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Knowledge-base evolution techniques are shown to be of 
critical importance for the successful application of knowl­
edge-based systems in complex domains. By conceptualiz­
ing knowledge-base evolution as theory revision, we can 
take advantage of the basic findings from different research 
communities. Results from Inductive Logic Programming 
(ILP) and Explanation-Based Learning ( E B L ) provide a set 
of techniques that can be used as a foundation for obtaining 
new knowledge {knowledge-base exploration). Techniques 
from deductive database research might be used for testing 
the correctness of a knowledge base (knowledge base verifi­
cation). By an interactive application of these exploration 
and verification techniques, domain experts and other users 
may similary improve the effectiveness of the knowledge 
base (knowledge validation). The application of such se­
lected techniques is then discussed with respect to the spe­
cific problem of improving production parameters. 

1. Introduction 

It is a long held belief, that micro-worlds, such as 
the blocks world, sorting tasks or chess end games 
are the drosophila of Artificial Intelligence and 
Machine Learning research, where the fundamental 
successes are to be achieved and demonstrated. A 
quote by Amarel [1, p.258] highlights this view. 
'These toy problems provide an excellent para­
digmatic task environment in which essential 
aspects of the representation problem can be studied 
... They are serving as drosophila of research in the 
general area of problem representations, and in the 
study of acquisition of problem solving skills'. 

Although there cannot be any doubt that many 
successes of Machine Learning have been achieved 
in these micro-worlds, the utilization of these 

*This research was supported by grant 413-5839-ITW9304/ 
3 from the B M F T . 

achievements in complex real world domains (e.g., 
the industrial applications of Machine Learning) is 
much more difficult than had been originally 
anticipated. Buchanan [10, p.5] for example, 
reports that except for simple classification sys­
tems, knowledge-based systems do not yet employ 
a learning component to construct parts of the 
knowledge bases from libraries of previously 
solved cases. 

It has been pointed out only recently, that real 
world domains have quite different characteristics 
than the micro-words where new machine learning 
techniques are routinely demonstrated. Com­
plexity, continuous innovations and documentation 
as well as incomplete and conflicting knowledge 
are the most eminent characteristics [37]. Because 
of the dynamic character of real world domains, the 
application of knowledge-based systems requires 
that the changes in the field can at least be traced 
(preferably predicted and discovered) by approp­
riately selected machine learning techniques. Such 
updating and revision processes are termed knowl­
edge base evolution. Comparable to the human 
genome project which also requires additional 
resources, above and beyond the discovery of the 
genetic mechanisms with the drosophila, the ILP 
community must therefore also pay more attention 
to applications in complex real world domains. 

In order to develop knowledge-base evolution 
techniques with respect to complex real world 
domains, we first analyzed the requirements of 
product and production planning with new 
materials by using the specific example of the 
manufacturing of bucket seats in the car industry. 
The results are summarized in Section 2 of this 
paper. Section 3 then describes a respective knowl­
edge-base that is currently being developed by an 
iterative application of the CLASSIC methodology 
to knowledge engineering [8]. Section 4 will then 
show how the knowledge evolution can be 
understood as theory revision [33], where the 
knowledge-base evolution system and the user 
cooperate in a way, similar to an apprenticeship 
learning system [40]. 

Theory Revision has recently been proposed as a 



Fig. 1. The manufacturing of a bucket seat with a G M T (reprinted by permission from the l-lastogran GmbH). 

general framework, where Explanation-Based 
Learning (EBL) and Inductive Logic Programming 
(ILP) can be integrated [27]. For mastering the 
knowledge evolution requirements of the specific 
application, we can thus draw upon the basic 
research results from both E B L as well as ILP. 
Furthermore, exploration and verification pro­
cesses will be distinguished. A continuous (in­
teractive) improvement of a knowledge base during 
its entire life-time starting with the first forma­
lizations (knowledge base seed) and still con­
tinuing along its practical use can thus be achieved 
[26]. 

Expert knowledge from the application domain 
is used for constraining the exploration processes, 
so that an efficient implementation can be ob­
tained. Expert knowledge will be employed to 
determine the representation bias (also known as 
'restricted hypothesis space bias') and search bias 
(also known as 'preference bias') of induction [32]. 
More specifically, domain knowledge is used to 
specify the representational bias and metaknowl­
edge to determine the search bias. The paper will be 
concluded with a general discussion of the role of 
knowledge-base evolution for the quality of prac­
tical knowledge bases. 

2. Product and Production Planning 

In the car industry, like in other modern in­
dustries, the innovation cycles have become 
increasingly shorter. Driven by the objectives of 

environmental protection laws, hazardous manu­
facturing materials must be replaced by more 
adequate new materials. Equally important is the 
reduction of cost while the highest possible quality 
standard is being maintained. In many branches, 
new materials such as glass mat reinforced thermo­
plastics (GMT) are currently introduced and in­
creasingly more used for manufacturing products, 
and thereby replacing steel and metal construc­
tions. A G M T is a composite consisting of two 
components, namely a thermoplastic rein-forced 
by glass fiber. An example is the manu-facturing of 
car seats. The high security standards and other 
requirements (e.g., concerning wear and tear) can 
now be satisfied by using GMTs. For example, the 
rear part of a bucket seat for a car can now be 
manufactured with GMT, instead of more costly 
metal constructions. 

Figure 1 shows the production process with 
GMTs. It consists of a preparation phase, a pressing 
phase and a finishing phase. In the preparation 
phase the raw material is put on a conveyer belt that 
moves it through the tunnel kiln, where it is heated. 
In order to avoid an undesired cooling, the material 
is then immediately put into the hydraulic press, 
where the geometry of the car seat is pressed before 
it is cooled off so that its form is maintained. 
During the finishing phase unwanted bumps must 
be removed. 

The pressing of the material depends on a 
number of parameters with complex interrelation­
ships. The temperature of the material influences 
the volume per unit time which is responsible that 
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Fig. 2. Overall structure of the RPPP knowledge base. 

the material reaches every part of the pressing 
form. As soon as the material is put into the press, 
the press is closed with a speed of about 800 mm/s. 
As soon as the press reaches the material the speed 
is reduced to a value between 5 and 15 mm/s. After 
the press is closed a constant pressing force is 
exerted on the material for some duration. After 
that, the material is left in the press for some time 
to cool off. The duration of cooling depends on the 
temperature of the material and the tool, the tool 
geometry, the topology of the cooling capillaries of 
the tool, etc. 

In product and production planning, 'system 
development' and 'parameter optimization' are 
distinguished as two separate phases, which can 
also be called primary and secondary engineering 
[23]. In the primary phase, a prototype of the 
product and the corresponding manufacturing 
process is developed. In some previous research it 
was already shown how machine learning tech­
niques can be applied for supporting the primary 
engineering phase [31]. More specifically, it was 
shown how an explanation based abstraction 
method [36] can be used for abstracting planning 
schemata from success cases of the real world [37]. 
In the secondary phase, appropiate parameters 
must be found for the respective primary design. In 
this paper, we are solely concerned with this 
secondary design phase. In particular, we propose a 
knowledge base and knowledge evolution tech­
niques for documenting and maintaining all 
available information and knowledge. This knowl­
edge concerns the various parameters and how they 

determine the desired characteristics of the 
product. 

3. A Recycling-Oriented Product and Pro­
duction Planning Knowledge Base 

In some previous work, the selection of recy­
clable materials in product design and the process 
planning for manufacturing and recycling such 
products were identified as a promising application 
domain for knowledge base evolution. In [3] a 
materials knowledge base is discussed as an in­
tegral part of a declarative knowledge base for 
recycling-oriented product and production plan­
ning (RPPP). The overall structure of this knowl­
edge base consists of a module representing the 
materials, a second one representing production 
and recycling knowledge and a third module 
containing products that have been manufactured 
from these materials (see Fig. 2). 

3.1. The Materials Knowledge Base 

Materials constitute the substance of production 
and recycling. Materials can bedivided into fun­
damental and composite materials. The main 
problem when building a knowledge base is 
'finding the right way to break the domain into 
objects and their relationships'. One solution 
approach is given by the 'Knowledge Engineering 
Methodology for C L A S S I C [8]. This metho­
dology suggests to formalize the domain 
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Fig. 3. A taxonomy of materials. 

knowledge using some kind of terminological 
knowledge represen-tation in the spirit of K L - O N E 
[7] or a frame-like, object-centered knowledge 
represen-tation system using an inheritance hier­
archy. The methodology consists of a sequence of 
design steps. We are using an iterative application 
of this methodology by allowing multiple iterations 
of two or more of the following consecutive steps: 

1. Relevant object types are enumerated. As a re­
sult the relevant objects are determined to be 
particular plastics and composite materials, 
classes of such materials, qualitative and quan­
titative properties of the materials, numbers etc. 

2. The obtained descriptions are divided into ob­
jects and properties, which are later mapped to 
concepts and roles. In our case, classes of mate­
rials are concepts, whereas most of the proper­
ties correspond to roles. 

3. Concepts are organized into a taxonomy. This 
step yielded the hierarchy of the fundamental 
and composite materials. Part of this hierarchy 
is presented in Fig. 3. 

4. Then, the key individuals are isolated and asso­
ciated to the concepts they belong to. 

5. In order to obtain the internal structure of the 
concepts, a list of relevant properties must be 
determined for each concept. These properties 
include intrinsic and extrinsic properties and 
part-of relations. In this step, the properties of 
the plastics have been adopted from the exist­
ing C A M P U S database [9], which contains all 

the plastics produced by 22 European chemical 
industries. An important property for G M T is 
the modulus of elasticity (e-modulus). 
The part-of relation is the main relation for dis­
tinguishing composite materials. A G M T con­
sists of a thermoplastic which is reinforced with 
glass fibers to enhance its e-modulus. There are 
two types of glass fibers in the form of papers 
or mats and two types of thermoplastics poly­
propylene and polyamid. Thus we get four 
types of GMTs. The e-modulus increases as the 
percentage of glass fibers increases. 

6. In the remaining steps of the CLASSIC meth­
odology, the restrictions of the properties for 
each concept are acquired in detail. As a result 
of this step, the particular types of possible val­
ues and the cardinality of values have been de­
termined. 

For the representation of the materials knowl­
edge base we propose a respective hierarchical rep­
resentation in a terminological representation lan­
guage. 

3.2. The Product Knowledge Base as Case Base 

The Product Knowledge Base is a Case Base. It 
contains the actual parameters of the success cases 
of manufacturing car seats with different materials. 
It also represents cases, where certain quality 
requirements have not been satisfied by the prod­
uct of the industrial manufacturing process. These 
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where k is an index for referencing the specific 
case and / identifies that the case resulted from 
indus-trial experience. 

In addition to these industrial cases, the results 
from systematic experimentation, that is performed 
in material sciences research institutes, should also 
be stored in the Product Knowledge Base. In order 
to determine the thermodynamic behavior of 
GMTs during the pressing process, researchers 
may for instance perform experiments, where 
several different parameters are systematically 
manipulated to determine their influence upon 
some criterion variable. Such scientific research 
may determine, 'which influences different pro­
duction parameters have on the work done on the 
material and what kind of flow characteristics 
different GMT-materials show' [22]. Such experi­
ments may investigate how the closing speed of the 
tools, the press force and the specific material 
determine the size of the pressed material. The 
experimental results can provide very useful 
information for the product engineer, who is 
interested in manufacturing some specific car seat. 
The actual data from such experiments should 
therefore also be stored in the case base. We denote 
such cases from scientific experimentation by e+

k, 
where the index s indicates that this result was 
achieved by science research and k is an index that 
denotes the specific experiment. 

5.3. The Production Knowledge Base 

The pressing of materials depends on a large 
number of parameters. There are complex relation­
ships among these parameters, as well as between 
these parameters and the material and the quality 
requirements. As already mentioned in Section 2, 
there is relatively little knowledge available about 
which parameter values achieve the desired result. 
Even for an expert it is nearly impossible to find 
exact adjustments at once. To find the depen­
dencies between various parameters, the product 
engineer usually tries several possibilities. The 
results of these trials are represented in the Product 
Knowledge Base. In the Production Knowledge 
Base, we will thus represent the regularities which 
are (supposedly) valid for the production process, 
in general. More specifically, we are concerned 
with the different parameter values for manu­

facturing G M T products with a hydraulic press 
(see Fig. 1). 

The results of such scientific experiments are 
most often summarized by a linear equation, that is 
obtained by a regression analysis or by an Analysis 
of Variance [23]. Such an equation may for instance 
take the form: 

Although such numeric equations are quite 
useful and have a broad field of application in 
research and industrial practice, there are also a few 
disadvantages, which can be compensated by a 
more abstract and qualitative description. One 
problem lies in the fact, the each experiment yields 
a new equation and it may be quite difficult for any 
practitioner (and even researcher) to derive a set of 
general regularities from the various equations. 
Secondly, these equations hold only within certain 
limits.This is, however, not directly represented by 
the equation. For instance, increasing the pressing 
force beyond certain limits wil l not increase the 
surface area in the way that is predicted by the 
linear equation, but may instead damage the press. 
In other words, there is an upper and lower bound 
on the parameters as well as on the values of the 
criterion variable (e.g., the surface area). 

In addition to such numerical representations, we 
therefore propose a more abstract and qualitative 
description for representing the general knowledge 
from the various cases. Unlike the numerical 
equation, we assume upper and lower bounds for 
the criterion variable, whose values are denoted 
qualitatively, like for instance by Targe', 'medium' 
or 'small'. In other words, there is for instance no 
value that is smaller than 'very small' and no value 
that is larger than 'very large'. As a consequence of 
these bounds, the qualitative addition operation, 
which we denote by ©, can no longer be a closed 
operation. In order to embody these limitations, we 
define the qualitative addition operation in the 
following way. Let A denote a set of qualitative de­
scriptors, like a 9ava3 ... an, which we could for 
instance also call <z =very small, a2=small, a3= 
medium, ... a=very large. We postulate that the set 
A is weakly ordered. Since the cartesian product 
A x A contains all logically possible qualitative 
additions of the form a®b, where a and b are in A, 
those that can actually be formed must constitute a 
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Fig. 4. Formation and revision of the production knowledge base. 

subset B of A *A. Thus, i f (a,ft) is in 5, then a and b 
can be qualitatively added and so a®b is in A. This 
means that the operation © is a function from B into 
A. In order to account for the fact, that not all 
qualitative additions are possible, we define a 
qualitative structure <A,y,B,®>, where associa­
tivity and monotonicity are somewhat modified. In 
order to accomplish this, we impose the following 
limitations on A and B: If a yb, we assert the exis­
tence of a c in A such that (c,ft) is in B and a >-c®b. 
The requirements on the proposed qualitative 
structure, which are summarized in the following 
definition, provide important integrity constraints 
for the production knowledge base (Fig. 4). 

Integrity constraints for qualitative structures. 
Let A be a nonempty set of qualitative descriptors 
(such as 'small', 'medium', 'large') or avav...,an, 

a binary relation on A, B a nonempty subset of A 
x A and © a binary function from B into A. The qua­
druple <A,>z,B9®> is a qualitative structure if the 
following six conditions are satisfied for all a, ft, c 
e A: 

1. <Ay >z > is a weak order. 
2. If (a9b) e B and (a®b,c) e 5, then (ft,c) e 5, (a, 

ft © c) G 5, and (a © ft) © c >= a © (6 © c). 
3. If € 5 and a t ft, then (c,ft) G 5 and a © c 

>= c ® ft. 

4. If a >- ft, then there exists G /I such that (ft,*:/) 
G 5 and # — b ® d. 

5. If (a,ft) G fl, then a © ftW/. 
6. a ;>... G /4 is a strictly bounded and finite 

standard sequence if for n~2 an = a ; j 

and it is only strictly bounded if for some ft G A 
and for all an in the sequence, ft>- an. 

4. Knowledge Base Evolution as Theory Revision 

4.1. The Knowledge Base Evolution Scenario 

Knowledge base evolution covers not only the 
maintenance of an existing K B [13], but also the 
continous improvement of the K B , its structure and 
content. Knowledge-base evolution operates on the 
K B of a knowledge-based system. Thus, for an 
overall description of knowledge base evolution in 
the RPPP context we distinguish two main units 
(Fig. 5): the knowledgebase itself (RPPP) and the 
knowledge-evolution system (KES). 

The KES operates as a meta-level system on the 
object level K B . Reasoning in the knowledge 
evolution system is performed by the exploration 
and verification components. 

- Similar to discovery systems the knowledge ex­
plorer scans the K B in search for interesting 



K E S 

Fig. 5. The RPPP knowledge base evolution architecture. 

patterns. Exploration can be seen as an iterative 
process starting with the generation of a pattern 
hypothesis, proceeding with a search for the 
pattern in the K B , and resulting in a possible 
interactive assimilation of the discovered pat­
tern into the K B . Thus, inductive techniques 
play a major role for knowledge exploration. 

- The knowledge verifier can perform verification 
and with appropriate user assistance also vali­
dation. It examines the K B to detect structural 
or functional defects. Validation and verifica­
tion can also be seen as an iterative process 
starting with the generation of a defect suspi­
cion, proceeding with a check for a defect w.r.t. 
the suspicion in the K B , and resulting in a pos­
sible defect description or repair suggestion. 
Here, techniques for checking integrity con­
straints become most relevant. 

The iteration cycles can be arbitrarily inter­
leaved, permitting evolution to consist of dual 
verification and exploration processes. Together 
they form a heuristic, approximative process that 
alternates focusing and processing phases and 
improves the K B any time a sufficient amount of 
knowledge for an update (i.e., assimilation or 
repair) is accumulated within the KES or provided 
by the user. For example, assume that the verifier 
has identified a rule whose premises cannot be 
satisfied in a given K B . The explorer could then try 

to generalize that particular rule or to complete the 
missing knowledge reachable from its premises. 
Conversely, after the explorer has discovered a 
pattern (e.g., a new or generalized rule) the verifier 
may be asked to verify the K B , focused on the 
assimilated pattern. 

4.2. Theory Revision 

The problem of building up a knowledge base 
(knowledge acquisition) can be seen as a two-phase 
process [16]: In the first phase the knowledge 
engineer builds an initial model (i.e., the seeding of 
the knowledge base). In the second phase this 
initial knowledge base is refined or revised into a 
high performance knowledge base. During the 
further practical use of the knowledge-base, the 
dynamically changing world may cause the 
knowledge base to become invalid in one of the 
following senses: 

- New developments may cause new problem 
cases not being covered by the knowledge base. 
This results in the K B S not being able to solve 
these problems. For example, neglecting the ef­
fects of changing parameter values determined 
by recent experiments would leave the RPPP 
system incapable to find the best production 
process. 

- Some knowledge stored in the knowledge base 
may become out of date and should no longer 
be used as it would lead to solutions that for 
some reasons are no longer valid in the current 
application environment. For example, a fluent 
additive that has become known to be noxious 
should no longer be used or be used only in 
closed-circle production and recycling proc­
esses. 

In the first situation we have a new application 
case (i.e., a positive example) that is not yet 
derivable from the knowledge base. In the second 
situation, we can derive a specific solution from the 
knowledge base which is no longer admissible 
(e.g., because of new environmental protection 
laws). This is consequently called a negative 
example. 

From a more formal point of view, this means 
that a given knowledge base KB has to be revised 
using positive examples E+ (positive experiments to 
be included) and/or negative examples E (failing 
experiments to be excluded), such that all the 



positive examples but none of the negative 
examples are covered by the resulting knowledge 
base KB'. 

Taking the knowledge base as a Horn theory T = 
F u R consisting of facts F and rules R and 
satisfying a set of integrity constraints /C , the 
exploration task of theory revision is to change T 
into T such that T \- e Vee Ej and T \-i e Vee E . 
The resulting theory T must, of course, still satisfy 
the given integrity constraints, i.e., IC u T must be 
consistent. This integrity checking represents the 
verification task of theory revision and thus again 
demonstrates the interleaved exploration and 
verification principle. 

The main task, however, remains how to obtain 
the revised theory T. In principle, there are two 
possibilities: 

- First, we can modify the rules /?, for instance by 
using generalization or specialization tech­
niques, 

- or we can extend the set of facts F, where the 
additional facts can be found by abduction. 

In the following section we will discuss some 
selected techniques from the fields of inductive 
logic programming and deductive databases, which 
could be applied within the proposed theory 
revision framework. 

5. Selected Methods for Knowledge Base 
Evolution 

Generalization techniques are the basic tech­
niques of Inductive Logic Programming and also 
Theory Revision. Generalization operators per­
form two basic syntactic operations on a clause: 

- apply an inverse substitution to a clause; 
- remove a literal from the body of a clause. 

In this section we will first review the least 
general generalization and generalized sub-
sumption frameworks defined by Plotkin and 
Buntine, respectively, before we will then extend 
these techniques for the needs of theory revision in 
practical applications like the evolution of the 
RPPP knowledge bases. 

5.1. Least General Generalization 

Least general generalization was originally 
introduced by Plotkin [29J. It is the opposite of 
most general unification [34]; therefore it is also 
called anti-unification. Given two atomic formulas 
p(f(a),x) and /?(/(v),/?), unification computes their 
most general specialization p(f(a)Ji) while anti-
unification computes their most special gen­
eralization p(f(y),x). 

In addition to the generalization of literals, 
Plotkin also describes an algorithm for the least 
generalization of clauses. A clause C\ generalizes a 
clause C, (denoted by C\ < (\), if C\ subsumes C , 
i.e., there exists a substitution 0such that C\9cz C\. 
This is also called &-subsumption [11]. A gen­
eralization C of a clause C\ can thus be ob-tained 
by applying a f3-subsumption-based genera­
lization operator p that maps a clause C\ to a set of 
clauses p(C\) which are generalizations of C\. 
Informally speaking, if clause C ^-subsumes 
clause D, then D can be converted to C by (1) 
dropping premises and (2) turning constants to 
variables. A clause C is a least generalization of a 
set of clauses if 

1. C generalizes each clause in S: V F e S : C < E 
2. C is the smallest clause satisfying condition 1: 

( 3 D V F G S,D<E)=*D<C 

5.2. Generalized Suhsumption 

The definition of generality presented so far is 
local to the set S of clauses. Referring to im­
plication instead of the weaker subsumption rela­
tionship would also consider generalization w.r.t. 
current knowledge. In [31] a generalization rela­
tive to a set of clauses P is defined as follows: A 
clause C generalizes a clause I) relative to a set of 
clauses P if there exists a substitution 0 such that P 
1= V (C6 —> D). Buntine defines generalized suh­

sumption of definite Horn clauses as an extension 
of f9-subsumption with the restriction that the cor­
responding clause heads must be about the same 
concept [11]. Informally speaking, if a clause C 
generally subsumes clause /), then C can be con­
verted to D by (1) turning variables to constants or 
other terms, (2) adding atoms to the body, and (3) 
partially evaluating the body by resolving some 
clause in P with an atom in the body. The third 



conversion process is additional to the conversion 
for f3-subsumption. 

5.3. Generalization for Knowledge Base Evolution 

The condition of covering in the definition of 
generalized subsumption has the effect, that 
generalization depends on the actual representation 
of the clauses. Defining generalization in terms of 
implication (see Plotkin's definition [30]) instead 
of subset-relation would be more suitable. This 
would lead to a combination of techniques from 
inductive logic programming (ILP) and ex­
planation-based learning (EBL) [27] by using 
deduction when deciding the generalization of 
clauses. 

Unfortunately, doing so, the test for genera­
lization becomes undecidable. On the other hand 
Buntine states that generalized subsumption is 
semidecidable, although it is guaranteed to term­
inate i f P contains no recursion. Generalized sub­
sumption w.r.t. a D A T A L O G program, however, is 
decidable. 

Also, for practical applications, least general 
generalization as defined by Plotkin [29] can still 
be too general. Consider the least generalization of 
the two literals /, = additive(ppn_1060, fluent) and 
t = additive(r_5320, flame-retardent) for which 
we get the very general term additive(X,Y) loosing 
nearly all information from and connection to the 
original terms that have been generalized. 

Thus, in order to overcome the problems raised 
by theory revision with background knowledge, 
namely its undecidability and its results being too 
general, we study two approaches in the following: 

- First, we investigate how to incorporate more 
knowledge within the generalization process, 
i.e., how to control generalization. This will en­
able us to specify when and where to general­
ize. 

- Second, we discuss how to extend the language 
itself by introducing new representational fea­
tures for expressing generalization results. This 
will enable us to specify how to generalize and 
to represent the generalized term. 

Finally, we wil l present an alternative to 0-sub-
sumption based on terminological reasoning which 
preserves decidability by restricting deduction to 
the terminological calculus. 

5.3.1. Partial Least General Generalization 
The first extension is partial least general gen­

eralization (plgg) and allows us to only partially 
generalize two literals: we can say that we want to 
generalize two literals or terms, but can require 
some arguments to be fixed, i.e., that the two 
literals must have unifying values at that specific 
argument position. Thus, partial least general gen­
eralization is a combination of unification and anti-
unification. 

Consider again the following literals 

t] = additive(ppn_1060, flame-retardent) 
= additive(ppn_1060, fluent) 

/, = additive(r_5320, flame-retardent) 

and the following application: 

/;/g#('r^additive($,-)) 
additive(ppn_1060, X) 

Here we only want to generalize over the fluent 
additives of identical materials: the generalization 
pattern additive($,-) restricts generalization to the 
second argument position, while the first argument, 
marked ' $ \ cannot be generalized but has to be 
unifiable. Consequently, plgg can be regarded as a 
combination of anti-unification (for those argu­
ment positions marked and unification (for the 
remaining argument positions). As unification can 
fail, plgg may fail too, but, of course, in the non-
generalized argument positions only. Thus, the 
above generalization of t] and succeeds, but the 
generalization of t2 and t} using the same gen­
eralized pattern fails. 

We can also restrict generalization by requiring 
some arguments to be of a particular type. In this 
case we would use a type or sort identifier at the 
position of the meta-symbol $ in the previous 
example. Thus, exact match as done for $ is now 
replaced by sorted unification for the non-gen­
eralized argument positions. 

Consider the taxonomy shown in Fig. 3. Trying 
to generalize t and t3 requiring the first argument 
of the resulting literal to be of type novodur1 would 
fail since the least general generalization of 
ppn_J060 and r_5320 is the type thermoplastic, 
which is too general, i.e., not within the required 
type novodur: 

'Novodur is a registered trademark of the Bayer A G . 



plggi /2,f3,additive(novodur,_)) fall 

However, i f we only require the generalized 
material to be of type plastic, the generalization of 
/, and t? would succeed and result in the least gen­
eralized material type thermoplastic: 

Jp/gg(^,r3,additive(plastic,_)) 
additive(thermoplastic, X) 

5.3.2. Finite Domain Generalizations 
A second extension of generalization is by enu­

merating the occurring values in a finite domain 
term instead of replacing them by a variable. A 
logic programming extension with finite domain 
terms is presented in [5]. In this case anti-unifi­
cation of t] and t1 results in the literal 

additive(ppn_1060,dom[flame-
retardent,fluentl) 

where the second term is the finite domain con­
taining both original constants flame-retardent 
and fluent. This does not induce new knowledge 
but only compresses the information of two literals 
into one. However, if we anti-unify all three terms 
into one we do obtain an inductive generalization. 
The resulting fact 

additive(dom[ppn_1060,r__53201,dom[flame-
retardent,fluent|) 

with two finite domains really represents four facts, 
which we get by combining each value of the first 
with each of the second domain. In addition to the 
two original clauses we get that novodur r_5320 
has the fluent additive fluent. In order to decide 
whether this hypothesis is actually true we again 
require validation. 

5.3.3. An Alternative to 6-Subsumption Based on 
Terminological Reasoning 

As has been shown by Plotkin, the general 
subsumption problem for Horn clauses is unde-
cidable. Essentially, this negative result is due to 
the fact that subsumption can be reduced to logical 
implication, ^-subsumption is one approximation 
of the 'logical' subsumption that is based on 
instantiations of Herbrand terms and set inclusion. 

In principle, there are two ways how to get a 
decidable rule ordering: 

- One can restrict the expressiveness of the un­
derlying knowledge representation language 
such that logical implication becomes de­
cidable, e.g., Buntine's generalized subsump­
tion with restriction to D A T A L O G . 

- Alternatively, the rule ordering can be defined 
using only a weak approximation of logical im­
plication. For example, the subset test used for 
9-subsumption is such a sound but incomplete 
operationalization of logical implication. 

In the former case, as a side effect, the class of 
knowledge that can be learned will be very 
restricted, too. In the latter approach, the learning 
algorithms cannot be optimal, since they are always 
based on a suboptimal rule ordering. However, the 
class of knowledge that can be learned remains 
unconstrained in that case. 

9-subsumption relies on the instantiation order­
ing of Herbrand terms which implies additional 
deficits: There are 'too many' terms that are in­
comparable w.r.t. the instantiation ordering of 
Herbrand terms (e.g.,/(a,6), f{b,b), f{b,a) are 
all incomparable). The weakness is also indicated 
by the fact that there are linear decision procedures 
for the instantiation problem of Herbrand terms. 

These deficits are somehow inherent to the 
underlying Horn logic. As an alternative, Hanschke 
and Meyer [17] propose a rule-formalism based on 
terminological logics (TL). This enables us to 
define a rule ordering much like 0-subsumption, 
but which is based on terminological inferences 
instead of instantiating Herbrand terms. As ter­
minological reasoning formalisms are tuned to be 
similarly expressive while remaining tractable or at 
least decidable, we gain a more fine-grained rule-
ordering. In particular, more rules will become 
comparable. Moreover, we obtain a more intuitive 
knowledge representation. 

We will first briefly introduce the assertional 
formalism (A-box) and the terminological for­
malism (T-box) of the concept language ALCF as a 
prototypical representative for the family of 
terminological formalisms [6] that originated with 
K L - O N E [7]. A terminology of the T-box consists 
of a set of concept definitions C = t where C is the 
newly introduced concept name and t is a concept 
term constructed from concept names, roles, and 



attributes using the following concept forming 
operators: conjunction, disjunction, negation, 
value-restriction, and exists-in restriction. In an A-
box (assertional box) concepts, roles, and attributes 
can be instantiated by individuals. Formally, an A -
box is a finite set of role assertions ((/,/) : /•), 
membership assertions (/.7), and equalities (/=/), 
where / and j are individual names, r is a role or 
attribute name, and t is a concept term The 
subsumption problem for A-boxes ofALCF can be 
effectively decided [17]. 

Two individuals / and j are directly linked in an A -
box iff the A-box contains a role assertion of the 
form (iJ):R or (jj):R. Linked is the transitive 
reflexive closure of directly linked An A-box is 
called rooted bv (individuals) a* x , n > 0, iff 
every individual in the A-box is linked to at least 
one of the x and all v occur in the A-box. 

The rule language is now based on the ter­
minological formalism. Its operational semantics 
can be based on a C L P scheme [21,38]. A rule 
takes the form 

p{)(xm) <-p{(£u)<...>pn(£n)), A(x{{)\...,x{fl)). 

where the p. are predicate symbols with arities nr 

the x(l} are tuples of individuals ( A ^ , . . . ^ ) , and 
A(xi0\...,xin)) is an A-box rooted by the individuals 
in the xii}. It is interpreted as a logical formula in the 
obvious way. 

The idea behind the rule ordering is essentially 
the same as for ^-subsumption. The only difference 
is that instead of searching for a substitution 6 that 
acts as a witness for the instantiation relation, we 
now employ the A-box subsumption of the termi­
nological formalism. The resulting rule ordering is 
called TL-subsumption. Assume that two rules 

P ^ ) ^ P ^ X ) ) ^ H ^ 

over disjoint sets of variables are given. The /?-rule 
is more general than the </-rule w.r.t. TL-subsump-
tion (< ) iff there is a substitution a such that the 
following holds: 

1. /?0(*(0)) crand q0(y<i})) are equal, 
2. {ptf") G9...j>n(j£«) a) c {q}m^qm^)l 

and 
3. the A-box A(x[{)\...,x(n))o subsumes the 

B(x(0\...,x{m)) w-1"-1- a . . . , A U ) a. 

As the terminological formalism provides attrib­
utes and a complement operator it is possible to 
map Herbrand terms into the set of A-boxes that are 
rooted by one individual such that two Herbrand 
terms s and t are unifiable iff s(X) A 7{ Y) A X = Y is 
satisfiable, where s and T are the images under the 
mapping from concept terms into first-order for­
mulas as defined in [17]. This embedding naturally 
extends to a mapping from Horn rules to the rule 
formalism. It has been shown in [17] that T L -
subsumption is at least as powerful as f>-subsump-
tion, i.e., given two Horn rules r and /%, r{ is more 
general than r, w.r.t. 0-subsumption iff r{ <n /%. 

5.4. Abduction 

Generalization as described before is applied to 
the clauses of a theory, i.e., facts and rules, result­
ing in more general rules. We have also developed 
a new technique for abduction. In addition to the 
Horn-clause theory T consisting of facts F and 
rules R and a set of integrity constraints IC. we also 
postulate a set of distinguished ground literals A 
called abducibles and a goal G which drives the 
abduction process. 

By abduction we want to find a set of hypotheses 
H c A such that we can derive the (positive) 
example e e E* from T u H. In the context of 
theory revision T u H gives the new theory T 
which again must be consistent with K\ the set of 
integrity constraints: 

TuH \-e 
T u H u IC is consistent 

Consider the following example where we have 
two rules for the recyclability of polypropylenes: 

recyclable(closed_circle,Plastic_Id) <— 
polypropylene(Plastic_Id), 
additive(Plastic_Id,flame_retardent) 

recyclable(unrestricted,Plastic_Id) <— 
polypropylene(Plastic_Jd), pure(Plastic_Id) 

polypropylene(X) <— hostalen2 (X) 
additive(ppk__1060,flame-retardent) 
hostalen(ppk_1060) 

The first rule expresses that a polypropylene can 
be recycled only in a closed circle, i f it contains a 

2Hostalen is a registered trademark of the H O E C H S T A G . 



flame retardent agent as a fluent additive. This is 
because the flame retardent agent produces toxic 
dioxin on ultimate thermic treatment. For a pure 
polypropylene there is no restriction a recyclability. 
In two facts we also have that hostalen ppk__1060 
contains a flame retardent fluent additive. 

If we declare additive and pure as abducibles 
and ask the query how ppk_1060 can be recycled 

?- recyclable(RecKind,ppk_1060) 

we get two answers: The first, unconditional answer 

RecKind - closed-circle 
n 

says that ppk_1060 can be recycled in a closed 
circle. The second, conditional answer 

RecKind = unrestricted 
{pure(ppk_1060)} 

is an abductive solution: under the condition that 
ppk_1060 is pure, it can be recycled unrestricted. 

5.4.1. Bottom-up Abduction 
In order to achieve abduction, deduction tech­

niques can be employed in a top-down as well as in 
a bottom-up manner: with top-down reasoning one 
skips some subgoals instead of proving them if they 
are in the set of abducibles. If the goal only consists 
of abducibles, top-down reasoning stops. The set of 
remaining goals is the set of hypotheses explaining 
the toplevel goal. 

On the other hand, there are a number of optimi­
zation strategies that allow query answering by 
bottom-up evaluation. Generalized Magic Sets re­
writing is such an optimization technique that has 
been developed for query answering in deductive 
databases [2]. We have adapted this rewriting tech­
nique to achieve bottom-up abduction of Horn 
knowledge bases [12]. 

The scheme of our abduction rewriting approach 
is presented in Fig. 6. Given a theory and a goal we 
first perform a Generalized Magic Sets rewriting. 
In a second step we further transform this rulebase 
with respect to the set of abducibles. Evaluating the 
resulting abduction rulebase by bottom-up evalu­
ation wil l compute all abductive solutions. 

The transformation can be regarded as a specia-

Generalized Magic-Sets 

Rewriting 

? 
Abductive Solution 

Fig. 6. Bottom-up abduction by knowledge base rewriting. 

lization of a partially evaluated upside-down meta-
interpreter originally presented by Stickel [39] (see 
also [19]). Compared to Stickers approach we have 
a number of advantages: 

- Only the rules of the knowledge base are trans­
formed; rewriting of the ground facts in the 
knowledge base is avoided. This is very impor­
tant when the ground facts change frequently or 
if they reside on secondary storage like in de­
ductive databases. 

- There is no need for enumeration of all the pos­
sible hypotheses. Thus, the approach is applica­
ble i f the set of possible hypotheses is infinite. 

- Hypotheses will be derived only i f they are not 
already contained as facts in the knowledge 
base. 

- By normalization meta predicates are removed, 
resulting in improved performance. 

Most important: this set-oriented approach is 
usable also for large sets of facts. This is supports 
our objective to develop techniques suitable not 
only for toy examples but also for complex real 



world problems with databases and large knowl­
edge bases. 

5.4.2. Using Abduction for Generalization 
As mentioned before, generalization of Horn 

clauses can be done in different ways, e.g., by 
generalizing some terms (argument positions) or by 
dropping entire literals (removing conditions). 

Thus, the decision about which generalization 
operation should be applied is still a problem. 
Abduction can provide considerable help for 
making this decision. Consider again the recy-
clability example introduced in the last paragraph. 

If we recognize the fact that hostalen ppk_1060 
can be recycled unrestricted (no matter of its 
pureness) then we have to revise our theory to now 
cover this (positive) example. By processing the 
query 

?- recyclable(unrestricted,ppk_l060) 

we obtain the abductive solution 

yes 
(pure(ppk_1060)} 

which gives rise to generalize the recyclable rule 
for ppk_1060 by dropping this pureness condition. 
Thus, we substitute the original rule 

recyclable(unrestricted,Plastic_Id) <— 
polypropylene(Plastic_Id), pure(Plastic_Id) 

by the following generalized one: 

recyclable(unrestricted,Plastic_Id) <-
polypropylene(PlasticJd) 

Although this is only one example of how 
abduction and generalization can cooperate in the 
theory revision framework, it already shows the 
combined potential for our application. 

5.5. Knowledge Base Verification 

It has already been pointed out that only those 
generalizations and abductive solutions are 
accepted which are consistent with the integrity 
constraints IC. Integrity constraints encode nega­
tive or disjunctive knowledge. These integrity 
constraints are represented as denials, i.e., clauses 

with an empty head. Eshghi and Kowalski use this 
kind of integrity constraints for their abduction 
procedure [15]. We can also represent them as 
clauses with the special atom false as conclusion 
[25]. 

An obvious integrity constraint is that i f a 
material contains a fluent additive it is no longer 
pure. This is represented by the following rule: i f a 
material PI has a fluent additive and the same 
material is pure then there is an inconsistency: 

false <- additive(Pl,X), pure(Pl) 

Consider for example, that the following facts 
and rules would be contained in a knowledge base. 

hostalen(ppk_1060) 
novodur(r_5320) 
additive(ppk_l 060, flame-retardent) 
polypropylene(X) <— hostalen(X) 
absc(X) <— novodur(X) 

In Section 5.4 we have found by abduction that 
Hostalen PPK 1060 could be recycled without any 
restriction i f it was pure. So we can tentatively add 
this information to the knowledge base as an 
additional fact: pure(ppk_1060). 

A naive method for integrity checking would be 
to use a proof-finding approach and ask the query 

?- false 

This procedure would invoke all integrity con­
straints in backward direction even i f they are 
independent from the new fact. However, it would 
be much more efficient to derive only those facts 
that are consequences of this new assertion. In [15] 
it is argued to do this kind of constraint checking by 
forward reasoning starting with the new fact. But 
forward reasoning from one fact alone is not 
sufficient. The following integrity constraint says 
that 'polypropylenes and ABSCs must not be 
components of a single composite product'. 

false <- composite(PU,P12), 
polypropylene(Pll), 
absc(P12) 

Adding the new fact composite(ppk__1060, 
r_5320) would lead to an inconsistency which will 



not be detected by forward chaining this fact alone. 
Additionally, we need to prove whether the pre­
mises polypropylene(ppk_1060) and absc 
(r_5320) can be satisfied. 

In [25] a model-generation approach has been 
applied for this problem. Here, however, we regard 
checking of integrity constraints as a consequence-
finding problem [20]. Given an update of a 
deductive database or a logic program, conse­
quence finding applies only those rules that are 
effected by the update operation. This builds on the 
assumption that the database satisfied its integrity 
constraints prior to the update. Derivation is 
restricted to exactly those facts that depend on an 
explicitly given set of initial facts, in our case the 
hypotheses found by abduction. 

The extended SLDNF resolution of [35] uses the 
clauses corresponding to the updates as top-clauses 
for the search space and thus achieves the effect of 
simplification methods investigated by [14,24,28]. 
The approach combines forward and backward 
chaining depending on whether a positive or nega­
tive literal is resolved upon. 

As an alternative to this tuple-oriented method 
we have developed a rewriting approach [18]. It is 
an extension of the well-known Generalized Magic 
Sets rewriting technique [2], which was also the 
basis for bottom-up abduction in Section 5.4.1. 
Since this technique in some sense integrates 
forward and backward chaining, it seems natural to 
extend it for consequence finding. 

By Generalized Magic Sets rewriting, infor­
mation about variable bindings given by the query 
is propagated down into the bodies of the rules at 
compile-time. For consequence finding we do not 
have a query but a number of initial facts - the 
update information - from which to reason 
forward. 

Thus, the input to the consequence finding 
transformation is a set of initial facts and the rules 
of the knowledge base. The transformation algo­
rithm specializes the knowledge base by intro­
ducing additional rules and predicates. It extends 
the Generalized Magic Sets rewriting by an up 
propagation in addition to the usual down 
propagation. When the rewritten knowledge base is 
evaluated by a model-generating, bottom-up pro­
cedure, the generation of a complete minimal 
model is restricted to the consequences of the 
initial facts. Because it is a set-oriented strategy it 

is very efficient if facts have to be retrieved from a 
database. 

6. Conclusion 

As knowledge-based systems are brought to 
practical applications and knowledge bases are to 
be used over years, the problem of knowledge base 
evolution naturally comes up: the key issue is how 
to ensure that the knowledge base does always 
represent all the knowledge that is relevant for 
solving tasks, i.e., being "complete", and does not 
become out of date or invalid, i.e., remaining 
'sound'' with respect to some specific situational 
context. Although this is a goal hard to achieve, it 
shows the direction in which knowledge base 
evolution research should work: to overcome the 
(always 'damned but nevertheless done') accu­
mulation of 'small local hacks' causing unfore­
seeable consequences and to find a compromise 
between this ad-hoc K B modification approach and 
the other extreme of restarting the whole knowl­
edge engineering work ranging from the formal 
specification down to the concrete representation 
with each K B modification. 

In this paper, we have shown that knowledge base 
evolution can be regarded as a theory revision 
process. Research in Inductive Logic Programming 
provides us with a set of techniques that can be 
applied to incorporate new knowledge into the 
knowledge base (knowledge base exploration), 
e.g., by generalization and abduction. On the other 
hand techniques from deductive database research 
can be used for ensuring the integrity of the 
knowledge base, i.e., for solving the knowledge 
base verification and validation task. 

For both tasks we have developed extensions and 
modifications motivated by the special char­
acteristics of the application. The generalization 
techniques taken from ILP have been extended 
towards the incorporation of meta-knowledge for 
guiding the generalization process (plgg) and 
towards additional language features for repre­
senting generalization results (e.g., finite domain 
terms). Additionally, we have proposed an alter­
native to ^-subsumption based on an extension of 
Horn rules incorporating termi-nological knowl­
edge representation and reasoning (TL-sub-
sumption). In order to get efficient evolution 



techniques also for large sets of rules and facts we 
extended the rewriting techniques from deductive 
databases for abduction and integrity checking. 

Further work on knowledge base evolution 
should not only consider developing more powerful 
exploration and verification methods, but should 
also focus on the knowledge representation lan­
guage itself. It is obvious that a more powerful but 
still semantically clear representation formalism, as 
e.g., introduced for TL-subsumption, will be of 
great advantage for all kinds of knowledge 
evolution techniques. For example, introducing 
sorts or types as mentioned in several parts of this 
paper can be a first but only intermediate step: 
generalization within a sort lattice does already 
yield a more fine-grain clause ordering than simple 
0-subsumption. However, extending the logic-
based representation language by substituting or 
complementing constitutively given sorts by 
intensionally defined concepts and concept terms 
in the sense of terminological reasoning will be 
necessary for finding and expressing 'really least 
general' generalizations and thus being able to 
support knowledge base evolution over a long 
period of time. 

Currently only little work is available on tailoring 
the knowledge representation formalism to knowl­
edge base evolution needs [4]. But being convinced 
that research on this wil l be a key issue for the 
success of knowledge base evolution in the future, 
we wil l also concentrate on further improving 
knowledge representation approaches like T L -
subsumption besides developing the evolution 
techniques themselves. 
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