
Knowledge-Base Evolution for Product and
Production Planning*

Knut Hinkelmann, Manfred Meyer and Franz
Schmalhofer
DFKI (German Research Center for Artificial Intelligence),
Postfach 2080, 67608 Kaiserslautern, Germany
Email: {hinkelma,meyer,schmalho}@dfki. uni-kl.de

Knowledge-base evolution techniques are shown to be of
critical importance for the successful application of knowl­
edge-based systems in complex domains. By conceptualiz­
ing knowledge-base evolution as theory revision, we can
take advantage of the basic findings from different research
communities. Results from Inductive Logic Programming
(ILP) and Explanation-Based Learning (E B L) provide a set
of techniques that can be used as a foundation for obtaining
new knowledge {knowledge-base exploration). Techniques
from deductive database research might be used for testing
the correctness of a knowledge base (knowledge base verifi­
cation). By an interactive application of these exploration
and verification techniques, domain experts and other users
may similary improve the effectiveness of the knowledge
base (knowledge validation). The application of such se­
lected techniques is then discussed with respect to the spe­
cific problem of improving production parameters.

1. Introduction

It is a long held belief, that micro-worlds, such as
the blocks world, sorting tasks or chess end games
are the drosophila of Artificial Intelligence and
Machine Learning research, where the fundamental
successes are to be achieved and demonstrated. A
quote by Amarel [1, p.258] highlights this view.
'These toy problems provide an excellent para­
digmatic task environment in which essential
aspects of the representation problem can be studied
... They are serving as drosophila of research in the
general area of problem representations, and in the
study of acquisition of problem solving skills'.

Although there cannot be any doubt that many
successes of Machine Learning have been achieved
in these micro-worlds, the utilization of these

*This research was supported by grant 413-5839-ITW9304/
3 from the B M F T .

achievements in complex real world domains (e.g.,
the industrial applications of Machine Learning) is
much more difficult than had been originally
anticipated. Buchanan [10, p.5] for example,
reports that except for simple classification sys­
tems, knowledge-based systems do not yet employ
a learning component to construct parts of the
knowledge bases from libraries of previously
solved cases.

It has been pointed out only recently, that real
world domains have quite different characteristics
than the micro-words where new machine learning
techniques are routinely demonstrated. Com­
plexity, continuous innovations and documentation
as well as incomplete and conflicting knowledge
are the most eminent characteristics [37]. Because
of the dynamic character of real world domains, the
application of knowledge-based systems requires
that the changes in the field can at least be traced
(preferably predicted and discovered) by approp­
riately selected machine learning techniques. Such
updating and revision processes are termed knowl­
edge base evolution. Comparable to the human
genome project which also requires additional
resources, above and beyond the discovery of the
genetic mechanisms with the drosophila, the ILP
community must therefore also pay more attention
to applications in complex real world domains.

In order to develop knowledge-base evolution
techniques with respect to complex real world
domains, we first analyzed the requirements of
product and production planning with new
materials by using the specific example of the
manufacturing of bucket seats in the car industry.
The results are summarized in Section 2 of this
paper. Section 3 then describes a respective knowl­
edge-base that is currently being developed by an
iterative application of the CLASSIC methodology
to knowledge engineering [8]. Section 4 will then
show how the knowledge evolution can be
understood as theory revision [33], where the
knowledge-base evolution system and the user
cooperate in a way, similar to an apprenticeship
learning system [40].

Theory Revision has recently been proposed as a

Fig. 1. The manufacturing of a bucket seat with a G M T (reprinted by permission from the l-lastogran GmbH).

general framework, where Explanation-Based
Learning (EBL) and Inductive Logic Programming
(ILP) can be integrated [27]. For mastering the
knowledge evolution requirements of the specific
application, we can thus draw upon the basic
research results from both E B L as well as ILP.
Furthermore, exploration and verification pro­
cesses will be distinguished. A continuous (in­
teractive) improvement of a knowledge base during
its entire life-time starting with the first forma­
lizations (knowledge base seed) and still con­
tinuing along its practical use can thus be achieved
[26].

Expert knowledge from the application domain
is used for constraining the exploration processes,
so that an efficient implementation can be ob­
tained. Expert knowledge will be employed to
determine the representation bias (also known as
'restricted hypothesis space bias') and search bias
(also known as 'preference bias') of induction [32].
More specifically, domain knowledge is used to
specify the representational bias and metaknowl­
edge to determine the search bias. The paper will be
concluded with a general discussion of the role of
knowledge-base evolution for the quality of prac­
tical knowledge bases.

2. Product and Production Planning

In the car industry, like in other modern in­
dustries, the innovation cycles have become
increasingly shorter. Driven by the objectives of

environmental protection laws, hazardous manu­
facturing materials must be replaced by more
adequate new materials. Equally important is the
reduction of cost while the highest possible quality
standard is being maintained. In many branches,
new materials such as glass mat reinforced thermo­
plastics (GMT) are currently introduced and in­
creasingly more used for manufacturing products,
and thereby replacing steel and metal construc­
tions. A G M T is a composite consisting of two
components, namely a thermoplastic rein-forced
by glass fiber. An example is the manu-facturing of
car seats. The high security standards and other
requirements (e.g., concerning wear and tear) can
now be satisfied by using GMTs. For example, the
rear part of a bucket seat for a car can now be
manufactured with GMT, instead of more costly
metal constructions.

Figure 1 shows the production process with
GMTs. It consists of a preparation phase, a pressing
phase and a finishing phase. In the preparation
phase the raw material is put on a conveyer belt that
moves it through the tunnel kiln, where it is heated.
In order to avoid an undesired cooling, the material
is then immediately put into the hydraulic press,
where the geometry of the car seat is pressed before
it is cooled off so that its form is maintained.
During the finishing phase unwanted bumps must
be removed.

The pressing of the material depends on a
number of parameters with complex interrelation­
ships. The temperature of the material influences
the volume per unit time which is responsible that

Production/Recycling

Materials

composite structures

fundamental
materials

Products

Fig. 2. Overall structure of the RPPP knowledge base.

the material reaches every part of the pressing
form. As soon as the material is put into the press,
the press is closed with a speed of about 800 mm/s.
As soon as the press reaches the material the speed
is reduced to a value between 5 and 15 mm/s. After
the press is closed a constant pressing force is
exerted on the material for some duration. After
that, the material is left in the press for some time
to cool off. The duration of cooling depends on the
temperature of the material and the tool, the tool
geometry, the topology of the cooling capillaries of
the tool, etc.

In product and production planning, 'system
development' and 'parameter optimization' are
distinguished as two separate phases, which can
also be called primary and secondary engineering
[23]. In the primary phase, a prototype of the
product and the corresponding manufacturing
process is developed. In some previous research it
was already shown how machine learning tech­
niques can be applied for supporting the primary
engineering phase [31]. More specifically, it was
shown how an explanation based abstraction
method [36] can be used for abstracting planning
schemata from success cases of the real world [37].
In the secondary phase, appropiate parameters
must be found for the respective primary design. In
this paper, we are solely concerned with this
secondary design phase. In particular, we propose a
knowledge base and knowledge evolution tech­
niques for documenting and maintaining all
available information and knowledge. This knowl­
edge concerns the various parameters and how they

determine the desired characteristics of the
product.

3. A Recycling-Oriented Product and Pro­
duction Planning Knowledge Base

In some previous work, the selection of recy­
clable materials in product design and the process
planning for manufacturing and recycling such
products were identified as a promising application
domain for knowledge base evolution. In [3] a
materials knowledge base is discussed as an in­
tegral part of a declarative knowledge base for
recycling-oriented product and production plan­
ning (RPPP). The overall structure of this knowl­
edge base consists of a module representing the
materials, a second one representing production
and recycling knowledge and a third module
containing products that have been manufactured
from these materials (see Fig. 2).

3.1. The Materials Knowledge Base

Materials constitute the substance of production
and recycling. Materials can bedivided into fun­
damental and composite materials. The main
problem when building a knowledge base is
'finding the right way to break the domain into
objects and their relationships'. One solution
approach is given by the 'Knowledge Engineering
Methodology for C L A S S I C [8]. This metho­
dology suggests to formalize the domain

Q elastomer") ^hermoplastiĉ t̂herrnoseQ

Q abs ^ ^polyamirT) ^polypropylene ^

Fig. 3. A taxonomy of materials.

knowledge using some kind of terminological
knowledge represen-tation in the spirit of K L - O N E
[7] or a frame-like, object-centered knowledge
represen-tation system using an inheritance hier­
archy. The methodology consists of a sequence of
design steps. We are using an iterative application
of this methodology by allowing multiple iterations
of two or more of the following consecutive steps:

1. Relevant object types are enumerated. As a re­
sult the relevant objects are determined to be
particular plastics and composite materials,
classes of such materials, qualitative and quan­
titative properties of the materials, numbers etc.

2. The obtained descriptions are divided into ob­
jects and properties, which are later mapped to
concepts and roles. In our case, classes of mate­
rials are concepts, whereas most of the proper­
ties correspond to roles.

3. Concepts are organized into a taxonomy. This
step yielded the hierarchy of the fundamental
and composite materials. Part of this hierarchy
is presented in Fig. 3.

4. Then, the key individuals are isolated and asso­
ciated to the concepts they belong to.

5. In order to obtain the internal structure of the
concepts, a list of relevant properties must be
determined for each concept. These properties
include intrinsic and extrinsic properties and
part-of relations. In this step, the properties of
the plastics have been adopted from the exist­
ing C A M P U S database [9], which contains all

the plastics produced by 22 European chemical
industries. An important property for G M T is
the modulus of elasticity (e-modulus).
The part-of relation is the main relation for dis­
tinguishing composite materials. A G M T con­
sists of a thermoplastic which is reinforced with
glass fibers to enhance its e-modulus. There are
two types of glass fibers in the form of papers
or mats and two types of thermoplastics poly­
propylene and polyamid. Thus we get four
types of GMTs. The e-modulus increases as the
percentage of glass fibers increases.

6. In the remaining steps of the CLASSIC meth­
odology, the restrictions of the properties for
each concept are acquired in detail. As a result
of this step, the particular types of possible val­
ues and the cardinality of values have been de­
termined.

For the representation of the materials knowl­
edge base we propose a respective hierarchical rep­
resentation in a terminological representation lan­
guage.

3.2. The Product Knowledge Base as Case Base

The Product Knowledge Base is a Case Base. It
contains the actual parameters of the success cases
of manufacturing car seats with different materials.
It also represents cases, where certain quality
requirements have not been satisfied by the prod­
uct of the industrial manufacturing process. These

success and failure cases are denoted by e+

jk and e~.p

where k is an index for referencing the specific
case and / identifies that the case resulted from
indus-trial experience.

In addition to these industrial cases, the results
from systematic experimentation, that is performed
in material sciences research institutes, should also
be stored in the Product Knowledge Base. In order
to determine the thermodynamic behavior of
GMTs during the pressing process, researchers
may for instance perform experiments, where
several different parameters are systematically
manipulated to determine their influence upon
some criterion variable. Such scientific research
may determine, 'which influences different pro­
duction parameters have on the work done on the
material and what kind of flow characteristics
different GMT-materials show' [22]. Such experi­
ments may investigate how the closing speed of the
tools, the press force and the specific material
determine the size of the pressed material. The
experimental results can provide very useful
information for the product engineer, who is
interested in manufacturing some specific car seat.
The actual data from such experiments should
therefore also be stored in the case base. We denote
such cases from scientific experimentation by e+

k,
where the index s indicates that this result was
achieved by science research and k is an index that
denotes the specific experiment.

5.3. The Production Knowledge Base

The pressing of materials depends on a large
number of parameters. There are complex relation­
ships among these parameters, as well as between
these parameters and the material and the quality
requirements. As already mentioned in Section 2,
there is relatively little knowledge available about
which parameter values achieve the desired result.
Even for an expert it is nearly impossible to find
exact adjustments at once. To find the depen­
dencies between various parameters, the product
engineer usually tries several possibilities. The
results of these trials are represented in the Product
Knowledge Base. In the Production Knowledge
Base, we will thus represent the regularities which
are (supposedly) valid for the production process,
in general. More specifically, we are concerned
with the different parameter values for manu­

facturing G M T products with a hydraulic press
(see Fig. 1).

The results of such scientific experiments are
most often summarized by a linear equation, that is
obtained by a regression analysis or by an Analysis
of Variance [23]. Such an equation may for instance
take the form:

Although such numeric equations are quite
useful and have a broad field of application in
research and industrial practice, there are also a few
disadvantages, which can be compensated by a
more abstract and qualitative description. One
problem lies in the fact, the each experiment yields
a new equation and it may be quite difficult for any
practitioner (and even researcher) to derive a set of
general regularities from the various equations.
Secondly, these equations hold only within certain
limits.This is, however, not directly represented by
the equation. For instance, increasing the pressing
force beyond certain limits wil l not increase the
surface area in the way that is predicted by the
linear equation, but may instead damage the press.
In other words, there is an upper and lower bound
on the parameters as well as on the values of the
criterion variable (e.g., the surface area).

In addition to such numerical representations, we
therefore propose a more abstract and qualitative
description for representing the general knowledge
from the various cases. Unlike the numerical
equation, we assume upper and lower bounds for
the criterion variable, whose values are denoted
qualitatively, like for instance by Targe', 'medium'
or 'small'. In other words, there is for instance no
value that is smaller than 'very small' and no value
that is larger than 'very large'. As a consequence of
these bounds, the qualitative addition operation,
which we denote by ©, can no longer be a closed
operation. In order to embody these limitations, we
define the qualitative addition operation in the
following way. Let A denote a set of qualitative de­
scriptors, like a 9ava3 ... an, which we could for
instance also call <z =very small, a2=small, a3=
medium, ... a=very large. We postulate that the set
A is weakly ordered. Since the cartesian product
A x A contains all logically possible qualitative
additions of the form a®b, where a and b are in A,
those that can actually be formed must constitute a

Production

comprehensive theory

with successive versions
T \ T ' \ „ .

Theory formation

: Materials

composite
ŝtructures

fundamental
k materials

Theory revision

summary of
experimental

results

' s l ' & s2

summary of
practical

experiences

e ,e ,
i l ' i2

Fig. 4. Formation and revision of the production knowledge base.

subset B of A *A. Thus, i f (a,ft) is in 5, then a and b
can be qualitatively added and so a®b is in A. This
means that the operation © is a function from B into
A. In order to account for the fact, that not all
qualitative additions are possible, we define a
qualitative structure <A,y,B,®>, where associa­
tivity and monotonicity are somewhat modified. In
order to accomplish this, we impose the following
limitations on A and B: If a yb, we assert the exis­
tence of a c in A such that (c,ft) is in B and a >-c®b.
The requirements on the proposed qualitative
structure, which are summarized in the following
definition, provide important integrity constraints
for the production knowledge base (Fig. 4).

Integrity constraints for qualitative structures.
Let A be a nonempty set of qualitative descriptors
(such as 'small', 'medium', 'large') or avav...,an,

a binary relation on A, B a nonempty subset of A
x A and © a binary function from B into A. The qua­
druple <A,>z,B9®> is a qualitative structure if the
following six conditions are satisfied for all a, ft, c
e A:

1. <Ay >z > is a weak order.
2. If (a9b) e B and (a®b,c) e 5, then (ft,c) e 5, (a,

ft © c) G 5, and (a © ft) © c >= a © (6 © c).
3. If € 5 and a t ft, then (c,ft) G 5 and a © c

>= c ® ft.

4. If a >- ft, then there exists G /I such that (ft,*:/)
G 5 and # — b ® d.

5. If (a,ft) G fl, then a © ftW/.
6. a ;>... G /4 is a strictly bounded and finite

standard sequence if for n~2 an = a ; j

and it is only strictly bounded if for some ft G A
and for all an in the sequence, ft>- an.

4. Knowledge Base Evolution as Theory Revision

4.1. The Knowledge Base Evolution Scenario

Knowledge base evolution covers not only the
maintenance of an existing K B [13], but also the
continous improvement of the K B , its structure and
content. Knowledge-base evolution operates on the
K B of a knowledge-based system. Thus, for an
overall description of knowledge base evolution in
the RPPP context we distinguish two main units
(Fig. 5): the knowledgebase itself (RPPP) and the
knowledge-evolution system (KES).

The KES operates as a meta-level system on the
object level K B . Reasoning in the knowledge
evolution system is performed by the exploration
and verification components.

- Similar to discovery systems the knowledge ex­
plorer scans the K B in search for interesting

K E S

Fig. 5. The RPPP knowledge base evolution architecture.

patterns. Exploration can be seen as an iterative
process starting with the generation of a pattern
hypothesis, proceeding with a search for the
pattern in the K B , and resulting in a possible
interactive assimilation of the discovered pat­
tern into the K B . Thus, inductive techniques
play a major role for knowledge exploration.

- The knowledge verifier can perform verification
and with appropriate user assistance also vali­
dation. It examines the K B to detect structural
or functional defects. Validation and verifica­
tion can also be seen as an iterative process
starting with the generation of a defect suspi­
cion, proceeding with a check for a defect w.r.t.
the suspicion in the K B , and resulting in a pos­
sible defect description or repair suggestion.
Here, techniques for checking integrity con­
straints become most relevant.

The iteration cycles can be arbitrarily inter­
leaved, permitting evolution to consist of dual
verification and exploration processes. Together
they form a heuristic, approximative process that
alternates focusing and processing phases and
improves the K B any time a sufficient amount of
knowledge for an update (i.e., assimilation or
repair) is accumulated within the KES or provided
by the user. For example, assume that the verifier
has identified a rule whose premises cannot be
satisfied in a given K B . The explorer could then try

to generalize that particular rule or to complete the
missing knowledge reachable from its premises.
Conversely, after the explorer has discovered a
pattern (e.g., a new or generalized rule) the verifier
may be asked to verify the K B , focused on the
assimilated pattern.

4.2. Theory Revision

The problem of building up a knowledge base
(knowledge acquisition) can be seen as a two-phase
process [16]: In the first phase the knowledge
engineer builds an initial model (i.e., the seeding of
the knowledge base). In the second phase this
initial knowledge base is refined or revised into a
high performance knowledge base. During the
further practical use of the knowledge-base, the
dynamically changing world may cause the
knowledge base to become invalid in one of the
following senses:

- New developments may cause new problem
cases not being covered by the knowledge base.
This results in the K B S not being able to solve
these problems. For example, neglecting the ef­
fects of changing parameter values determined
by recent experiments would leave the RPPP
system incapable to find the best production
process.

- Some knowledge stored in the knowledge base
may become out of date and should no longer
be used as it would lead to solutions that for
some reasons are no longer valid in the current
application environment. For example, a fluent
additive that has become known to be noxious
should no longer be used or be used only in
closed-circle production and recycling proc­
esses.

In the first situation we have a new application
case (i.e., a positive example) that is not yet
derivable from the knowledge base. In the second
situation, we can derive a specific solution from the
knowledge base which is no longer admissible
(e.g., because of new environmental protection
laws). This is consequently called a negative
example.

From a more formal point of view, this means
that a given knowledge base KB has to be revised
using positive examples E+ (positive experiments to
be included) and/or negative examples E (failing
experiments to be excluded), such that all the

positive examples but none of the negative
examples are covered by the resulting knowledge
base KB'.

Taking the knowledge base as a Horn theory T =
F u R consisting of facts F and rules R and
satisfying a set of integrity constraints /C , the
exploration task of theory revision is to change T
into T such that T \- e Vee Ej and T \-i e Vee E .
The resulting theory T must, of course, still satisfy
the given integrity constraints, i.e., IC u T must be
consistent. This integrity checking represents the
verification task of theory revision and thus again
demonstrates the interleaved exploration and
verification principle.

The main task, however, remains how to obtain
the revised theory T. In principle, there are two
possibilities:

- First, we can modify the rules /?, for instance by
using generalization or specialization tech­
niques,

- or we can extend the set of facts F, where the
additional facts can be found by abduction.

In the following section we will discuss some
selected techniques from the fields of inductive
logic programming and deductive databases, which
could be applied within the proposed theory
revision framework.

5. Selected Methods for Knowledge Base
Evolution

Generalization techniques are the basic tech­
niques of Inductive Logic Programming and also
Theory Revision. Generalization operators per­
form two basic syntactic operations on a clause:

- apply an inverse substitution to a clause;
- remove a literal from the body of a clause.

In this section we will first review the least
general generalization and generalized sub-
sumption frameworks defined by Plotkin and
Buntine, respectively, before we will then extend
these techniques for the needs of theory revision in
practical applications like the evolution of the
RPPP knowledge bases.

5.1. Least General Generalization

Least general generalization was originally
introduced by Plotkin [29J. It is the opposite of
most general unification [34]; therefore it is also
called anti-unification. Given two atomic formulas
p(f(a),x) and /?(/(v),/?), unification computes their
most general specialization p(f(a)Ji) while anti-
unification computes their most special gen­
eralization p(f(y),x).

In addition to the generalization of literals,
Plotkin also describes an algorithm for the least
generalization of clauses. A clause C\ generalizes a
clause C, (denoted by C\ < (\), if C\ subsumes C ,
i.e., there exists a substitution 0such that C\9cz C\.
This is also called &-subsumption [11]. A gen­
eralization C of a clause C\ can thus be ob-tained
by applying a f3-subsumption-based genera­
lization operator p that maps a clause C\ to a set of
clauses p(C\) which are generalizations of C\.
Informally speaking, if clause C ^-subsumes
clause D, then D can be converted to C by (1)
dropping premises and (2) turning constants to
variables. A clause C is a least generalization of a
set of clauses if

1. C generalizes each clause in S: V F e S : C < E
2. C is the smallest clause satisfying condition 1:

(3 D V F G S,D<E)=*D<C

5.2. Generalized Suhsumption

The definition of generality presented so far is
local to the set S of clauses. Referring to im­
plication instead of the weaker subsumption rela­
tionship would also consider generalization w.r.t.
current knowledge. In [31] a generalization rela­
tive to a set of clauses P is defined as follows: A
clause C generalizes a clause I) relative to a set of
clauses P if there exists a substitution 0 such that P
1= V (C6 —> D). Buntine defines generalized suh­

sumption of definite Horn clauses as an extension
of f9-subsumption with the restriction that the cor­
responding clause heads must be about the same
concept [11]. Informally speaking, if a clause C
generally subsumes clause /), then C can be con­
verted to D by (1) turning variables to constants or
other terms, (2) adding atoms to the body, and (3)
partially evaluating the body by resolving some
clause in P with an atom in the body. The third

conversion process is additional to the conversion
for f3-subsumption.

5.3. Generalization for Knowledge Base Evolution

The condition of covering in the definition of
generalized subsumption has the effect, that
generalization depends on the actual representation
of the clauses. Defining generalization in terms of
implication (see Plotkin's definition [30]) instead
of subset-relation would be more suitable. This
would lead to a combination of techniques from
inductive logic programming (ILP) and ex­
planation-based learning (EBL) [27] by using
deduction when deciding the generalization of
clauses.

Unfortunately, doing so, the test for genera­
lization becomes undecidable. On the other hand
Buntine states that generalized subsumption is
semidecidable, although it is guaranteed to term­
inate i f P contains no recursion. Generalized sub­
sumption w.r.t. a D A T A L O G program, however, is
decidable.

Also, for practical applications, least general
generalization as defined by Plotkin [29] can still
be too general. Consider the least generalization of
the two literals /, = additive(ppn_1060, fluent) and
t = additive(r_5320, flame-retardent) for which
we get the very general term additive(X,Y) loosing
nearly all information from and connection to the
original terms that have been generalized.

Thus, in order to overcome the problems raised
by theory revision with background knowledge,
namely its undecidability and its results being too
general, we study two approaches in the following:

- First, we investigate how to incorporate more
knowledge within the generalization process,
i.e., how to control generalization. This will en­
able us to specify when and where to general­
ize.

- Second, we discuss how to extend the language
itself by introducing new representational fea­
tures for expressing generalization results. This
will enable us to specify how to generalize and
to represent the generalized term.

Finally, we wil l present an alternative to 0-sub-
sumption based on terminological reasoning which
preserves decidability by restricting deduction to
the terminological calculus.

5.3.1. Partial Least General Generalization
The first extension is partial least general gen­

eralization (plgg) and allows us to only partially
generalize two literals: we can say that we want to
generalize two literals or terms, but can require
some arguments to be fixed, i.e., that the two
literals must have unifying values at that specific
argument position. Thus, partial least general gen­
eralization is a combination of unification and anti-
unification.

Consider again the following literals

t] = additive(ppn_1060, flame-retardent)
= additive(ppn_1060, fluent)

/, = additive(r_5320, flame-retardent)

and the following application:

/;/g#('r^additive($,-))
additive(ppn_1060, X)

Here we only want to generalize over the fluent
additives of identical materials: the generalization
pattern additive($,-) restricts generalization to the
second argument position, while the first argument,
marked ' $ \ cannot be generalized but has to be
unifiable. Consequently, plgg can be regarded as a
combination of anti-unification (for those argu­
ment positions marked and unification (for the
remaining argument positions). As unification can
fail, plgg may fail too, but, of course, in the non-
generalized argument positions only. Thus, the
above generalization of t] and succeeds, but the
generalization of t2 and t} using the same gen­
eralized pattern fails.

We can also restrict generalization by requiring
some arguments to be of a particular type. In this
case we would use a type or sort identifier at the
position of the meta-symbol $ in the previous
example. Thus, exact match as done for $ is now
replaced by sorted unification for the non-gen­
eralized argument positions.

Consider the taxonomy shown in Fig. 3. Trying
to generalize t and t3 requiring the first argument
of the resulting literal to be of type novodur1 would
fail since the least general generalization of
ppn_J060 and r_5320 is the type thermoplastic,
which is too general, i.e., not within the required
type novodur:

'Novodur is a registered trademark of the Bayer A G .

plggi /2,f3,additive(novodur,_)) fall

However, i f we only require the generalized
material to be of type plastic, the generalization of
/, and t? would succeed and result in the least gen­
eralized material type thermoplastic:

Jp/gg(^,r3,additive(plastic,_))
additive(thermoplastic, X)

5.3.2. Finite Domain Generalizations
A second extension of generalization is by enu­

merating the occurring values in a finite domain
term instead of replacing them by a variable. A
logic programming extension with finite domain
terms is presented in [5]. In this case anti-unifi­
cation of t] and t1 results in the literal

additive(ppn_1060,dom[flame-
retardent,fluentl)

where the second term is the finite domain con­
taining both original constants flame-retardent
and fluent. This does not induce new knowledge
but only compresses the information of two literals
into one. However, if we anti-unify all three terms
into one we do obtain an inductive generalization.
The resulting fact

additive(dom[ppn_1060,r__53201,dom[flame-
retardent,fluent|)

with two finite domains really represents four facts,
which we get by combining each value of the first
with each of the second domain. In addition to the
two original clauses we get that novodur r_5320
has the fluent additive fluent. In order to decide
whether this hypothesis is actually true we again
require validation.

5.3.3. An Alternative to 6-Subsumption Based on
Terminological Reasoning

As has been shown by Plotkin, the general
subsumption problem for Horn clauses is unde-
cidable. Essentially, this negative result is due to
the fact that subsumption can be reduced to logical
implication, ^-subsumption is one approximation
of the 'logical' subsumption that is based on
instantiations of Herbrand terms and set inclusion.

In principle, there are two ways how to get a
decidable rule ordering:

- One can restrict the expressiveness of the un­
derlying knowledge representation language
such that logical implication becomes de­
cidable, e.g., Buntine's generalized subsump­
tion with restriction to D A T A L O G .

- Alternatively, the rule ordering can be defined
using only a weak approximation of logical im­
plication. For example, the subset test used for
9-subsumption is such a sound but incomplete
operationalization of logical implication.

In the former case, as a side effect, the class of
knowledge that can be learned will be very
restricted, too. In the latter approach, the learning
algorithms cannot be optimal, since they are always
based on a suboptimal rule ordering. However, the
class of knowledge that can be learned remains
unconstrained in that case.

9-subsumption relies on the instantiation order­
ing of Herbrand terms which implies additional
deficits: There are 'too many' terms that are in­
comparable w.r.t. the instantiation ordering of
Herbrand terms (e.g.,/(a,6), f{b,b), f{b,a) are
all incomparable). The weakness is also indicated
by the fact that there are linear decision procedures
for the instantiation problem of Herbrand terms.

These deficits are somehow inherent to the
underlying Horn logic. As an alternative, Hanschke
and Meyer [17] propose a rule-formalism based on
terminological logics (TL). This enables us to
define a rule ordering much like 0-subsumption,
but which is based on terminological inferences
instead of instantiating Herbrand terms. As ter­
minological reasoning formalisms are tuned to be
similarly expressive while remaining tractable or at
least decidable, we gain a more fine-grained rule-
ordering. In particular, more rules will become
comparable. Moreover, we obtain a more intuitive
knowledge representation.

We will first briefly introduce the assertional
formalism (A-box) and the terminological for­
malism (T-box) of the concept language ALCF as a
prototypical representative for the family of
terminological formalisms [6] that originated with
K L - O N E [7]. A terminology of the T-box consists
of a set of concept definitions C = t where C is the
newly introduced concept name and t is a concept
term constructed from concept names, roles, and

attributes using the following concept forming
operators: conjunction, disjunction, negation,
value-restriction, and exists-in restriction. In an A-
box (assertional box) concepts, roles, and attributes
can be instantiated by individuals. Formally, an A -
box is a finite set of role assertions ((/,/) : /•),
membership assertions (/.7), and equalities (/=/),
where / and j are individual names, r is a role or
attribute name, and t is a concept term The
subsumption problem for A-boxes ofALCF can be
effectively decided [17].

Two individuals / and j are directly linked in an A -
box iff the A-box contains a role assertion of the
form (iJ):R or (jj):R. Linked is the transitive
reflexive closure of directly linked An A-box is
called rooted bv (individuals) a* x , n > 0, iff
every individual in the A-box is linked to at least
one of the x and all v occur in the A-box.

The rule language is now based on the ter­
minological formalism. Its operational semantics
can be based on a C L P scheme [21,38]. A rule
takes the form

p{)(xm) <-p{(£u)<...>pn(£n)), A(x{{)\...,x{fl)).

where the p. are predicate symbols with arities nr

the x(l} are tuples of individuals (A ^ , . . . ^) , and
A(xi0\...,xin)) is an A-box rooted by the individuals
in the xii}. It is interpreted as a logical formula in the
obvious way.

The idea behind the rule ordering is essentially
the same as for ^-subsumption. The only difference
is that instead of searching for a substitution 6 that
acts as a witness for the instantiation relation, we
now employ the A-box subsumption of the termi­
nological formalism. The resulting rule ordering is
called TL-subsumption. Assume that two rules

P ^) ^ P ^ X)) ^ H ^

over disjoint sets of variables are given. The /?-rule
is more general than the </-rule w.r.t. TL-subsump-
tion (<) iff there is a substitution a such that the
following holds:

1. /?0(*(0)) crand q0(y<i})) are equal,
2. {ptf") G9...j>n(j£«) a) c {q}m^qm^)l

and
3. the A-box A(x[{)\...,x(n))o subsumes the

B(x(0\...,x{m)) w-1"-1- a . . . , A U) a.

As the terminological formalism provides attrib­
utes and a complement operator it is possible to
map Herbrand terms into the set of A-boxes that are
rooted by one individual such that two Herbrand
terms s and t are unifiable iff s(X) A 7{ Y) A X = Y is
satisfiable, where s and T are the images under the
mapping from concept terms into first-order for­
mulas as defined in [17]. This embedding naturally
extends to a mapping from Horn rules to the rule
formalism. It has been shown in [17] that T L -
subsumption is at least as powerful as f>-subsump-
tion, i.e., given two Horn rules r and /%, r{ is more
general than r, w.r.t. 0-subsumption iff r{ <n /%.

5.4. Abduction

Generalization as described before is applied to
the clauses of a theory, i.e., facts and rules, result­
ing in more general rules. We have also developed
a new technique for abduction. In addition to the
Horn-clause theory T consisting of facts F and
rules R and a set of integrity constraints IC. we also
postulate a set of distinguished ground literals A
called abducibles and a goal G which drives the
abduction process.

By abduction we want to find a set of hypotheses
H c A such that we can derive the (positive)
example e e E* from T u H. In the context of
theory revision T u H gives the new theory T
which again must be consistent with K\ the set of
integrity constraints:

TuH \-e
T u H u IC is consistent

Consider the following example where we have
two rules for the recyclability of polypropylenes:

recyclable(closed_circle,Plastic_Id) <—
polypropylene(Plastic_Id),
additive(Plastic_Id,flame_retardent)

recyclable(unrestricted,Plastic_Id) <—
polypropylene(Plastic_Jd), pure(Plastic_Id)

polypropylene(X) <— hostalen2 (X)
additive(ppk__1060,flame-retardent)
hostalen(ppk_1060)

The first rule expresses that a polypropylene can
be recycled only in a closed circle, i f it contains a

2Hostalen is a registered trademark of the H O E C H S T A G .

flame retardent agent as a fluent additive. This is
because the flame retardent agent produces toxic
dioxin on ultimate thermic treatment. For a pure
polypropylene there is no restriction a recyclability.
In two facts we also have that hostalen ppk__1060
contains a flame retardent fluent additive.

If we declare additive and pure as abducibles
and ask the query how ppk_1060 can be recycled

?- recyclable(RecKind,ppk_1060)

we get two answers: The first, unconditional answer

RecKind - closed-circle
n

says that ppk_1060 can be recycled in a closed
circle. The second, conditional answer

RecKind = unrestricted
{pure(ppk_1060)}

is an abductive solution: under the condition that
ppk_1060 is pure, it can be recycled unrestricted.

5.4.1. Bottom-up Abduction
In order to achieve abduction, deduction tech­

niques can be employed in a top-down as well as in
a bottom-up manner: with top-down reasoning one
skips some subgoals instead of proving them if they
are in the set of abducibles. If the goal only consists
of abducibles, top-down reasoning stops. The set of
remaining goals is the set of hypotheses explaining
the toplevel goal.

On the other hand, there are a number of optimi­
zation strategies that allow query answering by
bottom-up evaluation. Generalized Magic Sets re­
writing is such an optimization technique that has
been developed for query answering in deductive
databases [2]. We have adapted this rewriting tech­
nique to achieve bottom-up abduction of Horn
knowledge bases [12].

The scheme of our abduction rewriting approach
is presented in Fig. 6. Given a theory and a goal we
first perform a Generalized Magic Sets rewriting.
In a second step we further transform this rulebase
with respect to the set of abducibles. Evaluating the
resulting abduction rulebase by bottom-up evalu­
ation wil l compute all abductive solutions.

The transformation can be regarded as a specia-

Generalized Magic-Sets

Rewriting

?
Abductive Solution

Fig. 6. Bottom-up abduction by knowledge base rewriting.

lization of a partially evaluated upside-down meta-
interpreter originally presented by Stickel [39] (see
also [19]). Compared to Stickers approach we have
a number of advantages:

- Only the rules of the knowledge base are trans­
formed; rewriting of the ground facts in the
knowledge base is avoided. This is very impor­
tant when the ground facts change frequently or
if they reside on secondary storage like in de­
ductive databases.

- There is no need for enumeration of all the pos­
sible hypotheses. Thus, the approach is applica­
ble i f the set of possible hypotheses is infinite.

- Hypotheses will be derived only i f they are not
already contained as facts in the knowledge
base.

- By normalization meta predicates are removed,
resulting in improved performance.

Most important: this set-oriented approach is
usable also for large sets of facts. This is supports
our objective to develop techniques suitable not
only for toy examples but also for complex real

world problems with databases and large knowl­
edge bases.

5.4.2. Using Abduction for Generalization
As mentioned before, generalization of Horn

clauses can be done in different ways, e.g., by
generalizing some terms (argument positions) or by
dropping entire literals (removing conditions).

Thus, the decision about which generalization
operation should be applied is still a problem.
Abduction can provide considerable help for
making this decision. Consider again the recy-
clability example introduced in the last paragraph.

If we recognize the fact that hostalen ppk_1060
can be recycled unrestricted (no matter of its
pureness) then we have to revise our theory to now
cover this (positive) example. By processing the
query

?- recyclable(unrestricted,ppk_l060)

we obtain the abductive solution

yes
(pure(ppk_1060)}

which gives rise to generalize the recyclable rule
for ppk_1060 by dropping this pureness condition.
Thus, we substitute the original rule

recyclable(unrestricted,Plastic_Id) <—
polypropylene(Plastic_Id), pure(Plastic_Id)

by the following generalized one:

recyclable(unrestricted,Plastic_Id) <-
polypropylene(PlasticJd)

Although this is only one example of how
abduction and generalization can cooperate in the
theory revision framework, it already shows the
combined potential for our application.

5.5. Knowledge Base Verification

It has already been pointed out that only those
generalizations and abductive solutions are
accepted which are consistent with the integrity
constraints IC. Integrity constraints encode nega­
tive or disjunctive knowledge. These integrity
constraints are represented as denials, i.e., clauses

with an empty head. Eshghi and Kowalski use this
kind of integrity constraints for their abduction
procedure [15]. We can also represent them as
clauses with the special atom false as conclusion
[25].

An obvious integrity constraint is that i f a
material contains a fluent additive it is no longer
pure. This is represented by the following rule: i f a
material PI has a fluent additive and the same
material is pure then there is an inconsistency:

false <- additive(Pl,X), pure(Pl)

Consider for example, that the following facts
and rules would be contained in a knowledge base.

hostalen(ppk_1060)
novodur(r_5320)
additive(ppk_l 060, flame-retardent)
polypropylene(X) <— hostalen(X)
absc(X) <— novodur(X)

In Section 5.4 we have found by abduction that
Hostalen PPK 1060 could be recycled without any
restriction i f it was pure. So we can tentatively add
this information to the knowledge base as an
additional fact: pure(ppk_1060).

A naive method for integrity checking would be
to use a proof-finding approach and ask the query

?- false

This procedure would invoke all integrity con­
straints in backward direction even i f they are
independent from the new fact. However, it would
be much more efficient to derive only those facts
that are consequences of this new assertion. In [15]
it is argued to do this kind of constraint checking by
forward reasoning starting with the new fact. But
forward reasoning from one fact alone is not
sufficient. The following integrity constraint says
that 'polypropylenes and ABSCs must not be
components of a single composite product'.

false <- composite(PU,P12),
polypropylene(Pll),
absc(P12)

Adding the new fact composite(ppk__1060,
r_5320) would lead to an inconsistency which will

not be detected by forward chaining this fact alone.
Additionally, we need to prove whether the pre­
mises polypropylene(ppk_1060) and absc
(r_5320) can be satisfied.

In [25] a model-generation approach has been
applied for this problem. Here, however, we regard
checking of integrity constraints as a consequence-
finding problem [20]. Given an update of a
deductive database or a logic program, conse­
quence finding applies only those rules that are
effected by the update operation. This builds on the
assumption that the database satisfied its integrity
constraints prior to the update. Derivation is
restricted to exactly those facts that depend on an
explicitly given set of initial facts, in our case the
hypotheses found by abduction.

The extended SLDNF resolution of [35] uses the
clauses corresponding to the updates as top-clauses
for the search space and thus achieves the effect of
simplification methods investigated by [14,24,28].
The approach combines forward and backward
chaining depending on whether a positive or nega­
tive literal is resolved upon.

As an alternative to this tuple-oriented method
we have developed a rewriting approach [18]. It is
an extension of the well-known Generalized Magic
Sets rewriting technique [2], which was also the
basis for bottom-up abduction in Section 5.4.1.
Since this technique in some sense integrates
forward and backward chaining, it seems natural to
extend it for consequence finding.

By Generalized Magic Sets rewriting, infor­
mation about variable bindings given by the query
is propagated down into the bodies of the rules at
compile-time. For consequence finding we do not
have a query but a number of initial facts - the
update information - from which to reason
forward.

Thus, the input to the consequence finding
transformation is a set of initial facts and the rules
of the knowledge base. The transformation algo­
rithm specializes the knowledge base by intro­
ducing additional rules and predicates. It extends
the Generalized Magic Sets rewriting by an up
propagation in addition to the usual down
propagation. When the rewritten knowledge base is
evaluated by a model-generating, bottom-up pro­
cedure, the generation of a complete minimal
model is restricted to the consequences of the
initial facts. Because it is a set-oriented strategy it

is very efficient if facts have to be retrieved from a
database.

6. Conclusion

As knowledge-based systems are brought to
practical applications and knowledge bases are to
be used over years, the problem of knowledge base
evolution naturally comes up: the key issue is how
to ensure that the knowledge base does always
represent all the knowledge that is relevant for
solving tasks, i.e., being "complete", and does not
become out of date or invalid, i.e., remaining
'sound'' with respect to some specific situational
context. Although this is a goal hard to achieve, it
shows the direction in which knowledge base
evolution research should work: to overcome the
(always 'damned but nevertheless done') accu­
mulation of 'small local hacks' causing unfore­
seeable consequences and to find a compromise
between this ad-hoc K B modification approach and
the other extreme of restarting the whole knowl­
edge engineering work ranging from the formal
specification down to the concrete representation
with each K B modification.

In this paper, we have shown that knowledge base
evolution can be regarded as a theory revision
process. Research in Inductive Logic Programming
provides us with a set of techniques that can be
applied to incorporate new knowledge into the
knowledge base (knowledge base exploration),
e.g., by generalization and abduction. On the other
hand techniques from deductive database research
can be used for ensuring the integrity of the
knowledge base, i.e., for solving the knowledge
base verification and validation task.

For both tasks we have developed extensions and
modifications motivated by the special char­
acteristics of the application. The generalization
techniques taken from ILP have been extended
towards the incorporation of meta-knowledge for
guiding the generalization process (plgg) and
towards additional language features for repre­
senting generalization results (e.g., finite domain
terms). Additionally, we have proposed an alter­
native to ^-subsumption based on an extension of
Horn rules incorporating termi-nological knowl­
edge representation and reasoning (TL-sub-
sumption). In order to get efficient evolution

techniques also for large sets of rules and facts we
extended the rewriting techniques from deductive
databases for abduction and integrity checking.

Further work on knowledge base evolution
should not only consider developing more powerful
exploration and verification methods, but should
also focus on the knowledge representation lan­
guage itself. It is obvious that a more powerful but
still semantically clear representation formalism, as
e.g., introduced for TL-subsumption, will be of
great advantage for all kinds of knowledge
evolution techniques. For example, introducing
sorts or types as mentioned in several parts of this
paper can be a first but only intermediate step:
generalization within a sort lattice does already
yield a more fine-grain clause ordering than simple
0-subsumption. However, extending the logic-
based representation language by substituting or
complementing constitutively given sorts by
intensionally defined concepts and concept terms
in the sense of terminological reasoning will be
necessary for finding and expressing 'really least
general' generalizations and thus being able to
support knowledge base evolution over a long
period of time.

Currently only little work is available on tailoring
the knowledge representation formalism to knowl­
edge base evolution needs [4]. But being convinced
that research on this wil l be a key issue for the
success of knowledge base evolution in the future,
we wil l also concentrate on further improving
knowledge representation approaches like T L -
subsumption besides developing the evolution
techniques themselves.

References

[1] S. Amarel (1983): Problems of representation in heuristic
problem solving: Related issues in the development of ex­
pert systems. In M . Groner, R. Groner and W. Bischof
(eds.): Methods of Heuristics. Erlbaum, Hillsdale, NJ, pp.
245-350.

[2] Catriel Beeri and Raghu Ramakrishnan (October 1991): On
the power of magic. Journal of Logic Programming, 10:
255-299.

[3] H. Boley, U. Buhrmann and C. Kremer (January 1994): To­
wards a sharable knowledge base on recyclable plastics. To
appear in: TMS'94 Symposium on Knowledge-Based Appli­
cations in Material Science and Engineering, Feb/Mar
1994. San Francisco, USA.

[4] Harold Boley (1993): Towards Evolvable Knowledge Rep­
resentation for Industrial Applications. In Knut Hinkelmann

and Armin Laux (eds.): DFKI-Workshop on Knowledge
Representation Techniques. Kaiserslautern, number D-93-
11.

[5] Harold Boley (March 1994): Finite Domains and Exclu­
sions as First-Class Citizens. In Roy Dyckhoff (ed.): Fourth
International Workshop on Extensions of Logic Program­
ming. St. Andrews, Scotland, 1993, Preprints and Proceed­
ings. LNAI, Springer.

[6] Alexander Borgida, Ronald Brachman, Deborah McGuin-
ness and Lori Resnick (1989): CLASSIC: A structural data
model for objects. In International Conference on Manage­
ment on Data. A C M SIGMOD.

[7] R.J. Brachman and J.G. Schmolze (1985): An overview of
the KL-ONE knowledge representation system. Cognitive
Science 9(2): 171-216.

[8] Ronald J. Brachman, Deborah L. McGuinness, Peter F.
Patel-Schneider, Lori Alperin Resnick and Alexander
Borgida (June 1990): Living with CLASSIC: When and
How to Use a KL-ONE-Like Language. In Principles of Se­
mantic Networks. J. Sowa Morgan Kaufmann Publishers
Inc.

[9] H. Breuer, G. Dupp and J. Schmitz (1990): Einheitliche
Werkstoffdatenbank - eine Idee setzt sich durch. Kunst-
stoffeU): 11.

[10] B.G. Buchanan (1989): Can machine learning offer any­
thing to expert systems? Machine Learning 3(4): 251 254.

[11] W. Buntine (1988): Generalized subsumption and its appli­
cations on induction and redundancy. Artificial Intelligence
36: 149-176.

[12] Gerhard Burgun and Knut Hinkelmann (1994): Knowledge
base rewriting for bottom-up abduction (in preparation).

[13] Frans Coenen and Trevor Bench-Capon (1993): Mainte­
nance of Knowledge-based Systems. Academic Press.

[14] Hendrik Decker (April 1986): Integrity enforcement on de­
ductive databases. In Larry Kerschberg (ed.): Proceedings
from the 1st International Conference on Expert Database
Systems. Charleston, South Carolina. The Benjamin/Cum-
mings Publishing Company, Inc., pp. 381-395.

[15] Kave Eshghi and Robert Kowalski (1989): Abduction com­
pared with negation by failure. In 6th International Confer­
ence on Logic Programming {ICLP 'S9).

[16] Allen Ginsberg, Sholom M . Weiss and Peter Politakis
(1988): Automatic knowledge base refinement for classifi­
cation systems. Artificial Intelligence 35: 197-226.

[17] Philipp Hanschke and Manfred Meyer (August 1992): An
Alternative to 9-Subsumption Based on Terminological
Reasoning. In Celine Rouveirol (ed.): Workshop on Logical
Approaches to Machine Learning, ECAI 92, Vienna.

[18] Knut Hinkelmann (1994): A consequence-finding approach
for feature recognition in CAPP. In Seventh International
Conference on Industrial & Engineering Applications of
Artificial Intelligence & Expert Systems (IEA/AIE'94)
(forthcoming).

[19] Katsumi Inoue, Yoshihiko Ohta, Ryuzo Hasegawa and
Makoto Nakashima (1993): Bottom-up Abduction by Model
Generation. In Proc. of the 13th IJCAI, pp. 102-108.

[20] Katsumi Inoue (1991): Consequence-finding based on or­
dered linear resolution. In Proc. of the 12th IJCAI. Sidney,
Australia.

[21] Joxan Jaffar and Jean-Louis Lassez (January 1987): Con­
straint logic programming. In Proc. POPL-S7. Munich,
Germany. A C M , pp. 111-119.

[22] Christian Kissinger (1993): EinfluB verschiedener Ver-
arbeitungsparameter aus die PlattengroBe und die Forman-
derungsarbeit 2-dimensionaler verpresster GMT-Halb-
zeuge. Technical Report 93-58. Institut fur Verbund-
werkstoffe GmbH.

[23] J. Krottmaier (1991): Versuchsplanung: Der Weg zur
Qualitat des Jahres 2000. Verlag Industrielle Organisation
Zurich.

[24] John W. Lloyd, E.A. Sonenberg and Rodney W. Topor
(1987): Integrity constraint checking in stratified databases.
Journal of Logic Programming A: 331-343.

[25] Rainer Manthey and Francois Bry (1987): SATCHMO: a
theorem prover implemented in prolog. In Conference on
Automated Deduction, CADE.

[26] Manfred Meyer (August 1994): Issues in Concurrent
Knowledge Engineering: Knowledge Sharing and Knowl­
edge Evolution. In Michael Sobolewski (ed.): Proceedings
First International Conference on Concurrent Engineering,
Research and Applications (CERA'94\ Pittsburgh. IEEE
Computer Press.

[27] Raymond J. Mooney and John M . Zelle (1994): Integrating
ILP and EBL. SIGART Bulletin 5(1): 12-21. Special Sec­
tion on Inductive Logic Programming.

[28] Jean-Marie Nicolas (1982): Logic for improving integrity
checking in relational data bases. Acta Informatica 18: 227-
253.

[29] Gordon D. Plotkin (1970): A note on inductive generaliza­
tion. In B. Meltzer and D. Michie (eds.): Machine Intelli­
gence, vol. 5. Elsevier North-Holland, New York, pp. 153-
163.

[30] Gordon D. Plotkin (1971): Automatic Methods of Inductive
Inference. PhD thesis, University of Edinburgh.

[31] Thomas Reinartz and Franz Schmalhofer (June 1994): An
integration of knowledge acquisition techniques and EBL
for real-world production planning. Knowledge Acquisition
Journal.

[32] Larry Rendell (1986): A general framework for induction

and a study of selective induction. Machine Learning 1(1):
177-226.

[33] Bradley Richards and Raymond J. Mooney (March 1991):
First-order theory revision. Technical Report A l 91-155.
The University of Texas at Austin, Artificial Intelligence
Laboratory.

[34] J.A. Robinson (1965): A machine-oriented logic based on
the resolution principle. Journal of the Association for
Computing Machinery 12: 23-41.

[35] Fariba Sadri and Robert Kowalski (1988): A theorem-prov­
ing approach to database integrity. In Jack Minker (ed.):
Foundations of Deductive Databases and Logic Program­
ming. Morgan Kaufmann Publishers, Inc., Los Altos, CA,
pp. 313-362.

[36] F. Schmalhofer and B. Tschaitschian (June 1993): The ac­
quisition of a procedure schema from text and experiences.
In Proceedings of the 15th Annual Conference of the Cogni­
tive Science Society, pp. 883-888.

[37] Franz Schmalhofer, Thomas Reinartz and Bidjan Tschait­
schian (1994): A unified approach to learning in complex
real world domains. Applied Artificial Intelligence (in
press).

[38] G. Smolka (May 1989): Logic Programming over Poly-
morphically Order-Sorted Types. PhD thesis, University of
Kaiserslautern, Germany.

[39] Mark E. Stickel (July 1991): Upside-down meta-interpreta-
tion for the model-elimination theorem-proving procedure
for deduction and abduction. Technical Report TR-664,
ICOT.

[40] G. Tecuci and Y. Kodratoff (1990): Apprenticeship learning
in imperfect domain theories. In Y. Kodratoff and R.S.
Michalski (eds.): Machine Learning: An artificial intelli­
gence approach, vol. 3. Morgan Kaufmann, San Mateo,
CA, pp. 514-551.

