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Abstract. On-Demand Transport (ODT) systems have attracted increasing attention in recent years. Traditional centralized dis-
patching can achieve optimal solutions, but NP-Hard complexity makes it unsuitable for online and dynamic problems. Central-
ized and decentralized heuristics can achieve fast, feasible solution at run-time with no guarantee on the quality. Starting from a
feasible not optimal solution, we present in this paper a new solution model (ORNInA) consisting of two parallel coordination
processes. The first one is a decentralized insertion-heuristic based algorithm to build vehicle schedules in order to solve a particu-
lar case of the dynamic Dial-A-Ride-Problem (DARP) as an ODT system, in which vehicles communicate via Vehicle-to-vehicle
communication (V2V) and make decentralized decisions. The second coordination scheme is a continuous optimization process
namely Pull-demand protocol, based on combinatorial auctions, in order to improve the quality of the global solution achieved
by decentralized decision at run-time by exchanging resources between vehicles (k-opt). In its simplest implementation, & is set
to 1 so that vehicles can exchange only one resource at a time. We evaluate and analyze the promising results of our contributed
techniques on synthetic data for taxis operating in Saint-Etienne city, against a classical decentralized greedy approach and a
centralized one that uses a classical mixed-integer linear program (MILP) solver.

Keywords: On-demand transport, Coordination, Decentralized optimization, Combinatorial auctions

Introduction tral dispatcher exists, performing such optimal deci-

sions, it requires vehicles to have continuous access to

On-Demand Transport (ODT) systems have attracted
increasing attention in recent years. The area of appli-
cation was almost limited to road systems. The ODT
system has never been considered for the replacement
of public transport services but to extend it. According
to [1], the concept of ODT was formulated for the first
time in the United States around 1990 as a solution to
the growing disaffection of potential users, especially
at night.

Within ODT, allocation problems rise as the most
studied optimization problems in the literature [2].
They generally can be addressed by linear program-
ming since its relaxation of formulation admits opti-
mal integral solutions. However, in reality, if a cen-

*Corresponding author. E-mail: alaa.daoud @emse.fr.

their portal via the global communications infrastruc-
ture such as the Long-Term Evolution (LTE) commu-
nication (3G, 4G or 5G), whose data traffic is expen-
sive for the required usage density and the persistent
operation, and can cause a critical bottleneck on the
portal side.

The computational complexity of ODT allocation
problems, which extend the NP-Hard traveling sales-
man problem (TSP), makes it difficult for the central
dispatcher to manage the dynamics of the problem dur-
ing execution (online requests, variable fleet size, traf-
fic problems, and other environment dynamics). There-
fore one may expect that decentralization can cop off
with these problems. The insertion heuristics proposed
by [3] is a popular method for solving a variety of
scheduling and routing problems. It can be used as
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a method to quickly find a feasible solution (with no
guarantee on solution quality). For instance, in Vehicle
Routing Problem (VRP), it creates the solution by re-
peatedly inserting unscheduled demands in a partially
constructed route or as the first demand in a new route.
Local search with the k-exchange neighborhoods (k-
opt) is one of the most commonly used heuristic meth-
ods for problems inherited from TSP. k-opt is a path
improvement algorithm, where at each planning phase,
k steps from the current plan are replaced by k steps to
get a cheaper path [4].

In what follows, we will describe the main charac-
teristics of ODT problem in (Section 1) in order to dif-
ferentiate it from other modes. In this work, we pro-
pose the Autonomous Vehicle Fleet Allocation Prob-
lem (AVFAP), which extends the traditional Dial-A-
Ride-Problem (DARP) with the usage of a fleet of
autonomous vehicles, replacing the central dispatcher
with the coordination between each other in a Peer-to-
Peer (P2P) manner in order to make decentralized de-
cisions. We more precisely propose a new decentral-
ized heuristic for the AVFAP, named ORNInA, benefit-
ing from the fast responsiveness of insertion heuristics
and the good results gained by 1-opt optimization.

The paper is organized as follows. In Section 2, we
overview the related transport problems in literature,
and more precisely, we focus on efforts done to ad-
dress related ODT problems. Section 3 expounds on
the model we consider for the decentralized resource
allocation problem for autonomous vehicle fleets with
an illustrative scenario showing the main components
of the ODT system. Then, the contribution for fast de-
cision is presented in Section 4 and an optimization
protocol is detailed in Section 5. Experimental param-
eters, evaluation, and results are detailed in Section 6.
Finally, we conclude the paper in Section 7 with some
perspectives.

1. Problem Definition

The concept of On-Demand Transport (ODT) was
formulated for the first time around 1990 as a solu-
tion to the growing disaffection of potential users of
public transport, especially at night [1]. There exist
similar terms in the literature describing several trans-
portation systems that could be similar in some char-
acteristics and differ in others; e.g., the term Demand-
Responsive-Transport (DRT) refers to the same con-
cept. Moreover, in recent years, the term Dial-A-Ride
Problem (DARP) is becoming more common in real-
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Fig. 1. A sample AVFAP problem instance, with demand sources
(triangles) and taxis (circles) with their respective communication
ranges (in blue).

life scenarios, such as the services provided by Uber,
Lyft, and other on-demand transport platforms.

For [5], “On-Demand Transport is a transit mode
consisting of passenger vehicles, vans, or small buses
that respond to the calls of passengers or their agents
to the transit operator, who then sends a vehicle to
collect passengers and transport them to their desti-
nations.” Additionally, Demand-Response (DR) oper-
ation in a transport system was characterized in [6] as
follows:

e Vehicles do not operate on a fixed course or a
fixed schedule, except, perhaps, temporarily to
satisfy a special need,

e A vehicle can be sent to take several passengers
to different collection points before taking them
to their respective destinations and can also be
stopped on the way to these destinations to catch
other passengers,

e Passenger could be served by multi-vehicle tra-
jectory,

e Requests usually present intentions of a trip
from source to destination within a certain time
window.

Finally, the main features of ODT optimization are de-
fined by [1] to be: firstly, as door-to-door as possi-
ble transportation; secondly, minimize waiting times,
walking paths, and vehicle changes.

In this context, we propose the Autonomous Vehi-
cle Fleet Allocation Problem (AVFAP), illustrated in
Figure 1, as follows:

Definition 1. AVFAP is an extension of the traditional
DARP with the usage of a fleet of autonomous vehicles,
replacing the central dispatcher with the coordination
between each other in Peer to Peer (P2P) manner in
order to make decentralized decisions.
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Since the early 21st century, short- and long-range
vehicle communication technologies, including equip-
ment, applications, and systems, have been devel-
oped and introduced in the transportation domain to
enable the vehicle to everything (V2X) communica-
tion. The concept of V2X includes communication be-
tween vehicles (V2V), between vehicles and pedes-
trians (V2P), and between vehicles and infrastructure
(V2I). Short-range vehicle communication protocols
have been based on the WLAN IEEE 802.11 [7] stan-
dards known in the United States as Wireless Access in
Vehicle Environments (WAVE) and in Europe as ITS-
G5 [8]. Also known as Dedicated Short-Range Com-
munication (DSRC).

V2V communication via DSRC provides low la-
tency, fast network connectivity with a range of com-
munication up to 300 meters.

DSRC has been widely tested in Europe, the United
States, and other regions with different road safety and
traffic efficiency use-cases. More recently, the direct
cellular (C-V2V) using the 3GPP PCS5 interface has
been introduced as an alternative to IEEE 802.11p for
V2V Short Range [9]. In this paper, neither the cases
of multi-vehicle trajectories nor the passenger walking
parts of the trip are considered, as we define a satisfied
request as a request that is picked up from its specified
pick-up location during its defined time window and
dropped of exactly in its defined drop-off location [10].
Having limited communication ranges, each vehicle is
only aware of a subset of demands and communicates
with entities (vehicles or demand sources) if they are
co-located in each others’ range.

2. On-Demand Transport and Related Problems

The problem of resource allocation and task assign-
ment across multiple entities is a central concern in
both Computer Science and Economics. It has interdis-
ciplinary characteristics that make it relevant for differ-
ent application areas, including industrial production
and planning, routing, traffic management, transport,
and logistics. In our scenario, under a set of constraints,
assigning demands to vehicles can be seen as an inter-
section between resource allocation and constraint op-
timization problems. The classical modeling approach
for such problems is Linear Programming (LP), and
more specifically, MILP (Mixed Integer LP).

The problem described by the illustrative scenario
(in Section 1) extends the Dial-A-Ride Problem (DARP),
which belongs to the family of Pick-up and Delivery

problems and can itself be considered as a special vari-
ant of the Vehicle Routing Problem with Pick-up and
Delivery (VRPPD) with time windows. The problem,
which we briefly recall in the following, can be seen as
both a scheduling and an allocation problem.

2.1. Deal A Ride Problems

In [11], the Generalized Pick-up and Delivery Prob-
lem (GPDP) is defined as the general framework for all
Pick-up and Delivery problems. In it, n requests must
be served, each associated with a set of origins and des-
tinations to be visited, respectively, to pick-up or de-
liver goods or people. A fleet of m heterogeneous ve-
hicles, each with its own capacity, is used to serve re-
quests. A request is unsplittable (must be served en-
tirely by one same vehicle) and all origins must be vis-
ited before any destination, without transshipment in
intermediate locations. Each vehicle has specific start
and end locations and can serve more than one request,
provided that all along its service route its load is non-
negative and within its capacity. The well-known Vehi-
cle Routing Problem (VRP), which is known to be NP-
hard [12], is the particular case of the GPDP with the
same capacity for all the vehicles and only one origin
or destination per request, the depot, which also acts
as the start/end point of all routes. Another particular
case of GPDP, which also generalizes VRP, is what in
[13] is named the Vehicle Routing Problem with Pick-
up and Delivery (VRPPD), in which each request has
one origin and one destination and the vehicles are het-
erogeneous but all based at a depot. The authors also
call it the n-commodities PDP to distinguish it from
the single-commodity PDP, in which one type of prod-
uct is collected or delivered to each node, and the two-
commodity PDP that implies two products and every
node can act as a pick-up point for one and delivery
point for the other: the delivery of beverages, in which
vehicles deliver full bottles and collect empty ones, is
cited as a common real-life case.

In the same work, the VRPPD with time windows
(VRPPDTW) is tackled, motivated by the fact that
most practical VRPPD applications enforce restric-
tions on time slots in which a vehicle can visit a site.
VRPPDTW is defined on a directed graph G = (N, A)
with 2n 4 2, i.e. as many nodes as twice the request
plus the two nodes needed to be able to represent out-
going and incoming trips of the depot at which vehi-
cles are based. Vehicles are heterogeneous and must
complete their routes within a given time horizon, and
service at a node must begin within a time window as-
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sociated with it. VRPPDTW is NP-hard as it general-
izes the TSP with Time Windows and Precedence Con-
straints (TSP-TWPC), which is known to be NP-hard
(see e.g. [14]). The 3-index Mixed-Integer Linear Pro-
gramming (MILP) formulation proposed in [13] allows
to consider a variant in which vehicles have different
start- and endpoint, and which is not easier than the
basic VRPPDTW version.

As stated by the authors of [13], DARP is actually
a version of the basic VRPPD in which the objec-
tive mostly revolves around Quality of Service (QoS),
i.e. minimizing user inconvenience, which plays a cen-
tral role [6] (though more specific DARPs allow for
one passanger only and thus also restrict the capac-
ity of vehicles to 1). In addition, vehicle capacity is
normally limited in DARP, while it is often redundant
in VRPPD applications (particularly those related to
the collection and delivery of letters and small parcels
[15]). The work [13] then reviews the different cases
of DARP in the literature, like e.g. single- and multi-
vehicle cases, or the different functions to model pas-
senger inconvenience (possibly giving rise to quadratic
or convex functions) and how its minimization is dealt
with. Quality of Service can replace, or being evaluated
along with, some cost related terms, as well as DARP-
specific constraints, as e.g. maximum waiting time or
maximum excess in user ride times.

In [16], the notion of time window is integrated in
the basic definition of DARP, as we will consider in the
following of the present work. The authors of [16] re-
view some of the most common real-world aspect that
are dealt with in literature, especially for what concerns
the diversity of vehicles, which can differ not only in
capacity but also for what concerns e.g. speed, travel
cost, equipment, number of person that can be trans-
ported, transportation mode depending on the passen-
gers, possibility of accompanying persons. As pointed
out in [15], the main consideration in some of such a
diversity of problems is to tackle the strategic problem
of determining a size and composition of the fleet that
will satisfy the entire demand, while in others the goal
is to maximize the number of applications that can be
offered with a fleet of fixed dimensions. A compromise
is to serve part of the demand with a basic fleet of ve-
hicles and to use additional vehicles (e.g. regular taxis)
if necessary. The authors of [16] also propose a wide
review of exact methods for static DARP variants, as
well as and heuristic approaches for static, dynamic
and stochastic variants that are found in the literature.

Along with static Dial-a-ride services, in which all
requests for transport are known in advance, there also

exist dynamic services, in which requests are progres-
sively revealed throughout the day, or existing requests
ar cancelled, and vehicle routes are adjusted in real
time accordingly, trying to do so without causing too
much trouble for other passengers. In the literature,
dynamic variants of DARP can be found, although in
practice pure dynamic DARPs rarely exist because a
subset of requests is often known in advance, accord-
ing to [15], who reports some examples of dynamic
DARP. [17] developed an insertion algorithm, RE-
BUS, based on the ADARTW procedure of [18] for a
real-life problem involving services to elderly and dis-
abled people in Copenhagen. Requests arrive dynam-
ically along a time horizon and are inserted in exist-
ing routes considering the difficulty of insertion. The
algorithm is reportedly capable of a good quality-time
compromise solutions on a 300-customer, 24-vehicle
instance. [19] uses three different objectives, namely
the number of serviced requests, the perceived QoS
level by users and the traveled distance. The insertion
of new requests is based on a clustering phase and a
routing phase. The routing algorithm applies branch-
and-bound to a set of requests that according to time
windows are closer to occur. The authors report that
they have performed experiments in two cities in north-
ern Italy. Finally, in [20], an off-line/on-line two-phase
strategy is used for inserting of a new request into an
existing route, the objective being minimum user dis-
satisfaction.

To conclude this review of Dial-A-Ride Problems,
we cite some more recent works. [21] defines an Adap-
tive Large Neighborhood Search (ALNS) to find a set
of minimum-cost routes on a DARP variant with time
windows and additional constraints on and maximum
user ride times. [22] proposes a distributed algorithm
to solve large scale DARP instances: tests on a set of
24 different scenarios with up to 16,000 requests or
32,000 locations in the city of San Francisco prove it
effective. [23] tackles a dynamic DARP found in a mo-
bility service operated by a private company, in which
service requests are either in advance or in real-time
and get an immediate answer about being accepted
or rejected. The main goal is to maximize the num-
ber of accepted requests. Three main online reinsertion
heuristics (HDR, GH, IGH) based on different neigh-
borhoods are proposed. [24] presents the e-ADARP, a
DARP variant which considers the use of electric au-
tonomous vehicles, thus introducing battery manage-
ment, charging stations, recharge times. The goal of
the problem is to minimize a weighted objective func-
tion of vehicles total travel time and excess ride-time of
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the users. The authors propose a 3-index and a 2-index
MILP formulations, along with a branch-and-cut algo-
rithm with new valid inequalities. [25] addresses the
dial-a-ride problem (DARP) using private vehicles and
alternative nodes (DARP-PV-AN), in which to achieve
greater flexibility the on-demand transportation ser-
vice can be done either by a public fleet or by clients
that use their private vehicles. Several pickup/delivery
nodes for the transportation requests are considered
to address the resulting privacy concerns. A compact
MILP model and an Evolutionary Local Search (ELS)
algorithm are proposed.

2.2. Variations of Dial-a-Ride Problem

A common example in many countries is door-to-
door transportation for the elderly or disabled persons
(i.e. Paratransit [26, 27]). [28] presents an integrated
version of the DARP (IDARP), Some part of each jour-
ney can be carried out by a fixed route public transport
service, without synchronizing time tables, which as-
sumes the services are frequent. In many of the practi-
cal cases described by IDARP it is useful and reason-
able to allow a request to end its journey on a trans-
fer node near its drop-off node without taking another
vehicle for the last leg (part) of the journey. Likewise,
there may be cases where it is reasonable, from re-
ducing costs and user-inconvenience points of view, to
start the journey on a transfer node rather than on the
original pick-up locations. This has lead the authors of
[29] to propose the integrated dial-a-ride problem with
timetables (IDARP-TT), in which, under some circum-
stances, requests may start or end the journey from/to
transfer nodes sufficiently close to the pick-up or drop-
off nodes without involving the vehicles in the first or
last part of the journey. Each request has a given origin,
destination, and demand for a set of resources, such as
regular seats, wheelchair spaces, and baggage. A re-
quest can be served by a single vehicle or transferred
between a demand-responsive vehicle and fixed rout-
ing system. A heterogeneous fleet of vehicles with dif-
ferent speeds, operating costs, and capacities is located
in a depot and used to serve requests. The goal is to
find vehicle routes that minimize the cost of service on
demand and the cost of using the fixed routing system.

2.3. ODT Solution Methods and Approaches
Traditional approaches for ODT consider a central-

ized dispatcher architecture like in [30, 31] or a decen-
tralized Multiagent System (MAS) to reduce problem

complexity with a central coordinator like in [32, 33].
There exist several approaches for decentralized deci-
sions and self-coordination, like [34] which introduce
a multi-agent bid-based real-time scheduling solution
in fully decentralized settings. Here each vehicle rep-
resented by an agent can negotiate via radio channels
with flexible decision criteria. A pattern recognition al-
gorithm is used to predict the most likely locations for
the next demand using agent-based data mining to rec-
ommend movements to these locations.

Investigating the applicability of genetic program-
ming (GP) for developing decentralized MAS that
solve dynamic DARP, [35] presents a method to au-
tomatically generate a MAS that can solve the DARP
for a specific set of scenarios. GP is used to generate
a heuristic that is effective in solving the DARP com-
pared to centralized solutions. The best result achieved
with this approach is by planning only one demand in
advance by vehicle, which maximizes the agent’s local
interests (greedy) and produces a feasible solution very
fast.

An agent-based model based on simulated events for
the real taxi market was proposed by [36], where sup-
ply and demand matching depends on event-based in-
teractions. According to their conclusion, one of the
main limitations is the assumption of uniform distribu-
tion of demand in the service area. To address the un-
certainty caused by the dynamic nature of online de-
mands, with ignoring the time required to execute a
planning algorithm, [37] proposed using a determinis-
tic rolling horizon solution approach, in which plans
are drawn up using all known information in a plan-
ning horizon, that is "rolled" forward to include more
available information.

Based on vehicle coordination via message passing,
and extending the generic model for Online Localized
Resource Allocation (OLRA) [38], using P2P commu-
nication, in our previous work [39] we proposed the
Online Localized with Communication Constraint Re-
source Allocation (OLC?RA) for concurrently solv-
ing the allocation problem over a fleet of autonomous
taxis, in which a vehicle decide its next destination
(scheduling only one demand in advance). On the con-
trary, ALMA decentralized heuristic proposed by [2] is
wholly decoupled and does not require direct commu-
nication between the participants. They demonstrate
an upper bound of the speed of convergence which is
polynomial to the desired quantity of resources and
competing agents per resource; in the realistic case
where the mentioned quantities are limited whatever
the total number of agents/resources, the convergence
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time remains constant as the total size of the problem
increases. However, in [2] conflict detection still re-
quires communication with other vehicles, resources,
or a central entity to enable resources to share informa-
tion about their status, such as the blackboard coordi-
nation mechanism.

So far and to the best of our knowledge, efforts
done in ODT planning domain provide either opti-
mized solutions ignoring the execution time, or pro-
vide very fast, just feasible solution to respond quickly
to dynamic online demands. In this work, as the opti-
mal solution for this dynamic problem is not achiev-
able within reasonable computational time, our pro-
posal combines the benefits of these approaches in
one heuristic that provide a fast auction-based re-
sponse (fast feasible solution), and this solution is
gradually improved at run time with demand-exchange
rescheduling.

3. AVFAP Model

The section expounds on the problem addressed in
the remainder of the paper. The Autonomous Vehicle
Fleet Allocation Problem (AVFAP) extends the tradi-
tional DARP by considering a fleet of autonomous ve-
hicles that coordinate without a central dispatcher. The
vehicles make decentralized decisions based on infor-
mation exchanged via Peer-to-Peer (P2P) communica-
tion as illustrated in Figure 1.

The city map graph, shown in Figure 2, consists
of nodes representing geographic locations and edges
representing the road connections between these lo-
cations. A fleet of autonomous vehicles is distributed
throughout the city. Each vehicle has a set of properties
whose values are constant (capacity, cost, and average
speed) or variable (location, schedule) because they are
time-dependent. Passengers emit demands from differ-
ent locations (which we will call sources later). Each
one takes the form of a request that defines: the pick-up
and delivery locations associated with the desired ser-
vice time window. We define a solution as a schedule
for each vehicle that meets the demands by satisfying
their constraints, minimizing passenger waiting time,
and minimizing vehicle travel costs.

The vehicles communicate by broadcast via an
ad-hoc Vehicle-to-vehicle communication (V2V) net-
work, where the communication range is limited. Each
vehicle that receives new information broadcasts it
again, and the vehicles are thus connected by transi-
tivity within their communication range. In the rest of

Fig. 2. A sample AVFAP city infrastructure

this article, we use the term "connected set" to refer to
a set of items (vehicles and sources) that can commu-
nicate with each other directly or by transitive message
passing.

In this context, a vehicle is not aware of requests out-
side its connected set. The vehicle’s belief evolves dur-
ing the execution time, as the vehicle moves around, re-
ceives new requests from request sources, meets other
vehicles, and exchanges messages with them. By using
a low latency, fast connectivity communication mean
like DSRC, we can ignore the time loss caused by the
communication delay within connected sets

In the same direction of the work done in [39], the
AVFAP model is defined as:

AVFAP :=<M,V,D,T >
M =<G,w >
Vi={vi,va,..., v}
D :={d,ds,...,dn}

T :={to,11 - lena}

where M defines the urban infrastructure map (lo-
cations, roads, and distances); the offer is represented
by a V fleet of n autonomous vehicles; D defines a dy-
namic set of passenger demands that occur at the time
of execution, and T defines the time horizon within
which vehicles must respond to passenger demands.
We define time T as a discrete set of ticks.

3.1. Urban Infrastructure Map

The urban infrastructure map is defined by a weighted
directed graph M, as shown in Figure 2.

G :=<N,E >

W= {Weys Weys oo WiE|}
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G is a directed connected graph where N is the set
of nodes, E is the set of edges between nodes. The val-
uation function w associates each edge e with the value
w, based on a measure of temporal distance (for ex-
ample, average driving time in minutes), which will be
used to calculate the operational costs of vehicle trips.

3.2. Vehicle Properties

Each v € V is defined by
Vv :=< capa, cpd, range >
and has a set of dynamic properties

v_location : VxXT - NUE

free_seats : VX T — Nt

Where capa defines the total number of passenger
seats in the vehicle, cpd defines the vehicle’s cost per
unit of distance, and range defines the communication
range within which the vehicle can communicate with
other entities. At any given time t € T a vehicle v €
V knows its current situation: v_location defines the
location of v that could be located in a node or moving
through an arc; and free_seats defines the number of
free seats available in v at time 7.

3.3. Demand Properties

A demand d € D is defined as a request
d :=< required, tw, pick_up, drop_off >

where required is the number of seats required; tw
defines a time interval [f,,, tnqyx] in which the pickup
event is considered acceptable; pick_up and drop_off
are the origin and destination of the request, respec-
tively. As for vehicles, at time ¢ € T, we will consider
that a request d € D can also be communicated using
the V2V network. The request could be issued by the
customer or the infrastructure (roadside unit).

4. Auction-based Insertion Heuristics in ORNinA

This section presents our new insertion heuristic,
where vehicles coordinate through auctions. The main
objective of vehicle agents is to provide feasible sched-
ules that maximize their utility by minimizing the
global operational cost of serving the maximum num-
ber of requests.

Given a vehicle v having a potential demand set D,,,
providing a schedule for v that satisfies all the requests
d € D, means solving a TSP to produce the best or-
dering of requests in the schedule. Considering the dy-
namic aspect of our model, we use an insertion heuris-
tic like the one described in [3] to adapt local vehicle
schedules continuously. The result of this algorithm is
a set of requests; each of them is associated with the
potential time at which a vehicle will be at the pick-
up location. The insertion heuristic is proven to be ef-
ficient in finding feasible schedules very fast [40], but
since it handles the scheduling of requests one by one,
its performance is relative to the order of these de-
mands.

In our model, the agents handle the request based
on their priority order. An agent uses a priority func-
tion to assign priority values to the requests he knows.
Given a vehicle v, the priority function returns for a
demand d a value that is inversely proportional to the
cost costDemand(d, v) of inserting the demand in the
schedule of v: WM. Thus, the lower the cost,
the higher the priority. The cost function returns the
distance of d’s pick-up location from v’s location in
its simplest form. Thus agents assign the highest prior-
ity to the request with the nearest pick-up location, wrt
their current location.

Each agent determines his schedule to maximize the
value of the quality of his solution. Since several vehi-
cles may be interested in the same request, we need a
coordination mechanism to resolve these conflicts. We
will use an auction-based mechanism for this purpose,
which is one of the effective and proven ways to solve
such problems [41].

4.1. Auction Theory

Since ancient times, auctions have been used to an-
swer the most fundamental questions in the Economy:
who should get the goods and at what price? Therefore,
auction theory is one of the most significant and widely
studied topics in Economics. Some types of auctions
are well known, such as the ascending-bid auction or
the first-price auction used in many public markets.
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Auctions are distinguished not only by the terms and
conditions of the auction but also by the environment
in which they take place. These auctions can be stud-
ied in a wide range of characteristics of the auction
environment, including the number of participants, the
number of items traded, the parties’ preferences, and
the form of private information that participants have
about their preferences.

A common aspect of auction forms is that they re-
ceive information, in the form of bids, from potential
participants about their willingness to pay the price,
and the result —i.e., who wins what and how much has
to be paid— is determined exclusively based on the in-
formation received. This implies that auctions are uni-
versal in the sense that they can be used for many
scenarios to determine winners [42], especially in re-
source allocation [43, 44].

4.2. Bid Criterion

In our model, we use a first-price auction form [42]
to answer the question "which vehicle will consume
the request and at what cost?". When a vehicle v be-
comes aware of a request d, it ranks it in its queue ac-
cording to the priority it has assigned to it. At the time
t, v selects the first request d; in the queue, generates a
set of alternatives, each of which is a potential sched-
ule resulting from the insertion of d in a feasible step
(that does not violate any of d,’s constraints) of the v’s
current schedule. Every alternative is associated with a
cost, which is the marginal operational cost of adding
this request to the schedule. The choice with the best
cost is considered to broadcast an offer

Bid’vi(tm,,, cost)

with t,,, the time of pick_up for d;.

In this paper, we consider the operational cost of
trips as a linear relation to the routes’ lengths, so that
for a vehicle whose cpd = 1, the cost of a trip is sim-
ply the total length of its route (sum of the distances, as
shown in Figure 2). We consider the value of cpd = 1
for every vehicle in the following examples. Therefore,
the marginal cost of insertion is the difference in path
length between the initial path and the new path.

4.3. Winner Determination
Given a set of bids B in a combinatorial auction on

a set of resources R, the winner determination problem
(WDP) is defined as finding an allocation of items to
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Fig. 3. V1 wins the auction to serve d1 from C to H

bidders that maximizes the auctioneer’s revenue [45].
The WDP is known as a NP-Hard problem because
each subset of bids would have to be checked for feasi-
bility and the revenue that this subset of bids provides.
In its simple form, when the auction is about a sin-
gle, indivisible resource V € R, the question becomes,
"to whom V should be allocated?", which can be ex-
pressed as a linear relation:

winner : R — BU ¢

Seeking decentralization, we considered a binary ver-
sion of this relation corresponding to our problem

win:V x D — {0,1}

where the bidders are the vehicles and the resource
items are the requests. We assume all agents to be
truthful collaborating agents so that every vehicle v €
V that is aware of a request d is responsible for de-
termining the value of win(v, d). The default value for
win(v,d) is 0. After their announcement, the bids re-
main available for a specific time period #,pir.. Until
toxpire the vehicle listen to other vehicles’ bids on d, if it
receive a better offer, it assigns the value 0 to win(v, d)
which means it determines itself as a looser and with-
draw from the auction. On ;. if the bid cost of v is
less than any other bid Bidf, received at IBiad + Texpire
to serve a request d, v considers itself the winner of
the auction (i.e. assigns 1 to win(v, d)), and updates its
schedule with the new bid path. This mechanism im-
plies that on 7,p;. of each auction d is allocated to at
most one vehicle (in the connected set).

0 J o U W N

GO s s B s D D s D R D W W W W W W W W W W NN NN NN R B R R B R B PP o
H O W o J o U s W N PP O W W J oUW NP O W W Jdo U s W N R O W O Jd oUW NP O



0 J o U W N

G s s s s s s s S s DWW W W W W W W W W NNNNNDNNNN R R R R R e R B e
H O W ® J oUW N P O WV ®Jd oS WD R O LV ®Jd o0 W NP O L W Jdo U W N R O ©
]
2 Q

A. Daoud et al. / ORNInA - Decentralized On-Demand Transport 9

Vi Ale—ma—  p» M 2 HE «—3—»F
W
o o

)
(R
e
!

]
|

\

Ow—n
€
-+ N—

— < nNn— T

B le—mA4—»
V2

‘aV )
7z

10 -

Fig. 4. With no demand exchange, Vo wins do and V; keeps d1

Example 1. The simple scenario in Figure 3 shows
two vehicles V1 and Vs located in A and B, with empty
schedules at the beginning. At time t1, the first re-
quest is announced di :< 1,(t1p,t20),C, H >. Both
vehicles now know d,. Vi can serve it by following
the path A - C — E — F — H, so Vi places
the offer Bidf,l1 (t10, 11). Vo can serve it via the path
B— D — C — E — F — H, so issues the offer
Bid{‘{,l2 (t10, 13). Vy is considered a winner and adds d,
to its schedule, so that the overall operational cost of
the fleet is now 11.

4.4. Limitations in Dynamic Settings

The problem at hand is considered as dynamic in
both spatial and temporal dimensions. On the one hand
in the temporal dimension, the requests are not known
in advance but announced in a stochastic manner at
run-time. On the other hand, the vehicle’s knowledge
is also limited to the information received and shared
in its neighborhood through its connected set. This im-
plies the dynamics in spatial dimension as the vehicle
location affects the context of the problem. This dy-
namics may affect the quality of upcoming planning
decisions dramatically and reduces benefits of the al-
ready taken long-term planning decisions [35] similar
to the situation shown in the following example.

Example 2. Figure 4 shows a situation where the use
of the bid-based insertion heuristic is very reactive but
does not guarantee good scheduling. At the moment to
when the new request do :< 1, (t15,110), J, K > arrives,
both vehicles are aware of it and place their possible
bids. In the absence of any exchange capacity, V; still
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Fig. 5. Global improvement when V7 abandons d; to serve da

has dy in its schedule (with an initial cost of 11), so the
best offer it can place is to serve both requests with a
marginal cost of 14. While Vy places the winning bid
Bidii,z (t15, 11), it adds ds to its schedule, and the over-
all cost becomes 22. Note that in this case, serving do
with V1 and letting Vs take care of dy (as shown in Fig-
ure 5) results in an overall gain of global operational
cost which becomes 21, but this solution is never real-
ized because d is already scheduled on V.

To be able to make effective bids for new requests
or improve the solution, we also propose that the vehi-
cles exchange their planned requests, as illustrated in
Example 2.

5. Online Solution Improvement in ONRInA

In the following, we propose a local optimization
protocol to improve the quality of the solution for cases
like Figure 4.

This protocol is based mainly on the k-exchange
neighborhoods (k-opt), a path improvement algorithm,
where at each planning phase, k steps from the current
plan are replaced by k steps to get a cheaper path [4]. In
its simplest settings, k is set to 1, so the k-opt becomes
1-opt, which means a vehicle can exchange at most one
demand at a time. In this work, we seek the implemen-
tation of the simple auction mechanism 1-opt to avoid
dealing with the NP-complete winner determination of
the k-opt combinatorial auctions.

Example 3. Let’s consider another case shown in
Figure 6, where Vi has dy in its schedule, V5 has
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Fig. 6. While it can serve both demands, Vo can only bid for one
demand at a time

empty schedule, and a new demand is announced
d' < (t10,t20), D, F >. Vy offers two alternative bids
Bid{: ((tv0, 112), +4), and Bid{, (110, +15)(taking into
account abandoning di) , while Vo can only offer
Bid{, (t10, +13).

Obviously Bid“i}l’d’ is the winner and Vi takes the
charge of both demands with global cost +15, while
the optimal solution in this case is that Vo who takes
both demands which make the global cost only +13,
but using the auctions with abandon strategies lets
Vy in this case either bid for d' alone when it is an-
nounced, or bid for d, alone in response of the aban-
don suggestion by V1. So in this case, the optimal so-
lution is not achievable with the aforementioned aban-
don strategies.

5.1. Pull-demand Optimization Bids

Similar to the rolling horizon strategy of [37],
we propose an optimization protocol to improve our
heuristics. In the rolling horizon strategy, all vehicle
schedules are considered temporary and available to be
scheduled by any vehicle, unless they are considered
as commiitted requests by particular events; for exam-
ple, v has started serving (moving towards) d, whose
remaining time to serve it is below the horizon thresh-
old.

The application of this strategy requires that all ve-
hicle schedules are in shared memory, so that when
a vehicle v; offers to serve a request d, it knows if it
is scheduled by another vehicle v;, and therefore if it
should send its offer cost to v;. Then v; will calculate

Protocol 1 Pull-demand Optimization Protocol

Step 1 A set of new demands enters the system based on
announcement time order.

Step 2 Each new request is distributed to the connected set to
which the sources belong. Each agent in this set can
select his potential requests from requests that include
new requests, scheduled and unscheduled requests
that have not yet reached their scheduled departure
time.

Step 3 The agents enter the auction to serve their potential
demands in similar auction criteria (i.e. for each agent
in the connected set, the potential requests are cho-
sen and ordered in a list of candidates based on the
same priority function, and the same cost function) of
the initial phase.

Step 4 Each agent searches among its scheduled requests
for the one to satisfy the next tick; this request is
called dpext. If duext exists, the agent broadcasts a
"clear_demand" message to inform other agents that
it handles duexs. Each receiver deletes it from their
potential and known sets of requests. In addition,
each agent deletes any other requests that reach their
time window upper-bound because staying any longer
available for rescheduling would violate their time con-
straints.

Step 5 The scheduled and unscheduled requests that still
have time remain announced by their sources (Step
2). This allows better planning in the next tick if new
requests are announced or some new agents join the
connected set.

its estimation to the global gain (or loss) in operating
cost by abandoning d compared to the cost proposed
by v;. If there is a gain, it agrees to abandon d and then
v; updates its schedule with d, otherwise the bid is re-
jected.

In our protocol, we do not use the concept of commit-
ted request, but a vehicle can only bid on requests that
it can satisfy, so requests that are rescheduled or that do
not have enough time to be rescheduled are automati-
cally ignored by the agent. Another difference here is
that we don’t have a shared memory. Agents exchange
information about the context of the environment and
about requests through information messages. More-
over, in [37], optimization is performed periodically at
a predefined frequency, while the protocol we propose
is executed in parallel with the auction-based inser-
tion strategy to have a fast rescheduling for continuous
requests. Based on shared information of the current
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context, the optimization protocol is executed between
connected sets of vehicles when any change in this set
context is detected (the set of vehicles in the connected
set is changed or at least one of them is newly aware of
some requests which are already scheduled by others).
Protocol 1 details this strategy.

5.2. Discussion

Given the decentralized context, the insertion heuris-
tic is very efficient in terms of response time. The tem-
poral complexity of the basic insertion heuristic for
the Vehicle Routing Problem (VRP) is of O(n?)[40].
This type of heuristic is often used to solve DARPs,
where new incoming requests have to be continuously
processed in real-time and integrated into the evolv-
ing schedules of vehicles. The usage of k-opt may
add local improvements to the insertion heuristic solu-
tion based on the current context. However, the Pull-
demand protocol can significantly improve the quality
of the solution, as illustrated in the following example.

Example 4. Let’s consider another case illustrated
in Figure 6, where V1 has di in its schedule, V;
has an empty schedule, and a new request d :<
(t10,120), D, F > is announced. The bids of the vehicles
are thus Bidﬁi,/1 (t12,+4), and Bidﬁ’,; (t10, +13). It is ob-

vious that Bid“i}l’d’ is the winner, and V1 will handle the
two requests with an overall cost of 15. With the Pull-
demand protocol, dy and d' enters in the set of candi-
date requests for Vi and Vs, so that the vehicles can
make combinatorial offers: Bid“l}l’d((z‘lo, t12),0) and
Bid‘{l,;jd1 (—2). The cost of V is 13 and the gain of V; is
15). V1 has nothing to change in its schedule. Vo wins
and the solution is improved with an additional opti-
mization round. Let’s look at the applied protocol, step
by step.

Step 1: d’' enters the system at ty and both vehicles
are aware of this, V1 wins the auction with an
overall cost of 15

Step 2: dy and d' are now in the set of requests known
by both vehicles, Vo calculates the costs to
serve dy alone (13), d’ alone (9) and both re-
quests together making 13. It then selects the
two requests as its potential requests. V1 has
no potential request because it already has the
two requests in its schedule.

Step 3: Vo places a bid Pl,tll_Bid"j,;’d1 ((t10,t12), 13).
For V5 the cost to serve both requests is 15 so it
accepts Pull_Bidﬁl,;’d1 because it causes a gain

of 2.

Step 4: None of the requests reach their scheduled ser-
vice time or the upper-bound of their time win-
dow.

Step 5: All known requests remain announced and
available for the next potential improvement.

6. Experimental Evaluation

In this section, we experimentally evaluate the per-
formance of our contributed ORNInA approach, using
synthetic data and Open Street Map information.

6.1. Experimental Setup

The city map of Saint-Etienne was chosen for the

simulation. The structure of the graph G =< N, E > in-
cluding nodes, edges and a set of sources of the S C N
request is extracted from OpenStreetMap (OSM') and
post-processed by Plateforme Territoire®. In all the ex-
periments, we set the number of sources |S| = 40, hav-
ing a set Eg C E of edges, such that |Es| = 71 con-
necting the sources, each edge has a number of points
which varies according to its length and the informa-
tion extracted from OSM. The distance between two
consecutive points is 40 meters. We used a discrete-
time transport simulator available in the Plateforme
Territoire to evaluate the proposed strategy and analyze
it in terms of quality of service and gain.
The Java-based ORNInA and IBM ILOG CPLEX Op-
timizer Version 12.9.0 have been executed on an octa-
core Intel® Core™ i7-8650U CPU @ 1.90GHz, with
32GB DDR4 RAM.

A fleet V of n vehicles is distributed randomly
through S at the beginning of execution. Each vehicle
v € V moves from one point to another on the same
edge during each simulation cycle. In our test, we con-
sider that vehicles communicate via DSRC with a re-
alistic communication range of 250m so that a vehi-
cle can send/receive messages to/from other entities lo-
cated in its range. Each vehicle v can adopt two dis-
tinct travel behaviors: either marauding for requests or
going to a destination:

e going_to defines the state of a vehicle when it
has a specific destination, i.e. a request to serve.
The vehicle is either going_to pickup location
if the request is not yet picked up, or going_to
delivery location otherwise.

Thttps://www.openstreetmap.org/
Zhttps://territoire.emse.fr/
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e marauding defines the state of a vehicle when
it does not have a request to serve, i.e., at the
beginning of the simulation, each vehicle ma-
rauds until it decides to serve a request. Once a
passenger is dropped off, the vehicle reverts to
marauding. In this state, the vehicle randomly
moves through its neighborhood to find requests
to serve.

At each simulation cycle, 0, 1 or 2 requests are gen-
erated in a uniform random manner. For each request,
the origin and destination points are randomly and uni-
formly generated from all sources. The time window
for the requests is generated using two constant param-
eters / and u for the lower and upper limits as follows
[tWinin, tWmay] is initialized with two uniform random
values where :
Wiin < Whax

Winin 2 Tactual + l
Winax g Wiin + U

The evaluation criteria for these simulations are mainly
the number of requests satisfied as a measure of Qual-
ity of Service (QoS), the simulated profit of the solu-
tion as a measure of Quality of Business (QoB). The
profit is calculated in terms of the difference between
the simulated travel price and the cost.

profit = total_income — total_cost
where

total_income = Z P + p x distance(d)
deb,

D; C D is the set of all satisfied requests, P is a fixed
price (service fee) per request, p is a pricing factor per
unit of distance travelled, distance(d) is the total travel
distance for a request d and

total_cost = Z cpd(v) * total_distance(v)
vev

where fotal_distance(v) is the total traveled distances
by v including marauding and going_to dis-
tances.

In real-life scenarios, the pricing criteria is more com-
plex and depend on many other factors, here we pro-
vide an approximate pricing model based only on dis-
tance. In our tests, we consider the vehicles identical in
terms of cpd(+) travel cost and p pricing factor. We set

P =15, p = 2 and cpd(v) = 1 for all v, so that the
vehicle will gain 1.5 money-unit per satisfied request
in addition to 2 money-unit per traveled distance-unit
with passenger on-board, while it looses 1 money-unit
per traveled distance-unit. A successfully traveled dis-
tance with passenger on-board leads to a net gain of 1
money unit.

Maximizing the income requires maximizing the
number of satisfied requests and the riding distance,
while to reduce the costs, the vehicles need to reduce
the empty driving slots in their trip schedules. In this
notion, we can define the allocation process’s objective
as maximizing the QoB function profit.

To assess the feasibility of the ORNInA heuristic,
we compare it to two other approaches:

GREEDY: a decentralized approach based on plan-
ning a single request in advance. This approach
has been mentioned by [35] as the best strate-
gies for dynamic settings, following genetic al-
gorithm selection.

CPLEX: building vehicle schedules dynamically by
a central dispatcher that uses CPLEX solver to
solve the allocation problems as MILP which
maximize the objective function profit. The
central dispatcher calculates a solution in re-
sponse to a query from a connected set.

The two decentralized approaches use the same re-
quest selection strategy (request priority function that
is derived from the objective function) during each sce-
nario. Being optimal, the CPLEX approach is reported
as an upper-bound for the solution quality, regardless
of its computational time and practical applicability.

6.2. Experimental Results

The results presented in the Figures 7 and 8 concern
a scenario in which vehicles select the cheapest request
considering the costDemand(d, v) is the marginal cost
mentioned in Section 4; the same applies to the greedy
algorithm since the vehicle schedule can only contain
one demand. We have executed several instances of
problems that vary with the size of the fleet n. Each in-
stance of these tests is executed 10 times with different
probability seeds. First, we evaluate with a fixed fleet
size n = 20 to track the quality of the solution over
time, then with a variable fleet size n € [3..35] over
300 cycles for each scenario. The global quality of so-
lutions obtained by the CPLEX solver depends on two
factors:
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Fig. 7. Quality of service for a fleet of 20 vehicles
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e the amount and accuracy of information about
the context of the vesicles and the requests,
o the frequency of schedule update queries.

To achieve a global solution that is optimal (or very
close to optimal) in this dynamic settings, the solver
must be queried at each simulation cycle for each con-
nected set to consider the new announced requests.
This is not feasible in practice because of the compu-
tational complexity of the problem but still provides
offline bounds on the solution. This strategy is coined
CPLEX_R in the figures. In our experiments, we exam-
ined, in addition, another strategy in which the CPLEX
solver is queried each time a connected set member
changes in order to obtain an optimal solution for the
sub-problem defined by the context of the connected
set. This solution is still valid as an optimal decision
until the context is changed. This strategy is coined
CPLEX_CS in the figures. The results obtained by the
first strategy (CPLEX_R) represent an upper-bound for
the objective function (QoB) as the CPLEX solver is
queried to calculate the optimal solution in the high-
est possible frequency (i.e., every time a new request

| —A— ORNInA
GREEDY
| —=— CPLEXCS
—e— CPLEXR

o I o e o 14
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L L L n

# served requests / # requests

o
w
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Fig. 9. Quality of Service with increasing fleet size

is announced). Usually, the vehicles move and change
their connected sets frequently, which means even the
second strategy (CPLEX_CS), can keep the schedules
mostly up-to-date. However, on the one hand in some
scenarios with few vehicles in a wild map, vehicles
may be far away from each other, so they do not be-
long to any connected set, and their knowledge about
requests is limited. On the other hand, with more vehi-
cles, the connectivity between vehicles increases, lead-
ing to some point where all vehicles are stably con-
nected, e.g., all vehicles belong to a unique connected
set that does not change. In such a case, the CPLEX
solver is never queried with the CPLEX_CS for a while
until a vehicle leaves the connected set. These two
cases explain why in the medium fleet sizes, the re-
sults from CPLEX_CS are close to the upper-bound
obtained by CPLEX_R, as the connected sets change
more frequently and so the rescheduling. Note that it is
impossible to achieve a 100% QoS rate in these scenar-
ios since there will always be requests that will be gen-
erated until the last cycle, assuming that the scenario
execution continues to serve them, while the execution
stops at the last cycle, leaving them unserved.

With a low number of vehicles, the connected sets
are small and, as a consequence, the amount of shared
information is reduced so that there are no quality dis-
crepancies between the compared approaches. With
larger fleet sizes, more information is shared in the
connected sets. Additionally, vehicles switch from one
connected set to another more frequently. Although
QoS values of our algorithm are close to those obtained
by the greedy approach, they remain slightly ahead of
them, and to achieve the same values of QoS with no
coordination, more vehicles in the fleet are required, as
shown in Figure 9.

Starting from small fleet of 3 vehicles, the ORNInA
heuristic allows obtaining solutions with the same QoS
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and QoB values as those of the GREEDY algorithm
and the CPLEX solver. More requests can be satisfied
by increasing the size of the fleet, which increases the
QoS and QoB values.

We find that the increase in these values for the
ORNInA heuristic is more significant than that of the
greedy approach. This can be explained by the fact
that demand planning improves the system profit in the
foreseeable future, as it reduces the process of roam-
ing without a specific destination until a new demand
is chosen, which is the behavior of the vehicles in the
greedy algorithm.

The value of QoS continues to grow as the fleet size
increases until it reaches a ng,s threshold where the
addition of new vehicles becomes unnecessary, as all
requests received in the system now or in the future
(except those received in the last moments of execu-
tion) can be served with the current fleet size. The same
is true for QoB, but the difference here is that the ve-
hicles added will result in additional operational ex-
penses, resulting in a loss of profit value after reaching

Table 1
Exchanged messages per simulation cycle
Approach Count Avg size (Bytes)  Max size (Bytes)
GREEDY O(n) 88 140
CPLEX 0(2n) 163 2500
ORNInA O(n+m) 112 140

its ng,p growth threshold. In general, ng,p is less than
ngoes. and we can see a trade-off between improving
QoS or QoB.

According to the Figure 10, we see that the greedy
fleet has nRE™°Y = 12 with a QoS of only about
60% compared to nQRE™ = 16 with a QoS of about
70%, while the highest value of QoB in these exper-

iments is about 80% with nGrz** = 18 . Note that
nGREEPY < ndREM and even if it decreases afterwards,

the value of ngﬁgI“A remains higher than nSEEEDY. This

gives a broader range of options for combining the en-
hancements of the provided solution (QoS and QoB).
Figure 11 particularly demonstrates how GREEDY has
an abysmal performance when looking at both QoS
and QoB (and their ratio), while the other allocation
mechanisms remain in the same group, completing
both qualities, but at different levels.

In the three compared approaches, every simulation
cycle, agents in a connected set of size n that are aware
of m requests exchange info messages. In addition,
agents in ORNInA approach exchange bid and pull
messages, while in the centralized CPLEX approach,
agents send queries and receive schedules in answer
from the solver. Table 1 shows statistics about the ex-
changed messages by the three approaches in these ex-
periments. In GREEDY, agents exchange the minimal
number and size of messages that contain the essen-
tial information about known requests and the contexts
of connected sets. Each agent may receive up to one
message from each other member of its connected set.

The size of a query message to the CPLEX solver
depends on the sub-problem instance size. In our ex-
periments, the largest sub-problem instance was 10 ve-
hicles and 22 requests; this instance’s query message
reached the size of 2.5 kB. In ORNInA, the bid and
pull messages and their answers are of small size, but
the message count is higher.

The above results show that in all cases, and in the
condition of updating schedules frequently, schedul-
ing several requests in advance (like ORNInA and
CPLEX) gives better results than scheduling a single
request with a GREEDY approach.

In practice, the dynamic aspect of the problems re-
quires frequent and real-time computation of sched-
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ules, eliminating the CPLEX central dispatcher ap-
proach because of the NP-Hard complexity of the
problem. However, ORNInA provides a good combi-
nation of quality and feasibility of the solution with its
reduced computation time and no global information
sharing.

7. Conclusion

In this paper, we proposed ORNInA, a decentral-
ized coordination mechanism for the exchange of re-
quests, based on an insertion heuristic and auctions,
to allocate requests to vehicles in the context of dy-
namic on-demand transport with V2V communication.
We model this allocation problem with connectivity
constraints as the AVFAP, which extends traditional
DARP.

We show through examples that the request ex-
change protocol can be a promising improvement in
the quality of the solutions. To assess the feasibility of
the proposed protocol, we evaluated our technique’s re-
sults on synthetic data for taxis operating in the city of
Saint-Etienne and showed that it outperforms a classi-
cal greedy approach. Moreover, compared to classical
centralized MILP-based solvers (computing the opti-
mal allocation either at each simulation step or at each
connected set update), ORNInA provides very good
quality results on both QoB and QoS while following
fully decentralized decision making.

In future work, we plan to have more evaluation on
the efficiency, performance, robustness, and optimality
of this heuristic with respect to different approaches,
like distributed constraint optimization, by simulating
different parameters on information distribution, deci-
sion criteria, and different levels of problem dynam-
ics. Finally, to assess the scalability of such decentral-
ized approaches, we plan to simulate larger cities and
fleets, based on real on-demand transport dataset, like
the NYC-TLC open dataset® or an adaptation of the Li
and Lim benchmark* to AVFAP.
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