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Abstract. In this paper, we explore the capability of selective decentralization in improving the reinforcement learning perfor-
mance for unknown systems using model-based approaches. In selective decentralization, we automatically select the best com-
munication policies among agents. Our learning design, which is built on the control system principles, includes two phases.
First, we apply system identification to train an approximated model for the unknown systems. Second, we find the suboptimal
solution of the Hamilton-Jacobi-Bellman (HJB) equation to derive the suboptimal control. For linear systems, the HJB equation
transforms to the well-known Riccati equation with closed-form solution. In nonlinear system, we discretize the approximation
model as a Markov Decision Process (MDP) in order to determine the control using dynamic programming algorithms. Since
the theoretical foundation of using MDP to control the nonlinear system has not been thoroughly developed, we prove that the
control law learned by the discrete-MDP approach is guarantee to stabilize the system, which is the learning goal, given several
sufficient conditions. These learning and control techniques could be applied in centralized, completely decentralized and selec-
tively decentralized manner. Our results show that selective decentralization outperforms the complete decentralization and the
centralization approaches when the systems are completely decoupled or strongly interconnected.
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1. Introduction

To deal with the complexity AI systems, decentral-
ization and multi-agent learning has been one of the
major approaches in reinforcement learning. Decen-
tralization decouples the entire system‘s state variables
into subsystems using domain knowledge or partition
techniques and assigns an agent for each subsystem.
Each agent is responsible to learn the optimal control
strategy for the assigned subsystem. With decentraliza-
tion, the learning algorithms operate on less number of
state variables and are less susceptible to uncertain sys-
tem parameters [1]. In addition, decentralization makes
the system more adaptive to structural changes than the
corresponding centralized systems [2]. Another benefit
of decentralization is that if one agent fails in learning,
the other agents could compensate for it in the over-
all learning problem resulting in only graceful degra-
dation of performance [3]. Although decentralization
is a promising approach for large-scale reinforcement
learning, this type of approach is likely to suffer from

instability in the presence of interconnections among
subsystems regardless of the interconnection strength
[1, 4].

To overcome the stability issue, one of the key ques-
tions in decentralized learning is to set up a commu-
nication policy among the learning agents. The ques-
tion of how to choose a suitable communication pol-
icy to use is still open because the number of commu-
nication policies grows following the Bell‘s number,
which is more than exponential [5]. To the extent of our
knowledge, there are two classical approaches in de-
signing communication policy in decentralized learn-
ing: partial communication and multi-model switch-
ing. In partial communication, each agent is responsi-
ble to select the other agents to communicate with, de-
pending on the agent‘s state variables and communica-
tion costs [6]. Some of the recent state-of-the-art tech-
niques in partial communication demonstrate how each
agent decides the communication in Q-learning prob-
lems [7–9], partially ordered subsystems [10], fuzzy
logic systems [11, 12] and probabilistic control shar-
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ing systems [13]. In multi-model-switching, the en-
tire system has K policies to allow the agents to com-
municate, and the entire system has a central com-
municator who is responsible to switch the communi-
cation policy depending on the resulting performance
[14–17]. Also, criteria to decide policy switch may de-
pend on the domain-specific optimization of the prob-
lem, such as power efficiency function in energy sys-
tem [18, 19] and aerodynamic performance in hyper-
sonic vehicle systems [20]. In addition, communica-
tion among agents also depends on the characteris-
tics of the tasks, or the final goals, of the entire sys-
tem. From this perspective, the communication policy
and learning algorithms could be categorized into fully
cooperative tasks, explicit coordination mechanisms,
fully competitive tasks and mixed tasks [3]. Although
the communication policy problem has been broadly
explored, the existing solutions still require full or par-
tial knowledge about the agents‘ connectivity and op-
erating regimes. Other practical questions in decentral-
ization are how to create and justify the subsystem de-
compositions, and how fast the decentralized learning
algorithms converge.

From the theoretical point of view, a reinforce-
ment learning AI problem could be considered as an
adaptive control problem [21], in which solving the
Hamilton-Jacobi-Bellman (HJB) equation is the the-
oretical key in the reinforcement learning and con-
trol system theory. Most of the decentralization tech-
niques focus on learning linear systems [2, 4], in which
the centralized and decentralized system could be uni-
formly represented in matrix form. For the linear sys-
tem, the HJB equation becomes the well-known Ric-
cati equation with a complete solution [22]. However,
in most of the real-world cases, the system is non-
linear where the closed-form solution for HJB equa-
tion is very difficult to find. Solving the nonlinear HJB
equation in decentralized manner is even more diffi-
cult. Therefore, researchers have been focusing on ap-
proximation methods to tackle nonlinear HJB equation
problem such as [23, 24, 26, 35]. Generally, these ef-
forts focus on the nonlinear feedback-linearization sys-
tem, in which the closed-form solution for the approx-
imation of HJB equation has been found [27]. Theo-
retically, the HJB equation could be solved with dy-
namic programming [28]. Therefore, a simple idea is
to discretize the nonlinear system to convert it into a
Markov-Decision-Process (MDP) and solve it by the
policy iteration algorithm [29]. Such discretization of
continuous-state nonlinear control systems has been
studied in [30–32]. Results of MDP convergence for

decentralized learning in Markov systems have been
derived in [33, 34]. In addition, the matrix-properties
of MDP could support the representation of decentral-
ized learning and control. With this discretization ap-
proach, we successfully solved the nonlinear control
problem in several case-studies. However, from our
knowledge, the theoretical proof about the existence
and approximation of the MDP‘s solution in the gen-
eral form HJB equation has not been widely explored.

In addition, the adaptive control and reinforcement
learning has another problem due to the unknown na-
ture of the systems. However, this problem could be
tackled by system identification techniques. System
identification constructs an approximation to model
the dynamical changes of the system and environment
[35]. For linear system identification, the gradient de-
scent is one of the most robust methods as shown
in [36]. For nonlinear system, neural network is one
of the most well-known approaches for identification.
Neural networks have been known for their capability
to approximate a large and general class of nonlinear
functions over compact domains. Theoretical founda-
tion and application of neural network as such univer-
sal functional approximators in control systems can be
found in [23, 37, 38].

In this paper, we make two major contributions: 1.
Inspired by the model-switching ideas, we propose the
selective decentralization method, to learn how to con-
trol the completely unknown-interconnection system
in two-phase approach: system identification and con-
trol in fully cooperative tasks problem. This method
also allows the learning agents to learn the suboptimal
communication policy when the agents‘ connectivity
and operating regimes are completely unknown. 2. We
design a discretized-MDP approach to tackle the non-
linear HJB equation in the most general form, due to
the assumption that the AI reinforcement learning sys-
tem is completely unknown. The discretized-MDP ap-
proach helps in the control phase in the nonlinear-
system case. We also provide theoretical analysis about
the necessary conditions for the MDP‘s discrete state
vector to converge to the real continuous state vec-
tor asymptotically. In addition, we also prove that the
MDP‘s solution guarantees to stabilize the learning
systems in general form when the systems satisfy cer-
tain conditions.

From our knowledge, the approach using the decen-
tralized method with system identification to unknown
system, especially beyond the feedback-linearization
systems, is relatively unexplored. Our focus in this
work in the nonlinear system. However, we inclue sev-
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eral examples of linear system to demonstrate how the
selective decentralization perfrom in a well-known and
well-sloved problem. We also compare the control per-
formance of our selective decentralization method with
the completely decentralized method and the central-
ized method using simulation studies.

2. Problem statement

In this paper, we focus on discrete time, continuous-
state, time-invariant system in the general format

x(t + 1) = f(x(t),u(t)) (1)

Where x ∈ RN stands for the N-dimensional bounded
state vector, u ∈ RM stands for the M-dimensional
bounded control unit, t stands for the iteration number,
x(0) is given and f : RN×RM → RN is a continuously
differentiable unknown function. Here, the symmetric
boundaries [−χ, χ] and [−µ, µ] for all components of x
and u are known. Let p: RN → R and q: RM → R be
the two continuously semi-definite negative and differ-
entiable reward functions with the following properties

p(x1) 6 p(x2)⇔ ‖x1‖ > ‖x2‖, p(0) = 0 (2)

q(u1) 6 q(u2)⇔ ‖u1‖ > ‖u2‖, q(0) = 0 (3)

where ‖x‖ denotes the second norm of x. The main
objective is to learn the control unit u such that

x(t)→ 0,u(t)→ 0 as t→∞ (4)

To formulate a control or learning problem, we convert
the objective in (4) into a more formal control problem
with discount factor 0 < γ→ 1 [39]

J(x0 =

∞∑
t=0

(p(x(t)) + q(u(t))) (5)

Thus, the goal is to optimize J(x0). The function J(x)
defined in (5) is called the state value function [29].
Since f is unknown, in the model-based approach, the
intermediate goal is to find the approximated f̂ such
that with the predicted state vector

x̂(t + 1) = f̂ (x(t),u(t)) (6)

the identification error

e(t) = ‖x(t)− x̂(t)‖ (7)

approaches 0 as t→∞.

3. Learning the near-optimal control

3.1. Linear system

In the linear system

x(t + 1) = Ax(t) + Bu(t) (8)

in which B is a known N × M and A is an unknown
N × N matrix. Suppose that the reward functions are
p(x) = −xT Qx and q(u) = −uT Ru, where Q and R
are positive-definite matrices. To compute control vec-
tor u, we find the solution P of the Riccati equation
[40]

AT PA−P−AT PB(BT PB+R)−1BT PA+Q = 0

(9)

We use DARE algorithm implemented by Arnold et al
[41] to solve for P. At each iteration, by replacing A
by the approximator Â(t) in (9) and solution P̂(t), we
compute the control vector u(t) by

u(t) = −(R + BT P̂(t)B)−1BT P̂(t)Â(t)x(t) (10)

To find the approximator P̂(t), we could apply the tech-
niques in [36].

3.2. Nonlinear system

Theoretically, the solution for the nonlinear control
system described from (1)-(5) is the solution of the
corresponding HJB equation [27]. Since in general the
closed-form solutions for the nonlinear HJB equations
are unknown and we know the boundary of the state
and control vectors, we discretize the state and control
vector to construct an MDP problem closed to the un-
derlying nonlinear function. We use the solution of the
MDP problem as the near-optimal solution for the non-
linear system (1)-(5). Since the solution for an MDP
problem has been extensively studied, to be brief, we
use policy iteration algorithm to compute the optimal
policy [29]. In this section, we will focus more on the
discretization and set up the MDP process.
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3.2.1. Discretizing the state and control vector space
Let K be the number of intervals in each dimen-

sion of x and u for which we uniformly divide the di-
mension into small grids. Therefore, the entire state
space is divided into KN small hypercubes and the con-
trol space is divided into KM small hypercubes. All
points inside a hypercube are discretely represented by
the center of the hypercube. Points on the borders be-
tween two hypercubes are represented by the center of
the ‘left‘ hypercube. Mathematically, the discretization
process is described by the following formulas

x[i]→ θx + χ/K∀i ∈ [1,N]

and x[i] ∈ [θx, θx + 2χ/K) (11)

u[i]→ θu + µ/K∀i ∈ [1,N]

and u[i] ∈ [θu, θx + 2µ/K) (12)

where θx ∈ {−χ,−χ+2χ/K,−χ+4χ/K, ..., χ−2χ/K}
and θu ∈ {−µ,−µ+ 2µ/K,−µ+ 4µ/K, ..., µ− 2µ/K},
which are the ‘left‘ boundaries in the hyper cubes.

Let δ = max{2χ/K, 2µ/K}. It is easy to see
that inside each small hypercube, the largest distance
between any two points, or the ‘main diagonal‘, is
bounded by√

δ2 + δ2 + ...+ δ2 =
√

Nδ2 =
√

Nδ (13)

in the state space and by
√

Mδ in the control space.
The left side of (13) has N terms for x dimension or M
terms for u dimension. Trivially, K → ∞ ⇔ δ → 0,
which means that the discretization is more precise.

From this point, for any state vector x, we denote
xdis as the discretized form of x; for any control vector
u, we denote udis the discretized form of u. We also de-
note (xdis) and (udis) as the hypercube where every dis-
cretization of x and u is xdis and udis, correspondingly.
Formally, from 11 and 12, we have

(xdis) = [xdis(i)−χ/K, xdis(i)+χ/K]∀i ∈ {1...N}

(14)

and

(udis) = [udis(i)−µ/K,udis(i)+µ/K]∀i ∈ {1...M}

(15)

Fig. 1. An example of (16) in one-dimension state space. <1>, the
dash surface, is the numerator in (16). <2>, the bold surface, is the
denominator of (16).

3.2.2. Setting up the state transition matrix for the
MDP problem

The state transition matrix for the MDP problem,
which contains all conditional probability
P(x’dis|xdis,udis), has the dimension of KM×KN×KM ,
where x’dis denotes the next discrete state reached by
executing action udis at state xdis. Let x’= f (x, u) RN

stands for the next state vector observed by executing
action u at state x. Then, we denote x’dis as the dis-
crete form of x’. It is easy to observe that for each triple
(x’dis, xdis,udis) the conditional probability

P(x’dis|xdis,udis) =

∫∫∫
(xdis)×(udis)×(x’dis)

dxdudx’∫∫∫
(xdis)×(udis)×C dxdudx’

(16)

where C is the subspace containing all possible value
of f (x,u)∀x,u ∈ (xdis)× (udis). In our problem state-
ment, since f is unknown, we replace f by f̂ , which
is approximated by the neural network. Figure 1 il-
lustrates a simple case of this conditional probability
when N = 1. Although the integral could be approx-
imated by the Monte Carlo method [43], the simpler
method to approximate P(x’dis|xdis,udis) is as follow.

- Generate a large number of S points (x, u) follow-
ing the uniform distribution in (xdis) × (udis). Here,
we emphasize that the computation of P(x’dis|xdis,udis)
does not use any sample (x(t), u(t)). These S points
are randomly generated without any prior knowledge
of the model to avoid bias.

- Count the number of points T such that f̂ (x,u) ∈
(x’dis).

- Then T/S → P(x’dis|xdis,udis) when S →∞.
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3.2.3. State value function in MDP problem
In (5), from Bellman’s principle of optimality [44],

for the solution u(t) of the HJB equation (1)-(5), we
have

J(x(t)) = p(x(t)) + q(u(t))+
∞∑

τ=t+1

γτ(p(x(τ)) + q(u(τ)))

= p(x(t)) + q(u(t)) + J(x(t + 1)) (17)

Because f is stable at the origin, from (2) and (3), J(0)
= 0. Since the state value function in the HJB equation
(1)-(5) contains a discount factor, we define the corre-
sponding value function in the MDP as

R(xdis(t)) = p(xdis(t)) + q(xdis(t))+

γ
∑
∀x’dis

P(x’dis|xdis,udis)R(x’dis(t + 1)) (18)

And R(xdis) = 0 if (xdis) contains 0 or has 0 on the
boundary.

4. Analysis of the discretized MDP for near
optimal nonlinear control

In this section, we examine several conditions for
the trajectory of discrete state and control obtained
by the discretized MDP method, denoted as xMDP(t)
and uMDP(t), converge to x(t) and u(t) when t → ∞.
More specifically, we answer the following questions.
First, suppose that we know an admissible control u(t)
= g(x(t)) and discretize this admissible control (with-
out the MDP policy iteration algorithm), what is the
boundary of |x(t)xMDP(t)|? In the long term, at any
time t, if the discrete state (computed or sampled by
the MDP) could be closed to the real state (computed
by the real system), then the MDP solution will be
useful to control the real system. Second, without any
knowledge of the admissible control, in which condi-
tion the MDP solution could near-optimally stabilize
the system? To simplify the analysis, in this section, we
assume that f is known. Although this assumption is
against our initial problem statement, this assumption
is logical given that the neural network, as the func-
tional approximator ĥ, could approximate any arbitrary
function given sufficient training sample [23, 37, 38].

4.1. The autonomous system

When we linearize an autonomous system using
Taylor series expansion

x(t + 1) = f (x(t)) (19)

at point p in the domain of f, we have

f (x) ≈ f (p) + M(x− p) (20)

where M is the matrix of partial derivative of f on x at
p

M =



∂ f1
∂x1

∣∣∣
x=p

∂ f1
∂x2

∣∣∣
x=p

... ∂ f1
∂xn

∣∣∣
x=p

∂ f2
∂x1

∣∣∣
x=p

∂ f2
∂x2

∣∣∣
x=p

... ∂ f2
∂xn

∣∣∣
x=p

...
...

. . .
...

∂ fn
∂x1

∣∣∣
x=p

∂ fn
∂x2

∣∣∣
x=p

... ∂ fn
∂xn

∣∣∣
x=p

 (21)

In this section, we will refer M as the partial derivative
matrix and general and Mx, where the state stands at
the subscript, as the partial derivative matrix at a spe-
cific state x.

Suppose that at time t, region (xMDP(t)) contains x(t)
as showed in (11). Let Cη be the set of all x(t + η)
computed by tracking all points in (xMDP) on f after η
time points. Obviously Cη has to be a close region be-
cause it is spanned from a close region by a continuous
function. Therefore, there exists two points x1(t + η)
and x2(t + η) such that |x1(t + η) − x2(t + η)| is the
maximum for all pairs of points in Cη. There must
exist two chains: x1(t), x1(t + 1), ..., x1(t + η− 1) and
x2(t), x2(t + 1), ..., x2(t + η− 1) such that x1(t+η) =
f (x1(t + η − 1)) = ... = f n(x1(t)) and x2(t + η) =
f (x2(t+η−1)) = ... = f n(x2(t)). Applying the Taylor
series expansion, we have

x1(t + η)− x2(t + η) = f n(x1(t))− f n(x2(t)) =

∂ f n

∂x2(t)
(x1(t)− x2(t)) + O(δ2) (22)

Applying the derivative chain rule for ∂ f n

∂x2(t) (x1(t) −
x2(t)), we have

x1(t + η)− x2(t + η) =
∂ f

∂(x2(t + η− 1))
×
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∂ f
∂(x2(t + η− 2))

× ...× ∂ f
∂(x2(t))

(x1(t)− x2(t))

+ O(δ2) (23)

Therefore,

‖x1(t+η)−x2(t+η)‖ 6 ‖Mx2(t+η−1)×Mx2(t+η−2)

× ...×Mx2(t)(x1(t)− x2(t))‖ (24)

where each matrix M is setup according to (21). From
(21)-(24), we have the following necessary conditions
for the xMDP(t + η) approaches to x(t + η)

1. If all matrices M generated by (21) have no eigen-
value outside the unit circle on the complex plane, then
xMDP(t + η) approaches to x(t + η) as K →∞.

The proof is as follow. Let λ be the most prominent
eigenvalue of all matrices M with the largest magni-
tude. Then from (24)

‖x1(t+η)−x2(t+η)‖ 6 ‖Mx2(t+η−1)×Mx2(t+η−2)

× ...×Mx2(t)(x1(t)− x2(t))‖

6 ‖λ‖η‖x1(t)− x2(t)‖ (25)

In (13), we showed that the distance between any two
points in (xdis) cannot be larger than the ’main diago-
nal’ δ

√
N. Therefore,

‖x1(t + η)− x2(t + η)‖ 6 ‖λ‖η‖x1(t)− x2(t)‖

6 ‖λ‖ηδ
√

N (26)

Since ‖λ‖ < 1,6 ‖λ‖η is finite with η→∞. Therefore
K → ∞ ⇔ δη → 0. From the method we used in
constructing the MDP, xMDP(t + η) also falls in Cη.
Thus, ‖x(t+η)−xMDP(t+η)‖ 6 ‖x1(t+η)−x2(t+η)‖
will also approaches 0.

2. If the system (19) has an asymptotic equilibrium
point x* such that the linearized matrix Mx* has all
eigenvalues inside the unit circle of the complex plane,
then xMDP(t + η) approaches to x(t + η) as K →∞.

The proof is as follow. Since the derivative of f is
continuous, there must exist a region Cε with size ε
around x* such that all of the derivative matrices M in
that region have all eigenvalues within the unit com-
plex circle. Let λ be the eigenvalue with the largest
magnitude among these matrices. In addition, since
(19) has an asymptotic equilibrium point, after a finite
time T, x(t) must be inside Cε. Then, from (24)

‖x1(t + η)− x2(t + η)‖ 6 ‖M(x2(t+η−1))

×M(x2(t+η−2)) × ...×M(x2(t))(x1(t)x2(t))‖

= ‖M(x2(t+η−1))×M(x2(t+η−2))× ...×M(x2(T))

(this has η factors)

×Mx2(T+1))×Mx2(T+2))×...×Mx2(t)(x1(t)x2(t))‖

(this has T factors)

6 ‖λ‖η−T+1 × ‖λT‖ × ‖λT−1‖ × ...

× ‖λ1‖ × ‖x1(t)− x2(t)‖

6 ‖λ‖η−T+1 × ‖λT‖ × ‖λT−1‖ × ...

× ‖λ1‖ × δ
√

N (27)

Because λ is within the complex unit circle, ‖λ‖η−T+1

is finite as η→∞. ‖λ‖η−T+1 × ‖λT‖ × ‖λT−1‖ × ...
× ‖λ1‖ is also finite since T is finite. Therefore,
‖λ‖η−T+1 × ‖λT‖ × ‖λT−1‖ × ...
× ‖λ1‖ × δ

√
N approaches to 0 as K → ∞ (or

δ → 0). From the method we used in constructing
the MDP , both xMDP(t + η) and x(t + η) should be
bounded by x1(t + η) and x2(t + η), which leads to
‖x(t + η)− xMDP(t + η)‖ approaching 0.

3. For a special case: If the system is asymptoti-
cally stable at 0 (regardless of the linearization), then
xMDP(t + η) approaches to x(t + η) as K →∞.

The proof for this statement is relatively simpler. For
any discretization threshold δ, we can guarantee that
the state x(t) will fall inside the region [−δ, δ] at some
finite time T, and remain in [−δ, δ] ∀t > T . This fact
implies that with discretization, the MDP will have an
absorbing state specified by the region [−δ, δ]. In ad-
dition, regardless of the starting state x(0) and xdis(0),
there must be a path toward the absorbing state/region.
Therefore, the MDP will eventually bring xdis(t) to the
absorbing state after some finite time L. Thus, after
max(T, L), both xdis(t) and x(t) will stay inside [−δ, δ].
Therefore, ‖x(t)− xMDP(t)‖ 6 δ as t→∞.

In Figure 2 and Figure 3, we show some toy exam-
ples in the one-dimensional system to demonstrate the
first necessary condition. In these figures, xMDP is com-
puted from the MDP with sampling method in [45].
The left side is the result of the system

x(t + 1) = 0.1 sin(x(t)) + e(−(x(t))2) (28)

and the right side is the result of the system

x(t + 1) = 1.1 sin(x(t)) + e(−(x(t))2) (29)
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The state space in both of these systems is [-1.5, 1.5];
the initial x(0) is 0.5 for both of them; and we dis-
cretize the entire state space into K = 100 regions. The
derivative matrices (21) for systems (28) and (29) are
one-dimensional functions 0.1 cos(x) − 2xe(−x2)and
1.1 cos(x) − 2xe(−x2), correspondingly. As in Figure
3, where we plot the derivative of (28) and (29) in the
domain [-1.5. 1.5], system (28) satisfies the first nec-
essary condition; while system (29) does not. We ob-
serve that x and xMDP approach closely to each other in
system (29) but not in system (29).

4.2. The non-autonomous system

When we linearize the general system (1) using Tay-
lor series expansion at any point <x, u> = [p, q], we
have

f (x) ≈ f (p,q) + Mp(x− p) + Mq(u− q) (30)

where Mp and Mq are the partial derivative of f at [p,
q]

Mp =



∂ f1
∂x1

∣∣∣x=p
u=q

∂ f1
∂x2

∣∣∣x=p
u=q

... ∂ f1
∂xn

∣∣∣x=p
u=q

∂ f2
∂x1

∣∣∣x=p
u=q

∂ f2
∂x2

∣∣∣x=p
u=q

... ∂ f2
∂xn

∣∣∣x=p
u=q

...
...

. . .
...

∂ fn
∂x1

∣∣∣x=p
u=q

∂ fn
∂x2

∣∣∣x=p
u=q

... ∂ fn
∂xn

∣∣∣x=p
u=q


(31)

and

Mq =



∂ f1
∂u1

∣∣∣x=p
u=q

∂ f1
∂u2

∣∣∣x=p
u=q

... ∂ f1
∂um

∣∣∣x=p
u=q

∂ f2
∂u1

∣∣∣x=p
u=q

∂ f2
∂u2

∣∣∣x=p
u=q

... ∂ f2
∂um

∣∣∣x=p
u=q

...
...

. . .
...

∂ fn
∂u1

∣∣∣x=p
u=q

∂ fn
∂u2

∣∣∣x=p
u=q

... ∂ fn
∂um

∣∣∣x=p
u=q


(32)

Similar to the autonomous system, for the close region
([xMDP(t),uMDP(t)]) (11), including the boundary, con-
taining [x(t), u(t)], let Cη be the set of all x(t + η)
computed by tracking all points in ([xMDP(t),uMDP(t)])
on f after η time points. On the region Cη containing
all possible x(t + η), there exists two points x1(t + η)
and x2(t + η)such that ‖x1(t + η) − x2(t + η)‖ is
the maximum for all pairs of points in Cη. There
must exist two chains: [x1(t),u1(t)], [x1(t + 1),u1(t +
1)], ..., [x1(t + η),u1(t + η)] and [x2(t),u2(t)], [x2(t +
1),u2(t + 1)], ..., [x2(t + η),u2(t + η)] such that u1(t +
η) = f (x1(t + η − 1),u1(t + η − 1)) = f ( f (x1(t +
η − 2),u1(t + η − 2))) = ... = f η(x1(t),u1(t))
and u2(t + η) = f (x2(t + η − 1),u2(t + η −
1)) = f ( f (x2(t + η − 2),u2(t + η − 2))) = ... =
f η(x2(t),u2(t)). Applying the Taylor series expansion,
we have

x1(t + η)− x2(t + η) =
∂ f

∂(x2(t + η− 1)),u2(t + η− 1))
×

([x1(t + η− 1),u1(t + η− 1)]− [x2(t + η− 1),u2(t + η− 1)]) + O(δ2)

= Mp,x2(t+η−1)(x1(t + η− 1)− x2(t + η− 1)) + Mq,u2(t+η−1)(u1(t + η− 1)− u2(t + η− 1)) (33)

where Mp,x2 and Mq,u2
are the Mp (31) and Mq (32)

at [x2,u2], respectively.

Suppose that we have an arbitrary control law u =

k(x). Taking the derivative of the control rule, we have

∆u = Mk∆x such that

Mk =



∂k1
∂x1

∣∣∣
x=p

∂k1
∂x2

∣∣∣
x=p

... ∂k1
∂xn

∣∣∣
x=p

∂k2
∂x1

∣∣∣
x=p

∂k2
∂x2

∣∣∣
x=p

... ∂k2
∂xn

∣∣∣
x=p

...
...

. . .
...

∂km
∂x1

∣∣∣
x=p

∂km
∂x2

∣∣∣
x=p

... ∂km
∂xn

∣∣∣
x=p


(34)

For any state x, we denote Mkx as the specific Mk

matrix at state x. Substitute (34) to (33), we have
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Fig. 2. The closeness between x(real system) and xMDP (MDP). The left figure corresponds to system (28). The right figure corresponds to system
(29)

Fig. 3. Derivative ∂ f /∂x in system (28) on the left and system (29) on the right.

‖x1(t+η)−x2(t+η)‖ = ‖Mp,x2(t+η−1)(x1(t+η−1)−x2(t+η−1))+Mq,u2(t+η−1)(u1(t+η−1)−u2(t+η−1))‖

6 ‖(Mp,x2(t+η−1) + Mq,u2(t+η−1)Mk,x2(t+η−1))(x1(t + η− 1)− x2(t + η− 1))‖ (35)

Recursively applying the derivative chain rule on
(x1(t + η− 1)− x2(t + η− 1)) until [x(t),u(t)], with
the same argument from (33) to (35), we have

‖x1(t + η)− x2(t + η)‖ 6

‖(Mp,x2(t+η−1) + Mq,u2(t+η−1)Mk,x2(t+η−1))×

(Mp,x2(t+η−2) + Mq,u2(t+η−2)Mk,x2(t+η−2))× ...

× (Mp,x2(t+1) + Mq,u2(t+1)Mk,x2(t+1))

(x1(t) − x2(t))‖ (36)

From this point, similar to the autonomous system, we
have the necessary conditions for the xMDP(t + η) ap-
proaches to x(t + η).

1. If the matrices Mp + MqMk generated by (31),
(32) and (34) have no eigenvalue outside the unit circle
on the complex plane, then xMDP(t + η) approaches to
x(t + η) as δ→ 0 with any η.

2. If the system (1) has an asymptotic equilibrium
point p such that the linearized matrix Mp + MqMk

at the equilibrium point has all eigenvalues inside the
unit circle of the complex plane, then xMDP(t + η) ap-
proaches to x(t + η) as δ→ 0 with any η.
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We omit the proof for these two statements since the
proof is almost similar to the proof we already showed
in the autonomous system section.

In Figure 4, we show some toy examples in one-
dimensional system to demonstrate the first necessary
condition. Similar to the autonomous system exam-
ples, in this figures, xMDP is computed from the MDP
with sampling method in [45]. The left side is the result
of the system

x(t + 1) = sin(x(t)) + u(t) and control law

u(t) = −0.5x(t) (37)

and the right side is the result of the system

x(t + 1) = sin(x(t)) + u(t) and control law

u(t) = −2x(t) (38)

The state space in both of these systems is [-1, 1];
the initial x(0) is 0.5 for both of them; and we dis-
cretize the entire state space into K = 100 regions. In
(37), Mp + MqMk = cos(x(t))− 0.5, which is within
[0.0403, 0.5]. Therefore, (37) meets the first necessary
condition. In (38), Mp +MqMk = cos(x(t))−2, which
is between [-1.5403, -1]. Therefore, (37) does not meet
the necessary condition. As in Figure 4, xMDP(t) con-
verges to x(t) in system (37), but not in system (38).

4.3. The existence of the MDP solution as to
near-optimally stabilize the system

In this section, we show the existence of the MDP
solution when the system (1) is stable at the equilib-
rium point. The stability definition is defined as fol-
low: there exist a positive small number ε such that if
||x|| < ε then ||f (x, 0)|| < ε. With this assumption, when
we choose K such that χ/K < ε, the MDP will have a
special state x*MDP = 0 with the following properties:

- The MDP’s optimal policy at x*MDP is u*MDP = 0.
- The later states in the MDP are also x*MDP. The

proof of these properties is relatively simple due to the
properties of the state and action reward functions in
(2) and (3), where the optima are at 0. From this stabil-
ity assumption of f, we prove the following statements.

1. If the system (1) is stable and the HJB equation
(1)-(1) has a finite solution as γ→ 1, then in the MDP,
x*MDP(t) = 0 as t→∞.

The proof of this statement is as follow. If the HJB
equation (1)-(5) has a finite solution as γ→ 1, then the

control function u(t) has to be able to bring x(t) to 0 in
finite time. Otherwise, the state and action rewards are
always negative and will approach infinite as γ → 1.
Since x(t) is 0 in finite time, there must exist a path
in the MDP that can reach x*MDP with positive prob-
ability. Obviously one of these paths is the discretiza-
tion of the HJB’s solution u(t). Since the policy itera-
tion in MDP has been proven to converge to the opti-
mal policy [46], this policy cannot be worse than the
policy induced by discretizing the HJB equation’s so-
lution. Therefore, in the MDP’s optimal policy, there
must exist a path from any state to x*MDP with positive
probability φ > 0. With infinite number of visit t→∞,
the maximum probability for not reaching x*MDP is
(1− φ)∞ = 0.

2. If all Mp matrices (31) have the most prominent
eigenvalues within the unit circle ∀x,u and xMDP(t) =
0 as t → ∞ in the MDP solution for all starting x(0),
then by applying the MDP’s control unit xMDP(t) on
x(t), ||x(t)|| 6 δ

√
N.

The proof of this statement is as follow. Since we
apply uMDP(t) for all x(t) in (xMDP(t)) region, the dif-
ference of the control unit cancels. Thus, the equation
(30) becomes

f (x) ≈ f (p,q) + Mp(x− p)(39) (39)

Following the same argument from (31) to (34), we
have

‖x1(t + η)− x2(t + η)‖ 6

‖(Mp,x2(t+η−1))× (Mp,x2(t+η−2))× ...

× (Mp,x2(t+1))(x1(t)− x2(t))‖ (40)

Because the most prominent eigenvalues of Mp are
within unit circle, from (40), we have

‖x(t)− xMDP(t)‖ 6 ‖x1(t + η)− x2(t + η)‖

6 ‖x1(t)− x2(t)‖ 6 δ
√

N (41)

Therefore, if xMDP(t)→ 0, then||x(t)|| 6 δ
√

N.

5. Learning control system with selective
decentralization approach

5.1. Statement of selective decentralization

Let us rewrite system (1) as
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Fig. 4. The closeness between x(real system) and xMDP (MDP). The left figure corresponds to system (37). The right figure corresponds to system
(38).

Σ : x(t + 1) = f [x(t),u(t), θ] (42)

where θ is an unknown parameter vector in RN . In the
identification phrase, the intermediate objective is to
estimate θ using measurements of the overall system.
In the problem of interest to us, the system is assumed
to consist of r subsystems of low dimension which are
interconnected. However, how these subsystems inter-
connect is unknown. If the state vectors of the subsys-
tems Σ1,Σ2, ...,Σr are respectively x1, x2, ..., xr, it is
assumed that each subsystem can be described by the
difference equation

Σi : xi(k+1) = fi[xi(k), ui(k), θi]+σi[zi(k)] (43)

where the parameter σi is assumed to be small, and
[xi, zi] = xT (i.e., the elements of zi are state vari-
ables not contained in xi). A decentralized approxi-
mated model can be set up as

x̂i(t + 1) = f̂i[xi(t), zi(t),u(t), θ(t)] (44)

To be more specific, for the linear system, the decen-
tralized model has the form

Â =


Â1 â1,2 · · · â1,r

â2,1 Â2 · · · â2,r
... ·

. . .
...

âr,1 âr,2 · · · Âr

 (45)

where the lower-case â stands for the estimated com-
munication among the subsystems, which is expected

to be minor. The nonlinear decentralized model has the
form

x̂(t + 1) =


x̂1(t + 1)
x̂r(t + 1)

...
x̂r(t + 1)

 = f̂ (x(t),u(t)) =


f̂1(x1(t),u1(t))
f̂2(x2(t),u2(t))

...
f̂r(xr(t),ur(t))

 (46)

At this stage, the knowledge that each subsystem has
about the components of z that affect it becomes im-
portant. Here, we assume the unknown decentraliza-
tion structure: every subsystem Σi knows the small set
of variables in zi that might affect its outputs, but does
not know exactly which variables do affect them.

Selective decentralization policy: The number of
possible decentralization structures for r subsystems
is B(r) (the rth Bell’s number), which grows super-
exponentially. We set up a separate identification
model for each such decentralization structure and
adaptively switch among the models implementing the
different decentralization policies to determine the best
model.

Complete decentralization policy: The subsystems
perform identification and calculate their local control
using their own state and control subspace without any
communication. In this work, we mention this naive
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approach to compare the control performance with the
selective decentralization approach.

In addition, in this paper, we refer centralized con-
trol, or centralization, as considering the whole system
as one component. In this case, r = 1 and B(r) = 1. The
other formulation is the same to decentralization.

5.2. Selective decentralized control framework

Figure 5 shows the design of the learning control
system in this work with two phases: identification and
control. In the identification phase, we train the neu-
ral networks to acquire the functional approximators f̂
from using <x(t), u(t)> as the input tuples and x(t+1)
as the outputs. The details of system identification is
omitted in this paper since we have already presented
them in [47]. In the control phase, to compute the near-
optimal control, we use (9-10) for the linear system,
and policy iteration algorithm for the nonlinear system
after setting up the corresponding MDP [29]. Here, the
window size parameter Ω decides how frequently we
call the identification phase. In other words, Ω decides
the number of <x(t), u(t), x(t+1)> tuples to train f̂ .

The selective decentralized control examines all of
the B(r) connection schemes among the subsystem and
uses the scheme with lowest identification error to ap-
ply the control algorithm. For example, with r = 3, we
have B(r) = 5 possible decentralization schemes: {{1,
2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}
and {{1}, {2}, {3}}, in which each scheme has 1, 2,
2, 2 and 3 subsystem(s), correspondingly. A subsys-
tem only uses its state and control variable to compute
its own approximator. For example, in the linear sys-
tem, with scheme {{1, 2}, {3}}, we have the format

Â =

[
Â1,2

Â3

]
. In this example, Â1,2(t) is com-

puted only using x1(t − 1), x2(t − 1),u1(t − 1) and
u2(t − 1), meanwhile Â3(t) is computed only using

x3(t−1) and u3(t−1). If scheme {{1, 2}, {3}} returns
the lowest identification error, then from (10), we com-
pute the next control [u1(t),u2(t)] using only Â1,2(t)
and u3(t) using only Â3(t).

Let w be the window index. Then the window w cov-
ers the discrete time index from t = (w − 1)Ω + 1
to t = wΩ. Let E(w) be the window-identification er-
ror at window w, which is the average of e(t) from
t = (w − 1)Ω + 1 to t = wΩ. Let ρ1 and ρ2 be two
small numbers for thresholding. The pseudo code for
selective decentralization is as follow:

initialize b: the best decentralization scheme
need_iden = true // whether or not

execute identification
for w from 1 to the maximum window index

calculate control policy using b
(using (9-10) for linear system)
(using (11-18) for nonlinear system)

if need_iden = true
Train approximator and compute E(w) for
B(r) decentralization schemes

end if
Select the scheme with the lowest E(w) as b
if w > 1 and (E(w) < ρ1

or |E(w)− E(w− 1)|/|E(w)| < ρ2 )
if need_iden = true

end if
end for

6. Simulation results

6.1. Linear system

In this simulation, we setup a system of 8-dimension
state and control variables with r = 4. The unknown
transitional block matrix A is setup with real subsys-
tem components {{1,2}, {3, 4},{5, 6}, {7,8}} as fol-
low. With raw matrix Ã matrix as

Ã =



0.7 0.3
0.2 0.8

0.23 0.77 ψ
0.4 0.6

ψ 0.5 0.5
0.35 0.65

0.9 0.1
0.15 0.85


(47)
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Fig. 5. The learning design for selective decentralized control.

where the non-block entries of Ã are a random num-
bers between 0 and ψ. To avoid numerical overflow-
ing, we normalize Ã into A such that A is a Markov
matrix. The reward functions are p(x) = −xT x and
q(u) = −uT u. The discount reward factor in (5) is γ
= 0.9. The control algorithm could be referred to (9)
and (10). As shown in (47), ψ decides the intercon-
nection strength among system components. We call
ψ coupling parameter. We setup the completely decou-
pled system by setting ψ = 0 and the strongly coupled
system by ψ = 0.1. We set B as the identity matrix. For
identification, we set the learning rate in [36] as 0.5. At
the starting point, we set x(0) and u(0) as vectors of 1.
Because calculating Â [36, 47] is relatively simple, we
set the window size Ω = 1. We run the experiment for
at most 1000 iteration. We repeat this setup 100 times
since A and x(0) contains random parameters and re-
port the mean statistics.

In Figures 6 and 7, we observe that the selectively
decentralized system shows better control performance
than the completely decentralized system and the cen-
tralized system. In these figures, we draw the y-axis
in log scale since x converges to 0 so quickly that the
linear-scale plot could not show the difference. We use
norm(x) to denote the second-norm, or trajectory, of x.
Clearly, after more than 30 iterations, x in the selec-
tively decentralized system converge to 0 faster than
they are in the completely decentralized system and
the centralized system. At the first few iterations, the
selectively decentralized system shows slightly poorer

Fig. 6. Comparison of control performance among the centralized
system, the completely decentralized system and the selectively de-
centralized system when the system is linear and completely decou-
pled.

control performance. This may due to the complex-
ity of the selectively decentralized system in identi-
fying unknown A. In the other hands, as the systems
are more coupled, we see that the performance gap
between the decentralized systems and the centralized
system is less.

6.2. Nonlinear system

In this example, we choose the system
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Fig. 7. Comparison of control performance among the centralized
system, the completely decentralized system and the selectively de-
centralized system when the system is linear and strongly coupled.

x(t + 1) = sin(Ax(t) + u(t)) (48)

where x,u ∈ R4, matrix A is defined by normalizing
Ã into a Markov matrix where

Ã =


0.7 0.3 ψ
0.2 0.8

1
ψ 1

 (49)

and the sin function is defined as

sin(x) =


sin(x1)
sin(x2)

...
sin(xn)

 (50)

and x(0) = 0.2. Here, we assume that the boundary of x
an u is known as−0.2 6 xi, ui 6 0.2∀i ∈ [1, 4] and the
real subsystem component in (1) is {{1,2}, {3}, {4}}.
The reward functions are p(x) = −xT x and q(u) =
−uTu. The discount reward factor in (5) is γ = 0.9.

For system approximation, we use a three-layer neu-
ral network with 30 hidden units, sigmoid activation
function, and backpropagation to train the neural net-
work for f̂ . For each training step, we pass the training
sample set < x(t),u(t) > 2000 times. We set window
size ïĂăΩ = 50 (figure 1). In addition, we run the ex-
periment for at most 10000 iteration. Similar to the lin-
ear system case study, we setup the completely decou-
pled system by setting ψ = 0 and the strongly coupled
system by ψ = 0.1. In each state and control vector di-
mension, we divide the dimension into K = 8 regions,
which makes the resolution threshold (13) 0.05.

Fig. 8. Comparison of control performance among the centralized
system, the completely decentralized system and the selectively de-
centralized system when the system (48) is completely decoupled.

In Figures 8 and 9, we observe that the selectively
decentralized system shows better control performance
than the completely decentralized system and the cen-
tralized system. Similar to figures 2 and 3, we use
norm(x) to denote the second-norm of x. For the ease
of visualization, we only draw the result up to the
500th iteration, when the selective decentralization is
showed to converge. Here, we observe that when the
system is completely decoupled, the centralized sys-
tem converges to 0 significantly slower than the se-
lectively decentralized system does. Surprisingly, the
completely decentralized system does not converge
within the maximum number of iterations in our ex-
periment. In addition, when the system is strongly cou-
pled, both the completely decentralized system and the
centralized system fail to control within the maximum
number of iterations in our experiment.

6.3. Comparison between the discretized-MDP
approach and TD-learning

In figure 10, we compare the learning performance
among the Discretized-MDP, Adaptive Dynamic Pro-
gramming (ADP) [48–50] and Q-learning [51]. Q-
learning is one of the most well-known techniques
in reinforcement learning, following the temporal-
difference (TD) principles [52]. ADP, which is one
of the most promising approaches aiming for online
learning, has been proven to stabilize the nonlinear sys-
tem in feedback linearization form. The example used
in this section is

x(t + 1) = sin(Ax(t)) + u(t) (51)
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Fig. 9. Comparison of control performance among the centralized
system, the completely decentralized system and the selectively de-
centralized system when the system (48) is strongly coupled.

where x,u ∈ R3 and matrix A is

A =

0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6

 (52)

In addition, we experimented these approaches with-
out any decentralization. The starting state x(0) is [0.5,
0.5, 0.5] for all experiments. We show the implemen-
tation details for Q-learning as in [53]. The implemen-
tation for ADP is accordant to [48]. For discretization
of both the discretized-MDP and the Q-learning ap-
proaches, we make the resolution threshold (13) 0.05.
We observe that these techniques could stabilize the
system; however, the ADP and discretized-MDP ap-
proaches are significantly superior to the Q-learning
approach. The discretized-MDP approach also stabi-
lizes the system faster than the ADP approach.

There are several points to note in figure 10. First,
since the difference of converging time in these ap-
proaches could be exponential, we draw the x-axis,
which stands for converging time measured by the
number of windows, in log scale. Therefore, the state
trajectory (second norm of x) may neither be smooth
nor seem differentiable. Second, since the Q-learning
performance in [53] is measured by the average state
trajectory over a window, the x-axis unit figure 10 is
the window index, with window size Ω = 50. There-
fore, the lines in figure 10 show the average of state-
trajectory over each window.

Fig. 10. Comparison of control performance among the Dis-
cretized-MDP approach, the ADP approach and the Q-learning ap-
proach

7. Conclusions

In this paper, we show that selective decentraliza-
tion can improve the learning performance in both lin-
ear and nonlinear systems with several levels of inter-
connection among subsystems. Here, we measure the
performance on the number of iterations, or samples,
needed in learning. This measurement of performance
is useful for problems in which the number of train-
ing samples is limited. In addition, we show that the
discrete-MDP technique could help in learning nonlin-
ear control problem in general form.

Compared to adaptive dynamic programming (ADP)
[49, 54–59], which is one of the most interested ap-
proaches in reinforcement learning and adaptive con-
trol in the recent years, our discrete-MDP approach is
more limited in utilizing the capability of neural net-
works. In the ADP approach, the neural networks are
used to approximate both the control function u = k(x)
and the state utility function J(x). In our approach,
we only use the neural networks in system identifica-
tion. From our point of view, when the system is com-
pletely unknown, it is difficult to initialize the admissi-
ble control [60] for the action neural networks, which
is the necessary condition for convergence in ADP.
Furthermore, the initialization of state utility for the
critique neural networks is another challenge in ADP
for controlling unknown system. Although [48, 49]
show techniques to initialize the state utility by arbi-
trary positive-definite functions, the necessary condi-
tion is that the state utility is non-negative, which is
different from the state utility assumption in our paper.
In the other hand, as we have shown that the discrete-
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MDP approach could approximate an admissible con-
trol for the system given some mild prerequisites, it is
possible to use the result of the discrete-MDP approach
as the initialization of the ADP’s action network.

In addition, this work handles the learning problem
such that the identification and control could be ex-
ecuted consecutively and repeatedly. In most of the
theoretical reinforcement learning AI work, especially
the ADP [49, 54–59], to tackle the unknown nature of
the problem, the learning agent initially executes ran-
dom actions to acquire enough number of samples for
one-time identification. The number of random actions
could be between thousands and millions, depending
on the system. This work shows that the learning agent
may not need to execute any random actions: acting
’optimally’ according to the most updated approxima-
tion of the system, even if the approximation may not
be precise, could stabilize the system. In Figure 10, we
show that ADP could be executed in this manner, al-
though the discrete-MDP shows faster learning speed.

There are several limitations in this paper. First, the
discretization thresholds need the distribution of the
next state assuming that the current state and control
vectors are uniformly distributed and may require a
number of ad-hoc steps. Second, in selective decentral-
ization, we still explore all possible decoupling scheme
B(k), which grows exponentially. However, since the
selectively decentralized system converges faster than
the centralized system in most of the cases, we believe
that the heavily computational model-switching phase
in the selective decentralized system will be relatively
short. Therefore, the selectively decentralized system
may be more computationally efficient than the cen-
tralized system, which must run the learning algorithm
in high dimensional data for long term.
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tem design using TâĂŞS fuzzy approach, IEEE Transactions on
fuzzy systems, 20 (1), 2012, pp. 9-21.

[12] Ranjbar-Sahraei, B., Shabaninia, F., Nemati, A., and Stan, S.-
D., A novel robust decentralized adaptive fuzzy control for
swarm formation of multiagent systems, IEEE Transactions on
Industrial Electronics, 59 (8), 2012, pp. 3124-3134.

[13] Mahajan, A., Optimal decentralized control of coupled sub-
systems with control sharing, IEEE Transactions on Automatic
Control, 58 (9), 2013, pp. 2377-2382.

[14] Han, Z., and Narendra, K.S., New concepts in adaptive control
using multiple models, IEEE Transactions on Automatic Con-
trol, 57 (1), 2012, pp. 78-89.

[15] Narendra, K.S., and Balakrishnan, J., Improving transient re-
sponse of adaptive control systems using multiple models and
switching, IEEE Transactions on Automatic Control, 39 (9),
1994, pp. 1861-1866.

[16] Narendra, K.S., and Mukhopadhyay, S., To communicate or
not to communicate: A decision-theoretic approach to decen-
tralized adaptive control, in Advances in Computing and Com-
munications, 2010, pp. 6369-6376.

[17] Battistelli, G., Hespanha, J.P., Mosca, E., and Tesi, P., Model-
free adaptive switching control of time-varying plants, IEEE
Transactions on Automatic Control, 58 (5), 2013, pp. 1208-
1220.

[18] Liu, W., Gu, W., Sheng, W., Meng, X., Wu, Z., and Chen, W.,
Decentralized multi-agent system-based cooperative frequency
control for autonomous microgrids with communication con-
straints, IEEE Transactions on Sustainable Energy, 5 (2), 2014,
pp. 446-456.

[19] Bian, T., Jiang, Y., and Jiang, Z.-P., Decentralized adaptive op-
timal control of large-scale systems with application to power



16 T. Nguyen and S. Mukhopadhyay / Two-phase Selective Decentralization to Improve Reinforcement Learning Systems with MDP

systems, IEEE Transactions on Industrial Electronics, 62 (4),
2015, pp. 2439-2447.

[20] Gao, J., Dou, L., and Su, P., Multi-model switching control of
hypersonic vehicle with variable scramjet inlet based on adap-
tive neural network, in World Congress on Intelligent Control
and Automation, 2016, pp. 1714-1719.

[21] Lewis, F.L., Vrabie, D., and Vamvoudakis, K.G., Reinforce-
ment Learning and Feedback Control: Using Natural Decision
Methods to Design Optimal Adaptive Controllers, IEEE Control
Systems Magazine, 2(6), pp. 76-105.

[22] Bellon, J., Riccati Equations in Opti-
mal Control Theory, 2008, available at
scholarworks.gsu.edu/cgi/viewcontent.cgi?article=1045
&context=math_theses.

[23] Abu-Khalaf, M., and Lewis, F.L., Nearly optimal control laws
for nonlinear systems with saturating actuators using a neural
network HJB approach, Automatica, 41 (5), 2005, pp. 779-791.

[24] Saridis, G.N., and Lee, C.-S.G., An approximation theory of
optimal control for trainable manipulators, IEEE Transactions
on Systems, Man and Cybernetics, 9 (3), 1979, pp. 152-159.

[25] Beard, R.W., Saridis, G.N., and Wen, J.T., Galerkin approxi-
mations of the generalized Hamilton-Jacobi-Bellman equation,
Automatica, 33 (12), 1997, pp. 2159-2177.

[26] Huang, C.-S., Wang, S., and Teo, K., Solving HamiltonâĂŤJa-
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