBP the results might suffer from its basic property:
if the selection method does not provide nodes from
all connected components then the information about
labels is not propagated to separated parts of the net-
work.

In addition, as it was described in Section 4, the
Loopy Belief Propagation (LBP) method is heavily
network dependent, because the underlying network
structure and global objective function determine the
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Comparison of classification error for ICA and LBP; both only for their most efficient utility scores for original utility scores
and ‘measure’-neighbour variants. (a) AMD dataset (Group 1); (b) NET_SCIENCE dataset (Group 1); (c) PAIRS_FSG dataset (Group 2);
(d) PAIRS_FSG_SMALL dataset (Group 2); (e) YEAST dataset (Group 2); (f) CS_PHD dataset (Group 3).

propagation, while the ICA method utilizes only the
local structure of the network. The experimental re-
sults confirm that these differences heavily influenced
the results of individual classification methods. For ex-

ample compare results for AMD and NET_SCIENCE
(good performance of LBP for small-world like net-
works) with CS_PHD (the poor LBP results for the
loosely connected network with small node degree).



T.K
ajdanow

icz
etal./L

earning
in

unlabeled
netw

orks
–

A
n

active
learning

and
inference

approach
133

Table 3

Classification error in active learning based on ICA for distinct selection strategy; initial nodes taken directly from the ranking

Dataset Lab.
nodes

Top
indegree

Top
outdegree

Top be-
tweenness

Top
clust.
coeff.

Top
hubness

Top
authority

Top
page
rank

Down
indegree

Down
outdegree

Down be-
tweenness

Down
clust.
coeff.

Down
hubness

Down
authority

Down
page
rank

Random #
better

AMD 10% 0.983 0.983 0.91 0.879 0.976 0.976 0.91 0.875 0.875 0.896 0.91 0.875 0.875 0.875 0.906 7

20% 0.883 0.883 0.902 0.981 0.883 0.883 0.883 0.898 0.898 0.906 0.898 0.938 0.938 0.898 0.878 0

30% 0.897 0.897 0.906 0.875 0.911 0.911 0.933 0.884 0.884 0.853 0.897 0.911 0.911 0.884 0.858 1

40% 0.943 0.943 0.906 0.938 0.885 0.891 0.885 0.912 0.912 0.927 0.943 0.912 0.912 0.917 0.837 0

50% 0.881 0.881 0.888 0.919 0.881 0.969 0.931 0.95 0.95 0.9 0.906 0.95 0.95 0.95 0.831 0

60% 0.961 0.961 0.914 0.906 0.875 0.875 0.961 0.914 0.914 0.914 0.898 0.891 0.891 0.891 0.811 0

70% 0.969 0.969 0.906 0.938 0.948 0.948 0.906 0.833 0.833 0.948 0.896 0.833 0.958 0.833 0.798 0

80% 0.938 0.938 0.922 0.969 0.953 0.953 0.938 0.938 0.938 0.969 0.953 0.938 0.938 0.938 0.805 0

90% 0.938 0.938 0.938 0.875 0.906 0.906 0.938 0.938 0.938 0.875 0.906 0.906 0.906 0.938 0.782 0

NET_SCIENCE 10% 0.967 0.969 0.941 0.944 0.954 0.935 0.934 0.973 0.91 0.922 0.919 0.936 0.935 0.94 0.935 4

20% 0.935 0.925 0.933 0.926 0.916 0.918 0.92 0.911 0.909 0.922 0.914 0.942 0.915 0.923 0.911 2

30% 0.906 0.904 0.933 0.902 0.902 0.922 0.912 0.914 0.911 0.915 0.921 0.925 0.918 0.916 0.908 4

40% 0.932 0.909 0.923 0.911 0.903 0.91 0.915 0.93 0.909 0.912 0.923 0.903 0.925 0.92 0.902 0

50% 0.914 0.904 0.912 0.899 0.915 0.918 0.922 0.91 0.899 0.922 0.91 0.926 0.914 0.912 0.899 2

60% 0.906 0.911 0.925 0.901 0.923 0.913 0.923 0.925 0.954 0.911 0.916 0.923 0.927 0.904 0.898 0

70% 0.916 0.916 0.92 0.902 0.911 0.916 0.923 0.925 0.923 0.913 0.907 0.902 0.907 0.913 0.898 0

80% 0.891 0.908 0.922 0.911 0.922 0.911 0.922 0.922 0.98 0.932 0.918 0.898 0.915 0.928 0.898 2

90% 0.884 0.898 0.898 0.905 0.932 0.918 0.925 0.905 0.925 0.939 0.905 0.918 0.918 0.905 0.896 1

PAIRS_FSG 10% 0.855 0.984 0.845 0.845 0.761 0.887 0.839 0.815 0.807 0.85 0.85 0.882 0.85 0.815 0.824 4

20% 0.816 0.889 0.88 0.949 0.855 0.913 0.834 0.883 0.837 0.84 0.955 0.946 0.955 0.56 0.777 1

30% 0.928 0.938 0.959 0.993 0.828 1 0.841 0.607 0.945 0.89 0.993 0.938 0.976 0.607 0.66 2

40% 0.892 0.864 0.988 0.92 0.912 0.948 0.9 0.61 0.936 0.679 0.928 0.888 0.908 0.61 0.643 2

50% 0.291 0.295 0.302 0.335 0.32 0.29 0.349 0.329 0.319 0.337 0.292 0.333 0.339 0.334 0.308 5

60% 0.288 0.295 0.295 0.335 0.325 0.284 0.293 0.328 0.325 0.331 0.28 0.312 0.443 0.528 0.307 6

70% 0.279 0.297 0.293 0.332 0.33 0.28 0.291 0.335 0.313 0.341 0.279 0.313 0.528 0.346 0.306 6

80% 0.27 0.293 0.259 0.333 0.339 0.271 0.276 0.344 0.308 0.35 0.26 0.297 0.439 0.36 0.309 8

90% 0.257 0.296 0.237 0.326 0.342 0.263 0.263 0.362 0.3 0.37 0.281 0.281 0.577 0.383 0.305 8
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Table 3

(Continued)

Dataset Lab.
nodes

Top
indegree

Top
outdegree

Top be-
tweenness

Top
clust.
coeff.

Top
hubness

Top
authority

Top
page
rank

Down
indegree

Down
outdegree

Down be-
tweenness

Down
clust.
coeff.

Down
hubness

Down
authority

Down
page
rank

Random #
better

PAIRS_FSG_SM 10% 0.671 0.668 0.683 0.668 0.689 0.695 0.687 0.661 0.669 0.701 0.704 0.709 0.7 0.699 0.665 1

20% 0.654 0.678 0.695 0.695 0.715 0.715 0.697 0.671 0.657 0.713 0.737 0.732 0.734 0.706 0.661 2

30% 0.668 0.673 0.715 0.709 0.735 0.736 0.701 0.68 0.669 0.738 0.739 0.757 0.737 0.723 0.664 0

40% 0.663 0.689 0.726 0.698 0.757 0.76 0.716 0.676 0.641 0.728 0.737 0.754 0.755 0.727 0.667 2

50% 0.663 0.663 0.725 0.721 0.756 0.78 0.741 0.695 0.686 0.74 0.714 0.762 0.769 0.728 0.665 2

60% 0.679 0.696 0.761 0.747 0.778 0.804 0.752 0.689 0.689 0.738 0.703 0.762 0.768 0.731 0.667 0

70% 0.664 0.652 0.776 0.786 0.813 0.827 0.769 0.674 0.664 0.759 0.725 0.778 0.774 0.723 0.665 3

80% 0.654 0.662 0.809 0.835 0.83 0.84 0.794 0.702 0.664 0.761 0.705 0.756 0.779 0.748 0.669 3

90% 0.701 0.665 0.767 0.868 0.893 0.843 0.797 0.614 0.65 0.812 0.695 0.756 0.787 0.782 0.661 2

YEAST 10% 0.965 0.95 0.93 0.751 0.922 0.934 0.873 0.928 0.881 0.94 0.801 0.811 0.774 0.846 0.832 4

20% 0.903 0.901 0.78 0.776 0.788 0.768 0.765 0.75 0.766 0.816 0.778 0.816 0.833 0.796 0.768 4

30% 0.917 0.92 0.77 0.762 0.78 0.751 0.771 0.754 0.79 0.804 0.777 0.831 0.811 0.784 0.748 0

40% 0.926 0.713 0.704 0.739 0.714 0.741 0.768 0.771 0.917 0.834 0.788 0.828 0.812 0.773 0.744 5

50% 0.713 0.695 0.88 0.723 0.681 0.744 0.761 0.813 0.811 0.873 0.819 0.861 0.8 0.781 0.74 4

60% 0.924 0.654 0.661 0.697 0.658 0.741 0.753 0.802 0.935 0.827 0.843 0.87 0.8 0.777 0.737 4

70% 0.647 0.64 0.636 0.687 0.633 0.749 0.742 0.791 0.877 0.831 0.922 0.891 0.804 0.767 0.73 5

80% 0.62 0.628 0.628 0.679 0.639 0.761 0.738 0.799 0.899 0.844 0.875 0.913 0.812 0.793 0.729 5

90% 0.612 0.629 0.629 0.637 0.633 0.7 0.738 0.831 0.882 0.827 0.831 0.873 0.785 0.793 0.724 6

CS_PHD 10% 0.927 0.939 0.851 0.754 0.755 0.774 0.941 0.94 0.777 0.829 0.82 0.751 0.75 0.973 0.835 8

20% 0.954 0.919 0.733 0.912 0.892 0.926 0.686 0.936 0.919 0.925 0.882 0.908 0.909 0.915 0.844 2

30% 0.802 0.929 0.704 0.797 0.797 0.927 0.668 0.911 0.918 0.939 0.884 0.797 0.794 0.9 0.873 7

40% 0.812 0.641 0.689 0.843 0.841 0.787 0.653 0.771 0.761 0.794 0.841 0.843 0.849 0.896 0.876 13

50% 0.676 0.71 0.678 0.706 0.71 0.646 0.691 0.87 0.912 0.782 0.708 0.708 0.659 0.718 0.797 12

60% 0.689 0.617 0.673 0.689 0.689 0.635 0.706 0.739 0.692 0.647 0.692 0.692 0.697 0.715 0.792 14

70% 0.636 0.649 0.646 0.699 0.696 0.643 0.696 0.73 0.687 0.743 0.699 0.699 0.712 0.705 0.741 13

80% 0.648 0.61 0.629 0.606 0.61 0.615 0.732 0.714 0.676 0.695 0.606 0.61 0.61 0.653 0.756 14

90% 0.794 0.561 0.626 0.626 0.589 0.589 0.776 0.738 0.636 0.71 0.617 0.589 0.589 0.664 0.742 12

Note: The last column represents how many of the non-random selection strategies outperformed the random case.
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Table 4

Classification error in active learning based on ‘measure’-neighbour version of distinct selection strategy with ICA

Dataset Lab.
nodes

Top
indegree

Top
outdegree

Top be-
tweenness

Top
clust.
coeff.

Top
hubness

Top
authority

Top
page
rank

Down
indegree

Down
outdegree

Down be-
tweenness

Down
clust.
coeff.

Down
hubness

Down
authority

Down
page
rank

Random #
better

AMD 10% 0.869 0.927 0.907 0.883 0.886 0.89 0.855 0.892 0.889 0.865 0.903 0.907 0.896 0.917 0.906 10

20% 0.851 0.87 0.799 0.865 0.837 0.844 0.883 0.894 0.898 0.822 0.821 0.821 0.897 0.83 0.878 10

30% 0.83 0.742 0.795 0.781 0.805 0.822 0.846 0.8 0.789 0.777 0.807 0.812 0.794 0.828 0.858 14

40% 0.749 0.75 0.763 0.816 0.726 0.78 0.728 0.749 0.772 0.779 0.786 0.772 0.776 0.766 0.837 14

50% 0.738 0.798 0.757 0.768 0.719 0.704 0.742 0.706 0.746 0.762 0.722 0.683 0.757 0.788 0.831 14

60% 0.751 0.762 0.707 0.722 0.673 0.708 0.71 0.768 0.694 0.794 0.711 0.785 0.706 0.738 0.811 14

70% 0.669 0.752 0.677 0.736 0.689 0.69 0.652 0.7 0.739 0.671 0.706 0.691 0.727 0.703 0.798 14

80% 0.678 0.671 0.604 0.651 0.662 0.676 0.653 0.694 0.729 0.747 0.673 0.712 0.722 0.724 0.805 14

90% 0.614 0.662 0.583 0.613 0.635 0.629 0.593 0.671 0.689 0.669 0.669 0.63 0.709 0.672 0.782 14

NET_SCIENCE 10% 0.937 0.914 0.928 0.937 0.943 0.939 0.932 0.937 0.935 0.964 0.935 0.953 0.933 0.94 0.935 5

20% 0.904 0.905 0.901 0.884 0.932 0.938 0.927 0.922 0.94 0.952 0.935 0.961 0.936 0.91 0.911 5

30% 0.901 0.902 0.916 0.876 0.914 0.893 0.911 0.903 0.893 0.899 0.899 0.928 0.915 0.885 0.908 9

40% 0.901 0.905 0.893 0.901 0.897 0.889 0.916 0.895 0.891 0.896 0.903 0.915 0.933 0.893 0.902 9

50% 0.886 0.885 0.89 0.89 0.902 0.91 0.894 0.883 0.884 0.905 0.942 0.917 0.925 0.887 0.899 8

60% 0.902 0.891 0.881 0.885 0.904 0.898 0.897 0.882 0.891 0.884 0.897 0.906 0.903 0.89 0.898 9

70% 0.897 0.887 0.89 0.87 0.892 0.902 0.888 0.882 0.912 0.879 0.892 0.917 0.918 0.867 0.898 10

80% 0.879 0.885 0.899 0.88 0.888 0.893 0.897 0.876 0.871 0.882 0.9 0.926 0.928 0.861 0.898 10

90% 0.892 0.87 0.899 0.869 0.872 0.907 0.881 0.889 0.877 0.884 0.88 0.917 0.916 0.873 0.896 10

PAIRS_FSG 10% 0.796 0.965 0.807 0.83 0.767 0.98 0.977 0.801 1 0.803 0.824 0.844 0.826 0.979 0.824 6

20% 0.756 0.834 0.824 0.859 0.73 0.81 0.809 0.802 0.827 0.806 0.85 0.842 0.874 0.793 0.777 2

30% 0.839 0.854 0.838 0.89 0.787 0.835 0.828 0.787 0.817 0.828 0.877 0.882 0.888 0.78 0.66 0

40% 0.834 0.808 0.799 0.902 0.776 0.861 0.829 0.777 0.852 0.82 0.908 0.904 0.901 0.781 0.643 0

50% 0.293 0.291 0.301 0.305 0.31 0.299 0.302 0.303 0.295 0.303 0.293 0.295 0.301 0.297 0.308 13

60% 0.293 0.307 0.298 0.3 0.306 0.301 0.303 0.301 0.302 0.293 0.287 0.297 0.302 0.3 0.307 14

70% 0.294 0.295 0.306 0.306 0.304 0.294 0.298 0.293 0.301 0.295 0.296 0.296 0.295 0.297 0.306 14

80% 0.287 0.294 0.301 0.307 0.299 0.294 0.294 0.296 0.305 0.297 0.287 0.298 0.301 0.294 0.309 14

90% 0.29 0.286 0.302 0.301 0.31 0.304 0.305 0.299 0.291 0.297 0.291 0.294 0.291 0.291 0.305 13
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Table 4

(Continued)

Dataset Lab.
nodes

Top
indegree

Top
outdegree

Top be-
tweenness

Top
clust.
coeff.

Top
hubness

Top
authority

Top
page
rank

Down
indegree

Down
outdegree

Down be-
tweenness

Down
clust.
coeff.

Down
hubness

Down
authority

Down
page
rank

Random #
better

PAIRS_FSG_SM 10% 0.636 0.668 0.662 0.658 0.662 0.669 0.666 0.665 0.661 0.647 0.646 0.663 0.664 0.647 0.665 10

20% 0.66 0.663 0.658 0.655 0.671 0.673 0.671 0.662 0.647 0.659 0.641 0.653 0.643 0.65 0.661 9

30% 0.66 0.658 0.673 0.65 0.676 0.694 0.675 0.652 0.648 0.643 0.651 0.639 0.647 0.63 0.664 10

40% 0.651 0.657 0.682 0.654 0.668 0.678 0.652 0.644 0.65 0.627 0.649 0.642 0.646 0.624 0.667 11

50% 0.663 0.647 0.665 0.662 0.666 0.7 0.68 0.652 0.65 0.617 0.635 0.636 0.648 0.617 0.665 10

60% 0.657 0.656 0.664 0.657 0.68 0.699 0.681 0.647 0.655 0.617 0.628 0.631 0.629 0.632 0.667 11

70% 0.666 0.654 0.682 0.661 0.671 0.681 0.676 0.623 0.662 0.606 0.624 0.637 0.656 0.617 0.665 9

80% 0.646 0.644 0.662 0.66 0.678 0.702 0.682 0.643 0.658 0.622 0.609 0.623 0.598 0.614 0.669 11

90% 0.66 0.656 0.679 0.674 0.677 0.698 0.673 0.64 0.669 0.624 0.622 0.598 0.599 0.636 0.661 8

YEAST 10% 0.756 0.89 0.776 0.909 0.925 0.784 0.889 0.892 1 0.925 0.9 0.941 0.93 0.941 0.832 3

20% 0.711 0.724 0.726 0.715 0.763 0.721 0.738 0.912 1 0.917 0.746 0.934 0.777 0.951 0.768 8

30% 0.706 0.697 0.702 0.705 0.695 0.703 0.723 0.74 1 0.855 0.845 0.776 0.796 0.723 0.748 9

40% 0.709 0.705 0.702 0.703 0.69 0.687 0.728 0.732 0.947 0.756 0.725 0.777 0.748 0.727 0.744 10

50% 0.705 0.705 0.703 0.698 0.674 0.695 0.711 0.749 0.935 0.765 0.716 0.772 0.714 0.712 0.74 10

60% 0.724 0.685 0.686 0.695 0.692 0.695 0.715 0.709 0.729 0.72 0.722 0.73 0.696 0.699 0.737 14

70% 0.687 0.689 0.699 0.686 0.683 0.688 0.707 0.698 0.719 0.692 0.702 0.714 0.718 0.687 0.73 14

80% 0.68 0.701 0.689 0.683 0.681 0.696 0.687 0.687 0.704 0.692 0.7 0.706 0.684 0.691 0.729 14

90% 0.699 0.693 0.692 0.687 0.68 0.711 0.704 0.684 0.683 0.683 0.698 0.71 0.685 0.687 0.724 14

CS_PHD 10% 0.934 0.953 0.884 0.696 0.83 0.692 0.892 0.951 0.781 0.748 0.762 0.78 0.944 0.919 0.835 7

20% 0.975 0.76 0.652 0.721 0.715 0.82 0.897 0.928 0.963 0.914 0.854 0.679 0.901 0.93 0.844 6

30% 0.891 0.85 0.93 0.814 0.917 0.855 0.883 0.936 0.848 0.767 0.782 0.792 0.946 0.922 0.873 7

40% 0.937 0.908 0.741 0.95 0.949 0.921 0.964 0.875 0.779 0.843 0.979 0.896 0.931 0.923 0.876 4

50% 0.878 0.938 0.819 0.714 0.658 0.921 0.939 0.902 0.922 0.956 0.902 0.938 0.819 0.956 0.797 2

60% 0.923 0.828 0.939 0.801 0.818 0.807 0.96 0.91 0.803 0.911 0.774 0.816 0.951 0.789 0.792 2

70% 0.775 0.701 0.878 0.958 0.765 0.889 0.914 0.86 0.791 0.854 0.891 0.93 0.872 0.917 0.741 1

80% 0.68 0.958 0.921 0.942 0.925 0.829 0.803 0.969 0.968 0.932 0.839 0.922 0.93 0.848 0.756 1

90% 0.814 0.831 0.922 0.947 0.951 0.689 0.929 0.913 0.9 0.645 0.886 0.816 0.956 0.934 0.742 2

Note: The last column represents how many of the non-random selection strategies outperformed the random case.
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Table 5

Classification error in active inference based on LBP for distinct selection strategy; initial nodes taken directly from the ranking

Dataset Lab.
nodes

Top
indegree

Top
outdegree

Top be-
tweenness

Top
clust.
coeff.

Top
hubness

Top
authority

Top
page
rank

Down
indegree

Down
outdegree

Down be-
tweenness

Down
clust.
coeff.

Down
hubness

Down
authority

Down
page
rank

Random #
better

AMD 10% 0.931 0.931 0.882 0.868 0.931 0.931 0.927 0.913 0.913 0.896 0.879 0.917 0.917 0.913 0.863 0

20% 0.938 0.938 0.934 0.891 0.938 0.938 0.938 0.895 0.895 0.898 0.93 0.898 0.898 0.895 0.817 0

30% 0.897 0.897 0.893 0.888 0.897 0.897 0.893 0.884 0.884 0.884 0.897 0.866 0.866 0.884 0.793 0

40% 0.901 0.901 0.912 0.917 0.901 0.901 0.901 0.896 0.896 0.917 0.906 0.896 0.896 0.917 0.77 0

50% 0.894 0.894 0.888 0.9 0.894 0.894 0.894 0.925 0.925 0.919 0.894 0.925 0.925 0.944 0.729 0

60% 0.891 0.891 0.852 0.906 0.891 0.891 0.891 0.883 0.883 0.922 0.867 0.914 0.914 0.922 0.714 0

70% 0.833 0.833 0.865 0.917 0.833 0.833 0.833 0.948 0.948 0.938 0.865 0.948 0.948 0.948 0.692 0

80% 0.828 0.828 0.844 0.984 0.828 0.828 0.828 0.953 0.953 0.953 0.797 0.953 0.953 0.953 0.681 0

90% 0.875 0.875 0.875 0.906 0.906 0.906 0.875 0.938 0.938 0.969 0.844 0.938 0.938 0.938 0.651 0

NET_SCIENCE 10% 0.995 0.986 0.992 0.995 0.999 0.999 0.998 0.986 0.997 0.998 0.999 0.999 0.999 0.984 0.959 0

20% 0.986 0.986 0.992 0.986 0.999 0.999 0.997 0.977 0.987 0.993 0.997 0.999 0.999 0.962 0.929 0

30% 0.981 0.984 0.992 0.979 0.999 0.999 0.998 0.965 0.974 0.988 0.997 0.999 0.999 0.937 0.904 0

40% 0.981 0.97 0.993 0.967 0.999 0.999 0.998 0.966 0.97 0.982 0.995 0.999 0.999 0.932 0.883 0

50% 0.982 0.967 0.999 0.96 0.999 0.999 0.999 0.96 0.963 0.981 0.996 0.999 0.999 0.932 0.861 0

60% 0.983 0.966 0.998 0.956 0.998 0.998 0.998 0.957 0.968 0.974 0.99 0.998 0.998 0.928 0.848 0

70% 0.975 0.961 0.998 0.957 0.998 0.998 0.998 0.964 0.975 0.964 0.995 0.998 0.998 0.939 0.84 0

80% 0.963 0.952 0.997 0.959 0.997 0.997 0.997 0.956 0.973 0.959 0.997 0.997 0.997 0.918 0.827 0

90% 0.959 0.939 0.993 0.959 0.993 0.993 0.993 0.939 0.973 0.946 0.993 0.993 0.993 0.864 0.813 0

PAIRS_FSG 10% 0.965 0.893 0.957 0.936 0.995 0.941 0.968 0.92 1 0.938 0.941 0.936 0.941 0.92 0.908 1

20% 0.946 0.877 0.919 0.976 0.943 0.925 0.994 0.889 0.946 0.934 0.982 0.979 0.973 0.889 0.86 0

30% 0.986 0.876 0.893 0.993 0.921 0.969 0.997 0.848 0.972 0.938 0.997 0.972 0.976 0.848 0.844 0

40% 0.972 0.859 0.932 0.992 0.98 0.96 1 0.823 0.964 0.912 0.996 0.976 0.972 0.823 0.823 0

50% 0.29 0.272 0.278 0.305 0.316 0.285 0.295 0.274 0.295 0.259 0.258 0.275 0.268 0.276 0.245 0

60% 0.284 0.261 0.276 0.315 0.286 0.289 0.3 0.259 0.282 0.24 0.241 0.273 0.262 0.265 0.234 0

70% 0.309 0.257 0.287 0.298 0.28 0.309 0.318 0.257 0.257 0.247 0.232 0.276 0.257 0.27 0.223 0

80% 0.33 0.257 0.309 0.276 0.243 0.326 0.347 0.248 0.25 0.237 0.207 0.263 0.255 0.273 0.213 1

90% 0.458 0.253 0.451 0.294 0.245 0.456 0.476 0.267 0.231 0.235 0.19 0.235 0.259 0.292 0.208 1
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Table 5

(Continued)

Dataset Lab.
nodes

Top
indegree

Top
outdegree

Top be-
tweenness

Top
clust.
coeff.

Top
hubness

Top
authority

Top
page
rank

Down
indegree

Down
outdegree

Down be-
tweenness

Down
clust.
coeff.

Down
hubness

Down
authority

Down
page
rank

Random #
better

PAIRS_FSG_SM 10% 0.667 0.722 0.678 0.681 0.726 0.681 0.665 0.712 0.671 0.716 0.727 0.709 0.685 0.684 0.666 1

20% 0.666 0.63 0.679 0.669 0.692 0.673 0.679 0.665 0.664 0.653 0.648 0.745 0.66 0.639 0.639 1

30% 0.68 0.641 0.696 0.656 0.682 0.696 0.702 0.693 0.644 0.623 0.623 0.64 0.632 0.603 0.661 8

40% 0.683 0.65 0.711 0.715 0.743 0.706 0.72 0.62 0.643 0.578 0.673 0.635 0.593 0.591 0.664 7

50% 0.688 0.636 0.739 0.654 0.694 0.751 0.758 0.59 0.64 0.57 0.618 0.609 0.585 0.566 0.69 10

60% 0.685 0.657 0.768 0.676 0.705 0.781 0.796 0.567 0.641 0.548 0.601 0.605 0.563 0.59 0.591 4

70% 0.664 0.638 0.815 0.688 0.705 0.837 0.842 0.516 0.63 0.525 0.589 0.62 0.511 0.576 0.621 6

80% 0.725 0.636 0.891 0.728 0.743 0.906 0.898 0.751 0.618 0.489 0.618 0.588 0.491 0.537 0.66 7

90% 0.721 0.665 0.975 0.853 0.772 0.99 0.995 0.432 0.589 0.437 0.589 0.553 0.411 0.457 0.669 8

YEAST 10% 0.865 0.796 0.825 0.869 0.845 0.873 0.948 0.84 1 0.889 0.93 0.953 0.952 0.848 0.863 5

20% 0.83 0.746 0.795 0.812 0.822 0.84 0.868 0.817 1 0.884 0.903 0.95 0.92 0.822 0.803 2

30% 0.819 0.737 0.776 0.737 0.795 0.832 0.845 0.806 1 0.873 0.895 0.946 0.903 0.8 0.775 2

40% 0.812 0.729 0.777 0.748 0.804 0.831 0.835 0.791 0.992 0.863 0.896 0.946 0.886 0.764 0.743 1

50% 0.812 0.737 0.776 0.775 0.767 0.814 0.843 0.755 0.935 0.852 0.889 0.931 0.815 0.734 0.696 0

60% 0.797 0.711 0.775 0.814 0.773 0.825 0.822 0.73 0.947 0.866 0.92 0.922 0.805 0.735 0.74 3

70% 0.815 0.748 0.812 0.811 0.8 0.835 0.808 0.686 0.866 0.849 0.889 0.921 0.766 0.735 0.678 0

80% 0.837 0.789 0.803 0.806 0.795 0.837 0.82 0.651 0.896 0.795 0.765 0.915 0.738 0.774 0.663 1

90% 0.814 0.764 0.781 0.776 0.76 0.886 0.776 0.65 0.869 0.709 0.684 0.916 0.667 0.823 0.671 2

CS_PHD 10% 0.998 0.999 0.999 0.998 0.997 0.999 1 0.999 1 0.999 0.998 0.998 0.998 0.991 0.997 2

20% 0.972 0.998 0.999 0.98 0.979 0.982 1 0.999 1 0.994 0.98 0.98 0.98 0.968 0.996 9

30% 0.945 0.984 0.976 0.957 0.956 0.948 1 0.999 0.999 0.993 0.956 0.957 0.956 0.946 0.992 10

40% 0.933 0.95 0.953 0.931 0.929 0.929 1 0.998 0.997 0.978 0.929 0.931 0.933 0.939 0.987 11

50% 0.94 0.938 0.947 0.94 0.938 0.928 1 0.998 0.994 0.977 0.938 0.94 0.942 0.906 0.98 11

60% 0.925 0.932 0.946 0.941 0.939 0.941 1 0.998 0.986 0.979 0.939 0.941 0.939 0.911 0.976 10

70% 0.928 0.953 0.937 0.928 0.925 0.925 1 1 0.966 0.975 0.928 0.928 0.928 0.89 0.967 11

80% 0.911 0.948 0.939 0.93 0.925 0.93 1 0.991 0.897 0.972 0.93 0.93 0.948 0.883 0.965 11

90% 0.935 0.953 0.925 0.916 0.916 0.916 1 0.953 0.897 0.944 0.916 0.916 0.944 0.832 0.958 13

Note: The last column represents how many of the non-random selection strategies outperformed the random case.
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Table 6

Classification error in active inference based on ‘measure’-neighbour version of distinct selection strategy with LBP

Dataset Lab.
nodes

Top
indegree

Top
outdegree

Top be-
tweenness

Top
clust.
coeff.

Top
hubness

Top
authority

Top
page
rank

Down
indegree

Down
outdegree

Down be-
tweenness

Down
clust.
coeff.

Down
hubness

Down
authority

Down
page
rank

Random #
better

AMD 10% 0.789 0.827 0.841 0.845 0.775 0.81 0.81 0.837 0.814 0.839 0.821 0.83 0.844 0.818 0.863 14

20% 0.735 0.736 0.729 0.731 0.744 0.734 0.703 0.76 0.7 0.737 0.742 0.764 0.746 0.776 0.817 14

30% 0.676 0.648 0.679 0.68 0.657 0.675 0.656 0.663 0.671 0.674 0.64 0.686 0.644 0.696 0.793 14

40% 0.631 0.623 0.595 0.589 0.569 0.578 0.607 0.658 0.585 0.56 0.582 0.624 0.633 0.611 0.77 14

50% 0.557 0.549 0.541 0.608 0.566 0.532 0.603 0.579 0.564 0.58 0.528 0.549 0.492 0.545 0.729 14

60% 0.503 0.492 0.522 0.528 0.455 0.454 0.528 0.536 0.536 0.542 0.5 0.495 0.508 0.462 0.714 14

70% 0.432 0.439 0.413 0.447 0.443 0.442 0.457 0.454 0.494 0.523 0.484 0.457 0.464 0.455 0.692 14

80% 0.418 0.403 0.386 0.475 0.436 0.401 0.447 0.424 0.411 0.458 0.361 0.394 0.399 0.473 0.681 14

90% 0.402 0.328 0.299 0.393 0.372 0.323 0.394 0.412 0.38 0.373 0.295 0.314 0.413 0.345 0.651 14

NET_SCIENCE 10% 0.971 0.92 0.926 0.923 0.969 0.976 0.962 0.923 0.964 0.972 0.969 1 0.999 0.902 0.959 5

20% 0.903 0.866 0.918 0.848 0.951 0.948 0.934 0.878 0.915 0.931 0.949 0.999 0.999 0.818 0.929 7

30% 0.863 0.839 0.897 0.787 0.919 0.929 0.903 0.805 0.858 0.896 0.923 0.998 0.997 0.74 0.904 9

40% 0.831 0.772 0.878 0.738 0.907 0.902 0.893 0.792 0.847 0.859 0.88 0.996 0.997 0.699 0.883 9

50% 0.786 0.745 0.846 0.684 0.872 0.873 0.856 0.73 0.813 0.797 0.864 0.996 0.971 0.645 0.861 9

60% 0.776 0.703 0.831 0.647 0.841 0.831 0.821 0.699 0.75 0.785 0.835 0.993 0.937 0.59 0.848 12

70% 0.72 0.693 0.786 0.636 0.782 0.786 0.797 0.661 0.731 0.739 0.829 0.992 0.916 0.612 0.84 12

80% 0.702 0.676 0.729 0.641 0.752 0.742 0.767 0.668 0.693 0.653 0.793 0.996 0.867 0.591 0.827 12

90% 0.676 0.645 0.71 0.644 0.715 0.712 0.732 0.635 0.688 0.639 0.752 0.987 0.814 0.554 0.813 12

PAIRS_FSG 10% 0.916 0.913 0.892 0.902 0.915 0.888 0.89 0.876 1 0.916 0.927 0.906 0.922 0.864 0.908 7

20% 0.877 0.839 0.84 0.909 0.858 0.895 0.906 0.861 0.911 0.873 0.954 0.917 0.913 0.797 0.86 4

30% 0.854 0.835 0.791 0.902 0.809 0.898 0.864 0.792 0.859 0.882 0.943 0.907 0.915 0.821 0.844 5

40% 0.797 0.834 0.812 0.91 0.75 0.892 0.798 0.795 0.858 0.851 0.954 0.917 0.916 0.757 0.823 6

50% 0.239 0.199 0.23 0.227 0.225 0.234 0.236 0.201 0.22 0.188 0.207 0.203 0.332 0.18 0.245 13

60% 0.222 0.188 0.216 0.214 0.214 0.231 0.231 0.173 0.2 0.182 0.183 0.193 0.171 0.178 0.234 14

70% 0.214 0.191 0.203 0.195 0.2 0.219 0.232 0.163 0.195 0.164 0.177 0.192 0.161 0.161 0.223 13

80% 0.205 0.169 0.206 0.175 0.183 0.216 0.209 0.14 0.183 0.15 0.169 0.173 0.151 0.154 0.213 13

90% 0.204 0.172 0.21 0.169 0.171 0.204 0.2 0.135 0.168 0.137 0.168 0.158 0.134 0.133 0.208 13
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Table 6

(Continued)

Dataset Lab.
nodes

Top
indegree

Top
outdegree

Top be-
tweenness

Top
clust.
coeff.

Top
hubness

Top
authority

Top
page
rank

Down
indegree

Down
outdegree

Down be-
tweenness

Down
clust.
coeff.

Down
hubness

Down
authority

Down
page
rank

Random #
better

PAIRS_FSG_SM 10% 0.616 0.605 0.633 0.615 0.639 0.634 0.632 0.602 0.614 0.708 0.621 0.736 0.739 0.591 0.666 11

20% 0.738 0.559 0.596 0.587 0.583 0.614 0.622 0.745 0.544 0.537 0.739 0.722 0.725 0.522 0.639 9

30% 0.547 0.53 0.569 0.566 0.556 0.575 0.734 0.516 0.521 0.694 0.74 0.699 0.688 0.49 0.661 9

40% 0.519 0.724 0.54 0.531 0.548 0.733 0.581 0.717 0.715 0.675 0.705 0.485 0.666 0.717 0.664 6

50% 0.73 0.484 0.536 0.498 0.531 0.748 0.555 0.704 0.715 0.722 0.697 0.695 0.432 0.667 0.69 7

60% 0.494 0.706 0.521 0.485 0.521 0.742 0.74 0.677 0.708 0.373 0.731 0.737 0.385 0.4 0.591 7

70% 0.728 0.732 0.491 0.469 0.488 0.75 0.731 0.416 0.711 0.388 0.74 0.693 0.677 0.714 0.621 5

80% 0.726 0.726 0.742 0.433 0.471 0.516 0.755 0.705 0.704 0.364 0.654 0.679 0.729 0.339 0.66 6

90% 0.705 0.74 0.699 0.712 0.456 0.733 0.737 0.72 0.693 0.657 0.682 0.71 0.647 0.664 0.669 4

YEAST 10% 0.775 0.758 0.777 0.817 0.77 0.822 0.817 0.781 1 0.826 0.873 0.865 0.841 0.833 0.863 11

20% 0.7 0.745 0.699 0.714 0.713 0.728 0.74 0.72 1 0.837 0.854 0.883 0.856 0.815 0.803 8

30% 0.807 0.639 0.631 0.656 0.68 0.856 0.671 0.744 1 0.761 0.748 0.869 0.697 0.751 0.775 10

40% 0.614 0.577 0.564 0.646 0.604 0.634 0.815 0.745 0.946 0.812 0.819 0.764 0.809 0.666 0.743 7

50% 0.758 0.535 0.55 0.619 0.554 0.611 0.627 0.646 0.815 0.77 0.774 0.718 0.77 0.668 0.696 8

60% 0.689 0.511 0.562 0.758 0.753 0.563 0.587 0.632 0.69 0.662 0.747 0.755 0.607 0.594 0.74 10

70% 0.678 0.701 0.664 0.57 0.522 0.777 0.552 0.572 0.729 0.606 0.595 0.593 0.576 0.544 0.678 11

80% 0.685 0.703 0.519 0.74 0.528 0.688 0.53 0.674 0.697 0.579 0.734 0.684 0.496 0.531 0.663 6

90% 0.702 0.496 0.526 0.567 0.714 0.515 0.694 0.633 0.519 0.701 0.509 0.721 0.476 0.496 0.671 9

CS_PHD 10% 1 1 0.999 1 1 1 1 1 1 1 1 0.995 0.995 0.994 0.997 3

20% 0.999 0.999 0.999 0.999 0.994 1 1 1 0.998 0.999 0.986 0.995 0.996 0.998 0.996 4

30% 0.997 0.99 0.999 0.998 0.997 0.998 1 0.998 1 0.998 0.996 0.989 0.994 0.99 0.992 3

40% 0.98 0.999 0.991 0.986 0.986 0.99 1 1 0.997 0.998 0.975 0.978 0.984 0.992 0.987 6

50% 0.996 0.993 0.982 0.978 0.981 0.983 0.998 0.999 0.997 0.999 0.982 0.99 0.983 0.988 0.98 1

60% 0.981 0.987 0.995 0.993 0.991 0.984 0.997 0.994 0.986 0.994 0.98 0.977 0.975 0.99 0.976 1

70% 0.987 0.982 0.954 0.992 0.997 0.973 0.999 0.999 0.995 0.992 0.968 0.973 0.976 0.979 0.967 1

80% 0.992 0.986 0.979 0.992 0.978 0.988 1 1 0.99 0.997 0.962 0.978 0.974 0.972 0.965 1

90% 0.988 0.988 0.986 0.994 0.98 0.981 0.994 0.981 0.979 0.98 0.982 0.98 0.984 0.967 0.958 0

Note: The last column represents how many of the non-random selection strategies outperformed the random case.
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Table 7

The comparison showing how often top or bottom of ranks for given measures outperformed each other; all datasets merged

In-degree Out-degree Betweenness Clustering
coeff.

Hub centrality Authority Page rank

Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom Top Bottom

LBP 19 53 52 18 32 39 30 28 35 27 31 30 13 59

LBP-neighbour 27 44 56 15 38 34 42 29 52 20 36 36 20 52

ICA 48 24 37 33 40 31 36 31 37 33 48 23 52 17

ICA-neighbour 38 34 40 32 33 39 35 37 41 31 41 31 28 44
Notes: The number indicated how many times results of a particular method (top or bottom) was better than another one. It happened in some
cases that both methods were equal and provided the same error level. Overall, there were 72 comparisons.

6.1. Influence of network characteristics on
classification results

To facilitate the analysis of the large number of ex-
perimental results, for each group of networks pre-
sented in Section 5.2, the appropriate ‘results pro-
file’ has been created (see Table 2). Classification per-
formed on the networks from Group 1, which can
be characterised as networks that exhibit small-world
phenomenon, features good accuracy of ‘measure’-
neighbour methods with LBP neighbourhood (bottom
page rank) outperforming other approaches. In addi-
tion, most of the ‘measure’-neighbour methods out-
perform random case. Classification error, which for
this group is high for small training sets, substantially
decreases for the bigger training sets. Classification
results for the second group of networks exhibit rel-
atively small variance of error. In general, the more
classes in the dataset, the worse classification accu-
racy. Moreover, for smaller modularity and density as
well as greater clustering coefficient LBP neighbour
approach outperforms others.

Finally, for the third group of networks, which are
close to random networks with a very low connectivity
probability, ‘measure’-neighbour methods are worse
than original and random approaches. The classifica-
tion results are rather poor for all cases, but due to the
fact that ICA method does not depend on connections
within network for classification, it outperforms LBP-
based methods.

Additionally, we performed a set of robust fit re-
gressions in order to investigate the relation between
structural properties and the results of the classifica-
tions (see Figs 5, 6, 7, and 8). For this part of the study
by results we understand the number of times when
a given approach (ICA measure based, ICA measure-
neighbour based, LBP measure based, LBP measure-
neighbour based) was better than random for each
analysed network (sum of the last column from Ta-

bles 3, 4, 5, 6 for each network). We took into ac-
count two metrics: (i) clustering coefficient and (ii) av-
erage path length as those are the measures that en-
able to classify networks as random, small-world or or-
dered ones. Results show that for measure-based meth-
ods (for both ICA and LBP approaches) the smaller
the clustering coefficient and the bigger the average
path length the better the performance of the classifi-
cation. Exactly opposite trend is visible for measure-
neighbour approaches. However, we should rather ne-
glect the results for average path length as in all cases
R2 is very close to 0. Concentrating on clustering co-
efficient metric and the obtained results we can make
a recommendation that for networks that are discon-
nected and very random in their nature (Group 3)
we should use measure-based selection strategies and
for networks that are connected (Groups 1 and 2)
we should rather apply ‘measure’-neighbour selection
strategies.

6.2. Representativeness of the selected training sets

While considering the relational classification re-
sults, it should be investigated to what extend the se-
lected nodes used for training and propagation ap-
propriately represent the whole network, especially in
terms of class conditional distribution.

In order to assess the representativeness of selected
training set, the standard Kullback–Leibler divergence
(a.k.a. relative entropy) was used which is a measure
of the difference between two probability distributions.
It measures how much information is lost when one
probability distribution (in our case it is a distribution
of classes in a given sample – 10%, . . . , 90% of the
whole dataset) is used to approximate another one; in
here it is the probability distribution of classes in the
whole dataset. The smaller the divergence, the smaller
loss; 0 means that no information is lost and that both
distributions are the same. Results for all datasets are
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Fig. 5. Robust fit regression between clustering coefficient (left plot)/average path length (right plot) and the number of times when ICA
method with regular selection strategy is better than random one (sum of the last column from Table 3 for each network). Plot on the right does
not include CS_PHD network as the network is not connected so average path length is not informative. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/AIC-150686.)

Fig. 6. Regression between clustering coefficient (left plot)/average path length (right plot) and the number of times when ICA approach with
‘measure’-neighbour selection strategies is better than random one (sum of the last column from Table 4 for each network). Right plot does not
include CS_PHD network as the network is not connected so average path length is not informative. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/AIC-150686.)

presented in the Online Supplemental Material in Sec-
tion 3. Here, we present only the calculations for two
networks: (i) PAIRS_FSG with 3 classes (Fig. 9) and
(ii) NET_ SCIENCE with 26 classes (Fig. 10). The for-
mer has the smallest number of classes and the latter
the largest number of classes out of all tested datasets.

Both Figs 9 and 10 show the Kullback–Leibler di-
vergence for the selected networks and different struc-
tural measures used to create the rankings of nodes and
for three methods of ranking ordering: descending, as-
cending and random. Although, the divergence is gen-
erally bigger for NET_SCIENCE network than PAIRS,

http://dx.doi.org/10.3233/AIC-150686
http://dx.doi.org/10.3233/AIC-150686


T. Kajdanowicz et al. / Learning in unlabeled networks – An active learning and inference approach 143

Fig. 7. Regression between clustering coefficient (left plot)/average path length (right plot) and the number of times when LBP method with
regular selection strategy is better than random one (sum of the last column from Table 5 for each network). Plot on the right does not include
CS_PHD network as the network is not connected so average path length is not informative. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-150686.)

Fig. 8. Regression between clustering coefficient (left plot)/average path length (right plot) and the number of times when LBP approach with
‘measure’-neighbour selection strategies is better than random one (sum of the last column from Table 6 for each network). Right plot does not
include CS_PHD network as the network is not connected so average path length is not informative. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/AIC-150686.)

the absolute values are relatively small. The highest
value is 0.105 for NET_SCIENCE, for the ranking cre-
ated using hub measure and if only 10% of nodes with
the smallest value of hub measure was selected. More-
over, for all networks (please see the Online Supple-
mental Material) the divergence is the highest for small

sample sizes (10%, 20% and 30%). This is intuitive,
but what is more important, the maximum value of di-
vergence never exceeds 1 (see the Online Supplemen-
tal Material). Taking into account the fact that the limit
of the measure is infinity, this value is acceptable from
the perspective of data sampling.

http://dx.doi.org/10.3233/AIC-150686
http://dx.doi.org/10.3233/AIC-150686
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Fig. 9. Kullback–Leibler divergence for the PAIRS_FSG network. (Colors are visible in the online version of the article; http://dx.doi.org/10.
3233/AIC-150686.)

Fig. 10. Kullback–Leibler divergence for the NET_SCIENCE network. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/AIC-150686.)

The fall of Kullback–Leibler divergence values with
the increasing percentage of nodes used for learning is
quite obvious and visible in Figs 9 and 10. Even for not
perfect distribution adjustment for smaller contribution
of selected nodes we achieve very good representative-

ness (KL divergence value at the level of 0.01) already
for 50% of nodes, see Fig. 10.

One of the main challenges in active learning and in-
ference is to acquire all classes that exist within a given
dataset during the initial node selection. The sampling

http://dx.doi.org/10.3233/AIC-150686
http://dx.doi.org/10.3233/AIC-150686
http://dx.doi.org/10.3233/AIC-150686
http://dx.doi.org/10.3233/AIC-150686
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Fig. 11. Percentage of the classes uncovered in the initial node set used for learning; ID – indegree, OD – outdegree, B – betweenness, CC –
clustering coefficient, H – hubness, A – authority, PR – page rank. (Colors are visible in the online version of the article; http://dx.doi.org/10.
3233/AIC-150686.)

quality can be also measured by assessing what the
percentage of uncovered classes in the process of sam-
pling is. It is very important as if not all classes are dis-
covered in the phase of uncovering initial labels then
the method will not be able to generalize these classes
during the classification process. The percentage of
classes uncovered during each selection of initial nodes
process is presented in Fig. 11. Networks PAIRS_FSG,
PAIRS_FSG_SMALL and YEAST are neglected as no
matter what method was used always all classes were
uncovered in the selection process. Also the classifica-
tion results for those networks are relatively good when
comparing with the remaining datasets.

The smallest percentage of classes has been discov-
ered for CD_PHD network. In some cases even if 90%
of data was sampled, there were still some classes that
stayed uncovered. Comparing this outcome with the
classification results, it can be noticed that classifica-
tion error for this data set is very high – not smaller
than 0.96 for LBP (‘measure’-neighbour version) and

0.55 for ICA (Fig. 4). This is also partially visible for
the NET_ SCIENCE network: not all classes are being
uncovered for 10% or 20% and the classification error
for this percentages exceeded 0.8 (Fig. 4). This mainly
results from the profile of these networks. They are
compounded of dozens of classes and not all of them
can be found within 10% or 20% of selected nodes, see
Table 1.

6.3. Top vs. bottom selection from rankings

Next step of the analysis is to determine how the
results are influenced by using the nodes from top or
bottom of particular rankings.

The results revealed that in most cases the methods
using top nodes from ranks were better (see Table 7).
However, some exceptions from this rule can be no-
ticed. LBP was performing better for in-degree based
ranks, if used nodes from the bottom of ranks. It was

http://dx.doi.org/10.3233/AIC-150686
http://dx.doi.org/10.3233/AIC-150686
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because nodes with low in-degree in some datasets had
large out-degree, so they were able to propagate the la-
bel effectively and it was the same label within their
direct neighbours, see e.g. Fig. 12.

Due to the fact that the selection of training set based
on ‘measure’-neighbour sampling is heavily dependent
on the structure of the network, it happened that the
number of neighbouring nodes utilized for learning
and inference was smaller than the nominal number of
nodes taken from the ranking. According to the nature
of LBP, while using this algorithm regardless of the
training set selection method (original and ‘measure’-

Fig. 12. The visualisation of the NET_SCIENCE network; colours
represent classes (labels). (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/AIC-150686.)

neighbour one), if a node taken from the ranking has
no neighbour, the information about its label will not
be propagated. On the other hand, the ICA method is
able to overcome this problem and the label may be as-
signed to even disconnected nodes. This phenomenon
can be observed e.g. for the YEAST dataset in Fig. 13.
In general, this LBP drawback did not influence the re-
sults so much, except one dataset – CS_PHD, where
the network was highly disconnected and almost no
nodes were labelled in the ‘measure’-neighbour algo-
rithm. In other cases, LBP-neighbour method outper-
formed typical LBP in both approaches – top and bot-
tom – despite the fact that less nodes were used as an
input for classification algorithm.

7. Conclusions and future work

Active learning is an important problem that occurs
when we need to specify what network sample should
be taken to initially acquire its node labels (classes) in
order to classify the rest of the network. In this paper
various strategies of active learning for within-network
classification were studied.

In particular, two representative classification al-
gorithms: locally-driven Iterative Classification Algo-
rithm (ICA) and globally-based Loopy Belief Propa-
gation (LBP) were tested.

For each of them, seven main structure-based mea-
sures for node ranking were experimentally exam-
ined: (1) indegree, (2) outdegree, (3) betweenness,
(4) clustering coefficient, (5) hubness, (6) authority
and (7) page rank. Additionally, a new ‘measure’-

Fig. 13. The comparison of the number of nodes which theoretically should be sampled against actually sampled for the YEAST dataset and the
‘measure’-neighbour method. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-150686.)

http://dx.doi.org/10.3233/AIC-150686
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neighbour set of methods was proposed in Section 3.3.
Its novel idea is to select for the initial acquisition not
the nodes taken from a given ranking but their neigh-
bours. Besides, for each ranking list either top or bot-
tom nodes were considered for label discovery. In total,
29 selection methods were tested: 14 for original struc-
tural measures (7 measures with either ‘top’ or ‘bot-
tom’ approach), 14 for ‘measure’-neighbour selection
and the random one. All of them were compared with
each other.

Experiments were carried out on six real-world
datasets with different network profiles and diverse
number of classes.

The outcomes revealed that depending on both
(1) network profiles and (2) complexity of class condi-
tional probabilities the distinct settings of the methods
perform differently. For example, inference applied
within networks that exhibits small-world properties
(with high clustering coefficient) give good perfor-
mance for ‘measure’-neighbour methods. However,
this does not hold for random networks with very low
connectivity where ‘measure’-neighbour approaches
are outperformed by original and random methods
(networks from Group 3).

Also, the results significantly depend on the distri-
bution of individual classes among nodes with a given
measure, e.g. top linked nodes (high degree) can be-
long to some classes more frequently than on average
within the network (class imbalance). It is quite visible,
if we compare results for selection methods with not
close to zero values of Kullback–Leibler divergence
between the selected set and the entire node set. The
classification accuracy for such approaches is usually
worse than in the cases when class distributions for
the sample set and for the whole dataset match closely
each other.

Overall, the new ‘measure’-neighbour selection
methods proposed in the paper performed better than
their original approaches. They also more often sur-
passed the random selection in the final inference error
level. It leads to one of the main findings of this paper:
the relational inference is more effective if we learn
on the labels of neighbours of the nodes with a given
structural property (degree, page rank, etc.) rather than
on the labels of those nodes.

It should be also emphasized that none of the pre-
sented methods was able to generalize the datasets with
many classes (>10) at the satisfactory level, especially
for smaller percentage of learning nodes.

In general, the experimental results presented in the
paper have shown that the final classification quality

depends on many factors like selection strategy, size of
the learning set (percentage of all nodes), inference al-
gorithm and network specific profile. However, in each
case we can find many selection strategies that result in
lower level of classification error than simple random
approach. This is very important for real-world appli-
cations especially when the total cost of wrong classi-
fication is high. The better and well adapted to a given
environment selection mechanism, the lower misclas-
sification level and lower costs. It plays an important
role e.g. in marketing of frequently changing products
or services where it is hardly possible to collect feed-
back from larger communities of potential customers.
Also at high risk screening for very rare diseases but
with very expensive diagnostic tests and fatal conse-
quences, it is difficult to acquire an accurate group of
patients that may suffer from such illness. Thus, more
effective methods, including network-based, need to
be applied. Better initial selection methodologies for
complex networks may reduce costs in such cases.

The development of general adaptation rules that
would enable to adjust node selection method to the
network structural profile and class distributions is a
new future research direction derived from the paper
conclusions. Additionally, active learning can be seen
as an iterative process with adaptive selection of more
and more nodes. It would complicate the learning even
more.

Supplement material

The Online Supplemental Material containing the
characteristics of networks used in the experiments,
distribution of classes in analysed networks and repre-
sentativeness of sampled data is available at: http://dx.
doi.org/10.3233/AIC-150686.
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