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Abstract. In the context of Answer Set Programming, this paper in-
vestigates symmetry-breaking to eliminate symmetric parts of the search
space and, thereby, simplify the solution process. We propose a reduction
of disjunctive logic programs to a coloured digraph such that permuta-
tional symmetries can be constructed from graph automorphisms. Sym-
metries are then broken by introducing symmetry-breaking constraints.
For this purpose, we formulate a preprocessor that integrates a graph
automorphism system. Experiments demonstrate its computational im-
pact.

1 Introduction

Answer Set Programming (ASP; [4]) has been shown to be a useful approach
for knowledge representation and non-monotonic reasoning in various appli-
cations that include difficult combinatorial search, among them graph theo-
retic problems, planning, model checking, and problems from bioinformatics.
ASP combines an expressive but simple modelling language, able to encode all
search problems within the first three levels of the polynomial hierarchy, with
high-performance solving capacities [9]. In fact, ASP solvers have experienced
dramatic improvements in their performance [12] and compete4 with the best
Boolean Satisfiability (SAT; [5]) solvers.

However, many combinatorial search problems exhibit symmetries which can
frustrate a search algorithm to fruitlessly explore independent symmetric sub-
spaces. Various instance families, such as the Pigeon Hole problem, are known to
require exponential time for resolution and backtracking algorithms [23]. Indeed,
state-of-the-art ASP solvers take a very long time to solve those instances (Sec-
tion 7). Once their symmetries are identified, it is possible to avoid redundant
computational effort by pruning parts of the search space through symmetry-
breaking.

Symmetry-breaking also addresses post-processing: Where symmetries in-
duce equivalence classes in the solution space, symmetric solutions can be dis-
carded. Problems like the All-interval Series taken from the CSPLib [14] have
plenty symmetric solution. However, all solutions to the original problem can be
reconstructed from the answer sets under symmetry-breaking.

4 http://www.satcompetition.org/
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In this paper we break the problem of symmetry-breaking down into two
parts: (1) identifying symmetries and (2) breaking the identified symmetries.
We adopt existing theoretical foundations on introducing symmetry-breaking
constraints (SBC) for SAT instances in conjunctive normal form (CNF) that
exhibit symmetries [6,1,2,20]. As to SAT, the basic idea is to detect irredun-
dant generators of the group of permutational symmetries using a reduction to
coloured graph automorphism. For each such generator, an SBC is constructed
and added to the original CNF formula.

The key contribution of our work is a reduction of symmetry detection for
disjunctive logic programs to the automorphisms of a coloured digraph, and an
ASP representation of SBC which is linear in the number of problem variables.
Furthermore, we formulate Symmetry-breaking Answer Set Solving as prepro-
cessing and demonstrate its computational impact on difficult combinatorial
search problems.

The remainder of this paper is organized as follows. We start by giving the
necessary background notions of ASP and group theory. In turn, Sections 4
and 5 cover symmetry detection and symmetry-breaking for ASP, respectively.
In Section 6 we motivate partial symmetry-breaking, in Section 7 we empirically
evaluate our approach. Section 8 draws conclusions.

2 Logical Background

A (disjunctive) logic program over a set of primitive propositions A is a finite
set of rules r of the form

a1; . . . ; al ← b1, . . . , bm,∼c1, . . . ,∼cn (1)

where and ai, bj, ck ∈ A are atoms for 1 ≤ i ≤ l, 1 ≤ j ≤ m, and 1 ≤ k ≤ n.
A literal is an atom a or its default negation ∼a. Let head(r) = {a1, . . . , al} be
the head of r and body(r) = {b1, . . . , bm,∼c1, . . . ,∼cn} the body of r. For a set
of literals S, define S+ = {a | a ∈ S} and S− = {a |∼a ∈ S}. The set of atoms
occurring in a logic program P is denoted by atom(P ), and the set of bodies in
P is body(P ) = {body(r) | r ∈ P}. For regrouping bodies sharing the same head
atom a, define body(a) = {body(r) | r ∈ P, a ∈ head(r)}.

The semantics of a logic program is given by its answer sets. A set M ⊆ A
is an answer set of a logic program P over A, if M is a ⊆-minimal model of the
reduct [13]

PM = {head(r)← body(r)+ | r ∈ P, body(r)− ∩M = ∅}.

A rule of form (1) can be seen as a constraint on the answer sets of a program,
stating that if bl+1, . . . , bm are in the answer set and none of cm+1, . . . , cn are
included, then one of a1, . . . , al must be in the set. Clearly, an answer set induces
a truth assignment on the atoms in P .

The semantics of important extensions to logic programs, such as integrity
constraints, is given through program transformations that introduce additional



propositions [21]. An integrity constraint of the form

← b1, . . . , bm,∼c1, . . . ,∼cn (2)

is a short hand for a rule with an unsatisfiable head, and thus forbids its body
to be satisfied in any answer set.

Example 1. Consider the logic programs P1 and P2, both have two answer sets
{a} and {b}, where

P1 =

{

a ← ∼b
b ← ∼a

}

, P2 =

{

a; b ←
← a, b

}

.

Observe, that P1 and P2 remain invariant under a swap of atoms a and b which
is what we call a symmetry. In this work we will only deal with symmetries that
can be thought of as permutations of atoms.

Example 2. The All-interval Series problem is to find a permutation of the n

integers from 0 to n − 1 such that the difference of adjacent numbers are also
all-different. We encode the All-interval Series problem introducing propositional
variables vi,j and dk,l for the i ∈ 1..n integer variables taking values j ∈ 0..(n−1),
and k ∈ 1..(n − 1) auxiliary variables taking values l ∈ 1..(n − 1) to represent
the differences between adjacent numbers, respectively. Furthermore, we require
both sets of variables to have pairwise different values (all-different constraint).

vi,0; vi,1; . . . ; vi,n−1 ← i ∈ 1..n
← vi,j , vi,k j 6= k

di,|j−k| ← vi,j , vi+1,k i ∈ 1..(n− 1) ∧ j, k ∈ 0..(n− 1)
← di,j , di,k j 6= k

Note that above encoding for the all-different constraint corresponds to its sup-
port encoding [10]. It remains invariant under complex permutation of atoms
(see Example 5).

3 Group Theoretic Background

Intuitively, a symmetry of a discrete object is a transformation of its components
that leaves the object unchanged. By a symmetry of an answer set program
we mean a permutation of its atoms that does not change the logic program,
in particular, maps rules to rules. In principle, such a permutation can affect
arbitrarily many atoms at once, for instance, as in the case of a complete cyclic
shift.

Symmetries are studied in terms of groups. A group is an abstract algebraic
structure (G, ∗), where G is a set closed under a binary associative operation ∗
such that there is a unit element and every element has a unique inverse. Often,
we abuse notation and refer to the group G, rather than to the structure (G, ∗).
A subset H of G is referred to as a subgroup of G if H is closed under the binary



operation of G. A set of group elements H ⊂ G such that any other group
element in G can be expressed in terms of their product is called a generating
set and the elements of H are called generators of G. A generator is redundant
if it can be expressed in terms of other generators. An irredundant generating
set does not contain redundant generators, and provides an extremely compact
representation of the group. In fact, representing groups by sets of generators
always ensures exponential compression.

Theorem 3 (Exponential Compression [20]). Any irredundant generating
set for a finite group G, such that |G| > 1, contains at most log2 |G| elements.

A permutation of a set A is a bijection π : A → A. Indeed, the set of permuta-
tions form a group under composition, denoted as S(A). It is easy to see that the
composition of two permutations is a permutation, that the composition of per-
mutations is associative, that the composition with the identity never changes a
permutation, and that every permutation has a unique inverse.

The image of a ∈ A under a permutation π is denoted as aπ, and for S ⊆ A

define Sπ = {aπ | a ∈ S}. The orbits of S under π are the set of elements
of A to which S can be mapped by (repeatedly) applying π. Orbits under
a permutation define an equivalence relation on A. Analogously, for vectors
v = (v1, v2, . . . , vk) ∈ Ak define vπ = (vπ1 , v

π
2 , . . . , v

π
k ), and sets of sets S =

{S1, S2, . . . , Sk} such that Si ⊆ A for 1 ≤ i ≤ k define Sπ = {Sπ
1 , S

π
2 , . . . , S

π
k }.

For a logic program P , we define the symmetric group of P , S(atom(P )), to
be the group of all permutations of the atoms that occur in P . We will make
use of the cycle notation where a permutation is a product of disjoint cycles. A
cycle (1 2 3 . . . n) means that the permutation maps 1 to 2, 2 to 3, and so on,
finally n back to 1. An element that does not appear in any cycle is understood
as being mapped to itself. Table 2 provides some examples. Finally, we define
the support [18] of a permutation as those elements that are not mapped to
themselves.

As to Symmetry-breaking Answer Set Solving, given a logic program P , we
are interested in the subgroup of the symmetric group of P which elements leave
P unchanged. Obviously, a symmetry of a logic program preserves answer sets.

Definition 4 (Symmetry of a Logic Program). A symmetry of a logic pro-
gram P is a permutation of its atoms that does not change P .

Example 5. There are four symmetries in the All-interval Series problem: (1) the
identity, (2) reversing the series (variable symmetry), (3) reflecting the series by
substracting each element from n− 1 (value symmetry), and (4) doing both. It
is easy to see that (2) and (3) form a group of generators. Indeed, we can find



both symmetries in our encoding (see Example 2) given in cycle notation below.

π2 = (v1,0 vn,0) (v1,1 vn,1) . . . (v1,n−1 vn,n−1)
. . .

(v⌊n/2⌋,0 v⌈n/2⌉,0) (v⌊n/2⌋,1 v⌈n/2⌉,1) . . . (v⌊n/2⌋,n−1 v⌈n/2⌉,n−1)
(d1,1 dn−1,1) (d1,2 dn−1,2) . . . (d1,n−1 dn−1,n−1)
. . .

(d⌊(n−1)/2⌋,1 d⌈(n−1)/2⌉,1) (d⌊(n−1)/2⌋,2 d⌈(n−1)/2⌉,2)
. . . (d⌊(n−1)/2⌋,n−1 d⌈(n−1)/2⌉,n−1)

π3 = (v1,0 v1,n−1) (v1,1 v1,n−2) . . . (vn,⌊(n−1)/2⌋ vn,⌈(n−1)/2⌉)
. . .

(vn,0 vn,n−1) (vn,1 vn,n−2) . . . (vn,⌊(n−1)/2⌋ vn,⌈(n−1)/2⌉)

Intuitively, the circles in the first three lines of π2 simply swap the first and
the last variable, the second and the last but one variable, etc., value by value
to reverse the series, where the remaining circles adjust the auxiliary variables,
i.e., swap the differences value by value, respectively. The circles in π3 swap the
values 0 and n − 1, 1 and n − 2, etc., for each variable to reflect the series.
Obviously, the permutations π2 and π3 represent (2) and (3), respectively, and
do not change the logic program.

4 ASP Symmetries via Graph Automorphism

Our approach for detecting symmetries of a logic program is through reduction
to, and solution of, an associated Graph Automorphism problem (GAP).

Given a graph G = (V,E), where V is a set of vertices and E ⊆ V × V is a
set of edges. An automorphism (symmetry) of G is a permutation of its vertices
that maps edges to edges, and non-edges to non-edges. Edge orientation must
be preserved in case G is a directed graph. A further extension considers vertex
colourings, where symmetries must map each vertex into a vertex with the same
colour. More formally, given a partition of the vertices π(V ) = {V1, V2, . . . , Vk},
the automorphism group of G [18] is Aut(G, π) = {γ ∈ S(V ) | (V γ , Eγ) =
(V,E), πγ = π}. We will think of the partition π as a colouring of the vertices.
The (Coloured) Graph Automorphism problem (GAP) is to find all symmetries
of a given graph, for instance, in terms of generators. It is not known to have
any polynomial time solution, and is conjectured to be strictly between the
complexity classes P and NP [3], thus potentially easier than computing answer
sets. A practical algorithm for graph automorphism has been implemented in
nauty [18] and significantly improved in the systems saucy [7,8].

A quite natural GAP encoding for detecting symmetries of logic programs is
based on their body-atom graph. The body-atom graph GP = (V,E0 ∪ E1, E2)
of a logic program P is a directed graph with vertices V = body(P ) ∪ atom(P ),
and labelled edges E0 = {(β, a) | a ∈ atom(P ), β ∈ body(a)}, E1 = {(a, β) | β ∈
body(P ), a ∈ β+}, and E2 = {(a, β) | β ∈ body(P ), a ∈ β−}. The body-atom
graph has been shown to be a suitable representation of a logic program [17].



However, we modify the body-atom graph by introducing additional vertices for
negated atoms to circumvent labelled edges.

β

a1

al

b1

bm

∼c1

∼cn

β

a1

al

∼a1

∼al

b1 ∼b1

bm ∼bm

∼c1

∼cn

c1

cn

Fig. 1. The left picture shows a rule r of the form (1) as a body-atom-graph, where
β is the body vertex. Straight lines represent edges in E0 ∪ E1, curly lines represent
edges in E2. On the right is the general structure of a 3-coloured graph construction
of r. Vertices of color 1, 2, and 3 are represented by empty circles, filled circles, and
empty squares, respectively.

In our GAP encoding every atom in atom(P ) is represented by two vertices of
colour 1 and 2 that correspond to the positive and negative literals, respectively.
Every rule is represented by a (body) vertex of colour 3, a set of directed edges
that connect the vertices of the literals that appear in the rule’s body to its
body vertex, and a set of directed edges that connect the body vertex to the
vertices of the atoms (positive literals) that appear in the head of the rule. To
ensure consistency, that is, a maps to b if and only if ∼a maps to ∼b for any
atoms a and b, vertices of opposite literals are mated by a directed edge from
the positive literal to the negative literal. The choice of three vertex colours
insures that body vertices can only be mapped to body vertices, and positive
(negative) literal vertices can only be mapped to positive (negative) literal nodes.
To conclude, given a logic program P consisting of m rules and l literals over
n atoms, the GAP encoding for detecting symmetries of P is constructed by
m+ 2n vertices and l + n edges. Examples are given in Fig. 2.

Since graph automorphism algorithms are sensitive to the number of vertices
of an input graph, our construction can be optimised to reduce the number of
graph vertices while preserving its automorphism group. A first simplification
is achieved by modelling rules with an empty body and a single head atom, so-
called facts, by a (forth) colour for the vertex corresponding to the head atom
instead of using (empty) body vertices. Furthermore, rules with a single head
atom and a 1-literal body are modelled using a directed edge from the vertex
corresponding to the literal of the body to the vertex corresponding to the head
atom. Observe that this optimisation may connect a literal vertex to a positive
literal vertex, where consistency edges connect positive literal vertices to their
negative mates. Therefore, unintended mappings between 1-literal body edges



and consistency edges are impossible. For the special case of a 1-literal body and
an empty head, we connect the literal vertex to the special node ’⊥’.

∼a

a

2

1

b

∼b

∼a a

1

2

b ∼b

Original 3-coloured graph of P1 Original 3-coloured graph of P2

∼b

b

1

2

a

∼a

∼b b

1

2

a ∼a

π1 = (a b) (∼a∼b) (1 2) π2 = (a b) (∼a∼b)

Fig. 2. 3-coloured graph constructions and resulting symmetries for the example logic
programs P1 and P2.

5 Symmetry-breaking Constraints

Recall that symmetries of a logic program P induce equivalence classes in the so-
lution space (orbits). Given an answer set of P , all sets to which it can be mapped
by symmetries, must be answer sets of P . Similarly, symmetries always map
non-answer sets to non-answer sets. Therefore, it is sufficient to reason about
one representative from every equivalence class. Symmetry-breaking amounts
to selecting some representatives from every equivalence class and constructing
rules, composed into a symmetry-breaking constraint, that is only satisfied on
those representatives. A full SBC selects exactly one representative from each or-
bit, otherwise we call an SBC partial. The most common approach is to order all
elements from the solution space lexicographically, and to select the lexicograph-
ically smallest element, the lex-leader, from each orbit as its representative (cf.
[6,1,2,20]). A lex-leader symmetry-breaking constraint is an SBC that is satisfied
only on the lex-leaders of orbits.

We will assume a total ordering on the atoms a1, a2, . . . , an of a logic program
P and consider the induced lexicographic ordering on the truth assignments,
i.e. their interpretation as unsigned integers. The most common approach for
accomplishing the construction of a lex-leader SBC is by encoding a permutation



constraint (PC) for every permutation π, where

PC(π) =
∧

1≤i≤n





∧

1≤j≤i−1

(aj = aj
π)



→ (ai ≤ ai
π).

A careful analysis reveals some possibilities to reduce the size of permutation con-
straints (cf. [20]). The first corresponds to atoms that are mapped to themselves
by the permutation, i.e., ai

π = ai. This makes the consequent of the implication
unconditionally true. For sparse symmetries, one can significantly reduce the size
of the permutation constraint with a restriction of the PC construction to only
those atoms that are in the support of π. A second possibility corresponds to
the lexicographically biggest atom in each cycle of π. Assume a cycle (as . . . ae)
on the atoms of some index set J . Using equality propagation on the portion of
the permutation constraint where i = e, we get (as = ae) → (ae ≤ as) which is
tautologous. Hence, we can further restrict the index set in the PC by excluding
the lexicographically biggest atom in each cycle.

Through chaining which includes additional atoms, we achieve a PC repre-
sentation that is linear in the number of atoms (cf. [1]):

cπ,1 ≡ (a1 ≤ aπ1 ) ∧ cπ,2
cπ,i ≡ (ai−1 ≥ aπi−1)→ (ai ≤ aπi ) ∧ cπ,i+1 i = 2, . . . , n
cπ,n+1 ≡ 1

Finally, we encode above permutation constraint in ASP that is satisfied for the
lex-leader in the orbit induced by π as follows

← a1,∼a1π

← cπ,2
cπ,i ← ai−1, ai,∼aiπ

cπ,i ← ai,∼ai−1
π,∼aiπ

cπ,i ← ai−1, cπ,i+1

cπ,i ← cπ,i+1,∼ai−1
π

cπ,n+1 ←

where i = 2, . . . , n. The lex-leader symmetry-breaking constraint that breaks
every symmetry in a logic program can now be constructed by conjoining all of
its permutation constraints.

Example 6. We illustrate our PC encoding on the symmetries detected for the
previous examples P1 and P2. Since both permutations π1 and π2 (see Fig. 2)
map a to b and vice versa, they share the same lex-leader SBC which is as simple
as follows (assuming a is lexicographically greater than b):

← b,∼a

Observe that the ordering on the atoms of a logic program P induces a preference
relation on the answer sets of P under symmetry-breaking. Here, the ordering
selects {a} as the representative of the set of all answer sets symmetric to {a},
hence, eliminating the answer set {b}.



6 Partial Symmetry-breaking

Breaking all symmetries may not speed up search because there are often expo-
nentially many of them. A better trade-off may be provided by breaking enough
symmetries [6]. Irredundant generators are good candidates because they can
not be expressed in terms of each other, and implicitly represent all symmetries.
Hence, breaking all symmetries in a generating set can eliminate all problem
symmetries. However, this does not hold in general. In fact, it has been shown
that even when breaking all symmetries is polynomial, there exists cases where
for which SBCs based on any irredundant generating set fail to break all sym-
metry [15].

We can further reduce the size of symmetry-breaking constraints by restrict-
ing the construction of permutation constraints up to the k-th atom in each
permutation [1].

Example 7. Consider the All-interval Series problem encoded as in Example 2
and the generators π2 and π3 from Example 5. The symmetry-breaking con-
straint, where both permutation constraints are restricted to the second atom,
is given through the following, where c0, . . . , c3 are new atoms.

← v1,0,∼v1,n−1 ← v1,0,∼vn,0
← c0 ← c2

c0 ← v1,0, v1,1,∼v1,n−2 c2 ← v1,0, v1,1,∼vn,1
c0 ← v1,1,∼v1,n−1,∼v1,n−2 c2 ← v1,1,∼vn,0,∼vn,1
c0 ← v1,0, c1 c2 ← v1,0, c3
c0 ← c1,∼v1,n−1 c2 ← c3,∼vn,0
c1 ← c3 ←

7 Experiments

Our approach to Symmetry-breaking Answer Set Solving has been implemented
within the preprocessor sbass5. It accepts a logic program in smodels6 format [22]
produced by a grounder, e.g. lparse and gringo, and incorporates the graph au-
tomorphism tool saucy7 (2.1) for detecting irredundant generators of the group
of permutational symmetries. In return, sbass outputs the given program to-
gether with symmetry-breaking constraints, again in smodels format, which can
be applied to any suitable answer set solver, e.g. smodels and clasp. Note that
sbass provides several options, for instance, to print detected generators in cycle
notation or statistics.

To evaluate our approach, we conducted experiments on ASP encodings of
several difficult combinatorial search problems. Experiments consider the answer
set solver clasp (1.3.2) on instances with symmetry-breaking in terms of gener-
ators, i.e., instances preprocessed by sbass, and without symmetry-breaking. To

5 http://potassco.sourceforge.net/ provides clasp, gringo, and sbass
6 http://www.tcs.hut.fi/Software/smodels/ provides lparse and smodels
7 http://vlsicad.eecs.umich.edu/BK/SAUCY/



explore the impact of partial SBC, we also tried restrictions on the construction
of permutation constraints up to the k-th support in a permutation, denoted
as claspπ

k . All tests were run on a 2.00 GHz PC under Linux, where each run
was limited to 600 s time and 1 GB RAM, preprocessing excluded. However, we
also report the runtime for sbass and give the number of generators. The latter
gives an impression about the size of the search space implicitly pruned through
symmetry-breaking. In the experiments below we generally compare the runtime
for testing the existence of an answer set to a given problem.

7.1 Pigeon Hole Problems

The Pigeon Hole problem is to show that it is impossible to put n pigeons into
n− 1 holes if each pigeon must be put into a distinct hole. This problem is prov-
ably exponentially hard for any resolution based method, but is tractable using
symmetries (all the pigeons are interchangeable and all the holes are interchange-
able). We encoded the Pigeon Hole problem based on the support encoding for
the all-different constraint [10], as follows, where pij is taken to mean that pigeon
i is assigned hole j:

pi,1; pi,2; . . . ; pi,n−1 ← i ∈ 1..n
← pi,j , pk,j i 6= k

The runtimes for various sizes of n are shown in Table 1. Although symmetry-
breaking has a positive impact, the runtime even with claspπ

∞ is still exponen-
tially growing with the number of pigeons. Here, symmetry-breaking on the
generating set returned by saucy does not break all problem symmetries. We
enforced saucy to compute a different set of generators, denoted as claspθ

∞, and
got a polynomial runtime. On such problems, full SBCs are essential.

Table 1. Runtime results in seconds for Pigeon Hole problems.

#n #gen. sbass claspπ

1 claspπ

5 claspπ

∞
claspθ

∞
clasp

11 18 0.05 0.38 0.15 0.06 0.02 0.62
12 20 0.08 4.09 0.07 0.22 0.03 5.99
13 22 0.11 30.57 0.43 0.32 0.03 53.39
14 24 0.16 272.72 4.95 1.73 0.04 448.98
15 26 0.23 — 62.61 3.02 0.04 —
16 28 0.32 — — 23.01 0.07 —
17 30 0.44 — — 130.87 0.10 —

7.2 Ramsey’s Theorem

Ramsey’s Theorem states that for any pair of positive integers (k,m) there exists
a least positive integer n such that, no matter how we color the edges of the clique



with n vertices, Kn, using two colours, say blue and red, there is a sub-clique
with k nodes of colour blue or a sub-clique with m nodes of colour red. We used
the encoding from [16], denoted as R(k,m, n), to determine whether n is not an
integer for which the theorem holds.

In formerly hard cases, namely R(3, 5, 14) and R(4, 5, 24), symmetry-breaking
lead to significant pruning of the search space and yield solutions in a consider-
ably short amount of time. The results presented in Table 2 suggest full SBCs
for unsatisfiable instances, but small, partial SBCs for satisfiable instances.

Table 2. Average time for completed runs in seconds and the number of timeouts on
Ramsey’s Theorem instances, each shuffled 5 times. The ∗asterisk denotes instances
that have no answer sets.

sbass claspπ

1 claspπ

5 claspπ

∞
clasp

#gen. time time #t.out time #t.out time #t.out time #t.out

R(3, 5, 13) 11 0.06 0.01 0.01 0.03 0.01

R(3, 5, 14)∗ 12 0.10 3.58 1.23 0.49 354.25
R(3, 6, 17) 15 1.18 0.12 0.12 0.14 0.11

R(3, 6, 18)∗ 16 1.87 — 5 — 5 — 5 — 5
R(4, 4, 17) 15 0.26 0.73 0.12 0.50 0.07

R(4, 4, 18)∗ 16 0.37 — 5 — 5 — 5 — 5
R(4, 5, 23) 21 5.43 4.23 2.29 2.05 1.32

R(4, 5, 24) 22 7.15 77.64 208.66 1 180.96 3 — 5
R(4, 5, 25)∗ 23 9.54 — 5 — 5 — 5 — 5

7.3 Graceful Graphs

A labelling f of the vertices of a graph (V,E) is graceful if f assigns a unique
label f(v) from {0, 1, . . . , |E|} to each vertex v ∈ V such that, when each edge
(v, w) ∈ E is assigned the label |f(v) − f(w)|, the resulting edge labels are
distinct. The problem of determining the existence of a graceful labelling of a
graph has been modelled as a CSP in [19], and is an interesting application for
Symmetry-breaking Answer Set Solving because the symmetries are different
for each instance and can not be modelled a-priori in general. Our experiments
consider graphs DWn and KnPm. The double wheel graph DWn is composed of
two copies of a cycle with n vertices, each connected to a central hub. The two
wheels Wn, each have rotation and reflection symmetries. The labels of the two
cycles can also be interchanged. The graph KnPm is the cross-product of the
clique Kn and the path Pm. It consists of n copies of Kn, with corresponding
vertices in them cliques also forming the vertices of a path Pm. Symmetries of the
graph are simultaneous rotations of the cliques and inter-clique permutations.

As can be seen in Table 3, we achieve speed-up on the unsatisfiable instance
DW3. For the other instances, all of which are satisfiable, the branching heuristic
used in our approach sometimes appears to be misled by the extra variables



introduced in claspπ
k . That explains some of the variability in the runtimes.

However, the difficult instances show symmetry-breaking to be outperforming.

Table 3. Average time for completed runs in seconds and the number of timeouts on
Graceful Graph instances, each shuffled 5 times. The ∗asterisk denotes instances that
have no answer sets.

sbass claspπ

1 claspπ

5 claspπ

∞
clasp

#gen. time time #t.out time #t.out time #t.out time #t.out

DW3
∗ 5 0.02 4.24 1.45 1.32 5.40

DW6 5 0.17 0.46 0.56 1.09 0.57
DW8 5 0.48 28.81 5.47 17.11 4.30

DW10 5 1.21 191.86 66.18 61.59 27.04 2
DW12 5 3.34 145.89 202.18 1 111.96 1 112.38 4
K3P3 3 0.04 0.08 0.08 0.07 0.08
K4P2 4 0.07 0.20 0.10 0.54 0.19
K4P3 4 0.29 24.68 29.06 198.57 24.01

K5P2 5 0.37 274.85 3 334.55 3 312.56 1 226.03 3

7.4 Answer Set Enumeration

Finally, we want to test the impact of symmetry-breaking on the number of
answer sets. We modelled the All-interval Series problem (AllInt) as described
in Example 2, using a direct representation for n integer variables and auxiliary
variables to represent the differences between adjacent numbers (cf. [10]), and
required both sets of variables to be all-different.

As expected we observe that symmetry-breaking significantly reduces the
number of solutions, and therefore, reduces the time necessary for post-processing
solutions (see Table 4). Clearly, claspπ

k for an increasing number k discards more
solutions (eliminating up to 90 per cent of the solution space).

As in all previous benchmarks, it seems safe to assume that the detection
of symmetries in logic programs through reduction to graph automorphism is
computationally quite feasible using today’s GAP tools such as saucy.

We should also note that a given problem can be encoded in many equivalent
logic programs, and with each different encoding our techniques may detect a dif-
ferent generating set. For instance, we tried symmetry detection and symmetry-
breaking on logic programs that were preprocessed, i.e. simplified. The key idea
of preprocessing logic programs is to identify equivalences among its relevant
constituents. These equivalences are then used for building a compact represen-
tation of the program [11]. Sometimes, we observed significant better results in
terms of time and number of answer sets (eliminating up to 95 per cent of the
solution space).



Table 4. Results on computing all answer sets of selected instances. Runtime, number
of solutions, and the maximum compression achieved using full SBC are shown.

sbass claspπ

1 claspπ

5 claspπ

∞
clasp

#gen. time time #sol. time #sol. time #sol. time #sol. compr.

AllInt8 2 0.01 0.15 39 0.11 15 0.17 14 0.14 40 65%
AllInt9 2 0.01 0.78 119 0.60 60 0.93 40 0.77 120 67%
AllInt10 2 0.01 4.60 295 3.43 148 5.69 107 4.08 296 64%
AllInt11 2 0.01 23.26 647 22.82 372 32.70 238 24.40 648 63%
AllInt12 2 0.01 161.90 1327 147.17 862 211.27 442 160.32 1328 67%
DW4 5 0.07 282.36 9472 168.03 5152 85.65 1150 314.15 11264 90%
K3P3 3 0.05 229.15 5704 119.99 2836 126.25 1487 268.80 6816 76%
K4P2 4 0.08 119.66 1080 67.96 552 27.72 146 145.13 1440 90%

8 Conclusions

We have investigated symmetry-breaking in the context of Answer Set Pro-
gramming. In particular, we proposed a reduction from symmetry detection of
disjunctive logic programs to the automorphisms of a coloured digraph. Our
techniques were formulated as a completely automated flow that (1) starts with
a logic program, (2) detects all of its permutational symmetries, (3) represents
all symmetries implicitly and always with exponential compression, (4) adds
symmetry-breaking constraints that do not affect the existence of answer sets,
and (5) can be applied to any existing ASP system without changing its code,
which allows for programmers to select the solvers that best fit their needs.

We have empirically evaluated symmetry-breaking on difficult combinatorial
search problems and got promising results. In many cases, SBC lead to significant
pruning of the search space and yield solutions to problems which are otherwise
intractable. We also observe a significant compression of the solution space which
makes symmetry-breaking attractive whenever all solutions have to be post-
processed.

Motivated by this success future work concerns an extension to choice rules
and weight constraints [21]. However, one should not expect Symmetry-breaking
Answer Set Solving to give improvement on all benchmark classes. Many ASP
benchmarks8 have large numbers of symmetries, but can be solved so quickly
that the symmetry detection and -breaking overhead is not justified.

Furthermore, it is often reasonable to assume that the symmetries for a prob-
lem are known. For particular symmetries, there are more efficient breaking
methods (cf. [24]). This is also target to future work.
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