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Abstract. In this overview paper, we present the work of the Goal-Oriented Long-Lived Systems Lab on multi-
robot systems. We address multi-robot systems from a decision-making under uncertainty perspective, proposing
approaches that explicitly reason about the inherent uncertainty of action execution, and how such stochastic-
ity affects multi-robot coordination. To develop effective decision-making approaches, we take a special focus on
(i) temporal uncertainty, in particular of action execution; (ii) the ability to provide rich guarantees of performance,
both at a local (robot) level and at a global (team) level; and (iii) scaling up to systems with real-world impact.
We summarise several pieces of work and highlight how they address the challenges above, and also hint at future
research directions.
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1. Introduction

The Goal-Oriented Long-Lived Systems (GOALS) Lab is a research group based at the Oxford Robotics
Institute, University of Oxford, UK. Established in 2017, GOALS focuses on decision-making under un-
certainty for autonomous systems. In particular, we focus on long-term autonomy and task and mission
planning for mobile robots which must operate for extended periods (days, weeks or months) in dynamic,
uncertain environments. To create long-term autonomous behaviour, we explore the application of artifi-
cial intelligence and formal methods to robots. We focus on the use of decision-making under uncertainty
and machine learning, such that the longer robots act in an environment, the better they perform. We
specialise in optimising and providing formal performance guarantees given rich behaviour specifications,
such as temporal logics, risk-aware planning and multi-objective scenarios.

A particularly relevant strand of research within GOALS is the field of multi-robot systems (MRS).
Our MRS research focuses on exploring how robots interact with each other over time, and how modelling
these interactions can improve planning. These physical interactions occur between embodied agents with
limited sensory and actuation capabilities, and in environments that are often dynamic and not fully
known a priori. This leads to inherently uncertain interactions, and we believe it is key to consider such
uncertainty in the modelling formalisms that are employed. To do so, we typically use variants of Markov
decision processes (MDPs) [26], often extending them to consider particular aspects of the problem being
tackled. We also adopt techniques developed in the broader multi-agent systems (MAS) field, specialising
them to the MRS setting. In this paper, we aim to provide our perspective on the main challenges to be
addressed in this context, describe approaches we have developed to address them, and give an overview
of our current research directions and interests.
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1.1. Challenges

Teams of mobile robots evolve in space and time, and appropriately modelling their dynamics is key for
performant multi-robot planning approaches. Furthermore, an overarching challenge in all MRS research is
tackling the difficulties of scaling up to realistic applications. This leads to several interconnected challenges:

• Modelling asynchronous behaviour. Most modelling approaches for MAS under uncertainty, such as
multi-agent MDPs (MMDPs) [4] or decentralised partially observable MDPs (Dec-POMDPs) [25], as-
sume the agents act synchronously, in lock-step. For many MAS problems, this assumption is not overly
restrictive. However, in MRS where robots are navigating between locations, enforcing synchronous
actions can lead to sub-optimal behaviour and communication overhead [23]. Moreover, the duration
of actions are also uncertain. Therefore, we require models that not only model the uncertainty over
action outcome, but also explicitly consider the uncertainty over action duration.

• Interplay between local (single-robot) and global (team) views. When modelling MRS, one can consider
two perspectives. A global, team-level, perspective related to modelling and specifying objectives that
must be achieved by the team; and a local, single robot perspective related to individual models of
action execution and individual robot goals. Models like MMDPs and Dec-POMDPs consider both
perspectives simultaneously, but at the cost of joint state spaces composed of the Cartesian product
of each robot’s internal state features (e.g. location, battery level), along with possible environmental
features (e.g. presence of humans, location of objects). This leads to poor scalability. We believe that
different problems require different levels of fidelity of the local and global perspectives, and scaling
up requires principled approaches that make use of probabilistic guarantees of single-robot behaviour
to provide guarantees at the global level. This interplay between the local and global levels is key to
achieving performant solutions that can scale to realistic problems.

• Rich behaviours. Decision-making under uncertainty approaches typically specify goals as a reward to
maximise or a cost to minimise. Whilst these are suitable in many situations, many problems require
considering other, richer, objectives. We believe intended system behaviour should be specified using
not only a reward or cost, but also should consider other objectives such as temporal logic specifica-
tions, safety, or risk. Furthermore, conjunctions of these objectives should often be considered simul-
taneously, through the use of techniques from multi-objective reasoning or constrained optimisation.
Finally, they should also be considered at local or global levels, depending on the problem.

1.2. Applications

Our work typically considers cases where the goals given to the robots (either individually or as a
team) involve visiting a sequence of spatial locations, sometimes within a bound on the time or energy
used to complete this sequence. As such our application focus falls largely into two areas, (intra-)logistics
and large-scale inspection and monitoring. Within the logistics setting our multi-robot methods optimise
the flow of goods in a single, shared environment. We are working in this space with industrial partners
including Accenture Labs and the Honda Research Institute Europe. Accenture Labs have used our methods
to explore the automatic generation and evaluation of new warehouse layouts and human-robot team
compositions. We have also taken inspiration from applications in agriculture, particularly fruit picking [7,
16], where a team of robots dynamically collect goods from a team of humans. In the area of inspection,
we have been working to develop methods that could scale to multi-robot inspection of large areas such as
solar farms and nuclear sites.

1.3. Other Multi-Agent Systems Research in GOALS

MAS are present in other aspects of GOALS research. In particular, we have considered shared autonomy
scenarios [6, 28], which can be viewed as a MAS composed of an autonomous artificial agent and a human;
and have also considered stochastic game formulations for robust and risk-averse planning [27, 29, 30],
modelling the problem as a game between the robot and the environment. For this paper, we chose to
focus on our research on MRS as this is where concepts and approaches from MAS are more prevalent.



Fig. 1. A mobile robot in its environment, and the corresponding map and navigation graph. Blue (bi-directional) edges
represent possible navigation actions between states. Reprinted from [20].

2. Main Approaches

Our approaches consider teams of spatially distributed mobile robots that must navigate in an envi-
ronment to achieve a certain goal. Depending on the setting, these might be problems where team mem-
bers have individual goals, problems where a formal specification of desired behaviour is provided at the
team level, or both. To abstract from the continuous dynamics of robot navigation and focus on high-level
aspects of multi-robot coordination, we consider robots that evolve on a navigation graph G = ⟨V, E⟩,
where vertices in V represent relevant locations in the environment and edges in E represent the ability
to navigate between two locations without visiting another location. Fig. 1 depicts a robot navigating,
alongside a navigation graph overlaying a metric map representation of an environment. In the following
approaches, we assume there is a single navigation graph shared by all robots.

2.1. Multi-Robot Generalised Stochastic Petri Nets

We start by describing work that considers a global model of the team’s execution. This was our first
work tackling asynchronous action execution under uncertain navigation times. We model a multi-robot
team navigating on a topological map using a generalised stochastic Petri net (GSPN). A GSPN is formed
of a set of places, immediate transitions and exponential transitions. It models the flow of tokens, with
the firing of transitions moving tokens across places according to the model’s structure. In a GSPN for
multi-robot navigation (MR-GSPN), we model the triggering of actions as immediate transitions, and
their duration using exponential transitions. Places represent nodes and edges in the navigation graph.
Crucially, the robots are modelled as tokens, i.e. the tokens in each place represent the number of robots in
the corresponding edge or node of the environment. This allows for a compact representation of a global
perspective of the multi-robot team that scales better than traditional multi-agent models such as MMDPs
or Dec-POMDPs, which represent the state as a Cartesian product of local state features. Furthermore,
the event-based semantics of MR-GSPN inherently considers asynchronous execution. Fig. 2 depicts a
fragment of a MR-GSPN.

This approach relies on the anonymity and homogeneity of robots to allow for a compact representation
of the team. As such, it is suitable for specifications where the goal is global, i.e. can be optimised without
reasoning explicitly about which robot does what. To optimise specifications, we exploit the interpretation
of GSPNs as Markov automata (MA) [10]. MA are an extension of MDPs that explicitly model immediate
and exponentially timed transitions. MA can be solved for several classes of specifications, typically by
reducing the optimisation problems over MA to optimisations over MDPs, which might be discrete- or
continuous-timed depending on the specification [14, 15]. In our previous work, we investigated two classes
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Fig. 2. Example of construction of a MR-GSPN. Left: two nodes v and v′ connected by an edge in a navigation graph;
Right: The fragment of the GSPN representing a team of robots navigating between v and v′. Places are represented by
circles, immediate transitions by filled rectangles, exponential transitions by empty rectangles and tokens as filled circles. The
depicted marking represents a state where one robot is at v and two robots are navigating from v to v′. Reprinted from [22].

of specifications. In [22], we considered the problem of maximising the total reward the system can obtain
until a failure occurs. However, considering failures to be fatal, and not allowing the system to gather
more reward when a failure occurs, led to policies that were often overly conservative. This, along with our
interest in long-term autonomy, led to the work in [2], which focused on long-run average (LRA) reward
optimisation. This allowed us to additionally quantify the cost of recovering from a failure. Empirical
experiments in a wildfire monitoring scenario showed that optimising for LRA leads to better results than
the more typical approach of optimising for infinite-horizon discounted reward.

2.2. Context-Aware Multi-Agent Simulation

The MR-GSPN model’s compactness allows for scaling to larger numbers of robots than the more
traditional multi-agent joint state representation employed in MMDPs and Dec-POMDPs [22]. However,
the model of each robot is extremely impoverished, with all robots being represented as tokens which
are indistinguishable. Thus, in [34], we proposed a methodology that models MRS using a joint state,
composed of the Cartesian product of each robot’s local state features and a set of global state features,
but still allows the modelling of asynchronous execution in continuous time. We achieve this by extending
MAs to the multi-robot case. Further, the proposed multi-robot MA (MRMA) considers context when
computing distributions over action outcome and duration. Context can be viewed as an abstraction of the
global state that summarises the influence [24] the environment and other robots have on a specific robot’s
action execution. An example context for MRS is congestion, which we define as the number of robots close
to the robot executing a navigation action. Contexts allow us to distinguish between different situations
when executing an action, without considering the full joint state. This enables the construction of MRMA
models from empirical data, and in [34] we propose data gathering policies. Finally, we introduce the
context-aware multi-agent simulator (CAMAS), a discrete event simulator based on the MRMA model. We
validate an MRMA obtained from data gathered in the Gazebo physics simulator by comparing statistics
of CAMAS executions with Gazebo.

The MRMA is a centralised multi-agent joint model, which makes it intractable for planning. However,
due to the accuracy of its underlying MRMA, CAMAS can be used to quickly evaluate policies. This
enables fast prototyping and evaluation of planning solutions.

2.3. Congestion-Aware Planning

The MRMA model presented in [34] is an accurate representation of the global state of the MRS and
can be used to evaluate both global and local properties of a set of policies. However, it is not suitable
for planning due to its joint state representation. To plan using context-aware models, we have taken a
more local perspective where each robot has its own goal and the team objective is to find a makespan-
minimising solution (i.e. a solution that minimises the cost for all robots to achieve their goals) [33, 35]. The
congestion-aware planner (CAP) focuses on congestion as a form of context and the impact of this context
on navigation duration. To facilitate planning, we consider single-robot models augmented with congestion
information obtained from a probabilistic reservation table, which contains information regarding the plans
of other robots. These yield (single-robot) MA which are time-varying due to the congestion happening
at specific times and locations. We propose a sequential planning mechanism, where each robot considers



only the plans of robots that have planned previously and ignores the behaviour of subsequent robots.
These plans are modelled as continuous-time Markov chains induced by the synthesised policies over the
MA and, when planning for subsequent robots, are used to compute congestion probabilities via analysis of
transient probabilities [19]. Whilst suboptimal, this simple planning mechanism allows for good scalability
and has been empirically proven to yield good solutions in multi-robot navigation problems [31].

2.4. Non-Cooperative Multi-Agent Path Finding

The congestion-aware planner described above deals with a variant of a multi-agent pathfinding (MAPF)
problem [32] that explicitly considers continuous time and uncertainty over action durations. In MAPF,
given a set of robots and a goal location for each robot, one aims to find a non-conflicting goal-reaching
path for each robot. In this context, the navigation graph typically represents a grid map and a conflict
occurs when two robots are in the same node or try to swap nodes. Furthermore, in its standard form,
MAPF considers deterministic models.

MAPF is a canonical multi-robot coordination problem where robots must coordinate and share resources
(a certain location at a certain time) and, as such, we considered it a fitting problem to establish our
research on non-cooperative systems. Therefore, in [13], we considered a non-cooperative MAPF scenario,
i.e. a scenario where we assume the agents are self-interested. In such a scenario, the global guarantees
relate to mechanism design notions, specifically incentive compatibility and individual rationality. Broadly
speaking, incentive compatibility means an agent cannot benefit from lying and individual rationality
means each agent is better off participating in the auction than they would be otherwise.

Our approach is based on a modified combinatorial Vickrey-Clarke-Groves (VCG) auction [18]. For scal-
ability, we limit the initial number of bids in the VCG auction, and then use the knowledge the auctioneer
obtains from the bids to identify and solve path conflicts. We also consider single-agent bid generation and
propose a similarity metric to use for dissimilar shortest-path generation. We show empirically that our
method enables the solution of larger problems than previous work on non-cooperative MAPF [1], and that
computing bids using the proposed dissimilar paths generation method increases the success likelihood of
the auction.

2.5. Simultaneous Task Allocation and Planning

In all the work described above, we did not reason explicitly about the allocation of tasks to robots.
However, multi-robot task allocation (MRTA) [17] is a key problem in multi-robot coordination. Many of
the methods proposed for MRTA, e.g. auctioning approaches [21], decouple the task allocation from the
(single-robot) planning process. However, this separation typically means that the task allocation process
cannot be informed by the plans of the individual robots, which prevents allocation mechanisms from
exploiting opportunities or avoiding hindrances, that are only evident once planning has been performed.
Thus, in [11], we propose a framework for simultaneous task allocation and planning under uncertainty
(STAPU). The approach considers an MDP model for each robot, and a mission specified as a set of co-safe
linear temporal logic (LTL) tasks that must be completed, along with a safe LTL constraint that must
hold throughout the MRS execution. Instead of building a full joint model of the problem, we exploit task
independence assumptions to build a model which considers each robot sequentially. The obtained policies
are then executed jointly. This allows the approach to scale linearly in the number of robots, in contrast
with the exponential explosion associated with the joint multi-agent model.



Approach Global
View

Local
View Planning Uncertainty Asynchronous

Execution
Task

Allocation Scalability

MR-GSPN
[2, 22] GSPN Robots

as tokens Yes Action duration Yes Implicit 10 robots

MRMA [34] MRMA Context-aware
MA No Action duration

and outcomes Yes A priori 20 robots

CAP [33, 35] Team
makespan

Context-aware
MA Yes Action duration

and outcomes Yes A priori 10 robots

Non-cooperative
MAPF [13]

Social
welfare;

Individual
rationality;
Incentive

compatibility

Grid
map Yes None No A priori 15 robots

STAPU [11]
Sequential

team
MDP

MDP Yes Action outcome No Explicit 8 robots

Table 1
Summary of main features and assumptions of the pre-
sented methods. Scalability refers to the maximum number
of robots the method was experimented on in the corre-
sponding publication(s).

3. Discussion and Future Directions

3.1. Methods Features and Assumptions

The presented works address different aspects of planning for MRS and do so under different assumptions
and model fidelity, both at the local (single-robot) and the global (team) levels. Table 3.1 summarises the
features and assumptions of each method. We summarise the main points:

• The MR-GSPNs provide a global model of team behaviour which naturally considers concurrent action
execution and uncertainty over action duration. Furthermore, task allocation is achieved implicitly as
part of solving the global model. However, the single-robot aspect is greatly simplified, by considering
robots only as tokens. This introduces limits over the kind of problem that can be tackled, as the
model only counts the number of robots that are in each location, but does not consider anything
else regarding their internal state. The MR-GSPN could be extended to do so, but at the cost of its
compactness. In the limit, if all the internal features of each individual robot were taken into account,
the MR-GSPN would become equivalent to the MRMA.

• The MRMA is an accurate and fine-grained model of both the individual robots and the team. It
inherently considers uncertainty over action outcome and duration and is the highest fidelity model
we have proposed. However, the joint state representation scales prohibitively and does not allow
for planning for realistic problems. It can, however, be used to provide accurate statistics on the
performance of policies obtained using other approaches, by using CAMAS to simulate the execution
of such policies.

• The CAP takes a single-robot perspective of the MRMA discussed above. This allows for coordination
to arise from planning on the single-robot models, since they include the presence of other robots, in
the form of contexts of action execution. However, the local perspective only allows for planning in
the presence of other robots, rather than considering more general global specifications, such as those
that include task allocation.

• The non-cooperative MAPF solver considers a different high-level problem of self-interested agents,
removing the assumption of fully cooperative systems that underlies our other work. It can provide
global guarantees on individual rationality and is designed to prevent exploitation by the participating
robots. However, it does so under assumptions of deterministic and fully synchronised robot behaviour.



• The STAPU approach explicitly considers the task allocation aspect of multi-robot coordination, and
does so under rich temporal logic specifications. Independence assumptions over tasks allow us to
consider the robots sequentially rather than jointly, which brings substantial scalability benefits. How-
ever, these assumptions disallow cooperative tasks. Furthermore, the approach assumes synchronous
policy execution which, as mentioned previously, leads to suboptimal behaviour and communication
overhead.

3.2. Research Directions

The main objective of the MRS research carried out in GOALS is to push our methods to improve
along the main axis we consider: rich local models and specifications; rich global models and specifications;
and scalability. These objectives are often conflicting and our main goal is to find ways to improve on
all of them. To do so, we will consider what relevant aspects of each problem require precise modelling,
and at which level. Furthermore, we intend to more explicitly consider the interplay between local and
global guarantees. This general research direction instantiates into more concrete pieces of work that we
are currently pursuing:

• In recent years, the field of multi-agent reinforcement learning (MARL) has seen substantial devel-
opments, stemming from the advances in deep reinforcement learning approaches [12]. However, its
use in MRS applications is under-explored. We believe there are two main challenges related to this
(i) the asynchronous action execution of teams of mobile robots is not considered in state-of-the-art
MARL approaches; and (ii) there is a lack of simulators of multi-robot behaviour that can quickly and
accurately provide large amounts of data for training. We believe CAMAS [34] is appropriate to tackle
point (ii), and are currently researching adaptations of MARL algorithms to consider asynchronous
action execution, intending to develop a MARL algorithm that enables context-aware multi-robot
coordination. The use of MARL approaches will allow us to scale up to larger problems and relax ob-
servability and communication assumptions during execution, since robots will condition their actions
only on (local) contexts.

• We are continuing our work on non-cooperative MRS and are extending it to consider uncertainty.
Specifically, we are investigating approaches that ensure the fair allocation of a multi-unit resource to
a set of robots. This problem has been considered in the cooperative setting as resource-constrained
MAS [8], and we are extending into the non-cooperative setting by developing auction-based ap-
proaches with a price structure that ensures that robot bids are truthful. This requires a non-
straightforward adaptation of traditional pricing structures because bids also include the probability
of a certain resource use. The auctioning approach can also be applied to the cooperative setting, by
not considering the pricing structure and simply using the auction to allocate resources without any
kind of payment. We believe this work has the potential to advance the state-of-the-art on cooperative
resource-constrained MAS whilst simultaneously addressing the unstudied non-cooperative aspect.

• We are continuing our work on continuous-time models of multi-robot execution and extending them
to also consider spatiotemporal models of task announcement. We aim to bring these fine-grained local
models of robot execution and task announcement to the global level, and develop proactive task
allocation approaches that utilise the task announcement models to improve the effectiveness of the
team by assigning robots to areas where tasks are likely to occur.

• Finally, we intend to extend approaches that address the online learning of environment dynamics
from single-robot to multi-robot settings. In particular, we will consider our work on safe exploration
and planning using Gaussian process models of a priori unknown environment features [3, 5, 9] in
the multi-robot setting. We aim to develop approaches that can quickly learn a priori unknown
environments by utilising the MRS to cover the environment efficiently.



4. Conclusion

In this paper, we described the work developed in the GOALS group related to MAS, in particular the
coordination of MRS. The basis of our work relies on model-based reasoning under uncertainty, and the
search for model representations of both single robots and of the overall team behaviour that enable the
specification and synthesis of rich behaviour. We believe that bringing techniques and models developed in
the context of more general MAS to the MRS domain has the potential to yield substantial advancements
to the development and application of MRS in the real world. However, there are several challenges to
be tackled and one must consider the specificities of teams of embodied agents that evolve in space and
time. The MRS research in GOALS strives to develop principled techniques that achieve this in a range
of scenarios.
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