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Abstract.
Cognitive agent abstractions can help to engineer intelligent systems across mobile devices. On smartphones, the data obtained

from onboard sensors can give valuable insights into the user’s current situation. Unfortunately, today’s cognitive agent frame-
works cannot cope well with the challenging characteristics of sensor data. Sensor data is located on a low abstraction level and
the individual data elements are not meaningful when observed in isolation. In contrast, cognitive agents operate on high-level
percepts and lack the means to effectively detect complex spatio-temporal patterns in sequences of multiple percepts. In this pa-
per, we present a stream-based perception approach that enables the agents to perceive meaningful situations in low-level sensor
data streams. We present a crowdshipping case study where autonomous, self-interested agents collaborate to deliver parcels to
their destinations. We show how situations derived from smartphone sensor data can trigger and guide auctions, which the agents
use to reach agreements. Experiments with real smartphone data demonstrate the benefits of stream-based agent perception.

Keywords: Multi-agent systems, Data stream processing, Mobile computing, Agent perception

1. Introduction

In recent years, mobile devices have become ma-
ture computing platforms that are taking over an ever-
increasing number of complex tasks. Mobile devices
are personalized computing platforms that allow users
to access user-centric services anywhere and anytime.
Their pervasive nature carries high potential for com-
plex distributed systems across many devices, where
multiple users are coordinated to achieve some goal.

These settings can naturally be modelled with Multi-
Agent Systems (MAS) [44]. MAS support the engi-
neering of complex distributed systems through the de-
composition of problems into autonomous agents that
perform high-level interactions [25, 26].

Agent-based abstractions can help to build complex
systems accross mobile devices [38]. Mobile systems
can be designed and developed on an elevated abstrac-
tion level by making use of high-level agent concepts

*Corresponding author. Hannover University of Applied Sci-
ence and Arts, Computer Science Department, Ricklinger Stadtweg
120, 30459 Hannover, Germany. E-mail: jeremias.doetterl@hs-
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like beliefs, plans, and goals. Unfortunately, cognitive
agent frameworks [7, 9, 10] lack satisfactory support
for the processing of sensor data. Today’s mobile de-
vices are equipped with a rich set of sensors that can be
exploited to achieve system behavior that adapts itself
to the current situation of the mobile user. However, the
processing of sensor data streams is not an explicitly
addressed concern in agent-based systems.

The major problem is the existing abstraction gap
between data streams and agent percepts [12, 18, 34,
47]. Agents use their perception to obtain information
from the environment. The agents expect to receive the
information in form of high-level percepts, i.e. the per-
cepts resemble actionable knowledge that the agents
can understand and react to directly. However, sensor
data is located on a lower level of abstraction: The in-
dividual data elements of the stream carry little infor-
mative value when observed in isolation and cannot be
acted upon directly. To shift the low-level data stream
to a higher-level percept stream, meaningful percept
patterns have to be detected and encoded into meaning-
ful situations. For example, a single GPS value in isola-
tion merely allows conclusions about the location of an
agent. Only by analyzing the patterns of multiple data
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elements, higher-level knowledge can be extracted: Is
the agent moving? Is it accelerating or slowing down?
Is it moving faster or slower than other agents? With-
out a dedicated stream processing component, agents
cannot infer situational knowledge from complex data
sequences. To achieve advanced situation awareness,
agents have to analyze the relationships and patterns of
multiple data elements and their relations in time.

In a preliminary version of this paper [20], we pro-
posed an extension of the BDI architecture called en-
hanced perception. This new perception approach in-
cludes two new abstractions for the design and de-
velopment of cognitive agents in mobile ecosystems,
namely expectations and interpretations. Through en-
hanced perception, mobile agents 1 can perceive higher-
level knowledge in low-level streaming data.

In this paper, we present a revised version of our en-
hanced perception approach, which better reflects the
role and influence of beliefs on the agent’s perception.
Furthermore, we apply our proposal to a new prob-
lem scenario, which highlights the benefits of our ap-
proach for agreements between agents: We present a
crowdshipping case study where auctions are used as
an agreement mechanism to transfer delivery tasks be-
tween agents. The derived higher-level situations deter-
mine when auctions are opened, who is eligible for par-
ticipation, and who is appointed the winner. Moreover,
we have two implementations to test our proposal: We
have implemented an extension for Jason that puts data
stream processing into BDI agents, as well as a proto-
type of our case study. We evaluate our approach via
the crowdshipping case study and by running our im-
plementation on real smartphone sensor data.

The rest of the paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 introduces
our stream-based perception approach. In section 4,
we perform a case study, which demonstrates the ap-
plicability and benefits of our proposal. The proof-of-
concept in section 5 gives further insights into how our
proposal can be applied and reports our experience of
integrating the new perception approach into the Jason
framework. Section 6 evaluates our work with smart-
phone sensor data. Finally, section 7 terminates the pa-
per with conclusions and final remarks.

2. Related work

There exist different frameworks and middleware
for agent-oriented programming on mobile devices [8,

1We use the term mobile agent to refer to an agent that runs on a
mobile device.

38]. In the past, several agent-based systems have
been proposed that operate on mobile devices: The ap-
proaches either present an agent-based mobile system
for a specific application domain (e.g., e-health [13])
or aim to bring agent abstractions to mobile comput-
ing platforms [1, 33, 39]. However, none of these ap-
proaches uses advanced data processing to detect com-
plex relationships between observed percepts.

Today’s agent frameworks focus primarily on be-
liefs, goals, and plans, which are the core abstractions
of agent-based programming. The processing of per-
cepts, however, is kept simple, which may be sufficient
for many use cases but is limiting in sensor environ-
ments where data is low-level and has strong temporal
relationships.

There are different logic-based proposals that con-
sider temporal aspects. Allen et al. [4] describe a tem-
poral logic that gives special consideration to events
and actions. Actions are executed by agents and result
in events. Events are patterns of change that are con-
sidered useful and relevant by some agent. This tem-
poral logic is based on explicit relationships between
time periods, such as before, meets, overlaps, during,
etc. Broda et al. [11] present SAGE, an environment
monitoring system based on logical agents. SAGE uses
forward chaining to detect higher-level events, such as
movements, from sensor data.

Dynamic environments are challenging, which has
motivated different works on advanced event process-
ing in agents. Agüero et al. [2] present an event pro-
cessing approach for agents in dynamic environments.
Different event processing strategies are discussed,
which result in different agent behaviors.

In current frameworks, plans are usually triggered
by the occurrence of a single event. Buford et al. [12]
extend the BDI agent architecture with event correla-
tion to allow plans to be triggered by a (potentially
complex) pattern of multiple events rather than only by
a single, isolated event.

Ziafati et al. [47] add advanced event processing to
BDI agents in the context of autonomous robot pro-
gramming. The robot’s sensory information is pro-
cessed in order to extract relevant knowledge that the
robot’s control component can use to make and execute
appropriate plans.

Dennis et al. [18] present a dedicated abstraction en-
gine that enables BDI agents to observe and manage
satellite control systems. This abstraction layer trans-
lates from the continuous sensor data produced by the
control system to the discrete and abstract information
needed by the BDI agent.
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There are two approaches related to our work that
make use of Complex Event Processing (CEP) [30] and
the Jason [10] agent framework: Ranathunga et al. [35]
use CEP within a global event processing component
to interface Jason with the virtual Second Life platform.
Ranathunga and Cranefield [34] integrate CEP with Ja-
son agents to identify complex situations in the agent’s
environment. In both approaches the CEP engine is an
external component outside of the BDI agent.

There are some works with particular focus on agent
perception. Cranefield et al. [15] propose the concept
of a percept buffer for BDI agents that processes per-
cepts according to customizable policies. The poli-
cies determine how percepts in the buffer should be
replaced, merged, or summarized before being made
available to the agent’s deliberation. Percept buffers
can be used to protect the BDI agents’ relatively slow
deliberation from the load of high-speed data streams.
Johansson et al. [27] propose perception management,
which bundles a set of perception-related functionali-
ties and tasks that go beyond mere sensor management.
Weyns et al. [43] present a formal model for active per-
ception, which allows agents to direct their attention
to the most relevant occurrences in the environment.
Active perception assumes that percepts are given on
the knowledge level and narrows the agent’s view. Our
enhanced perception approach acknowledges that per-
cepts can appear on a low abstraction level and widens
the range of situations the agent can perceive.

Further related work can be found in the area of
context-aware systems. Yılmaz and Erdur [46] present
a context-aware MAS where mobile client agents can
request context information from a server-side context
agent. To infer the context, the context agent performs
rule-based reasoning on a context ontology. Alfonso-
Cendón et al. [3] let agents perform context-aware
workflows in the ambient intelligence domain. The
agents run on top of an existing context management
system, which serves as the provider of context infor-
mation. We are not aware of any context-aware multi-
agent approach where data stream processing is inte-
grated into a cognitive agent architecture to analyze
mobile sensor data.

3. Agents with enhanced perception

In this section, we present our approach for cogni-
tive agents operating in mobile ecosystems.

3.1. Sensing the environment

Modern smartphones have a wide range of data
sources available through which they can capture the
immediate environment [41]:

• Internal sensors: On-board sensors to measure ac-
celeration, air pressure, GPS, humidity, tempera-
ture, rotation, etc.

• External sensors: Body sensors like bracelets or
chest harness that are connected to the smart-
phone to measure blood pressure or heart rate.

• Other apps: Any other app on the device. For in-
stance, the calendar app that informs about up-
coming appointments.

• Operating system: Information about system events
like low battery state or missed calls.

• Communication interfaces: Wireless communica-
tion, e.g. via WIFI, enables the access of web ser-
vices or other data sources online.

Like Santi et al. [38], we consider these data sources
artifacts of the environment, where the agent is situ-
ated and which the agent can sense to obtain data. In
the A&A (agents & artifacts) meta-model [32], arti-
facts are the passive components of the MAS that are
intended to be used by the agents. While agents consti-
tute the pro-active and autonomous components of the
system, artifacts can be understood as tools that pro-
vide functionality to the agents. Each artifact exposes
a usage interface to the agents, which can consist of ar-
bitrary operations. Artifacts are a generic mechanism
to provide resources to the agents or to provide an in-
terface for performing actions on the environment.

In our approach, we distinguish between two groups
of artifacts.

(1) Device artifacts provide access to the different
sensors and services of the smartphone. Via these
artifacts, the agent can obtain sensor data, check
sensor availability, activate or deactivate sensors,
or change sensor configurations.

(2) Domain artifacts provide access to data and func-
tionality that the agent needs to act in the given
problem domain.

The artifacts provide the data in form of data
streams. Streaming data has various properties that
prevent its direct use in conventional agent architec-
tures.

• Low-quality [28]: Data streams can be of low
quality due to imperfect sensing; data can be
missing or inaccurate.
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• Low-level [45]: Due to the existing abstraction
gap, it is often not possible to react to single iso-
lated data elements as their meaning is not inher-
ently clear.

Other agents can also serve as data sources: Mobile
agents can establish dynamic connections with nearby
agents to engage in flexible interaction and data ex-
change. The agents communicate via messages.

3.2. Processing the percept stream

3.2.1. Agent architecture
We propose AEP Architecture (Agents with Enhanced

Perception) for agents on mobile devices, as shown
in Fig. 1. The AEP architecture consists of three ma-
jor components: The belief base and deliberation com-
ponent originate in large parts from the conventional
agent architecture [10, 21, 36]. Enhanced perception
constitutes the proposed extension.

Belief base: The belief base holds the agent’s beliefs,
which are pieces of information about the world
that the agent believes to be true. Beliefs can
change through external events in the environ-
ment (indicated by percepts), the agent’s internal
deliberation, or messages received from other
agents.

Deliberation: The agent deliberates over the world to
decide which actions to perform. The agent’s de-
liberation process is controlled by plans and is
aimed at the achievement of the agent’s goals.

In mobile environments, these two components are
insufficient as the incoming percepts are mostly lo-
cated on a low abstraction level, which prevents a di-
rect understanding and reaction by the agent.

Enhanced perception addresses the challenges intro-
duced by data streams, which allows the agent
to detect complex spatio-temporal data patterns
and protects the agent’s deliberation from low-
quality and low-level percepts. (First steps to-
wards such an enhanced perception approach
were made in [19, 20]).

3.2.2. Exploiting data stream concepts
As shown in Fig. 1, the agent acquires streaming

data from device and domain artifacts. We consider
each percept a structure with the following informa-
tion:

(type, timestamp, key0 = value0, ..., keyn = valuen)

Each percept adheres to a type, which gives the
percept a semantic and constrains its admissible key-
value pairs. Examples for percept types are GPS read-
ings, acceleration events, or some significant occur-
rence in the application domain. Furthermore, each
percept holds the timestamp of its creation, which en-
ables time-based pattern matching over percept se-
quences.

In the conventional agent architecture, the agent per-
ception processes one percept at a time and neglects the
history of recently observed percepts. To allow agents
to perceive complex patterns in percept sequences, we
extend the agent’s perception by the following infor-
mation flow concepts [16]:

• Selection of particular percepts that match certain
conditions regarding percept type or attribute val-
ues.

• Windows that allow analysis of (i) the last N per-
cept occurrences or (ii) the percept occurrences of
the last T time units.

• Aggregates to combine multiple percepts and the
data they carry to new information.

Therefore, we process the percept stream with the
following information flow operators [16, 30]:

p1 and p2 Conjunction
p1 -> p2 Sequence (followed by)

.window:time(t) Time window
avg(x), max(x), min(x), sum(x) Aggregation

In AEP, the agent holds expectations and interpreta-
tions, which make use of these operators to transform
the percept stream.

3.2.3. Expectations
Definition 1 (Expectations). An agent’s expectations
characterize the agent’s subjective attitude towards
percepts. Expectations pose requirements for the data
and information carried by the stream of observed per-
cepts.

Expectations limit the percept stream to those per-
cepts that fulfill the agent’s expectations. Percepts and
percept sequences that violate the agent’s expectations
are purposefully ignored or corrected. This reduces
the agent’s computational load, prevents imperfect data
manifesting itself in beliefs, and lets the agent gain
control over the incoming data.
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Percept processing

Enhanced perception

Belief base

Deliberation

Expectations Interpretations

Beliefs 

Goal-driven deliberation 

Agent with Enhanced Perception

Device artifacts

perform actions

Environment

SituationsGPS sensor

Gyroscope

Domain artifacts
 

< Domain artifact >

Data
streams

trigger plans

WIFI Manager

...

...

PlansGoals

Beliefs

Other agents

communicate

Fig. 1. AEP Architecture: Agents with Enhanced Perception

Example 1 (Expectation). When the user is riding a
bike, the agent expects two consequent GPS readings,
which are measured within two seconds to each other,
to be at most 20 meters apart, which corresponds to a
speed of 36km/h. If the distance is larger than 20 me-
ters, the agent considers one of the data points to be
erroneous and drops at least one of them for being in-
consistent with the agent’s expectations regarding the
accuracy of the data.

We follow a rule-based approach, where the detec-
tion of a certain pattern in the percept stream triggers
the forwarding of the percept instances that fulfill the
expectations.

// "Forward plausible GPS data"
CONDITION:

(gps1=GPS -> gps2=GPS).window:time(2 seconds)
where BB.contains("isCycling")

and Geo.distance(gps1, gps2) < 20 meters
ACTION: forward gps2

This rule implements the given example. Event types
start with an uppercase letter (e.g., GPS). Names start-
ing with a lowercase letter are aliases, which are used
to refer to a specific event instance (e.g., gps1). When-
ever a GPS event gps1 is followed by a GPS event gps2
within two seconds, the rule checks whether an isCy-
cling belief exists in the agent’s belief base (BB). If
this belief exists and the GPS events are within 20 me-
ters of each other, GPS event gps2 is plausible and for-

warded to be used in subsequent rules. BB.contains()
is a method invocation that accesses the agent’s belief
base. Geo.distance() is a service call to a helper func-
tion that returns the distance between two GPS loca-
tions.

Expectations enable stream-based and belief-based
filtering.

• Stream-based filtering: In conventional BDI agents
filtering is usually performed by checking each
percept in isolation. Operating on sensor streams,
filtering has to go beyond this simple strategy and
perform data cleaning by considering multiple
data elements and their temporal relationships.
Based on data stream operations, expectations
allow implementing advanced cleaning methods
that have been proposed in the literature on sensor
data streams: to smooth, merge, arbitrate, or vir-
tualize [23, 24]. This can yield more reliable input
for the agent’s interpretations.

• Belief-based filtering: An agent’s beliefs can pro-
vide crucial context for appropriate filtering. In
the example rule above, the agent holds a belief
about the user’s current mode of transportation (is
cycling). This helps the agent to estimate whether
the observed GPS measurements are plausible.
The agent can query the belief base (BB) for the
existence of a belief or for concrete values.

BB.contains(expression) where expression may
contain placeholders (indicated by an under-
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score), e.g.: BB.contains(’temperature(_)’)
returns true if the agent holds a belief about
some temperature (with an arbitrary temper-
ature value).

BB.get(expression) where expression contains one
unbound variable and arbitrary placehold-
ers, e.g.: BB.get(’temperature(Var)’) returns
20 if the belief base contains the belief tem-
perature(20).

3.2.4. Interpretations
Definition 2 (Interpretations). An agent’s interpreta-
tions form the agent’s rapid recognition capabilities.
Interpretations detect higher-level knowledge in low-
level percept streams considering the relationships be-
tween multiple percept occurrences.

Interpretations aggregate and correlate multiple per-
cept occurrences to derive higher-level information.
This higher-level information can either be intermedi-
ate context or it can be a situation.

• Context is information that is generated by inter-
pretations and that serves as input for other inter-
pretations. It is not contained in the incoming data
stream directly, but has to be inferred. While be-
ing more abstract than raw sensor data, in some
cases it is still too low-level and too frequent to be
processed by the agent’s deliberation.

• Situations are a product of interpretations. They
are detected by fusion of context information and
domain events. They are located on a higher ab-
straction level than context and typically are ob-
served less frequently than context information.
Situations are meaningful occurrences that are
made available to the agent’s deliberation in form
of beliefs.

We give a simple example that derives context from
raw sensor data.

Example 2 (Interpretation). When the two latest GPS
readings are at least one meter apart, the user has
moved.

Like expectations, interpretations can be expressed
with pattern rules.

// "Detect movement"
CONDITION: gps1=GPS -> gps2=GPS

where Geo.distance(gps1, gps2) > 1 meter
ACTION: create HasMoved

This rule implements the given example. When a
GPS reading gps1 is followed by a GPS reading gps2
and they are more than one meter apart, a HasMoved
context event is created and injected into the data
stream.

Interpretation rules enable a stream-based and belief-
based detection of situations.

• Stream-based detection: As mentioned earlier, in-
terpretations use data stream concepts (time win-
dows, aggregation, etc.) to detect higher-level in-
formation.

• Belief-based detection: Like expectation rules, in-
terpretation rules can access the belief base. An
agent’s belief base can contain important knowl-
edge about the environment, other agents, or the
smartphone user. For example, an interpretation
can only estimate the arrival time at a certain
point of interest (another user or some landmark)
if its location can be obtained from the belief
base. Interpretation rules use the same interface
as expectation rules, consisting of the methods
BB.contains and BB.get.

Interpretation rules can perform two different ac-
tions. When a pattern match occurs, they can either (i)
create context or a situation and inject it into the data
stream for further processing or (ii) they can add a sit-
uation as a belief to the belief base.

3.2.5. Changing beliefs
When a new situation is added to the belief base,

this new belief might contradict previously held be-
liefs. Therefore, some beliefs might have to be re-
moved or updated. Depending on the concrete charac-
teristics of the application domain, a truth maintenance
system might be warranted that keeps the belief base
consistent. In our architecture, we follow the approach
used in the Jason framework were the beliefs about
the world are maintained by plans or belief annotations
that indicate when a belief should expire [10, p. 38].
Therefore, we consider it primarily a responsibility of
the belief base and/or deliberation, which we do not
want to focus on in this paper.

3.3. Taking action

The addition and deletion of a belief can trigger the
execution of plans in the deliberation component of the
AEP architecture. Triggered plans can then initiate ac-
tions, e.g., calling an operation provided by an artifact
or sending a message to another agent.
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In sensor environments, the detected situations are
the essential units that trigger agreement processes and
underpin the finding of agreements. Fig. 2 illustrates
the role of enhanced perception for reaching agree-
ments in distributed mobile systems. The users’ mo-
bile devices sense the physical world and generate sen-
sor data that can be observed by the agents. Via en-
hanced perception, the abstraction level of the sensor
data is raised by encapsulating meaningful percept se-
quences into situations. The situations drive the agents’
deliberation and help agents to reach agreements. Auc-
tions are one possible mechanism how agreements can
be reached. In the upcoming sections, we describe a
case study were situations are used to trigger auctions;
agents are invited to bid if they satisfy certain situation
requirements that justify their participation.

4. Case study

We present a case study to demonstrate the applica-
bility of our proposal and to illustrate the role of situa-
tions in the proposed multi-agent setting.

4.1. Crowdshipping for the last mile delivery problem

Nowadays, a large number of customers orders
products online, which requires shipping companies to
deliver parcels right up to the customers’ doorsteps.
Whereas formerly a lot of products could be delivered
collectively to shops and sold there, these days many
consumers expect their products delivered directly to
their individual home addresses. This large increase in
shipping destinations is sometimes referred to as the
last mile delivery problem [29]. To overcome this new
challenging demand on the shipping companies’ deliv-
ery infrastructure, industry and academia are working
towards new and innovative shipping strategies.

Crowdshipping seems a promising solution approach
for the last mile delivery problem [31]. Crowdship-
ping is based on the observation that private citizens
in their daily lives walk, ride and drive on the same
roads and routes that the parcels have to take to be de-
livered to the recipients’ homes. The delivery capacity
could be substantially increased if private citizens car-
ried parcels towards their destinations with little or no
detours in exchange for monetary compensation.

Recent publications on crowdshipping investigate
assignment procedures that match the available crowd-
workers with delivery tasks or perform route planning
to minimize the length of the workers’ shipping routes

[5, 6, 14, 17, 42]. Until now, only few proposals have
been made that use the multi-agent paradigm and that
explicitly enable or encourage the transfer of parcels
between workers [22, 37]. In the subsequent sections,
we present a multi-agent crowdshipping system where
the workers have the autonomy to hand over parcels
to other workers who then continue the delivery. This
way, delivery chains can form that carry parcels to their
destinations. In contrast to other works, we employ
data stream processing on the workers’ smartphones to
incorporate knowledge about the current situation into
the crowdshipping system.

4.2. Dynamic crowdshipping with AEP

We describe a multi-agent crowdshipping system
that benefits from the enhanced perception approach of
the previous section.

General approach. The crowdshipping MAS con-
sists of the following entities:

Parcels are packages that have to be delivered to (or
towards) a certain destination. Each parcel has
a pre-determined payout value that is rewarded
to the user who delivers the parcel to its final
destination.

Users are private citizens that have agreed to partic-
ipate as shippers in exchange for financial re-
wards. Users can decide whether to deliver a par-
cel to its destination and receive the full reward
or to cover only a part of the delivery distance
and sell the parcel to another user who performs
the rest of the delivery (or sells it to another
user).

User agents (UAs) support users in their decision mak-
ing. The UAs run on the users’ personal smart-
phones and monitor the environment to per-
form situation-aware actions, including obtain-
ing tasks and selling tasks while considering the
user’s situation and financial interests.

To sell and buy tasks, the MAS uses an auction
mechanism with situation-dependent parameters. Auc-
tions are an important agreement concept to allocate
resources (goods, tasks, etc.) to self-interested agents
in a multi-agent setting [40]. One agent acts as the auc-
tioneer and collects the bids from interested buyers.
The auctioneer then assigns the resources according to
some clearance rule and collects the payments of the
bidders according to some payment rule. In this case
study, we do not focus on optimal winner determina-
tion or payment rules. We rather try to highlight how
situations derived from data streams can control and
influence agent interaction to come to agreements.
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Fig. 2. Mobile ecosystem with sensor-driven mobile agents and auction-based agreements

• Opening auctions: The UA opens an auction
whenever a user is holding a parcel and the user is
in a situation where transferring the parcel to an-
other user is preferable. Situation: The user has
not been making any delivery progress in the last
5 minutes.

• Selecting participants: When the UA opens an
auction to receive bids from other UAs, it an-
nounces the auction to a selected set of partici-
pants. A call for bids is explicitly addressed to
agents that have detected a particular user situa-
tion. Situation: The user can arrive to pick up the
parcel within five minutes. (Whether a user can
arrive within a certain time window depends on
the user’s physical distance, mode of transporta-
tion, and movement behavior of the recent past.)

• Determining winners: When the UA has received
all bids, it applies a situation-dependent strategy
to determine the winner of the auction. For ex-
ample, the UA might not necessarily declare the
highest bid the winner if another agent exists that
has bid a similar amount but can arrive to pick up
the parcel three minutes faster. 2

Example. Fig. 3 shows an exemplary scenario, which
consists of four agents a0 to a4, whereby one of the
agents (a0) is currently holding a parcel. The agents
compute their local situations and adapt their beliefs

2Agents would have to be penalized if they report situations inac-
curately or maliciously.

and goals accordingly. Thereby, they rely on their en-
hanced perception component. Using its interpretation
capabilities, agent a0 has detected that its user has
not made any delivery progress recently and there-
fore adopts the goal !sellParcel. This triggers the auc-
tion mechanism. The agents a1, a2, and a3 get notified
about the nearby auction and check whether they fulfill
the participation requirement. Agent a2 has not been
moving in the recent past (the user might be busy or
resting) and hence does not participate in the auction.
Agents a1 and a3 both estimate a possible arrival time
at agent a0 in below 5 minutes and therefore consider
participation. Using their beliefs and plans, they check
whether the parcel’s destination is in accordance with
the user’s movement direction. As this is the case for
a1 and a3, they both decide to submit a bid to a0. Agent
a0 collects the bids and determines the winner. Having
bid more, the parcel is assigned to agent a1 who not
only is willing to perform the task for less revenue (the
revenue is the parcel reward minus the bid made in this
auction), but also can arrive faster to pick up the parcel.

Application of concepts. The conceptual building
blocks of AEP can be applied as follows to implement
the crowdshipping case study. The agent obtains GPS
data from the GPS sensor artifact, which is processed
by the enhanced perception component.

Expectations clean the GPS sensor data by removing
implausible GPS readings. Therefore, they con-
sult the belief base to better anticipate the char-
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Fig. 3. Multi-agent crowdshipping scenario

acteristics of correct GPS readings: when the
user is riding a bike or a car, GPS events may lie
farther apart than when the user is walking.

Interpretations detect the higher-level situations that
drive the auction mechanism. Among others,
they detect slow delivery progress. and estimate
arrival times at nearby auctions/parcels. These
are meaningful occurrences that are not inherent
in a single individual GPS event but can be de-
rived from sequences of GPS events.

Beliefs represent an agent’s current knowledge about
the crowdshipping system, including the user’s
state (has parcel / has no parcel), the user’s fi-
nancial profile and walking preferences (do not
accept tasks with rewards below 2.00 EURO, do
not accept tasks farther away than 500 meters),
etc. Beliefs are used in expectations, interpreta-
tions, and plans; they influence the agent’s per-
cept processing and deliberation.

Goals express the agent’s current attitude towards
parcels and the agent’s ambitions in the auction
process. The goals include: sell parcel, obtain
parcel, and participate in auction.

Plans get triggered when beliefs change or goals get
adopted. Most importantly, the agent holds plans
that allow it to open auctions and to partic-
ipate in auctions that other agents announce.
These plans implement the agent’s winner de-
termination strategy as an auctioneer and the
agent’s bidding strategy as a participant in an-
other agent’s auction.

The case study shows that the crowdshipping sce-
nario can be naturally expressed using MAS: each user
of the crowd is represented by a self-interested agent;
the decision making is distributed over the users’ mo-

bile devices. Using enhanced perception, the agent in-
teraction (in form of auctions) is driven by higher-
level situations that are derived from lower-level sensor
data. Interpretations allow agents to perceive complex
spatio-temporal patterns across a stream of low-level
percepts, e.g., slow delivery progress in a GPS stream.

5. Proof of concept

In this section, we show some of the most important
interpretation rules that are needed to implement the
multi-agent crowdshipping system as outlined in the
previous section. We also describe our technical inte-
gration of enhanced perception into the Jason frame-
work and discuss the most important benefits of our
extension compared to Jason agents without enhanced
perception.

5.1. Interpretation rules for the multi-agent
crowdshipping system

We have a look at the following interpretation rules
(R.1 and R.2).

R.1 (Agent with parcel): When user holds parcel and
makes slow delivery progress, try to sell the par-
cel by opening an auction to nearby agents.

R.2 (Agent without parcel): When an auction was
opened nearby, check whether the auctioneer can
be arrived within the required time limit. If this
is the case, consider participating in the auction
by sending a bid.

In the interpretation rules we make use of the event
types shown in Fig. 4. There are three categories of
event types that can be observed by the agent.
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Fig. 4. Events in the multi-agent crowdshipping system

Sensor data is accessed from the smartphone sensors
via the sensor artifacts. Event types of this cat-
egory are GPS readings, acceleration data, or
whether the smartphone’s screen is active. Here
we focus on GPS data.

Domain events stem from the domain artifact and in-
dicate significant occurrences in the crowdship-
ping domain. Here, an agent receives explicit
notification when a parcel was accepted (either
received from the shipping company or bought
from another agent).

Messages are announcements made by other agents.
In our setting, agents use messages to inform
nearby agents about new auctions, bids, and auc-
tion outcomes.

While the event types of the category of domain events
have to be tailored to the specific problem domain, the
event types of the category sensor data are more gen-
eral and reusable for a wide range of problem domains.

Context that can be derived is the user’s movement,
speed, and estimated arrival time at nearby auctions.
Based on context, domain events, and the content of
messages, situations such as slow delivery progress
can be detected.

To express the interpretation rules, we use a declar-
ative Event Processing Language (EPL). There are dif-
ferent families of EPL. Here, we use a syntax that is
inspired by SQL and close to the syntax used by the
Esper engine.

5.1.1. Opening the auction (Rule R.1)
The agent opens an auction when it is making little

or no progress in delivering the parcel to its destina-

tion. To detect this higher-level situation, two interpre-
tation rules are used. The first rule (R.1a) continuously
computes the user’s distance to the parcel destination.
The second rule (R.1b) then uses this distance to detect
when the distance does not become smaller over time.

// R.1a: "Compute distance to destination"
SELECT Geo.distance(

move.lat,
move.lon,
BB.get("hasParcel(" + parcel.id + ", Lat, _)"),
BB.get("hasParcel(" + parcel.id + ", _, Lon)")
) as distanceToDestination

FROM pattern[
(every parcel=ParcelAccepted)

-> (every move=HasMoved)
]
WHERE
BB.contains("hasParcel(" + parcel.id + ", _, _)")

ACTION:
new DistanceToDestination(distanceToDestination)

The rule consists of two parts: The first part describes
a percept pattern using the SQL-inspired SELECT-
FROM-WHERE structure. The second part specifies
the action that is executed when a pattern match occurs.
Rule R.1a matches every time a ParcelAccepted event
is followed by a HasMoved event and the belief base
contains the belief that the agent is still in possession of
this parcel. (If the user had sold or delivered the parcel
in the meantime, the belief would have been removed
accordingly.) Whenever this is the case, the distance of
the user’s current position (move.lat, move.lon) to the
parcel’s destination (retrieved from the belief base) is
computed and encoded into a new event. The resulting
DistanceToDestination event is pushed into the percept
stream.

1 // R.1b: "Detect slow delivery progress"
2 SELECT parcel
3 FROM pattern [
4 every parcel=ParcelAccepted
5 ->
6 (
7 (timer:interval(5 minutes) and not HasMoved)
8 or
9 (d1=DistanceToDestination(parcelId=parcel.id)

10 ->
11 d2=DistanceToDestination(parcelId=parcel.id,
12 timestamp > d1.timestamp + 5 minutes)
13 )
14 )
15 ]
16 WHERE
17 BB.contains("hasParcel(" + parcel.id + ", _, _)")
18 and d2.value > d1.value - 20 meters
19 ACTION:
20 BB.add("SlowDeliveryProgress(" + parcel + ")")

When the user accepts a parcel (line 4) and as long
as the user is still carrying this parcel (indicated by a
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corresponding belief; line 17), the following two cases
are checked:

• Line 7: Either the user has not been moving for 5
minutes.

• Lines 9-12 and 18: Or, comparing to distance
events that appear at least 5 minutes apart, the user
has reduced the distance to the destination by less
than 20 meters.

In either of the two cases, the UA detects that the deliv-
ery progress is insufficient and inserts a corresponding
belief into the belief base.

The UA has a plan that describes the action that is
to be taken in this situation. In this plan, the UA broad-
casts to nearby agents that it has opened an auction to
sell the given parcel. This invitation to the auction in-
cludes a description of the parcel, a description which
agents are eligible to participate in the auction (e.g.,
all users who can pick up the parcel within 5 minutes),
the current location of the parcel, and a bidding inter-
val that denotes how much time the agents have to an-
nounce their bids.

5.1.2. Deciding whether to participate (Rule R.2)
Next, the nearby agents receive the invitation to the

auction and have to decide whether they participate.
Therefore, the agents check whether they fulfill the
participation requirement, i.e. whether the user’s recent
movement behavior indicates that the parcel could be
reached within 5 minutes.

We accomplish this in two steps: Estimating the ar-
rival time at the parcel (R.2a) and comparing it with
the announced pickup deadline (R.2b).

// R.2a: "Estimate arrival time at auction"
SELECT auction.id as AID,

Geo.distance(auction.location,
loc.location) as distance,

speed.value as speed
FROM pattern [

every auction=AuctionOpened
and loc=UserLocation
and speed=Speed
and speed.value > 0

]
ACTION: new EstimatedArrival(AID, distance/speed)

The arrival time is estimated as follows: Whenever the
agent is notified that an auction was opened, it gathers
its most recent data about the user’s location and speed.
If the speed is larger than 0, the distance to the parcel
location is computed and divided by the speed value.

// R.2b: "Consider bidding if auction can be
// reached in time"

SELECT auction
FROM pattern [
every auction=AuctionOpened
->
arrival=EstimatedArrival

.window:time(auction.biddingInterval)
and arrival.auctionId=auction.id
and arrival.estimatedArrivalTime

< auction.pickupDeadline
]
ACTION:
BB.add("nearbyAuction(" + auction + ")")

When an auction was opened and an arrival time
was estimated within the announced bidding interval,
the rule checks whether the estimated arrival time is
smaller than the pickup deadline. If this is the case, the
agent adds the new belief nearbyAuction to its belief
base.

In a corresponding plan that reacts to this belief ad-
dition, the agent checks whether the location and des-
tination of the parcel lie on the user’s route. Assum-
ing that this is the case, the agent has decide on the
exact value it wants to bid. This decision depends on
the user’s monetary profile and the detour that has to
be made for participation in the shipping of the parcel.
Having decided on a value, the agent sends its bid to
the auctioneer. The auctioneer gathers all bids and de-
termines the winner. The auctioneer then notifies the
participants about the auction outcome and waits for
the winner to come by and pick up the parcel.

5.2. Integrating enhanced perception into Jason

To test our approach, we integrated the enhanced
perception component into the Jason agent framework.
We rely on Jason’s deliberation and belief base and
extend it by our customized perception. Our tech-
nical solution is shown in Fig. 5: We developed a
new agent class AEPAgent, which is a subclass of
the Jason Agent class. We override the selectEvent
method such that in each processing cycle all per-
cepts are removed from the agent’s event queue and
passed to the enhanced perception component. The
EnhancedPerception class converts the Jason lit-
erals into the event format expected by the event pro-
cessing engine and pushes the event into the engine.
The class EsperEngine is a wrapper around the Es-
per CEP engine 3; the class EPServiceProvider
is the entry point into the Esper API. Each engine holds
an arbitrary number of rules, which perform the per-
cept processing and have access to the BeliefBase

3https://www.espertech.com/esper/ (Accessed: 2019-01-15)
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Fig. 5. Technical integration

class. The belief base class provides read and write
access to the Jason belief base (via the Jason Agent
class). Whenever a rule infers a situation, the situation
is encoded into a Jason literal and inserted into the Ja-
son belief base. The belief is then available within the
agent code, which is written in AgentSpeak and stored
in *.asl files (not shown in the figure). The belief in-
sertion can trigger plans, which can perform actions or
send messages to other agents.

5.3. Implementing the case study with AEP

We implemented the multi-agent crowdshipping
case study with our framework. We developed a user
agent that consists of the perception rules presented in
section 5.1. The user agent obtains a GPS data stream
from a GPS artifact. The GPS data arrives in form of
percepts that the agent processes with its enhanced per-
ception module.

The agent’s plans are developed in AgentSpeak. The
plans are triggered by belief changes and situations that
are produced by the enhanced perception module.

Using our approach, we observe the following ben-
efits.

5.3.1. Complex spatio-temporal pattern matching
By integrating data stream processing into BDI

agents, an agent can perform pattern matching on per-
cept sequences. In conventional BDI agents, plans are
triggered by single events. AEP on the other hand en-
ables the triggering of plans by multiple events that
can be in complex temporal relationships. This capa-

bility is necessary when the individual data elements
are not meaningful in isolation, but expose their mean-
ing if perceived together. In our case study, a single
GPS event does not carry enough meaning to trigger
the auction plans. Only the situations derived from the
GPS stream give enough insights whether to invoke the
plans.

Advanced pattern matching over percept streams
cannot be easily implemented with AgentSpeak. AgentS-
peak is well suited to express plans for intelligent be-
havior on the domain level. However, not all prob-
lems present themselves at this abstraction level di-
rectly: on smartphones, sensors provide data on a
lower level of abstraction where the individual data
elements in isolation have little meaning. If we had
to implement the percept processing with plans, we
had to attempt this without many essential data stream
concepts, most importantly temporal windows, non-
appearance of events, and aggregations over windows.

As an example, rule R.1b (section 5.1.1) triggers
when after the acceptance of a parcel 5 minutes pass
without the occurrence of a HasMoved event. This
is impossible to implement solely with AgentSpeak
plans, as in Jason plans are triggered when certain
events do appear. However, there is no mechanism that
causes plans to be triggered by events that do not ap-
pear. In our approach such situations can indeed be de-
tected by the agent, as illustrated by rule R.1b.

5.3.2. Reduced deliberation efforts
In sensor environments, a conventional BDI agent

is confronted with many percepts that it has to reason
about. The environment appears dynamic and many
plans get triggered that alter beliefs and goals. In AEP
architecture, the agent’s expectations and interpreta-
tions face this dynamic and pass only filtered, aggre-
gated, and meaningful situations to the deliberation
component. To the deliberation component, the envi-
ronment manifests itself less dynamic. This fits well
the metaphor of the BDI model which is inspired by
the human mind: the human perception pays attention
to only some of the expressions it gathers and detects
meaningful patterns. This is not a conscious effort that
is performed by deliberating over the individual stim-
uli.

6. Experimental evaluation

The runtime behavior of our proposal can best be
demonstrated by confronting it with real smartphone
sensor data.
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Table 1
Events that were sensed, generated, and inferred during a time span
of 25 minutes

Event Category Source Count

Gps Sensor data GPS sensor 1568

ParcelAccepted Domain event Synthetic 2
ParcelDelivered Domain event Synthetic 1

HasMoved Context Interpretation 1269
Speed Context Interpretation 51
DistanceToDestination Context Interpretation 668

SlowDeliveryProgress Situation Interpretation 1

GPS data set. We obtained a GPS data stream on an
Android device using Android’s LocationManager API
for fine-grained location tracking (see Fig. 6a). During
25 minutes, the user performed a short trip using a bike
(see Fig. 6b). The data set contains three breaks where
the user stopped the bike and one phase of increased
speed where the user reached more than 7 m/s. Fig. 6c
shows the user’s speed during the 25-minute period. In
total, 1568 GPS events were captured.

Procedure. We expose our agent to a replay of the
captured GPS stream. Additionally, we inject three
synthetic domains into the stream: two events indi-
cating that a parcel was accepted (ParcelAccepted)
and one that indicates that the parcel was delivered
(ParcelDelivered). We log the intermediate context and
high-level situations generated by the enhanced per-
ception component.

Results. The results are listed in Table 1 and visual-
ized in Fig. 7.

Discussion. Table 1 lists the observed events, grouped
by their respective category. In total, the agent acquires
1571 data elements from the environment (1568 GPS
events and 3 domain events). From this raw data, the
agent infers (1269+51+668=) 1988 intermediate con-
text events. In the analyzed setting, a single slow de-
livery situation was detected. The numbers support our
argument that the environment appears less dynamic
for the agent’s deliberation: the deliberation only re-
ceives the slow delivery notification. Depending on the
interpretations, a large number of intermediate con-
text events might be generated that even exceeds the
number of sensor events. However, this is mostly not
a problem as long as the load keeps reasonably low -
modern event processing engines are quite efficient -
and as long as these context events are not pushed into
the belief base.

A visualization of the events over time (see Fig. 7)
confirms the correct behavior of our interpretation
rules. Each event is represented by a circle; when they
occur in small intervals they appear to be a straight
line. Having a look at the HasMoved events, we can
clearly observe the three breaks that are also apparent
in Fig. 6c. The Speed events appear in a 30 second in-
terval; this is due to the use of a batch window of 30
seconds4. If we have a look at the DistanceToDesti-
nation events, two observations can be made: Firstly,
these events are only generated between the accep-
tance of a parcel (ParcelAccepted event) and the deliv-
ery (ParcelDelivered event) or selling of a parcel. Sec-
ondly, the distance is only re-computed when the user
has moved. Both observations correspond with the de-
sired behavior. Finally, one slow delivery event is de-
tected.

7. Conclusion

In this paper, we have put forward an enhanced per-
ception approach to put advanced data stream process-
ing into cognitive agents in mobile ecosystems. En-
hanced perception is driven by the agent’s expectations
and interpretations, which integrate information flow
concepts into the agent’s perceive-deliberate-think cy-
cle. Expectations and interpretations have access to the
agent’s belief base, which enables the detection of situ-
ations by fusion of (i) low-level, fast-paced sensor data
and (ii) high-level, semi-static beliefs.

We have evaluated our approach by different means.
We applied AEP architecture to a scenario in the
crowdshipping domain, where multiple self-interested
agents obtain, sell, and deliver parcels to gain financial
rewards. This case study demonstrates the applicabil-
ity of our proposal and illustrates the role of derived
situations for agreements between agents: the crowd-
shipping system uses auctions that are initiated and in-
fluenced by the situations produced by the agents’ in-
terpretations.

We have shown and discussed concrete interpre-
tation rules and the benefits they bring to the con-
ventional BDI-based agent systems: Most importantly,
they enable complex spatio-temporal pattern matching
over percepts and relieve the agents’ deliberation in dy-
namic sensor environments.

Our conceptual work is backed by two implemen-
tations. We integrated the Esper CEP engine into the

4The corresponding interpretation rule is omitted in this paper.
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(a) Unprocessed GPS events (b) Route taken by the cyclist

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  200  400  600  800  1000  1200  1400

S
p
e
e
d

 
in

 
m
/s

Time in seconds

Speed

(c) Speed of the cyclist

Fig. 6. GPS data set

Fig. 7. Event series of sensor events (GPS), synthetic domain events (ParcelAccepted, ParcelDelivered), context (HasMoved, Speed, Distance-
ToDestination), and derived higher-level situations (SlowDeliveryProgress)

Jason agent framework, which enriches Jason agents
with data stream processing capabilities. We then used
this extension to implement parts of the crowdshipping
case study.

Finally, we confronted our implementation with real
smartphone sensor data. Using enhanced perception,
the agent accurately encodes the GPS data into mean-
ingful context and situations and effectively reduces
the number of events affecting the deliberation com-
ponent. The deliberation component operates on a rea-
sonable number of meaningful beliefs rather than a
high load of low-level, individually meaningless data
stream elements.

Future work could investigate how multiple agents
can cooperate to detect complex composite situations
that a single agent cannot detect on its own due to miss-
ing data or interpretations. In this case it could be help-
ful to perform parts of the data processing tasks out-
side of the agents perception in a dedicated data stream
processing artifact that all collaborating agents can ac-
cess. Furthermore, perception rules do not necessarily
have to be explicitly programmed by an agent designer
with domain knowledge. Future work could include a

learning approach that derives perception rules from
previously observed percept streams and situations.
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