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E-mails: aleje@dtu.dk, jobla@dtu.dk, andschl@dtu.dk, jovi@dtu.dk

Abstract. We certify in the proof assistant Isabelle/HOL the soundness of a declarative first-order prover with equality. The
LCF-style prover is a translation we have made, to Standard ML, of a prover in John Harrison’s Handbook of Practical Logic
and Automated Reasoning. We certify it by replacing its kernel with a certified version that we program, certify and generate
code from; all in Isabelle/HOL. In a declarative proof each step of the proof is declared, similar to the sentences in a thorough
paper proof. The prover allows proofs to mix the declarative style with automatic theorem proving by using a tableau prover. Our
motivation is teaching how automated and declarative provers work and how they are used. The prover allows studying concrete
code and a formal verification of correctness. We show examples of proofs and how they are made in the prover. The entire
development runs in Isabelle’s ML environment as an interactive application or can be used standalone in OCaml or Standard
ML (or in other functional programming languages like Haskell and Scala with some additional work).

Keywords: Isabelle, verification, declarative proofs for first-order logic with equality, soundness, LCF-style prover

1. Introduction

There are two styles of writing proofs in provers –
the procedural style and the declarative style. In the
procedural style, users write a script of instructions that
tells the prover how to prove a theorem. Only by exe-
cuting each instruction can the user see what happens
in the proof. In the declarative style, proofs resem-
ble thorough proofs on paper because they are writ-
ten as a chain of sentences of varying level of de-
tail. Thus, a user can read and understand a declar-
ative proof without executing the prover. The declar-
ative style is supported in advanced proof assistants
such as Isabelle/HOL [29].

We develop a declarative prover intended mainly
for educational purposes that users can quite easily in-
spect and for which a formal soundness proof is also
accessible in Isabelle/HOL. We do this by translat-
ing, to the functional programming language Standard
ML (SML), John Harrison’s interactive theorem prover
for classical first-order logic with equality from his
Handbook of Practical Logic and Automated Reason-
ing [13]. The kernel of his prover is based on a proof
system that uses equality which is advantageous be-
cause it means that it avoids substitution.

*Corresponding author. E-mail: jovi@dtu.dk.

1.1. The LCF-style Prover

The main aim of the present work has been to eval-
uate the prospects of a simple LCF-style prover as a
certified declarative first-order prover that is generated
from a specification in Isabelle/HOL and that can be
inspected for educational purposes.

The prover follows the LCF-style of having a trusted
kernel on which other components are built [14]. The
main benefit is that if the user trusts the kernel, then
she can also trust the other components.

We take advantage of this in our certification. By
certifying the soundness of the kernel, we ensure the
soundness of all the other components because they
rely on the kernel to generate theorems.

We therefore program a kernel similar to Harrison’s
in Isabelle/HOL and certify its soundness by defining
a semantics on the first-order formulas with equality.
Then we use Isabelle’s code reflection facility to gen-
erate a module that represents the kernel and import
it into the special Isabelle/ML environment for Stan-
dard ML. Hereafter we load the rest of the prover into
Isabelle/ML along with a number of examples.

The whole prover, its verification and many exam-
ples of proofs are available in the Archive of Formal
Proofs (AFP) [18]. The AFP entry is a single theory
file which is structured as follows:
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• A definition of the syntax of FOL with equality.
• A definition of the axioms and rules of the kernel.
• A definition of a semantics of FOL with equality.
• Definitions of a proof system consisting of the ax-

ioms and rules of the kernel.
• A soundness proof of the proof system.
• Code reflection of the axioms and rules.
• The prover that builds on top of the kernel.
• Examples of proofs in the prover.

The prover includes a tableau prover which allows
proofs to mix the declarative proof style with auto-
matic theorem proving, and we show several examples
of such proofs.

1.2. Declarative Proof of Pelletier’s Problem 46

As test cases for our declarative prover we have con-
sidered several of the most difficult first-order logic
problems in Pelletier’s Seventy-Five Problems for Test-
ing Automatic Theorem Provers [31].

As mentioned earlier, the prover allows proofs to
mix the declarative style with use of automatic theorem
proving. Let us illustrate this by considering Pelletier’s
problem 46 in Figure 1.

We prove the formula in a declarative style with our
prover as shown in Figure 2 including the use of the
automatic tableau prover. To explain the intuition of
the proof, Figure 3 shows the proof recast in natural
language. The proof is structured in the same way as
the declarative proof.

The idea of the proof is that we break down the
structure of the formula until we are in a state where
the automation can take care of the rest.

In the next section we provide a short introduction
to Isabelle/HOL and in the subsequent sections we de-
scribe first the architecture for the declarative prover
and then the formalization in Isabelle/HOL.

Parts of this paper are adapted from our previous
workshop paper [17].

2. Isabelle/HOL

Isabelle/HOL is a proof assistant for higher-order
logic. Higher-order logic can be thought of as a mix of
logic and typed functional programming. Isabelle/HOL
includes the usual logical connectives −→,←→, ∨, ∧,
¬ as well as equality = and non-equality 6=. Addition-
ally Isabelle/HOL allows us to specify rules using =⇒.

For instance Isabelle/HOL axiomatizes modus-ponens
as (P −→ Q) =⇒ P =⇒ Q. It is convention to sepa-
rate the assumptions from the conclusions of theorems
and lemmas using =⇒ even though, at least logically,
one might as well use −→.

Isabelle/HOL also includes commands for defining
types, defining functions and declaring theorems. We
list these in Table 1.

In making our certified prover, we found the follow-
ing tools of Isabelle/HOL essential:

• The structured proof language Isabelle/Isar [41],
which offers ample features for writing declar-
ative proofs, as well as proof methods such as
simp, fastforce and metis, which can discharge
proof goals [44].

• Sledgehammer [2], which can discharge proof
goals by employing multiple automatic theorem
provers (ATPs) as well as satisfiability-modulo-
theories (SMT) solvers and proof reconstruction
in Isabelle/Isar.

• Isabelle/ML [43], which is a way to use Standard
ML (SML) inside the Isabelle environment. It can
be embedded in Isabelle/Isar which means that it
can be used side by side with Isabelle/HOL.

• Isabelle’s code generation [10] and its code reflec-
tion is used to generate code from Isabelle/HOL
definitions and load it into the Isabelle/ML envi-
ronment.

• The Isabelle/jEdit Prover IDE (Integrated Devel-
opment Environment) [42], which allows both for
navigating, stating and checking formalizations in
Isabelle/Isar and for programming and debugging
in Isabelle/ML.

Isabelle/ML and in particular Isabelle’s code gen-
eration have been most relevant for the integration of
Isabelle/HOL and Standard ML code, and furthermore
Isabelle/jEdit is used for our declarative prover too.
In addition, Sledgehammer was particularly useful for
the starting point of our work, namely Alexander B.
Jensen’s thesis [16], since it allows Isabelle novices to
prove theorems without having deep knowledge about
Isabelle’s library of theorems.

3. Architecture for Declarative Prover

Figure 4 shows the architecture of the entire devel-
opment. The development consists of a single Isabelle
theory file, which has an Isabelle/HOL part and an
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(∀x. P(x) ∧ (∀y. P(y) ∧ H(y, x) −→ G(y)) −→ G(x)) ∧

((∃x. P(x) ∧ ¬G(x)) −→

(∃x. P(x) ∧ ¬G(x) ∧ (∀y. P(y) ∧ ¬G(y) −→ J(x, y)))) ∧

(∀xy. P(x) ∧ P(y) ∧ H(x, y) −→ ¬J(y, x)) −→

(∀x. P(x) −→ G(x))

Fig. 1. Pelletier’s problem 46

Fig. 2. Example of a declarative proof in our prover running inside Isabelle/jEdit. The initial string encodes Pelletier’s problem 46 and the prover
function calls in black (prove, assume, conclude, proof, fix and qed) mark steps in the proof. The prover runs in the Isabelle/ML
environment.

Isabelle/ML part. The two parts are connected with
code reflection.

The part in Isabelle/HOL defines types for formu-
las and theorems, as well as functions for axioms and
rules. These are then used inductively to define the
proof system which is proved sound with respect to a
semantics.

Hereafter, code reflection connects the Isabelle/HOL
part with the Isabelle/ML part: Isabelle is instructed to
generate code from the Isabelle/HOL definitions, and
the code is then loaded into the Isabelle/ML environ-
ment. The loaded code consists of an ML module with
a signature consisting of the type of formulas, the type

of theorems, the axiom functions and the rule func-
tions. It is the kernel of the declarative prover.

The part in Isabelle/ML defines the declarative
prover. The declarative prover is a number of ML-
functions that make calls into the kernel. These func-
tions include derived rules, a tableau prover and vari-
ous tactics.

The idea of the architecture is that we prove the ax-
ioms and rules sound in Isabelle/HOL. We load the ax-
ioms and rules into Isabelle/ML by using reflection,
and the ML signature system then ensures that all val-
ues of the type for a theorem are built from the loaded
axioms and rules. Thus these values represent theo-
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We will prove Pelletier’s problem 46 (Figures 1 and 2).

Since its outermost structure is an implication, we start by assuming the three formulas in
the conjunction on the left-hand side of the arrow:

- We assume ∀x. P(x) ∧ (∀y. P(y) ∧ H(y, x) −→ G(y)) −→ G(x) and
(∃x. P(x) ∧ ¬G(x)) −→ (∃x. P(x) ∧ ¬G(x) ∧ (∀y. P(y) ∧ ¬G(y) −→ J(x, y))) and
∀xy. P(x) ∧ P(y) ∧ h(x, y) −→ ¬J(y, x).
These assumptions are labeled A.

- From this we conclude the right-hand side ∀x. P(x) −→ G(x).
Since it is a universal quantification we do it as follows:

- We fix an arbitrary element, x.

- Then we conclude P(x) −→ G(x) as follows:

- We assume P(x) and label the assumption B.

- Then we conclude G(x) which follows by assumptions A and B.
This is proved automatically with the tableau prover.

Fig. 3. The declarative proof of Pelletier’s problem 46 recast as a structured proof in natural language

Command Description

type_synonym Defines a syntactic abbreviation of a type.
datatype Defines an ML-style datatype.

definition Defines a (non-recursive) function or constant.
abbreviation Defines a syntactical abbreviation of a term.

primrec Defines a primitive recursive function.
inductive Defines an inductive predicate based on a set of introduction rules.

lemma Declares a lemma and is followed by a proof.
theorem Declares a theorem and is followed by a proof.

corollary Declares a corollary and is followed by a proof.
code_reflect Generates code that is reflected into the Isabelle/ML environment.

Table 1
A subset of Isabelle/HOL’s commands

rems of the sound proof system.

Our entire development can run from a single file

in a window in the Isabelle/jEdit IDE. As already

mentioned the file is available and maintained in the

Archive of Formal Proofs against the current release

of Isabelle and the file includes both the Isabelle/HOL

and the Isabelle/ML part [18]. It is possible to replace

the code-reflection with a code generation tool that ex-

ports the kernel to a source code file in either OCaml,

Haskell, Scala or SML.

4. Formalization of Terms and Formulas

We formalize formulas in the same style as Harri-
son’s OCaml code which has the parameter ’a for the
type of atoms and variable identifiers represented as
strings.

type_synonym id = String.literal

This way the atoms can be instantiated for either
propositional logic or first-order logic.

datatype ′a fm = Truth | Falsity | Atom ′a |
Imp 〈 ′a fm〉 〈 ′a fm〉 | Iff 〈 ′a fm〉 〈 ′a fm〉 |
And 〈 ′a fm〉 〈 ′a fm〉 | Or 〈 ′a fm〉 〈 ′a fm〉 |
Not 〈 ′a fm〉 | Exists id 〈 ′a fm〉 | Forall id 〈 ′a fm〉
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Isabelle

Isabelle/HOL Isabelle/ML

axiom_addimp
. . .

axiom_exists
modusponens

gen

Axioms and Rules

Proof System `

Soundness Theorem

Kernel

Derived Rules

Tableau Prover

Tactics

Declarative Prover

Inductive Definition

Semantics

code-reflect

export_code

OCaml Haskell Scala SML

Fig. 4. Architecture of the certified declarative prover in Isabelle.

We similarly formalize the terms and first-order
atoms. Function identifiers and predicate identifiers are
also represented by strings:

datatype tm = Var id | Fn id 〈tm list〉

datatype fol = Rl id 〈tm list〉

Thus the first-order formulas are represented by the
type fol fm.

5. Proof System

The entire axiomatic proof system can be seen in
Figure 5 and comes from Harrison’s textbook. The idea

is that the validity of the rules and axioms should be ev-
ident and that they should be easy to implement. Har-
rison recognizes that substitution with named variable
bindings is not entirely trivial. There are ways to al-
leviate these complications, for instance by using de
Bruijn indices or nominals, but Harrison takes another
approach. He takes inspiration from proof systems for
first-order logic with equality by Tarski [39] and Monk
[28] which avoid substitution entirely in their axioms
and rules.

Harrison’s rules and axioms in Figure 5 are struc-
tured as follows:

Inference rules (1-2). The inference rules are modus
ponens (1) and generalization (2).
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Propositional axioms (3-5). The propositional ax-
ioms, together with modus ponens (1), form a proof
system of the propositional logic with −→ and ⊥ as
the only operators. Harrison refers to the proof system
P0 by Church [7] which consists exactly of these three
axioms and modus ponens.

First-order axioms (6-11). The first-order axioms, to-
gether with the propositional axioms and the inference
rules, form a proof system for first-order logic with
only the operators−→,⊥, ∀ and the rest defined as ab-
breviations. Axioms 6-9 appear in the axiomatic sys-
tems by Tarski and Monk and so does an axiom similar
to the congruence axioms 10-11.

Further operator axioms (12-19). These further op-
erator axioms characterize ←→, >, ¬, ∧, ∨ and ∃ in
terms of −→, ⊥ and ∀.

In addition to the advantage of leading to a simple
kernel, the approach allows Harrison to present named
variable bindings to the user without any conversion
from an internal representation.

The same approach is used by the proof checker
Metamath [25] which uses a similar set of axioms also
inspired by Tarski [39].

6. Formalization of Axioms and Proof Rules

Since axioms and proof rules will be formalized as
functions, they should be functions that return theo-
rems. Therefore we introduce a datatype for the theo-
rems, as well as a selector concl, such that concl (Thm
x) = x.

datatype "thm" = Thm (concl: 〈fol fm〉)

We can then define the rules and axioms of the proof
system as functions in Isabelle/HOL.

Let us consider the simplest such function, namely
axiom_addimp.
definition axiom_addimp :: "fol fm⇒ fol fm⇒ thm"
where
"axiom_addimp p q ≡ Thm (Imp p (Imp q p))"

This axiom simply implements the well-known ax-
iom p −→ (q −→ p). Notice also the type annotation.
The axiom takes two formulas and returns a theorem.

We also consider a proof rule, namely gen, which is
the generalization rule.
definition gen :: "id⇒ thm⇒ thm"
where
"gen x s ≡ Thm (Forall x (concl s))"

This implements the rule `s
`∀x. s . Notice that this

function takes a theorem as input since it is a proof
rule.

6.1. Side Conditions

The axioms axiom_impall and axiom_existseq have
the side condition that x is not, respectively, free in p
or occurs in t.

¬free_in x p
p −→ (∀x. p)

¬occurs_in x t
∃x. x = t

Therefore we have to choose what the functions
should return when the side conditions are not fulfilled.

Harrison chose to throw an exception but these are
not available in Isabelle/HOL. We therefore consid-
ered several alternatives. One possibility would be to
return undefined. Another possibility would be to re-
turn a thm option which would be None when the side
conditions are not fulfilled.

We choose instead that the implementation returns
Thm Truth when the side conditions are not ful-
filled. This solution simplifies the code and the proofs.
It clearly ensures soundness since, when things go
wrong, we return a formula that is obviously valid.

abbreviation (input) "fail_thm ≡ Thm Truth"

We define the following functions for terms and lists
of terms:

primrec
occurs_in :: "id⇒ tm⇒ bool"

and
occurs_in_list :: "id⇒ tm list⇒ bool"

where
"occurs_in i (Var x) = (i = x)" |
"occurs_in i (Fn _ l) = occurs_in_list i l" |
"occurs_in_list _ [] = False" |
"occurs_in_list i (h # t) =
(occurs_in i h ∨ occurs_in_list i t)"

We define the following function for formulas:

primrec free_in :: "id⇒ fol fm⇒ bool"
where
"free_in _ Truth = False" |
"free_in _ Falsity = False" |
"free_in i (Atom a) =
(case a of Rl _ l⇒ occurs_in_list i l)" |

"free_in i (Imp p q) = (free_in i p ∨ free_in i q)" |
"free_in i (Iff p q) = (free_in i p ∨ free_in i q)" |
"free_in i (And p q) = (free_in i p ∨ free_in i q)" |
"free_in i (Or p q) = (free_in i p ∨ free_in i q)" |
"free_in i (Not p) = free_in i p" |
"free_in i (Exists x p) = (i 6= x ∧ free_in i p)" |
"free_in i (Forall x p) = (i 6= x ∧ free_in i p)"
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1. modus ponens
p −→ q p

q

2. generalization
p
∀x. p

3. axiom addimp p −→ q −→ p

4. axiom distribimp (p −→ q −→ r) −→ (p −→ q) −→ p −→ r

5. axiom doubleneg ((p −→ ⊥) −→ ⊥) −→ p

6. axiom allimp (∀x. p −→ q) −→ (∀x. p) −→ (∀x. q)

7. axiom impall
¬free_in x p
p −→ (∀x. p)

8. axiom existseq
¬occurs_in x t
∃x. x = t

9. axiom eqrefl t = t

10. axiom funcong s1 = t1 −→ · · · −→ sn = tn −→ f (s1, . . . , sn) = f (t1, . . . , tn)

11. axiom predcong s1 = t1 −→ · · · −→ sn = tn −→ P(s1, . . . , sn) −→ P(t1, . . . , tn)

12. axiom iffimp1 (p←→ q) −→ p −→ q

13. axiom iffimp2 (p←→ q) −→ q −→ p

14. axiom impiff (p −→ q) −→ (q −→ p) −→ (p←→ q)

15. axiom true > ←→ (⊥ −→ ⊥)

16. axiom not ¬p←→ (p −→ ⊥)

17. axiom and (p ∧ q)←→ ((p −→ q −→ ⊥) −→ ⊥)

18. axiom or (p ∨ q)←→ ¬(¬p ∧ ¬q)

19. axiom exists (∃x. p)←→ ¬(∀x.¬p)

Fig. 5. The axiomatic proof system.
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definition axiom_impall :: "id⇒ fol fm⇒ thm"
where
"axiom_impall x p ≡

if ¬ free_in x p then Thm (Imp p (Forall x p))
else fail_thm"

Axiom axiom_existseq is defined in the same way as
axiom axiom_impall.

6.2. Congruence Axioms

The most complicated axioms are the congruence
axioms, axiom_funcong and axiom_predcong.

s1 = t1 −→ · · · −→ sn = tn −→
f (s1, · · · , sn) = f (t1, · · · , tn)

s1 = t1 −→ · · · −→ sn = tn −→
P(s1, · · · , sn) −→ P(t1, · · · , tn)

For axiom_funcong, Harrison’s implementation takes
the two lists lefts = [s1, . . . , sn] and rights = [t1, . . . , tn]
as input, and constructs the above nested implication.

let axiom_funcong f lefts rights =
itlist2

(fun s t p −> Imp (mk_eq s t,p)) lefts rights
(mk_eq (Fn (f,lefts)) (Fn (f,rights)))

The function itlist2 is defined as

let rec itlist2 f l1 l2 b =
match (l1,l2) with

([],[]) −> b
| (h1::t1,h2::t2) −> f h1 h2 (itlist2 f t1 t2 b)
| _ −> failwith "itlist2";;

His idea is that we have a function which adds an
equality of two terms as an antecedent to a formula.
Then we can use that function and itlist2 to iteratively
add equalities of the terms in our lists as antecedents
starting from the formula f (t1, . . . , tn) = f (s1, . . . , sn).

Our formalization instead splits the functionality of
axiom_funcong into two functions:

• foldr Imp takes a list of formulas [F1, . . . , Fn] and
adds them as antecedents to a formula F to build
a nested implication F1 −→ · · · −→ Fn −→ F.

• zip_eq takes two lists of formulas, [s1, . . . , sn],
[t1, . . . , tn] and builds the corresponding list of
equalities [s1 = t1, . . . , sn = tn].

definition zip_eq :: "tm list⇒ tm list⇒ fol fm list"
where
"zip_eq l l ′≡ map (λ(t, t ′). Atom (Rl (STR ′′= ′′) [t, t ′]))

(zip l l ′)"

The idea of our approach is that we can separately
reason about constructing equalities and adding an-
tecedents, and this will make it easier to prove sound-
ness. We now implement axiom_funcong as follows by
first constructing the equalities, and then the nested im-
plication.

definition axiom_funcong :: "id⇒ tm list⇒ tm list⇒ thm"
where
"axiom_funcong i l l ′≡

if equal_length l l ′ then
Thm (foldr Imp (zip_eq l l ′)

(Atom (Rl (STR ′′= ′′) [Fn i l, Fn i l ′])))
else fail_thm"

We formalize axiom_predcong in a similar way.

definition axiom_predcong :: "id⇒ tm list⇒ tm list⇒ thm"
where
"axiom_predcong i l l ′≡

if equal_length l l ′ then
Thm (foldr Imp (zip_eq l l ′)

(Imp (Atom (Rl i l)) (Atom (Rl i l ′))))
else fail_thm"

7. Formalization of Axiomatic Proof System

Since we want to prove the whole system sound, we
need to characterize the theorems, which are built ex-
clusively from the axioms and the rules. We therefore
define the proof system as an inductive predicate OK.
Writing ("` _" 0) we introduce the turnstile as syn-
tax for the OK predicate where the underscore denotes
that the formula follows the turnstile. The 0 denotes the
precedence of the notation. After where follows each
of the rules and axioms as introduction rules in the in-
ductive predicate. The underscores there are dummy
variables, that is, each one of them corresponds to a
fresh Isabelle/HOL variable.

inductive OK :: "fol fm⇒ bool" ("` _" 0)
where
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modusponens:
"` concl s =⇒
` concl s ′=⇒ ` concl (modusponens s s ′)" |

gen:
"` concl s =⇒ ` concl (gen _ s)" |

axiom_addimp: "` concl (axiom_addimp _ _)" |
axiom_distribimp: "` concl (axiom_distribimp _ _ _)" |
axiom_doubleneg: "` concl (axiom_doubleneg _)" |
axiom_allimp: "` concl (axiom_allimp _ _ _)" |
axiom_impall: "` concl (axiom_impall _ _)" |
axiom_existseq: "` concl (axiom_existseq _ _)" |
axiom_eqrefl: "` concl (axiom_eqrefl _)" |
axiom_funcong: "` concl (axiom_funcong _ _ _)" |
axiom_predcong: "` concl (axiom_predcong _ _ _)" |
axiom_iffimp1: "` concl (axiom_iffimp1 _ _)" |
axiom_iffimp2: "` concl (axiom_iffimp2 _ _)" |
axiom_impiff : "` concl (axiom_impiff _ _)" |
axiom_true: "` concl axiom_true" |
axiom_not: "` concl (axiom_not _)" |
axiom_and: "` concl (axiom_and _ _)" |
axiom_or: "` concl (axiom_or _ _)" |
axiom_exists: "` concl (axiom_exists _ _)"

8. Semantics

To prove the rules sound, we of course need a
semantics of terms and formulas. The formalization
is mostly straightforward. We represent universes as
types, and therefore the semantics refers to the universe
by a type variable ′a. A noteworthy case of the seman-
tics is the one for the atoms, where we interpret the =
predicate applied to two terms as an equality. This is
done by evaluating the terms and seeing if their values
are equal.

primrec — Semantics of terms
semantics_term ::
"(id⇒ ′a)⇒ (id⇒ ′a list⇒ ′a)⇒ tm⇒ ′a"

and
semantics_list ::
"(id⇒ ′a)⇒ (id⇒ ′a list⇒ ′a)⇒ tm list⇒ ′a list"

where
"semantics_term e _ (Var x) = e x" |
"semantics_term e f (Fn i l) = f i (semantics_list e f l)" |
"semantics_list _ _ [] = []" |
"semantics_list e f (t # l) =

semantics_term e f t # semantics_list e f l"

primrec — Semantics of formulas
semantics
:: "(id⇒ ′a)⇒ (id⇒ ′a list⇒ ′a)⇒

(id⇒ ′a list⇒ bool)⇒ fol fm⇒ bool"
where
"semantics _ _ _ Truth = True" |

"semantics _ _ _ Falsity = False" |
"semantics e f g (Atom a) =
(case a of Rl i l⇒

if i = STR ′′= ′′∧ length2 l then
(semantics_term e f (hd l) =
semantics_term e f (hd (tl l)))

else g i (semantics_list e f l))" |
"semantics e f g (Imp p q) =
(semantics e f g p −→ semantics e f g q)" |

"semantics e f g (Iff p q) =
(semantics e f g p←→ semantics e f g q)" |

"semantics e f g (And p q) =
(semantics e f g p ∧ semantics e f g q)" |

"semantics e f g (Or p q) =
(semantics e f g p ∨ semantics e f g q)" |

"semantics e f g (Not p) = (¬ semantics e f g p)" |
"semantics e f g (Exists x p) =
(∃ v. semantics (e(x := v)) f g p)" |

"semantics e f g (Forall x p) =
(∀ v. semantics (e(x := v)) f g p)"

9. Soundness of the Proof System

Harrison only presents a very high-level soundness
proof which leaves most of the exercise up to the
reader. Furthermore, his proof is about the proof sys-
tem, not its implementation. Our approach is therefore
to device a proof ourselves, using Isabelle/jEdit to ex-
plore proofs and to help us reveal the necessary lem-
mas.

We prove the soundness by rule induction on the
proof system, and thus need to prove one case for each
axiom and rule. Cases for the axioms without side con-
ditions and the gen rule are proved sound using only
the automation of Isabelle/HOL.

Cases for the axioms with side conditions are not as
easy to prove. Here, we need to come up with appro-
priate lemmas to prove them sound. We present and
explain these lemmas.

The modus_ponens case is proved with a short
declarative proof that also relies on automation.

9.1. Axioms with Non-Free or Non-Occurring
Variables

The first challenge in the soundness proof is the two
axioms, axiom_impall and axiom_existseq, that require
a variable to be respectively non-free or non-occurring
in an expression. For axiom_existseq it is clear that the
formula holds if we assign the value of x to t. By in-
specting the semantics of the existential quantifier, we
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realize that the variable x must not occur in t. It is how-
ever not clear to Isabelle that this problem is avoided
when x does not occur in t. The lemma map’ explicitly
states that if x does not occur in t, then the semantic
value of t is the same for all values of x. The statement
is extended to hold for lists of terms due to the induc-
tive definition of terms.

lemma map ′:
"¬ occurs_in x t =⇒

semantics_term e f t = semantics_term (e(x := v)) f t"
"¬ occurs_in_list x l =⇒

semantics_list e f l = semantics_list (e(x := v)) f l"

The lemma map is similar, but states that if the vari-
able x does not occur freely in p (or if it does not occur
at all) then the truth value of p is the same for all values
of x.

lemma map:
"¬ free_in x p =⇒

semantics e f g p←→ semantics (e(x := v)) f g p"

By inspecting the semantics of the universal quan-
tifier, we see that this exactly states that the semantics
of p is the same as ∀x. p. This fact is an even stronger
result than what we need to prove axiom_impall valid.
We are now ready to prove axiom_impall using map
and axiom_existseq using map′.

9.2. Congruence Axioms

The next challenge is to prove the congruence ax-
ioms, axiom_funcong and axiom_predcong sound. We
now take advantage of the foldr Imp function we in-
troduced earlier, and prove a lemma explaining its se-
mantics. The lemma states that a nested implication is
true exactly when the truth of its antecedents implies
the truth of its conclusion.

lemma imp_chain_equiv:
"semantics e f g (foldr Imp l p)←→
(∀ q ∈ set l. semantics e f g q) −→ semantics e f g p"

We then also state a lemma which explains the se-
mantics of foldr Imp (zip_eq l l′) p. The lemma states
that it holds exactly when the semantical equality be-
tween l and l′ implies the truth of p.

lemma imp_chain_zip_eq:
"equal_length l l ′=⇒

semantics e f g (foldr Imp (zip_eq l l ′) p)←→
semantics_list e f l = semantics_list e f l ′−→

semantics e f g p"

With this we prove the congruence axioms sound us-
ing automation in lemmas funcong and predcong. It is
easy to see that the lemma funcong proves a theorem
in the first-order logic, since its conclusion is encapsu-
lated by semantics. The formula is the main content of
the Isabelle definition of axiom_funcong.

lemma funcong:
"equal_length l l ′=⇒

semantics e f g (foldr Imp (zip_eq l l ′)
(Atom (Rl (STR ′′= ′′) [Fn i l, Fn i l ′])))"

Likewise in the lemma predcong, we see a theorem
in the first-order logic. The formula is the main content
of the Isabelle definition of axiom_predcong.

lemma predcong:
"equal_length l l ′=⇒

semantics e f g (foldr Imp (zip_eq l l ′)
(Imp (Atom (Rl i l)) (Atom (Rl i l ′))))"

9.3. Soundness Theorem

We then prove soundness. Often, soundness is ex-
pressed as provability implying validity. Therefore we
would like a HOL predicate expressing validity. That
is unfortunately not possible, because of our choice
of representing universes as types, which one cannot
quantify over inside HOL.

Instead, we express soundness as follows:

theorem soundness:
"` p =⇒ semantics e f g p"

This also expresses soundness, since it states that the
provability of any formula p implies its truth, for any
environment e, function denotation f and predicate de-
notation g. The proof is by rule-induction on the proof
system as described.

From our main theorem we immediately obtain a
consistency corollary which states that there is a for-
mula that we cannot prove:

corollary "¬ (` Falsity)"
using soundness
by fastforce

10. Prover

Since we have defined all the necessary datatypes
for our logic as well as the axioms and rules used to
construct theorems, we are ready to expose them to the
Isabelle/ML environment using code-reflection. To do
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this we use the Isabelle code_reflect command which
takes a structure name as well as a list of datatypes and
their constructors, as well as a list of functions. It then
generates a signature and structure based on them and
exposes it to the Isabelle/ML environment. In partic-
ular, we tell Isabelle that the datatypes fm, tm and fol
should be in the signature along with their respective
constructors. Likewise we tell Isabelle that the signa-
ture should include functions modusponens, gen, . . . ,
concl.

code_reflect
Proven

datatypes
fm = Falsity | Truth | Atom | Imp | Iff |

And | Or | Not | Exists | Forall
and

tm = Var | Fn
and

fol = Rl
functions

modusponens gen axiom_addimp axiom_distribimp
axiom_doubleneg axiom_allimp axiom_impall
axiom_existseq axiom_eqrefl axiom_funcong
axiom_predcong axiom_iffimp1 axiom_iffimp2
axiom_impiff axiom_true axiom_not axiom_and
axiom_or axiom_exists concl

Let us inspect the signature of the generated module:

structure Proven:
sig

val axiom_addimp: fol fm −> fol fm −> thm
val axiom_allimp: string −> fol fm −> fol fm −> thm
val axiom_and: fol fm −> fol fm −> thm
val axiom_distribimp: fol fm −> fol fm −> fol fm −> thm
val axiom_doubleneg: fol fm −> thm
val axiom_eqrefl: tm −> thm
val axiom_exists: string −> fol fm −> thm
val axiom_existseq: string −> tm −> thm
val axiom_funcong: string −> tm list −> tm list −> thm
val axiom_iffimp1: fol fm −> fol fm −> thm
val axiom_iffimp2: fol fm −> fol fm −> thm
val axiom_impall: string −> fol fm −> thm
val axiom_impiff: fol fm −> fol fm −> thm
val axiom_not: fol fm −> thm
val axiom_or: fol fm −> fol fm −> thm
val axiom_predcong: string −> tm list −> tm list −> thm
val axiom_true: thm
val concl: thm −> fol fm
datatype ’a fm =

And of ’a fm ∗ ’a fm
| Atom of ’a
| Exists of string ∗ ’a fm
| Falsity

| Forall of string ∗ ’a fm
| Iff of ’a fm ∗ ’a fm
| Imp of ’a fm ∗ ’a fm
| Not of ’a fm
| Or of ’a fm ∗ ’a fm
| Truth

datatype fol = Rl of string ∗ tm list
val gen: string −> thm −> thm
val modusponens: thm −> thm −> thm
type num
type thm
datatype tm = Fn of string ∗ tm list | Var of string

end

By inspecting the signature of the reflected module
we see that the only functions that return values of type
thm are the axioms and rules. This fact and the sound-
ness proof certify the soundness of the kernel assum-
ing that we trust ML’s type-system and Isabelle’s code
generator.

Notice that a user cannot write e.g. Thm Falsity in
ML since the Thm value constructor is not exposed in
the signature and thus unavailable to the user.

11. Declarative Prover

The signature above fits with the one in Harrison’s
prover. We translate his prover from OCaml to SML
such that we can run the prover inside of Isabelle in the
Isabelle/ML environment. The translation was not too
difficult, but there were some challenges arising from
the differences between SML (as defined in the revised
standard from 1997 [27]) and OCaml.

• In SML there is no built-in polymorphic ordering
and hashing. Therefore we, when needed, define
orderings and hash functions explicitly for each
datatype.
• In SML there is no shallow/pointer comparison.

All places it is used in the OCaml version we can
fortunately replace it with structural equality.
• In SML one cannot put guards on case-expressions.

Therefore we use if-then-else instead in these
cases.
• OCaml has widely used preprocessors (camlp4

and camlp5). Harrison uses them when parsing
formulas. We choose not to use a preprocessor.
One unfortunate consequence of this is that when
we want to use formulas as input, they are strings,
and thus /\ needs to written as /\\ in order to es-
cape the backslash.
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Harrison’s OCaml code contains many examples that
are run when executing his code. We have collected
these examples and translated them to SML. We have
systematically tested that both versions produce the
same output. The results are available online [37].

Let us take a look at how (our translation of) Harri-
son’s proof assistant works and how it plugs into our
generated kernel.

11.1. Derived Rules

The rules and axioms are functions that return the-
orems. By combining them Harrison obtains new such
functions, i.e. derived rules. For instance the rule which
takes a theorem ` q and produces ` p −→ q where p
is some formula. The ML-implementation of this looks
as follows:

fun add_assum p th =
modusponens (axiom_addimp (concl th) p) th;

The idea is that the above code implements the follow-
ing proof where we think of q as concl th:

1. ` q
2. ` q −→ p −→ q (axiom_addimp)
3. ` p −→ q (modusponens 1 2)

We can also inspect the type of add_assum and see
that it indeed takes a formula and a theorem and returns
a theorem:

fm −> thm −> thm

11.2. Tableau Prover

Harrison implements a tableau prover for first-order
logic on top of the kernel. It is implemented as code
and thus calls into the kernel. The prover implements a
tableau system with unification — see e.g. Wikipedia
[45] or Hähnle’s chapter in the Handbook of Auto-
mated Reasoning [11]. The tableau is expanded in a
preorder-fashion. Whenever a pair of complementary
literals is found the resulting unifier will be applied to
an environment that is passed on to the next node to be
expanded. In the code, branching on a disjunctive for-
mula is handled by working on the left branch imme-
diately and delaying the work on the right branch by
building a continuation function.

The tableau prover takes as parameter a number n
indicating how many times universal quantifiers are al-
lowed to introduce fresh variables. An outer function
tries to build tableaux with larger and larger n until it,
if the formula can be refuted, succeeds.

Harrison proves informally that the tableau prover is
complete for first-order logic without equality.

11.3. Tactics

Tactics are a way to implement backwards reasoning
in a proof assistant. When a user wants to use tactics he
first states the goal he wants to prove. He can then use a
tactic to reduce the goal to a number of subgoals from
which the goal follows. The subgoals can likewise be
reduced with tactics until they become trivial and then
the proof is done.

A state in this process is represented by a datatype
goals which looks as follows in the ML-implementation:

datatype goals =
Goals of ((string ∗ fol fm) list ∗ fol fm)list ∗

(thm list −> thm);

Each (string ∗ fol fm) list ∗ fol fm represents a subgoal
with a number of assumptions. More precisely, the sub-
goal value ([p1, . . . , pi], q) represents the implication
p1 ∧ ... ∧ pi −→ q.

The ((string ∗ fol fm) list ∗ fol fm) list represents a list
of subgoals:

p11 ∧ . . . ∧ p1i1 −→ q1

...
pn1 ∧ . . . ∧ pnin −→ qn

The string in the type allows us to label the assump-
tions.

The (thm list −> thm) is called a justification func-
tion and represents a rule which will bring us from the
subgoals to the goal P we ultimately want to prove. It
should thus represent a rule on the following form:` p11 ∧ . . . ∧ p1i1 −→ q1

...
` pn1 ∧ . . . ∧ pnin −→ qn

 =⇒ ` P

Let’s consider a simple example of a goals. Say we
want to prove > ∧ >. A goals for this could be a list
with the single subgoal

> ∧>
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together with a justification:

(` > ∧ >) =⇒ (` > ∧ >)

In ML this could be the value ([([],And(Truth,Truth)],hd)
where hd gives the head of a list, and so indeed when
it is given [` > ∧ >] it will return ` > ∧ >.

A tactic is then simply a function of the type goals
-> goals that should reduce the subgoals to something
simpler and change the justification function accord-
ingly. This is similar to how it was done in LCF [9, 26].

For instance we could apply a conjunction introduc-
tion tactic to our current example which would then
produce the subgoals

>
>

together with a justification:(
` >
` >

)
=⇒ ` > ∧>

A simple example of a tactic is the conjunction in-
troduction tactic which replaces a subgoal of the form
a −→ p ∧ q with two subgoals a −→ p and a −→ q.

Let us look at how to program the conjunction in-
troduction tactic. In general, the tactic is supposed to
go from a goals with the following justification (and a
corresponding list of subgoals)

` p11 ∧ . . . ∧ p1i1 −→ a ∧ b
` p21 ∧ . . . ∧ p2i2 −→ q2

...
` pn1 ∧ . . . ∧ pnin −→ qn

 =⇒ ` P

to the following justification (and a corresponding list
of subgoals)

` p11 ∧ . . . ∧ p1i1 −→ a
` p11 ∧ . . . ∧ p1i1 −→ b
` p21 ∧ . . . ∧ p2i2 −→ q2

...
` pn1 ∧ . . . ∧ pnin −→ qn

 =⇒ ` P

The tactic is implemented as follows. The call it
makes to imp_trans_chain and and_pair is described be-
low, but for brevity we leave out the function defini-
tions.

fun conj_intro_tac (Goals((asl,And(a,b))::gls,jfn)) =
let fun jfn’ (tha::thb::ths) =
jfn(imp_trans_chain [tha, thb] (and_pair a b)::ths) in

Goals((asl,a)::(asl,b)::gls,jfn’)
end;

The subgoals are changed as described – namely
from (asl,And(a,b))::gls to (asl,a)::(asl,b)::gls. There is
also a new justification function jfn’. In its definition
the function call imp_trans_chain [tha, thb] (and_pair a b)
takes theorems ` asl −→ a and ` asl −→ b and from
these produces ` asl −→ a ∧ b by calls into the ker-
nel. When this is done we have the list of theorems that
the original justification function expected and we can
then simply apply it to produce the theorem we finally
want.

Harrison implements several functions that are, or
return, tactics:

• conj_intro_tac – conjunction introduction
• forall_intro_tac – forall introduction
• exists_intro_tac – existential introduction
• imp_intro_tac – implication introduction
• auto_tac – tableau prover
• lemma_tac – adding a new assumption
• exists_elim_tac – existential elimination
• disj_elim_tac – disjunction elimination

11.4. Declarative Proofs

Harrison builds the deductive prover on top of the
tactics. The first step is to define a function prove which
takes a formula and a list of tactics. It then sets up a
goals with that formula and applies the tactics in the
list one after another. In the end it returns the formula
as a theorem if the tactics were successful in proving
it.

We use this function in Fig. 6 to conduct a proof.
Notice that the proof is actually an SML-expression di-
rectly calling prove. Because proofs are SML-expres-
sions it is easy to extend the prover’s syntax by writing
new functions. The proof has a nested structure with
some subproofs introduced by the function proof that
are processed in a similar way. Some of these proofs
use the have function to state intermediate steps to-
wards proving the final goal. Let us first look at how
this works if we for instance write have p using [q] in
some goals g. Here p is some formula and q is some
theorem. The have function calls lemma_tac with p
and using [q], and the following happens:

The goals g has a first subgoal of the form asl −→
w. This subgoal is replaced with p −→ asl −→ w.
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Furthermore the justification function is changed. The
new one calls using [q] which constructs the theorem
` asl −→ univeral_closure q. Hereafter it will use the
tableau prover to construct ` universal_closure q −→
p if possible. From this follows ` asl −→ p. The new
justification function expects as input ` p −→ asl −→
w and therefore it can now construct ` asl −→ w. This
is what the old justification function expected as input
and thus it is applied.

As we saw, have and using can be used to prove
an intermediate step with a previously proved theorem.
Likewise, have and by can be used to refer to a previ-
ously established fact in the proof. In the implemen-
tation this can be done by ensuring that the steps that
introduce facts put them in the assumption list of the
goals – as we saw have did. Then by can simply find
them there by their name. Combining have and proo f
allows subproofs to prove intermediate steps in a simi-
lar manner.

Other tactics to be used in declarative proofs are

• note – similar to have, but the intermediate step is
named.

• fix – which is simply a forall-introduction rule.

• assume – which does implication introduction.

• consider – which does existential elimination and
introduces an appropriate variable.

• so – which modifies e.g. the have tactic to use the
previous fact to prove its intermediate step.

• conclude – indicates that we prove a subgoal.

• qed – indicates the end of the proof.

The declarative prover is able to give the user a rudi-
mentary form of feedback when developing the proof:

• The type system of SML will tell the user if she
enters a proof wrongly on the highest level

• On the lower level, the tactics will throw excep-
tions if they are applied on a goals they did not
expect.

We have tried several workflows for building proofs:

• It is possible, but arguably a bit tedious, to build
the proof from scratch with the help from the
SML type system and the exceptions.

• Another possibility is to start with a formula that
can be proved with the tableau prover, and then
expand the proof more and more to the desired
granularity, each time filling in the next part to be
expanded with a call to the tableau prover. This of

course only works on formulas that the prover can
prove.

• A third possibility is to write the proof first by
manually applying tactics to goals and printing
the resulting goals until one has a proof. Hereafter
the proof can be reconstructed in the declarative
style.

Isabelle/jEdit presents both type errors and exceptions
directly in its output panel, which is updated live while
the user is writing her proof. However, there is defi-
nitely room for improvement when it comes to the us-
ability of the prover.

For declarative proofs it is a huge advantage to have
powerful proof automation that can take care of some
of the simpler steps. As a rather challenging example,
consider the following formalization with predicate r
for rich and function f for father [23, page 128]:

If every person that is not rich has a rich father,
then some rich person must have a rich grand-
father.

∀x(¬r(x)→ r( f (x)))→ ∃x(r(x) ∧ r( f ( f (x))))

The tableau prover can in fact find the proof auto-
matically and almost instantaneously. We can easily
use the tableau prover and/or the declarative prover as
a stand-alone program as follows. In Isabelle, we can
introduce a Standard ML function auto and test it on
some examples including the above one (of course a
more advanced version of the function auto is possible,
also using some helper functions):

ML {∗
fun auto s = prove (<!s!>) [our thesis at once, qed]
∗}

ML_val {∗ auto "A ==> A" ∗}

ML_val {∗ auto "exists x. D(x) ==> forall x. D(x)" ∗}

ML_val {∗ auto "(forall x. ~R(x) ==> R(f(x)))
==> exists x. R(x) /\\ R(f(f(x)))" ∗}

Using Isabelle’s code generator we obtain a stand-
alone Standard ML program auto for the certified au-
tomated theorem prover. We have then used the tool
SMLtoJs (“SML toys”) to translate the Standard ML
code to JavaScript such that we can use it in our
NaDeA system [40] running in a browser (here auto
is run for just a fraction of a second and if necessary
terminated).
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12. Evaluation of the Declarative Prover

We first evaluate the usability of the declarative
prover and then we evaluate the adequacy of the sound-
ness proof.

12.1. Usability of the Declarative Prover

Recall Figures 1 and 2 with Pelletier’s problem 46.
With this example we have already shown that we can
prove a challenging theorem in the prover with the
declarative style.

We now wish to further evaluate the prover by using
it to prove a mathematical theorem. We therefore con-
sider Pelletier’s problem 43. The problem defines from
a relation P another relation Q as follows:

Q(x, y)←→ (∀z. P(z, x)←→ P(z, y))

The problem then claims that Q is symmetric.
Additionally, we to want construct a declarative

proof with a stronger resemblance to our understand-
ing of thorough paper proofs as chains of sentences.
Thus, the proof should break down the structure of the
formula to an appropriate level, and on that level re-
semble a thorough paper proof consisting of a chain of
sentences.

Figure 6 shows such a proof in the declarative proof
language. We also discuss this and some alternative
proofs in Alexander B. Jensen’s thesis [16].

The first step of the proof is to show ∀x y.Q(x, y)←→
Q(y, x) assuming (∀x y.Q(x, y) ←→ ∀z. P(z, x) ←→
P(z, y)). We assume the left-hand side of the implica-
tion in the main formula with the assume command
and give it the name A. The command is in many ways
similar to its Isabelle counterpart. We then fix vari-
ables x and y using fix x, fix y to eliminate the quanti-
fiers. We further break down the problem and show the
conjunction of both directions of the bi-implication in
Q(x, y) ←→ Q(y, x). We show the formula using the
command have which is similar to conclude except that
it does not have to directly solve a sub-goal. The sub-
goal ∀z. P(z, y) ←→ P(z, x) for the −→ direction is
solved by using the assumption A which is achieved by
so have (< !"forall z. P(z,x) <=> P(z,y)"!>) by ["A"]. In the
following sub-goal, where the left-hand side and right-
hand side are swapped, we use only the previous fact
and no assumptions. The command at once can be used
when the goal can be solved by pure first-order rea-
soning from the previous fact. From the conjunction of
implications, we show that it is equivalent to the bi-

implication using so our thesis at once and thus finish
the proof.

To show that this proof is comparable to the declar-
ative proofs in Isabelle/Isar and Isabelle/HOL, we
present in Figure 7 a similar proof in that system. The
correspondence is clear.

12.2. Adequacy of the Soundness Proof

Let us also evaluate the soundness proof. In order
to believe it, we need to convince ourselves that the `
predicate indeed represents the ML-type thm. In order
to do this we need to check that all the axioms and rules
for which we generate code, indeed appear in the defi-
nition of `. The process is easy but allows for mistakes
due to human error. Imagine for instance that someone
writes the following axiom, and generates code for it,
but forgets to add it to ` – thus bypassing the sound-
ness proof.

definition axiom_false :: "thm" where
"axiom_false ≡ Thm Falsity"

It is not a catastrophe, since his peers can spot his
mistake by inspection of `, but is none the less unde-
sirable.

One way to remedy this problem is to disallow, also
in Isabelle/HOL, constructions such as Thm Falsity.
One way to do this is to define the axioms, rules and `
on formulas instead of theorems. Hereafter one can de-
fine the type of theorems as the set of formulas deriv-
able with ` using Isabelle’s typedef command. The
lifting package of Isabelle can then lift the axioms and
rules to work on this new type. The concl function will
then be defined to convert theorems back to formulas.

With such a definition we can express soundness:

theorem soundness: "semantics e f g (concl p)"

And consistency:

theorem consistency: "concl p 6= Falsity"

Another, similar, way to remedy the problem is to
define a predicate characterizing the valid formulas and
then define the theorems as the valid formulas using
typedef . Unfortunately, as we noticed in Section 9.3,
this is not possible. One way to overcome this is to in-
troduce a new type U, using Isabelle’s typedecl com-
mand, and then assume absolutely nothing about it.
Then if a formula evaluates to true for all environments
and interpretations over this universe, we can, infor-
mally, argue that it must be valid, since U is com-
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prove
(<!"(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)) ==> forall x y. Q(x,y) <=> Q(y,x)"!>)
[

assume [("A", <!"forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)"!>)],
conclude (<!"forall x y. Q(x,y) <=> Q(y,x)"!>) proof
[

fix "x", fix "y",
conclude (<!"Q(x,y) <=> Q(y,x)"!>) proof
[

have (<!"(Q(x,y) ==> Q(y,x)) /\\ (Q(y,x) ==> Q(x,y))"!>) proof
[

conclude (<!"Q(x,y) ==> Q(y,x)"!>) proof
[

assume [("", <!"Q(x,y)"!>)],
so have (<!"forall z. P(z,x) <=> P(z,y)"!>) by ["A"],
so have (<!"forall z. P(z,y) <=> P(z,x)"!>) at once,
so conclude (<!"Q(y,x)"!>) by ["A"],
qed

],
conclude (<!"Q(y,x) ==> Q(x,y)"!>) proof
[

assume [("", <!"Q(y,x)"!>)],
so have (<!"forall z. P(z,y) <=> P(z,x)"!>) by ["A"],
so have (<!"forall z. P(z,x) <=> P(z,y)"!>) at once,
so conclude (<!"Q(x,y)"!>) by ["A"],
qed

],
qed

],
so our thesis at once,
qed

],
qed

],
qed

]

Fig. 6. A detailed proof of Pelletier’s problem 43 in the declarative prover.

pletely arbitrary. Again we can then define the rules
and axioms on the type of formulas, and then lift them
to work on theorems. With this approach soundness is
captured in the types – any theorem value or function
that returns a theorem is valid. Consistency can be ex-
pressed and proved in the same way as when we lifted
`. One can, however, argue that defining the theorems
as the valid formulas goes against the meaning of the
word theorem – theorem being a syntactic notion and
validity being a semantic notion. In first-order logic
the two words capture the same meaning for sound
and complete proof systems, but for other logics such
as ZFC there are no sound and complete proof sys-

tems with respect to their usual semantics, and thus the
words have very distinct meanings.

We have implemented both approaches of having
thm as a type. Their code is available online [19]. We,
however, prefer our current approach because we feel
that for teaching purposes there are already enough
concepts to talk about and adding lifting to the mix
might confuse more than help.

13. Related Work

The literature contains several other formalizations
of logic and contains also declarative provers. Let us
first look at some other formalizations of logic.
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lemma "(∀ x y. Q(x,y)←→ (∀ z. P(z,x)←→ P(z,y))) −→ (∀ x y. Q(x,y)←→ Q(y,x))"
proof

assume A: "∀ x y. Q(x,y)←→ (∀ z. P(z,x)←→ P(z,y))"
show "∀ x y. Q(x,y)←→ Q(y,x)"
proof (rule, rule)

fix x y
show "Q(x,y)←→ Q(y,x)"
proof −

have "(Q(x,y) −→ Q(y,x)) ∧ (Q(y,x) −→ Q(x,y))"
proof

show "Q(x,y) −→ Q(y,x)"
proof

assume "Q(x,y)"
then have "∀ z. P(z,x)←→ P(z,y)" using A by blast
then have "∀ z. P(z,y)←→ P(z,x)" by blast
then show "Q(y,x)" using A by blast

qed
next

show "Q(y,x) −→ Q(x,y)"
proof

assume "Q(y,x)"
then have "∀ z. P(z,y)←→ P(z,x)" using A by blast
then have "∀ z. P(z,x)←→ P(z,y)" by blast
then show "Q(x,y)" using A by blast

qed
qed
then show "Q(x,y)←→ Q(y,x)" by blast

qed
qed

qed

Fig. 7. A detailed proof of Pelletier’s problem 43 in Isabelle/HOL.

Harrison [12] formalized, in HOL Light, soundness
and consistency proofs for the HOL of HOL Light
without definitions. More precisely he considered three
different logics: HOL, HOL + I and HOL −∞. HOL
+ I is HOL extended with an axiom claiming the exis-
tence of a very large cardinal, and HOL − ∞ is HOL
where the axiom of infinity is removed. His results are
to prove in HOL + I that HOL is sound and consistent,
and to prove in HOL that HOL −∞ is sound and con-
sistent. Kumar et al. [20] extended Harrison’s work by
proving, in HOL4, that HOL with definitions is sound
and consistent. Their proofs rely on assuming a specifi-
cation of a set-theory. Our work differs from this by us-
ing the meta-logic of Isabelle/HOL and the object logic
of FOL. Using Isabelle/HOL on the meta-level has at
least two advantages seen from a teaching perspec-
tive. Firstly, Isabelle/HOL provides a complete inte-
grated package of proof assistant, prover integrated de-
velopment environment and code-generation. This en-
ables students to load the entire development directly

in Isabelle including verification, code-reflection and
the execution of the prover. Secondly, having FOL on
the object level has pedagogical advantages, since it is
a logic that students are often familiar with and thus we
can assume they have some understanding of its syn-
tax and semantics. Thus, we see our development as a
pedagogical stepping stone students can take towards
the self-verifications of Harrison and Kumar et al.

Other provers based on verified proof systems for
first-order logics are our NaDeA system [40] and Bre-
itner’s The Incredible Proof Machine [6]. They offer,
by design, only limited automation and the connection
between the verification and the implementation is,
furthermore, entirely informal. Margetson and Ridge’s
automatic prover for first-order logic in negation nor-
mal form without first-order terms [24, 34, 35] makes
the connection explicit, opting for execution within
Isabelle/HOL’s rewrite engine. Our prover stands out
from these in two ways. Firstly, it is an interactive the-
orem prover where users can employ techniques of



18 A. B. Jensen et al. / Programming and Verifying a Declarative First-Order Prover in Isabelle/HOL

declarative proving, automation, tactics, etc. as they
wish. Secondly, the connection between the verifi-
cation and the system is made explicit using code-
generation.

There are many other formalizations of logic such
as e.g. Persson’s constructive completeness of intu-
itionistic predicate logic [33], Braselmann, Koepke and
Schlöder’s sequent calculus for uncountable languages
[4, 5, 38], Berghofer’s natural deduction [1], Ilik’s con-
structive completeness results for classical and intu-
itionistic logic [15], Blanchette, Popescu and Traytel’s
abstract completeness library [3], Schlichtkrull’s res-
olution calculus [36], Peltier’s superposition calculus
[32], and Paulson’s proof of Gödel’s incompleteness
theorems [30]. These formalizations, however, do not
formalize provers.

Let us now look at some other declarative provers.
Geuvers [8] studies the history, ideas and future of
proof assistants. For instance, he emphasizes the ad-
vantage of having declarative provers since they allow
proofs in proof assistants to look like the texts that
mathematicians write and understand. Furthermore he
emphasizes that declarative proofs are easier to adapt
when a definition is changed, since they explicitly doc-
ument in each step which facts are supposed to hold
there. He also gives an overview of declarative proofs
in the proof assistants Mizar, Isabelle/Isar, Coq/C-Zar,
and HOL Light (Mizar mode).

Our prover stands out from these provers in that it
relies on a verified kernel. Furthermore, it is not meant
as an advanced production scale proof assistant, but in-
stead as a smaller program that is easy to understand
and whose inner workings can be taught. None the less,
the prover still has the advantages of being declarative
that Geuvers described.

14. Conclusion

We have in Isabelle/HOL certified the soundness of
the underlying axiomatic proof system of the declar-
ative first-order prover. Using code reflection, we ob-
tain from the proof system a certified kernel that is
loaded into the Isabelle/ML environment. The declar-
ative prover uses the certified kernel, and thus we also
consider the soundness of the prover certified.

Declarative proofs mention explicitly the intermedi-
ate proof states, in contrast to procedural proofs that
merely explain what method is used to go to the next
state. We have given example proofs using the prover
in Isabelle. Due to the compactness and transparent ap-

proach we think that the certified declarative prover is
useful as a tool for teaching logic.

Many well-known theorems can be proved by full
automation using the tableau prover, e.g. Pelletier’s
problems 1–46 except for problems 34 (also known as
Andrews’s challenge), 43 and 46.

For problem 43 and 46 that could not be proved au-
tomatically in reasonable time with the current tableau
prover, we have shown how the proofs can be writ-
ten as declarative proofs that resemble paper proofs
and combine the declarative language with a high level
of automation. It would be interesting to improve the
tableau prover or to add, say, a resolution prover, which
would be certified by using the certified kernel. We
have not considered the tricky problem 34 yet.

Our declarative prover follows the LCF-style of hav-
ing a trusted kernel on which other components are
built. In a single Isabelle theory file we certify the
soundness of the kernel and use code reflection to ob-
tain a simple yet quite powerful interactive theorem
prover. Our combination of derived rules, a tableau
prover, tactics and a declarative prover opens up for
easy experimentation with reliable combinations of au-
tomatic and interactive proof techniques — and such
techniques are in high demand as the following quote
suggests:

In view of the practical limitations of pure auto-
mation, it seems today that, whether one likes it or
not, interactive proof is likely to be the only way
to formalize most non-trivial theorems in mathe-
matics or computer system correctness. [14]

Learning the declarative style is of course benefi-
cial for a computer science student who wants to use
one of the aforementioned provers. Even for those who
will never use a proof assistant again, it can be a help-
ful learning experience. Lamport recommends a struc-
tured style even for paper proofs [21, 22]. His experi-
ence is that this style helps reveal mistakes and cope
with details. He also suggests using this style for teach-
ing because it allows for additional explanation and
has a clear logical structure that is easy to learn from.
The concrete style he uses resembles very much that of
our declarative prover. Furthermore, the style is imple-
mented in the TLAPS prover [22]. We conjecture that
a good way to learn this structured style is by studying
and understanding a concrete prover. Our prover em-
phasizes the connection between the logical systems,
its semantics and the prover that implements them. A
student can study all these aspects in the package we
provide.
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