
UNIVERSITY OF OULU P .O. Box 8000 F I -90014 UNIVERSITY OF OULU FINLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

Professor Esa Hohtola

University Lecturer Santeri Palviainen

Postdoctoral research fellow Sanna Taskila

Professor Olli Vuolteenaho

University Lecturer Veli-Matti Ulvinen

Director Sinikka Eskelinen

Professor Jari Juga

University Lecturer Anu Soikkeli

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-1334-7 (Paperback)
ISBN 978-952-62-1335-4 (PDF)
ISSN 0355-3213 (Print)
ISSN 1796-2226 (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

OULU 2016

C 581

Xiang Su

LIGHTWEIGHT DATA AND
KNOWLEDGE EXCHANGE
FOR PERVASIVE
ENVIRONMENTS

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

C
 581

AC
TA

X
iang Su

C581etukansi.kesken.fm Page 1 Monday, August 29, 2016 10:39 AM

A C T A U N I V E R S I T A T I S O U L U E N S I S
C Te c h n i c a 5 8 1

XIANG SU

LIGHTWEIGHT DATA AND
KNOWLEDGE EXCHANGE FOR
PERVASIVE ENVIRONMENTS

Academic dissertation to be presented with the assent of
the Doctoral Training Committee of Technology and
Natural Sciences of the University of Oulu for public
defence in Auditor ium IT116, L innanmaa, on 21
September 2016, at 12 noon

UNIVERSITY OF OULU, OULU 2016

Copyright © 2016
Acta Univ. Oul. C 581, 2016

Supervised by
Professor Jukka Riekki

Reviewed by
Doctor Ora Lassila
Associate Professor Kerry Taylor

ISBN 978-952-62-1334-7 (Paperback)
ISBN 978-952-62-1335-4 (PDF)

ISSN 0355-3213 (Printed)
ISSN 1796-2226 (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT
TAMPERE 2016

Opponent
Professor Johan Lilius

Su, Xiang, Lightweight data and knowledge exchange for pervasive environments.
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering
Acta Univ. Oul. C 581, 2016
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

Pervasive environments are physical spaces saturated with devices collecting data, controlling the
environment, and interacting with users. These environments support human users in their
everyday tasks so that the users can focus on their own tasks and access services and resources
whenever and wherever they want. Such environments are also called smart spaces. Knowledge-
based systems would enable realizing a variety of intelligent applications for pervasive
environments. Generally, such systems recognize the situation in the environment from sensor
data and utilize automated reasoning techniques to respond to the situation and the needs of the
users.

However, building knowledge-based systems for pervasive environments presents challenges.
This dissertation focuses on the challenge of data and knowledge representations. Knowledge-
based systems utilize expressive knowledge representations that are verbose and require sufficient
resources in order to use them. Most devices in pervasive environments cannot handle these
representations as the devices have limited resources for computation, storage, and
communication. The main aim of this dissertation is to tackle this challenge. That is, on the one
hand, pervasive environments demand data and knowledge representations that do not require
many resources from the resource-constrained devices; and on the other hand, the representations
should be compatible with the knowledge-based systems. Specifically, a general solution is
required that enables many applications to use the same data with minimal effort from application
developers.

This dissertation presents a novel representation, Entity Notation (EN), to tackle these
challenges. EN is designed as a general lightweight representation for data and knowledge. EN
expresses entities, their properties, and property values. This structure resembles the triple
structure of Resource Description Framework (RDF) and Web Ontology Language (OWL).
Hence, sensor data in EN syntax can be transformed into common knowledge models in a
straightforward manner and utilized with ease by knowledge-based systems. EN Schema is
designed for transferring advanced knowledge models. Moreover, EN also offers an approach to
shorten the format with templates and prefixes. This way, EN can be utilized by resource-
constrained devices and environments. Our evaluation verifies that small devices can utilize EN
to transfer data and knowledge to devices realizing intelligent functions, such as inference.
Moreover, the expressive power of EN is comparable with the alternative representations. Finally,
resource consumption is verified by prototypes. Based on the evaluation, we can conclude that EN
can facilitate harnessing the full potential of pervasive environments.

Keywords: Entity Notation, knowledge-based systems, ontology, reasoning, Resource
Description Framework, resourceconstrained devices, semantics

Su, Xiang, Kevyen datan ja tietämyksen esitystavat jokapaikan tietotekniikan
sovelluksille.
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta
Acta Univ. Oul. C 581, 2016
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Kaikkialla läsnäolevat ympäristöt ovat fyysisiä tiloja täynnä laitteita, jotka keräävät dataa, ohjaa-
vat ympäristöä ja ovat vuorovaikutuksessa käyttäjien kanssa. Nämä ympäristöt tukevat ihmisiä
päivittäisissä tehtävissä siten, että ihmiset voivat keskittyä tehtäviinsä sekä käyttää erilaisia pal-
veluja ja resursseja ajanhetkestä ja paikasta riippumatta. Tällaisia ympäristöjä kutsutaan myös
älykkäiksi tiloiksi. Tietämysjärjestelmät mahdollistavat monia sovellusskenaarioita näihin ympä-
ristöihin. Nämä järjestelmät tunnistavat ympäristössä vallitsevan tilanteen sensoridatan avulla ja
hyödyntävät automaattista päättelyä reagoidakseen tilanteeseen ja käyttäjien tarpeisiin.

Tietämysjärjestelmien kehitys näihin ympäristöihin on kuitenkin haasteellista. Tämä väitös-
kirja keskittyy datan ja tiedon esitystavan haasteisiin. Tietämysjärjestelmät käyttävät ilmaisuvoi-
maisia tietämyksen esitysmalleja, joiden monimuotoisuus puolestaan edellyttää riittäviä resurs-
seja. Monet laitteet eivät pysty käsittelemään näitä esitysmalleja koska niillä ei ole riittäviä las-
kenta-, kommunikaatio- ja tallennusresursseja. Väitöskirjan päätavoite on ratkaista tämä haaste:
Toisaalta dataa ja tietämyksen esitysmalleja on voitava käsitellä niukoilla resursseilla; toisaalta
esitysmallien on oltava yhteensopivia erilaisten tietämysjärjestelmien kanssa. Erityisesti tarvi-
taan yleisratkaisu, joka voidaan yhdistää useaan sovellukseen vähäisellä sovelluskehitystyöllä.

Tämä väitöskirja esittää ratkaisuksi uuden datan ja tietämyksen esitystavan, Entity Notation -
mallin (EN). EN on suunniteltu yleiseksi ja kevyeksi tiedon ja tietämyksen esitystavaksi. EN
ilmaisee entiteettejä sekä niiden ominaisuus-arvopareja. Tämä rakenne muistuttaa RDF-kuvaus-
kieltä sekä OWL-ontologiakieltä. Täten sensoridata EN-kielessä voidaan muuttaa suoraviivai-
sesti yleisiksi tietämysmalleiksi ja hyödyntää helposti tietämysjärjestelmissä. EN Schema on
suunniteltu tietämysmallien siirtämiseen. EN tarjoaa myös tavan lyhentää muotoa mallineilla ja
etuliitteillä. Näin EN-esitystapaa voidaan hyödyntää resurssirajoitteisissa laitteissa ja ympäris-
töissä. Tehdyt kokeet osoittavat, että pienet laitteet voivat käyttää EN-esitystapaa tiedon ja tietä-
myksen siirtämiseen älykkäitä toimintoja toteuttaviin laitteisiin. Lisäksi EN-esitystavan ilmaisu-
voimaisuus on verrattavissa vaihtoehtoisiin esitystapoihin. Prototyyppien avulla tarkistettiin
resurssien tehokas käyttö. Kokeiden perusteella voidaan todeta, että EN-esitystapa helpottaa läs-
näolevien ympäristöjen täyden potentiaalin hyödyntämistä.

Asiasanat: ontologia, päättely, resurssirajoitteiset laitteet, semantiikka,
tietämysjärjestelmät

To my whole family

8

Acknowledgements

First and foremost, my very special thanks to my supervisor, Professor Jukka Riekki. I
would not be here without his guidance, trust, and support. He can always point out new
directions of research in a couple of words. Jukka gave me lots of freedom in doing my
research work the way I wished. I am indebted to him for his constant encouragement,
patience, and invaluable guidance throughout this research.

I also wish to thank Dr. Ora Lassila and Associate Professor Kerry Taylor for
reviewing this dissertation and providing me very helpful and constructive comments. I
would like to thank Professor Johan Lilius for serving as the opponent in the doctoral
defence.

The Department of Computer Science and Engineering offers an excellent working
environment for carrying out this research. Especially, I would like to thank Dr.
Janne Haverinen for his great help in measuring resource consumption of sensors,
and Dr. Ekaterina Gilman for all the discussions and nice cooperation in research
and some student projects. Great thanks are also expressed to my other colleagues
Mika Rautainen, Susanna Pirttikangas, Yuhong Li, Mikko Perttunen, Iván Sánchez,
Marta Cortés, Oleg Davidyuk, Timo Saloranta, Mika Oja, Mikko Polojärvi, Mikko
Pyykkönen, Teemu Leppänen, Mikko Kauppila, Marko Jurmu, Szymon Sasin, Jiehan
Zhou, Meirong Liu, and Pingjiang Li for constructive discussions. Office staff and
computer administrators are also acknowledged for keeping everything running so
smoothly. Moreover, during this research, I made a one-year visit to Department of
Computer Science and Engineering, Helsinki University of Technology (now Aalto
University). I would like to thank the hosting from Professor Sasu Tarkoma. Thanks
also go to Jaakko Kangasharju, Pin Nie, and Zhihua Jin for interesting discussions and
comments. I also wish to thank Professor Jukka K. Nurminen, Johanna Nieminen, Ari
Keränen, Markus Koskimies, and Ilari Maarala for their great contribution in the Internet
of Things ICT SHOK program.

I gratefully acknowledge the financial support from Infotech Oulu graduate school,
NOKIA Foundation, HPY Research Foundation, Tauno Tönning Foundation, Finnish
Foundation of Electronics Engineers, Walter Ahlström Foundation, Tekniikan Edistämis-
säätiö, and University of Oulu Graduate School funding for finalizing this dissertation.
Part of the research was carried out in Knowledge Environment for Interacting ROBOt

9

SWARMs (ROBOSWARM) project supported by the Sixth Framework Programme for
Research and Technological Development, Pervasive Service Computing project funded
by the Ubiquitous Computing and Diversity of Communication (MOTIVE) programme
of the Academy of Finland, and Internet of Things (IoT) program funded by DIGILE
and Tekes.

Finally and most importantly, I owe eternal gratitude to my splendid wife and our
four lovely children, Yun, Yan, Xuan, and Ziyuan. Our kids bring us lots of happiness.
My parents Jinsheng Su and Xiaoling Li have been always there for supporting and
encouraging me, no matter what choices I have made. I can always feel their love and
understanding in these years in Finland, 6,631 km far away from my hometown.

Oulu, June 2016

10

Abbreviations

AmI Ambient Intelligence

CNL Controlled Natural Language

CoAP Constrained Application Protocol

CONON CONtext ONtology

CPU Central Processing Unit

CWM Closed World Machine

DL Description Logic

EBNF Extended Backus-Naur Form

EN Entity Notation

EXI Efficient XML Interchange

FOAF Friend Of A Friend

FOL First Order Logic

GPS Global Positioning System

GSN Global Sensor Networks

HDT RDF Header-Dictionary-Triples

HTTP Hypertext Transfer Protocol

IoT Internet of Things

IRI Internationalized Resource Identifier

Jess Java Expert System Shell

JSON JavaScript Object Notation

JSON-LD JSON for Linked Data

M2M Machine to Machine

MCU Microcontroller

MIME Multipurpose Internet Mail Extensions

N3 Notation 3

OGC Open Geospatial Consortium

OWL Web Ontology Language

PC Personal Computer

PML Product Markup Language

PoI Point of Interest

RDBMS Relational Database Management System

11

RDF Resource Description Framework

RDFa Resource Description Framework in Attributes

RDFS RDF Schema

RFCOMM Radio Frequency Communication

RFID Radio-frequency Identification

RIF Rule Interchange Format

RIF-BLD RIF Basic Logic Dialect

RSS RDF Site Summary

RuleML Rule Markup Language

SIOC Semantically Interconnected Online Communities

SenML Media Types for Sensor Markup Language

SOUPA Standard Ontology for Ubiquitous and Pervasive Applications

SRAM Static random-access memory

SSL Secure Sockets Layer

SSN Semantic Sensor Network

SWRL Semantic Web Rule Language

TCP Transmission Control Protocol

Turtle Terse RDF Triple Language

UCS Universal Coded Character Set

URN Uniform Resource Name

UUID Universally Unique Identifier

W3C World Wide Web Consortium

WAP Wireless Application Protocol

XML eXtensible Markup Language

XSD XML Schema Definition Language

12

Contents

Abstract
Tiivistelmä
Acknowledgements 9
Abbreviations 11
Contents 13
1 Introduction 17

1.1 Background and motivation . 17

1.2 Objectives and scope . 19

1.3 Contributions . 21

1.4 Research methodology and history .22

1.5 Dissertation structure . 23

2 Data and knowledge representations for pervasive environments 25
2.1 Knowledge representations and reasoning . 25

2.2 Semantics for resource-constrained devices . 28

2.3 Representing OWL ontologies . 35

2.4 Related work about semantic technologies for pervasive computing 42

2.5 Summary . 45

3 Entity Notation 47
3.1 Design considerations . 47

3.2 Formal description . 51

3.3 Complete packet format . 54

3.4 Short EN format . 58

3.5 Negotiating short packets . 61

3.6 Chaining EN packets . 66

3.7 Supported data structures . 67

3.8 Limitations . 71

3.9 Summary . 72

4 Entity Notation Schema 73
4.1 Design considerations . 73

4.2 Complete packet format . 75

4.2.1 Classes and instances . 79

13

4.2.2 Class hierarchies . 79
4.2.3 Class disjointness . 80
4.2.4 Object properties . 81
4.2.5 Property hierarchies . 82
4.2.6 Domain and range restrictions . 83
4.2.7 Equality and inequality of individuals . 83
4.2.8 Datatype properties . 84
4.2.9 Advanced class relationships . 85
4.2.10 Advanced use of properties . 89
4.2.11 Advanced use of datatypes. .91
4.2.12 Document information and annotations . 92
4.2.13 Sensor ontology example . 93

4.3 Short packet format . 93
4.4 Summary . 97

5 Evaluation 99
5.1 Expressive power . 100
5.2 Resource usage . 101
5.3 Simulator and RDF/XML data sets . 103
5.4 Transforming ontologies . 107
5.5 Sensor prototypes . 113

5.5.1 Well-being reporter . 113
5.5.2 General sensor system . 118

5.6 Ambient social interactions . 124
5.6.1 General framework . 125
5.6.2 EN for ambient social interactions . 126
5.6.3 Event map . 128
5.6.4 Summary . 135

5.7 Two-Layer inference framework. .136
5.7.1 Design . 136
5.7.2 Use case .139

5.8 Summary . 140
6 Discussion 143

6.1 General analysis . 143
6.2 Revisiting the research objectives .145
6.3 Contributions .146

14

6.4 Open issues and future work . 147
6.5 Concluding remarks .148

References 151

15

16

1 Introduction

1.1 Background and motivation

“The most profound technologies are those that disappear. They weave themselves into
the fabric of everyday life until they are indistinguishable from it” [1]. Mark Weiser
described his vision of ubiquitous computing, now also called pervasive computing, in
1991. The essence of that vision was the creation of pervasive environments that are
saturated with computing and communication capabilities and interact with human
users.

Not surprisingly, this vision was ahead of the time when articulated. However, recent
advances in sensing technology, embedded computing, human-computer interaction, and
wireless communication bring pervasive environments closer to our daily lives. Such
pervasive environments contain a large amount of devices, such as sensors, actuators,
and mobile phones, to perceive the environment, store and process data, pursue goals,
and perform actions to fulfill the needs of human users.

Two trends can be observed regarding the capabilities of these networked devices.
On the one hand, some devices, such as networked sensor nodes, are composed of
simple components. They can contain only sensing electronics, a modest microcontroller
(MCU), a transmission chip, and an energy source. These sensors are small and easy to
embed in physical environments, but have limited resources for computation, storage,
and communication. On the other hand, mobile devices have better resources, which
allow pushing to mobile devices the functionality, seen only on Personal Computers
(PCs) and server machines before. For example, modern smart phones have resources
for knowledge processing and inference.

Pervasive environments facilitate the development of various applications and
systems that support human users in their daily lives. Building knowledge-based systems
is a potential way to enable advanced functions. When information can be expressed
in well-structured knowledge models, intelligent decisions with justifications can be
provided. A knowledge-based system here refers to a computer program that reasons
and uses a knowledge base to solve problems, and here a knowledge base refers to
technology used to store complex structured and unstructured information [2]. In general,
such systems facilitate realizing pervasive environments, in which “massively distributed
devices operate collectively while embedded in the environment using information and

17

intelligence that is hidden in the interconnection network” [3], which is also the main
vision of Ambient Intelligence (AmI).

Hence, applications facilitating the daily life of their users can be built by distributing
knowledge components into physical devices in the environment. Compared with
deploying knowledge-based systems on a centralized system or Cloud, this approach
enables harnessing the computing capabilities of the devices in the environments and
decreasing the amount of communication. Moreover, users have better opportunities to
control privacy of their own data, when data is stored locally. However, distributing
knowledge systems introduces several challenges, including knowledge exchange among
system nodes, knowledge discovery in the environment, and aggregating knowledge to
support inference at different levels. Solutions are needed to access, disseminate, and
utilize knowledge in a flexible fashion in highly dynamic pervasive environments.

From these challenges, we focus in this dissertation on data and knowledge exchange.
Generally, data is a set of values of qualitative or quantitative variables; in other words,
data are individual pieces of information [4]. We focus on data captured by sensors and
human-computer interfaces. Knowledge is the “justified true belief”; it forms meaning
from data and enables computer systems to extract facts from data. The knowledge that
computer systems utilize for reasoning has to be evident and coherent. These features
allow knowledge-based systems to reason with judgmental, imprecise, and qualitative
knowledge, as well as reason with formal knowledge of established theories [2].

Semantic Web is an extension of the current Web and aims at a common framework
for sharing and reusing data across heterogeneous applications and systems. Semantic
Web technologies offer powerful representation facilities and reasoning techniques,
and facilitate data and knowledge modelling, querying, reasoning, service discovery,
privacy, and provenance. Semantic Web technology-based knowledge processing is a
good candidate for implementing intelligent functionality for pervasive environments.
For example, it supports rule-based reasoning and Description Logic (DL)-based
reasoning, knowledge reuse and knowledge sharing mechanisms. However, applying
Semantic Web technologies in pervasive environments is challenging, especially as these
environments contain resource-constrained devices. This is because common Semantic
Web technologies require a considerable amount of resources and such resources are not
available in constrained environments.

In this dissertation, we tackle this challenge at data and knowledge interchange level.
Most popular representations for data and knowledge are developed by Semantic Web
communities and standardization organizations, such as World Wide Web Consortium

18

(W3C). These models and their representations, including RDF [5] and Web Ontology
Language 2 (OWL 2) [6], and their serializations such as RDF in eXtensible Markup
Language (XML) and Terse RDF Triple Language (Turtle) [7], have mainly been
designed for editing, storing, and utilizing knowledge, and as such are not optimal
for resource-constrained devices in pervasive environments. Meanwhile, data formats
utilized by pervasive systems, such as Generic Sensor Format [8] and JavaScript
Object Notation (JSON) [9] cannot be transformed into knowledge representations
in a straightforward manner. Hence, there is a need to develop a data and knowledge
representation that can be both handled by resource-constrained devices and transformed
into Semantic Web representations. 1

1.2 Objectives and scope

The main objective of this research is to study a data and knowledge representation
that both complies with Semantic Web technologies and can be used by resource-
constrained devices in pervasive environments. Such a representation would facilitate
building a large set of mobile and pervasive applications and services that utilize both
resource-constrained devices and Semantic Web technologies.

The detailed objectives of this research are the following:
The first objective is to design a lightweight representation that can be utilized

by resource-constrained devices.With a lightweight representation, we minimize the
resource usage of CPU, memory, bandwidth, and energy consumption for encoding and
decoding this representation. Hence, any simple sensor in pervasive environments could
be able to connect with knowledge-based systems using minimal computation power and
energy, and deliver messages to other system components in a resource-efficient manner.
This would enable a large number of advanced functions. For example, applications
could reason for the data produced by the sensors, reuse knowledge, and coordinate the
sensors with actuators.

The second objective is to design a representation that advances interoperability
among knowledge-based components in mobile devices, servers, and other systems
deployed in pervasive environments. Such a representation facilitates transferring both
raw sensor data and ontology knowledge. Different data formats and Semantic Web

1When this work was started, there were no knowledge representations targeted to resource-constrained
environment. Some parallel efforts, such as JSON for Linked Data (JSON-LD) [10] started during this work.
We discuss these efforts later in this dissertation.

19

languages have been designed separately. However, we expect to design a uniform
solution to express similar semantics for more than one language. Our aim is that the
representation developed in this dissertation enables mapping to different types of
ontology knowledge.

The third objective is to design a representation that can be generally utilized by
distributed systems. We do not restrict the type of information. Different types of
data, from raw sensor measurements to structured knowledge, can be expressed and
transferred in pervasive environments. Although we focus on pervasive environments
and sensor data in this dissertation, the designed representation should be usable to
exchange information between any two components of a distributed system. That
is, the representation should be suitable for different applications and systems. The
information should always be identifiable in a unique fashion. This is an important
feature for general scalable systems when all possible uses of the information cannot
be specified in advance. Researchers in several related research domains, including
Ambient Intelligence (AmI), Internet of Things (IoT), machine to machine (M2M)
communications, sensor networks, and mobile robotics could take advantage of this
representation to enable numerous intelligent applications.

To summarize the objectives, we study a lightweight and general data and knowledge
representation that advances interoperability. We limit the scope of this dissertation as
follows: First, we have examined W3C Semantic Web standards, and consider RDF 1.1
and OWL 2 as essential models for developing knowledge interoperability. Hence, we
select RDF 1.1 and OWL 2 ontology as the knowledge models that the representation
developed in this dissertation has to support. That is, we emphasize interoperability with
RDF 1.1 and OWL 2.

Second, we do not design new protocols. When a device sends data to another
system component, it describes the data using the representation developed in this
dissertation and passes the data as payload for the protocol performing the actual
delivery. The receiver decomposes the data into the knowledge representation it uses.
The protocol delivering the messages can be, for example, Hypertext Transfer Protocol
(HTTP), Transmission Control Protocol (TCP), or Constrained Application Protocol
(CoAP) [11].

Third, we do not design new ontologies. Although a representation supporting
semantics facilitates transferring data in pervasive environments, it is not all that is
needed. In addition, the meaning encoded in the messages needs to be shared by all
entities producing and consuming the information. Ontologies are needed for this

20

purpose. The existing ontologies, like Standard Ontology for Ubiquitous and Pervasive
Applications (SOUPA) [12], OntoSensor [13], and Semantic Sensor Network (SSN)
Ontology [14], are good alternatives. From these, SSN Ontology developed by the W3C
Semantic Sensor Networks Incubator Group is a well-designed upper level ontology
for describing sensors and observations. It has the advantage that it is currently being
developed through the standard processes of the Open Geospatial Consortium (OGC)
and the W3C.

1.3 Contributions

This dissertation presents contributions in three areas. First, we design Entity Notation
(EN) as a lightweight data and knowledge representation that can be handled by resource-
constrained devices, transferred over low power communication links with limited
bandwidth, and transformed into knowledge representations in a straightforward fashion.
EN produces short packets which in their simplest form are only seventeen bytes long
and efficiently decrease the amount of processing power and communication bandwidth
required from the sensors and their radio interfaces. At the same time, EN can be
transformed into other syntaxes of RDF 1.1 in a straightforward manner. In short, EN is
proposed as a candidate solution for bridging the gap between resource-constrained
sensors and other components of pervasive environments, such as knowledge-based
systems, at the data interchange level. EN is also a practical and useful data representation
with necessary expressive power and human-readable syntax.

Second, we design EN Schema for representing meta-data. EN Schema is designed
as a syntax for OWL 2 and it provides a simple solution for knowledge exchange in
pervasive environments. EN and EN Schema together facilitate ontology transfer among
devices and applications in pervasive environments. Knowledge can be decomposed into
small entities, individual packets that can be communicated separately and assembled in
an unambiguous fashion. This results in a distributed description that can be transferred
even one small message at a time. Individual packets for one ontology can be distributed
to different devices at different times, and be transferred via different routes. Individual
packets produced by different devices can be transferred incrementally to compose large
ontologies. This feature enables transferring knowledge in a very flexible fashion in
highly dynamic environments.

Third, we implement EN and EN Schema in several pervasive systems, verify their
usefulness, and suggest solutions for their optimization for different pervasive systems.

21

We compare the expressive power of EN with other representations. EN and EN Schema
are evaluated in different resource usage aspects, including computing, memory and
communication usage, and energy consumption. Our evaluation shows that they have
sufficient expressive power and their compactness is comparable with the best of other
techniques. These prototypes, comparisons, and evaluations show that EN and EN
Schema are practical solutions.

1.4 Research methodology and history

This work contains both theoretical and constructive research [15]. The theoretical part
includes examining the state-of-the-art data formats and knowledge representations
utilized in pervasive and distributed systems and designing syntaxes for EN and EN
Schema. The constructive part of this research includes implementing prototypes and
evaluating them. Moreover, some evaluation and analysis are performed based on
well-known data sets and ontologies.

The work in this dissertation was performed in 2006 - 2015. This research was
supported by Infotech Oulu graduate school from January 2007 to January 2010,
and was investigated also in three research projects: Interacting ROBOt SWARMs
(ROBOSWARM) project supported by Sixth Framework Programme for Research
and Technological Development, Pervasive Service Computing project funded by the
Ubiquitous Computing and Diversity of Communication (MOTIVE) programme of the
Academy of Finland and Internet of Things program supported by DIGILE and Tekes.

We started this research with the idea of connecting resource-constrained devices
with knowledge-based systems. We firstly designed a representation while considering
some underlying protocol issues. We called it Entity Protocol at the beginning. After
about one year, we learnt from our implementations that it is a better idea to separate
representation from protocols. We focused on designing a representation which can be
payload for protocols, such as HTTP and CoAP, although we still include some packet
negotiation strategy issues in our research.

The first version of EN that could be transformed into RDF statements, along with a
simulator and a gesture recognition prototype, was published as a conference paper [16].
This early design of EN was utilized in a simulator [16][17] and a context-aware map
prototype [18]. In this early design, we included information about type of RDF objects
with separate tokens as mandatory information in complete EN packets. However, when
we later designed EN Schema for transferring ontologies, we noticed that information

22

on type of RDF objects is often included in property information in practice. That is,
the type of a RDF object is described in well defined working ontologies. To simplify
the complete EN packet format, we consider property type information as optional
information from complete EN packets and made corresponding modifications to related
prototypes. The new EN syntax including all EN features for sensors was published in
Personal and Ubiquitous Computing Journal [19], the first version of ambient social
interaction prototype with new EN syntax was published in 2011 International AmI
conference [20], and a detailed evaluation against other data formats and approaches
was published in Concurrency and Computation: Practice and Experience Journal [21].
Furthermore, the latest results of latency evaluation against other data formats with real
traffic scenario was published in 4th International Conference on the Internet of Things
[22] and accepted by IEEE IoT Journal [23]. The design and evaluation of the ambient
social interaction prototype was published in Journal of Ambient Intelligence and Smart
Environments [24]. Meanwhile, we investigated transferring ontologies with EN and EN
Schema packets. The first results, including early design, preliminary implementation
and evaluation, were published in [25]. The latest version complying with OWL 2 is
included in this dissertation. Moreover, we studied distributing intelligence in pervasive
environments based on the capabilities of the devices [26] and the role of EN in bridging
the gap of Semantic Web and networked sensors [27].

The work presented in this dissertation only includes the latest design of EN and the
prototypes using this design. The latest design has been slightly modified based on
[19]. Hence, some design considerations and evaluation results differ from some earlier
publications. This is mainly because changing the representation of type information of
RDF objects had an effect on the results.

During the time this research was in progress, we applied EN to different application
domains. Hence, the research results have been published at different forums: robotics
conferences, ubiquitous and context-aware computing conferences, sensor network
conferences, AmI conferences and journals, and IoT conferences and journals.

1.5 Dissertation structure

The rest of this dissertation is organized as follows: Chapter 2 presents the key concepts
and provides a literature review about data and knowledge exchange for pervasive
environments. Chapter 3 introduces the design details of EN. This chapter presents
the formal description of the alternative formats, and how EN can be transformed into

23

RDF statements. Furthermore, we discuss packet negotiation and chaining operations,
supported data structures, and main limitations. Chapter 4 introduces EN Schema
for expressing OWL 2 ontologies. Chapter 5 presents the evaluations. We analyze
resource usage by transferring standard RDF data sets and some ontologies. Moreover,
we evaluate EN in a simulator and in several prototypes. Finally, Chapter 6 concludes
this dissertation by presenting general analysis, discussing how the research objectives
were met, summarizing the contributions, discussing open issues, and sketching possible
future work.

24

2 Data and knowledge representations for
pervasive environments

This chapter presents an overview of data and knowledge representations for pervasive
environments. We start with clarifying concepts about data and knowledge representa-
tions, then present different representations for connecting devices to knowledge-based
systems and modelling pervasive environments, and finally present the state of the art of
utilizing semantic representations in pervasive systems.

2.1 Knowledge representations and reasoning

Building knowledge-based systems is a feasible way for developing a variety of intelli-
gent applications for pervasive environments. A knowledge-based system is a computer
program that reasons and uses a knowledge base to solve complex problems [2]. One
core issue is representing information about the world in a form that computer programs
can utilize. Each reasoning technique is normally associated with a certain knowledge
representation. Perttunen et al. [28] surveyed different knowledge representations
and reasoning methods, including logic programming, ontology-based representation,
case-based representation, and reasoning about uncertainty. They identified ontology-
based representation as the most widely used and promising approach. Ontology-based
representations meet the requirements set by pervasive systems, such as distributed
knowledge creation and composition, partial validation, and precise and traceable
formality [29]. Hence, ontology-based reasoning offers good possibilities to apply
artificial intelligence methods and tools in pervasive environments.

Hence, we consider ontology-based representations and reasoning techniques as
the most important approaches for building knowledge-based systems in pervasive
environments. Gruber et al. [30] originally define ontology as an explicit specification
of a conceptualisation. Studer et al. [31] define ontology as:

“An ontology is a formal, explicit specification of a shared conceptu-
alisation. A ‘conceptualisation’ refers to an abstract model of some
phenomenon in the world by having identified the relevant concepts of
that phenomenon. ‘Explicit’ means that the type of concepts used, and the
constraints on their use are explicitly defined. For example, in medical

25

domains, the concepts are diseases and symptoms, the relations between
them are causal and a constraint is that a disease cannot cause itself.
‘Formal’ refers to the fact that the ontology should be machine readable,
which excludes natural language. ‘Shared’ reflects the notion that an
ontology captures consensual knowledge, that is, it is not private to some
individual, but accepted by a group.”

For modelling pervasive environments, an ontology can be developed as a set of
precise descriptive statements about pervasive environments themselves and entities
inside pervasive environments. Precise statements prevent misunderstandings and ensure
other components, such as reasoners, to behave in a predictable manner.

Description logics (DL) are a family of knowledge representation formalisms based
on First-Order Logic (FOL) and well-structured computational properties. DL-based
knowledge bases are usually divided into two parts: TBox and ABox [32]. TBox is a
“terminological component” and it contains statements describing a system in terms
of controlled vocabularies. ABox is an “assertion component” and it contains TBox-
compliant statements about that vocabulary. In practice, TBox includes a set of concepts
and properties for these concepts. ABox includes assertions on individuals. Taking
the example of pervasive systems, ABox includes specific data of devices and system
components, such as sensor measurement data [33], and TBox knowledge includes a
class taxonomy and property definitions for describing pervasive environments. Such
knowledge is also known as data schema for providing a data modelling vocabulary.
Together, TBox and ABox statements make up a knowledge base which enables
intelligent functionality for pervasive systems.

A combination of ontologies and reasoners is important. Reasoners are software
components able to infer new logical relations from information stored in knowledge
bases. Ontologies focus on specifying knowledge and DL reasoning typically focuses
on subsumption and realization. Subsumption determines sub-concept/super-concept
relationships for concepts in the TBox, whereas realization computes whether a given
individual necessarily belongs to a particular concept [34]. In general, reasoners verify
the consistency of knowledge models and make implicit knowledge explicit. There are
many different techniques that can be applied for reasoners, in addition to DL, First
Order Logic (FOL) and probability theory, for example.

RDF is a family of W3C specifications for representing information about resources
in the World Wide Web. It was originally designed for representing metadata about Web

26

resources, but has become a general method for conceptual description and modeling of
information. RDF Schema (RDFS) [35] provides an extension of the basic RDF, and
declares basic classes describing RDF and providing basic elements when describing the
terms used in RDF. Most RDFS constructs are included in the more expressive OWL 2.

OWL is a standard Semantic Web language based on DL [36]. The main building
blocks of OWL are concepts representing sets of objects, roles representing relationships
between objects, and individuals representing specific objects. With OWL, complex
concepts can be described through constructors that define the conditions on concept
membership. OWL 2 is a revised extension of OWL, which is now commonly called
OWL 1. OWL 2 extends OWL 1 with qualified cardinality restrictions, property
chains, etc. Moreover, OWL 2 provides support for defining properties to be reflexive,
irreflexive, transitive, and asymmetric, and to define disjoint pairs of properties. Three
profiles, namely OWL 2 EL, OWL 2 QL, and OWL 2 RL, have been developed for
balancing expressive power and reasoning efficiency, targeting different application
scenarios. OWL 2 EL is suitable for applications utilizing ontologies to define very
large numbers of classes and properties. OWL 2 QL can be tightly integrated with
Relational Database Management Systems (RDBMSs) and can hence benefit from
relational database technology. OWL 2 RL is suitable for applications that require
scalable reasoning without sacrificing too much expressive power [37].

One of the earliest formalisms combining OWL and rules is the Semantic Web
Rule Language (SWRL) [38]. Syntactically, SWRL extends the syntax of OWL with
additional constructs to form Horn-style rule axioms. SWRL rules can be described
with XML syntax. This syntax is based on Rule Markup Language (RuleML) and
OWL/XML.

An alternative format, Rule Interchange Format (RIF) [39], became W3C recom-
mendation in 2013. RIF does not provide a general rule language, instead it enables rule
exchange amongst diverse rule systems and reasoning engines as different systems use
various rule formats and formal logic paradigms. RIF ensures compatibility between
RDF and OWL ontologies. RIF Basic Logic Dialect (RIF-BLD) maps different logic
rules from the original format to RIF XML serialization syntax and it can be also used
as a rule language. Jena is a Java framework for building Semantic Web applications,
and it includes a number of predefined reasoners, including transitive reasoner, RDFS
rule reasoner, OWL, OWL Mini, OWL Micro Reasoners, and generic user defined rule
reasoner [40].

27

Fig. 1. Conceptual diagram of a knowledge-based system.

Figure 1 presents an overview of a knowledge-based system for pervasive en-
vironments. The system is viewed from the information flow perspective, and that
perspective is the focus of this dissertation. The components of a knowledge-based
system and its relations with sensors, users, and actuators in pervasive environments are
shown in the figure. A reasoner with rules on top of knowledge base is essential for
building knowledge-based systems. User-defined rules allow expressing richer semantic
relations that lie beyond the expressive power of OWL 2 and couple ontological and rule
knowledge.

Open world assumption facilitates building knowledge-based systems, because the
systems do not need to model complete information about the world. This assumption
is well suited for pervasive systems, where complete models are infeasible and even
unavailable, and information is often incomplete due to sensor inaccuracies and partial
observations.

2.2 Semantics for resource-constrained devices

Semantic technologies have been successfully applied to many domains, and pervasive
computing is an important one of them. The development of pervasive applications can
be facilitated by encoding the meaning of the data in the messages sent by devices,
but the constrained resources of these devices challenge the common Semantic Web
solutions for doing this.

Many proprietary formats have been defined for different pervasive systems, such
as Generic Sensor Format [8], Unisens [41], and Unified Transportation Sensor Data
Format [42]. However, sensor specific data formats introduce dependencies into the

28

system, and even set up a barrier to utilizing components from other vendors and
developers. For this reason, we do not consider proprietary formats, but only open
formats supporting interoperability.

What can be achieved if we add semantics to the information produced by the large
quantity of sensors deployed in pervasive environments? Berners-Lee et al. pointed
out in their landmark article about the Semantic Web, that “developments will usher
in significant new functionality as machines become much better able to process and
understand the data” [43]. We see this significant new functionality possible when
devices send data directly in a syntax that contains semantics in addition to the raw data.
Since the meaning of the data is encoded in the message, the receiver of the message
can utilize the data in a straightforward and general fashion. The receiver does not
need device-specific knowledge, but can process data from all devices in a similar
way. However, since devices in pervasive environments are often small and equipped
with modest computing, communication, memory, and energy resources, these devices
introduce challenges not present in the common scenarios of Semantic Web.

Here, we present Semantic Web models and representations and briefly discuss
using these representations in pervasive environments. Research on Semantic Web has
produced well established specifications for formal knowledge representations. These
knowledge representations support logical reasoning to infer new information from
existing assertions and rules. Standard syntaxes of Semantic Web models are potential
candidates for representing sensor data. Among them, RDF is the most widely used
data model for representing semantic data. RDF represents data as triples in the form
(Subject, Predicate, Object). A triple denotes that a subject has a property whose value
is the object. Data in pervasive environments usually originates from devices, humans,
and other entities in the physical world. It refers to attributes of phenomena and to
relations among these entities. One way of semantically representing sensor data, like a
measurement made by a device, is denoting the device as the subject, the measured
quantity as the predicate, and the measured value as the object. This is unambiguous, as
a unique device is the subject, and the knowledge related to this device can be easily
described. For example, “Sensor 1” is the subject, “Temperature” is the property, and
“25” is the value. The unit of measurement, for example “Celsius”, can be defined
separately. The data measured by a device can be associated with entities that have
relations with the device. For example, when Alice is carrying a positioning device and
the device detects the current location to be “Campus”, we can form a triple where
“Alice” is the subject, “isLocated” is the property, and “Campus” is the value.

29

In this section, we utilize an example of a sensor node, which sends a time stamp
value together with temperature, acceleration, and magnetic field values. Other sensor
data can be represented in a similar way. The following example presents the sensor
data in RDF/XML syntax:

<rdf:RDF xml:base="http://ee.oulu.fi/o" xmlns:e="http://ee.oulu.fi/o#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\#">

<e:TempAccMagSensor rdf:ID="tempAccMagSensor01">

<e:timeStamp>2012-05-18T12:00:00</e:timeStamp>

<e:accX>618</e:accX>

<e:accY>319</e:accY>

<e:accZ>671</e:accZ>

<e:magX>123</e:magX>

<e:magY>234</e:magY>

<e:magZ>345</e:magZ>

<e:temp>22.5</e:temp>

</e:TempAccMagSensor>

</rdf:RDF>

A clear advantage of RDF is that the existing higher level languages RDFS 1.1 and OWL
2 provide standard vocabularies for defining classes and relationships among classes,
which enables complex inference. Hence, when resource-constrained devices express
data in RDF, these languages facilitate realizing advanced semantic processing. XML is
the most widely used language for describing RDF models, and it is the only normative
syntax that Semantic Web tools should support. But similarly to other W3C languages,
RDF/XML is designed for Web applications and is hence not a perfect solution for
systems in pervasive environments.

N3 [44], Turtle [7], and N-Triples [45] are alternative syntaxes for RDF/XML.
They are also based on triple structure, but they differ in expressive power. They
can all serialize the RDF model in a straightforward manner and are in most cases
more lightweight than RDF/XML. N3 is a flexible language with strong expressive
power going beyond the RDF model. Turtle is an RDF-compatible subset of N3,
while N-Triples has constrained expressive power. N3 and Turtle have shorthand
syntaxes. These syntaxes shorten the descriptions, but on the other hand, can require
more computing resources when the descriptions are processed. For this reason, they
need to be optimized for resource-constrained devices in pervasive environments. The
example data is in N3 as follows:

30

@prefix e:<http://ee.oulu.fi/o#>.

@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

e:tempAccMagSensor01

e:accX "618";

e:accY "319";

e:accZ "671";

e:magX "123";

e:magY "234";

e:magZ "345";

e:temp "22.5";

e:timeStamp "2012-05-18T12:00:00";

a e:TempAccMagSensor.

RDF, N3, Turtle, and N-Triples are designed to be used by Web applications; hence,
resource usage was not the main issue when these languages were designed. Media
Types for Sensor Markup Language (SenML) [46], on the other hand, is a sensor
data description language for representing simple sensor measurements and device
parameters. It is targeted for resource-constrained devices and hence the amount of
processing and the size of data were considered when it was designed. A SenML
description carries a single base object consisting of attributes and an array of entries.
Each entry, in turn, consists of attributes such as a unique identifier for the sensor, the
time the measurement was made, and the current value.

SenML enables a straightforward transform from the data structures of programming
languages into representations. SenML can be represented in JSON, XML, and Efficient
XML Interchange (EXI) [47]. Among them, JSON and EXI are more lightweight and
still easy to serialize. The SenML format can be extended with further custom attributes.
For example, the Resource Type (rt) attribute can be used to define the meaning of a
resource. Other semantic attributes can be defined in a similar way. Finally, additional
information can be made available by including in a SenML description a link in the
CoRE Link Format [48], but then additional communication is required to fetch that
information.

Here is the sensor data example in SenML/JSON format:

{"e": [

{"n": "accX", "v": 618},

{ "n": "accY", "v": 319},

{ "n": "accZ", "v": 671},

31

{ "n": "magX", "v": 123},

{ "n": "magY", "v": 234},

{ "n": "magZ", "v": 345},

{ "n": "temp", "v": 22.5}],

"bn": "tempAccMagSensor01",

"pr": "http://ee.oulu.fi/o#",

"bt": "3296120023",

"rt": "TempAccMagSensor"}

“bt” is base time and “bn” is base name, it denotes a device ID in this case. “pr” stands
for prefix, which can be transformed to xml:base="http://ee.oulu.fi/o" when SenML data
are transformed to RDF/XML. The sensor data example is in SenML/XML format as
follows:

<senml xmlns="urn:ietf:params:xml:ns:senml"

pr="http://ee.oulu.fi/o#"

bn="tempAccMagSensor01"

bt="3296120023"

rt="TempAccMagSensor">

<e n="accX" v="618" />

<e n="accY" v="319" />

<e n="accZ" v="671" />

<e n="magX" v="123"/>

<e n="magY" v="234" />

<e n="magZ" v="345" />

<e n=temp" v="22.5" />

</senml>

Here is the sensor data example in SenML/EXI:

0x80419cd95b ... 145 bytes ... 0801001000

Another recent effort is to serialize RDF in JSON format. Several proposals, including
RDF/JSON [49], JSN3 [50], JTriples [51], RDFj [52], and JSON-LD [10], have been
presented. They allow an RDF graph to be written in a format compatible with JSON.
To achieve this, the essential idea is to introduce: 1) universal identifiers for JSON
objects via the use of Internationalized Resource Identifiers (IRIs) [53], 2) a mechanism
to serialize a set of RDF triples as a series of nested data structure in JSON, and 3) a
mechanism to associate data types with values. The W3C RDF working group compared

32

these formats with examples in [54]. Based on this comparison, JSON-LD is considered
as the most promising format and became a W3C recommendation in early 2014.
JSON-LD is designed to be completely compatible with JSON and it has a slightly
better expressive power than the RDF model. This means that in practice it can be
considered to be a JSON serialization for RDF. JSON-LD requires minimal effort from
developers to transform normal JSON to JSON-LD. Only two keywords (@context
and @id) need to be known for utilizing the basic features. The JSON-LD format was
developed contemporaneously with EN, and was published at the final stages of EN
development. We compare EN and JSON-LD in Chapter 5.

The sensor data example can be represented in JSON-LD format as follows:

{

"@context":

{

"e": "http://ee.oulu.fi/o#",

"accX": "e:accX", "accY": "e:accY",

"accZ": "e:accZ", "magX": "e:magX",

"magY": "e:magY", "magZ": "e:magZ",

"temp": "e:temp", "timeStamp": "e:timeStamp"

},

"@id": "e:tempAccMagSensor01",

"@type": "e:TempAccMagSensor",

"accX": "618", "accY": "319",

"accZ": "671", "magX": "123",

"magY": "234", "temp": "22.5",

"timeStamp": "2012-05-18T12:00:00"

}

Contexts describe short-hand terms for JSON-LD, and can be directly embedded in data
packets (as in this example) or be referenced. Devices can agree contexts at design time
or send full contexts on request between nodes to decrease communication overhead.
The JSON-LD packet with referred context is as follows:

{

"@context": "http://ee.oulu.fi/json-ld/contexts",

"@id": "e:tempAccMagSensor01",

"@type": "e:TempAccMagSensor",

"accX": "618", "accY": "319",

33

"accZ": "671", "magX": "123",

"magY": "234", "temp": "22.5",

"timeStamp": "2012-05-18T12:00:00"

}

A device receiving context-referenced JSON-LD data can retrieve context information
at http://ee.oulu.fi/json-ld/contexts. When considering resource consumption and
compatibility with programming languages, SenML and JSON-LD are potential formats
for pervasive environments.

In addition to these formats, several other representations have been suggested for
semantic annotations. Semantic Sensor Web [55] enables adding semantic annotations in
terms of time, location, and thematic data into the actual sensor data by using Resource
Description Framework in Attributes (RDFa) [56]. SemSOS [57] is a similar solution
for adding semantic annotations into sensor observations. Finally, semantic extensions
are being built for the Product Markup Language (PML)[58], which is an XML-based
language for describing physical objects in Electronic Product Code Networks. However,
all these XML-based solutions have limitations in supporting semantic interoperability
and linking resources to knowledge.

Binary formats for XML like EXI, Wireless Application Protocol (WAP) Binary
XML Content Format [59], Fast Infoset [60], and Xebu [61] can be used to transfer data
from embedded sensors. These formats are designed to improve parsing performance
and reduce data size for the XML representation. They mainly utilize schema-based
optimization and token based compression, in which each element, attribute, and so
forth, is encoded as a small integer value. W3C recommends EXI, which is a compact
representation for the XML Information Set and is intended to simultaneously optimize
the performance and utilization of computational resources [62]. Using a relatively
simple algorithm, it produces encodings of XML event streams. Its simplified mode of
operation called schema informed mode allows embedded devices to work directly with
the encoding without the need to work with a full XML parser. In [62], the average
compression rate of EXI for 67 test sets reached about 30%, when all optimization
techniques, including schema and document analysis, were utilized.

However, binary formats themselves do not support any semantics. Instead, semantic
information in RDF/XML and SenML, for example, can be encoded in binary formats to
decrease communication load. We have measured the amount of computation required
to produce messages in the EXI binary format. These measurements are presented in
Chapter 5.

34

In addition to the binary formats described above, several methods have been
developed for compressing XML files, such as XMLPPM [63], XMLZip [64], XML
Skeleton Compression [65], and XPress [66]. These methods utilize complex com-
pression algorithms and homomorphic transformation strategies to compress XML.
Wilfred Ng et al. [67] tested several XML compression techniques and reported that
XMLPPM achieves the best compression ratio, which can reach 8.25% of the original
XML file. A large obstacle for adopting these solutions for pervasive environments is
that resource-constrained sensors cannot afford these complex algorithms. Moreover,
some of these methods lose some content during the compression.

RDF Header-Dictionary-Triples (HDT) [68][69] is a binary format for RDF, es-
pecially for large RDF data sets. RDF HDT provides a method for encoding RDF
documents in a compact manner and supports splitting large RDF documents into
small pieces. RDF graphs are reorganized into Header (optional), Dictionary, and
Triples. HDT Dictionary organizes all vocabularies and HDT Triples, which enables
the compression of an RDF graph in a compact form. Unique identifiers are assigned
to each element in RDF and prefixes are utilized to shorten IRIs. Hasemann et al.
[70] reported an approach for sensor nodes to provide sensor data in the RDF HDT
format. However, HDT is mainly designed for representing large RDF data sets, not for
resource-constrained devices in pervasive environments.

2.3 Representing OWL ontologies

Before the development and standardization of OWL, there were plenty of ontology
languages, such as KL-ONE [71], F-logic [72], SHOE [73], DAML-ONT [74], OIL
[75], and DAML+OIL [76]. These efforts finally lead to developing OWL, which is a
comprehensive ontology language for the Semantic Web. OWL was endorsed by the
W3C in 2004, and has been utilized widely in Semantic Web applications and automated
reasoners. OWL is primarily concerned with defining terminology that can be used in
RDF documents. As an extended version of OWL, OWL 2 was published in 2012. OWL
and OWL 2 are high level structural languages based on DL, and can be serialized with
various syntaxes.

OWL 2 provides a rich collection of constructs for forming descriptions, and is
compatible with existing Web standards. An OWL 2 ontology consists of a set of axioms
which place constraints on sets of individuals and on the types of relationships between

35

them. These axioms provide semantics by allowing systems to explicitly infer additional
knowledge based on the data provided.

There are different languages for storing, sharing, and editing OWL ontologies.
Among them, RDF/XML is the officially recommended exchange syntax, and others
have been designed for particular purposes and applications. In this section, we illustrate
different representations for OWL with an example of a small ontology. This ontology
consists of simple concepts about entities in pervasive environments, including a Sensor
class, a Person class, and a Location Sensor class that is a sub-class of Sensor. In
addition, a person can own sensors; and hence, sensors can be owned by a person (this is
an example of an inverse relation).

OWL 2 provides a bidirectional mapping from the OWL Functional Syntax to RDF
Graphs [77]. This means that OWL can then be serialized into any RDF representations
such as RDF/XML and N3. Most current OWL tools utilize RDF/XML as the default
syntax for serializing ontologies. OWL elements of the example can be presented in
RDF/XML syntax as follows:

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:Class rdf:about="http://ee.oulu.fi/o#Person"/>

<owl:Class rdf:about="http://ee.oulu.fi/o#Sensor"/>

<owl:Class rdf:about="http://ee.oulu.fi/o#LocationSensor">

<rdfs:subClassOf rdf:resource="http://ee.oulu.fi/o#Sensor"/>

</owl:Class>

<owl:ObjectProperty rdf:about="http://ee.oulu.fi/o#own">

<rdfs:domain rdf:resource="http://ee.oulu.fi/o#Person"/>

<rdfs:range rdf:resource="http://ee.oulu.fi/o#Sensor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://ee.oulu.fi/o#hasOwner">

<rdfs:domain rdf:resource="http://ee.oulu.fi/o#Sensor"/>

36

<rdfs:range rdf:resource="http://ee.oulu.fi/o#Person"/>

<owl:inverseOf rdf:resource="http://ee.oulu.fi/o#own"/>

</owl:ObjectProperty>

</rdf:RDF>

RDF/XML is a widely supported syntax, as it is recommended by W3C. Because OWL
supports a bidirectional mapping to RDF triples, it is convenient to be combined in
RDF/XML. Other RDF based representations share this benefit, for example N3 and
Turtle. However, RDF/XML is a verbose representation for OWL and can hence be
difficult to read by human users.

Turtle is more readable than RDF/XML and widely supported. W3C selected Turtle
as one of the syntaxes for OWL 2. The following example presents the same OWL
elements in Turtle syntax, which is also valid in N3:

@prefix xml: <http://www.w3.org/XML/1998/namespace>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

http://ee.oulu.fi/o#Person

<http://ee.oulu.fi/o#Person> rdf:type owl:Class.

http://ee.oulu.fi/o#Sensor

<http://ee.oulu.fi/o#Sensor> rdf:type owl:Class.

http://ee.oulu.fi/o#LocationSensor

<http://ee.oulu.fi/o#LocationSensor> rdf:type owl:Class;

rdfs:subClassOf <http://ee.oulu.fi/o#Sensor>.

http://ee.oulu.fi/o#hasOwner

<http://ee.oulu.fi/o#hasOwner> rdf:type owl:ObjectProperty;

rdfs:domain <http://ee.oulu.fi/o#Sensor>;

rdfs:range <http://ee.oulu.fi/o#Person>.

http://ee.oulu.fi/o#own

<http://ee.oulu.fi/o#own> rdf:type owl:ObjectProperty;

37

rdfs:domain <http://ee.oulu.fi/o#Person>;

rdfs:range <http://ee.oulu.fi/o#Sensor>;

owl:inverseOf <http://ee.oulu.fi/o#hasOwner>.

OWL functional syntax is designed to be easier for OWL 2 specification purposes and to
provide a foundation for the implementation of OWL 2 tools. Functional syntax is a
simple text based syntax that is used as a bridge between the structural specification and
concrete representations. Here, is the example presenting the same OWL elements in
functional syntax:

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)

Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)

Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)

Prefix(owl2xml:=<http://www.w3.org/2006/12/owl2-xml#>)

Ontology(

Declaration(Class(<http://ee.oulu.fi/o#LocationSensor>))

Declaration(Class(<http://ee.oulu.fi/o#Person>))

Declaration(Class(<http://ee.oulu.fi/o#Sensor>))

Declaration(ObjectProperty(<http://ee.oulu.fi/o#hasOwner>))

Declaration(ObjectProperty(<http://ee.oulu.fi/o#own>))

SubClassOf(<http://ee.oulu.fi/o#LocationSensor>

<http://ee.oulu.fi/o#Sensor>)

InverseObjectProperties(<http://ee.oulu.fi/o#hasOwner>

<http://ee.oulu.fi/o#own>)

ObjectPropertyDomain(<http://ee.oulu.fi/o#hasOwner>

<http://ee.oulu.fi/o#Sensor>)

ObjectPropertyRange(<http://ee.oulu.fi/o#hasOwner>

<http://ee.oulu.fi/o#Person>)

ObjectPropertyDomain(<http://ee.oulu.fi/o#own>

<http://ee.oulu.fi/o#Person>)

ObjectPropertyRange(<http://ee.oulu.fi/o#own>

<http://ee.oulu.fi/o#Sensor>)

The design of RDF/XML makes it difficult to utilize off the shelf XML tools for tasks
other than parsing and rendering it. Standard XML tools like XPath or XSLT do not
work well with RDF/XML representations of ontologies [78]. Moreover, serializing
OWL and OWL 2 requires resources, as OWL needs to be first mapped to RDF, and

38

then RDF needs to be serialized to XML. To overcome these difficulties, OWL/XML
was invented as a concrete syntax for a more regular and simpler XML syntax. The
syntax is essentially derived directly from the Functional Syntax. The example below
shows the example in OWL/XML:

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

xml:base="http://www.w3.org/2002/07/owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xml="http://www.w3.org/XML/1998/namespace">

<Prefix name="owl" URI="http://www.w3.org/2002/07/owl#"/>

<Prefix name="rdf" URI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>

<Prefix name="rdfs" URI="http://www.w3.org/2000/01/rdf-schema#"/>

<Prefix name="owl2xml" URI="http://www.w3.org/2006/12/owl2-xml#"/>

<Prefix name="xsd" URI="http://www.w3.org/2001/XMLSchema#"/>

<Declaration>

<Class URI="http://ee.oulu.fi/o#LocationSensor"/>

</Declaration>

<Declaration>

<Class URI="http://ee.oulu.fi/o#Person"/>

</Declaration>

<Declaration>

<Class URI="http://ee.oulu.fi/o#Sensor"/>

</Declaration>

<Declaration>

<ObjectProperty URI="http://ee.oulu.fi/o#hasOwner"/>

</Declaration>

<Declaration>

<ObjectProperty URI="http://ee.oulu.fi/o#own"/>

</Declaration>

<SubClassOf>

<Class URI="http://ee.oulu.fi/o#LocationSensor"/>

<Class URI="http://ee.oulu.fi/o#Sensor"/>

</SubClassOf>

<InverseObjectProperties>

39

<ObjectProperty URI="http://ee.oulu.fi/o#hasOwner"/>

<ObjectProperty URI="http://ee.oulu.fi/o#own"/>

</InverseObjectProperties>

<ObjectPropertyDomain>

<ObjectProperty URI="http://ee.oulu.fi/o#hasOwner"/>

<Class URI="http://ee.oulu.fi/o#Sensor"/>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty URI="http://ee.oulu.fi/o#own"/>

<Class URI="http://ee.oulu.fi/o#Person"/>

</ObjectPropertyDomain>

<ObjectPropertyRange>

<ObjectProperty URI="http://ee.oulu.fi/o#hasOwner"/>

<Class URI="http://ee.oulu.fi/o#Person"/>

</ObjectPropertyRange>

<ObjectPropertyRange>

<ObjectProperty URI="http://ee.oulu.fi/o#own"/>

<Class URI="http://ee.oulu.fi/o#Sensor"/>

</ObjectPropertyRange>

</Ontology>

However, OWL/XML suffers from verbose syntax and this often slows down parsing.
Manchester syntax [79] is designed for editing and presentation purposes. It provides
for OWL ontologies a compact text based representation that is easy to read and write.
The primary motivation for the design of the Manchester OWL syntax was to produce a
syntax that could be used for editing class expressions. This effort has been extended
so that it is possible to represent complete ontologies, and Manchester Syntax is now
standardized by W3C. The example in Manchester Syntax is as follows:

Prefix: owl: <http://www.w3.org/2002/07/owl#>

Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Prefix: owl2xml: <http://www.w3.org/2006/12/owl2-xml#>

Prefix: xsd: <http://www.w3.org/2001/XMLSchema#>

Ontology:

Class: <http://ee.oulu.fi/o#Sensor>

Class: <http://ee.oulu.fi/o#Person>

Class: <http://ee.oulu.fi/o#LocationSensor>

40

SubClassOf: <http://ee.oulu.fi/o#Sensor>

ObjectProperty: <http://ee.oulu.fi/o#own>

Domain: <http://ee.oulu.fi/o#Person>

Range: <http://ee.oulu.fi/o#Sensor>

InverseOf: <http://ee.oulu.fi/o#hasOwner>

ObjectProperty: <http://ee.oulu.fi/o#hasOwner>

Domain: <http://ee.oulu.fi/o#Sensor>

Range: <http://ee.oulu.fi/o#Person>

InverseOf: <http://ee.oulu.fi/o#own>

However, Manchester Syntax is cumbersome for representing some axioms in OWL,
such as general class axioms which have non-atomic class expressions for their left
hand side. Attempto Controlled English [80] is a machine-oriented Controlled Natural
Language (CNL), that is, a precisely defined subset of the English language, designed
for writing unambiguous and precise specification texts for knowledge representation.
Attempto Controlled English supports a bidirectional translation into and from OWL
2. Other representations with similar design goals are Sydney OWL syntax [81] and
Ordnance Survey’s Rabbit [82]. However, we are not aware of its compatibility with
OWL 2. Schwitter et al. compared these three representations with examples [83]. Here
is the same example in Attempto Controlled English:

Every LocationSensor is a Sensor.

Everything that hasOwner something is a Sensor.

Everybody that own something is a Person.

Everybody that is hasOwner by something is a Person.

Everything that is own by somebody is a Sensor.

If X hasOwner Y then Y own X.

If X own Y then Y hasOwner X.

However, these representations have complex syntaxes and do not support incremental
knowledge transfer. Hence, we do not consider these representations suitable for
transferring knowledge in pervasive environments.

41

2.4 Related work about semantic technologies for pervasive
computing

In this section, we present recent work about semantic technologies being implemented
in pervasive systems. We introduce some use cases of utilizing semantic data and
knowledge representations on mobile devices, reasoning, triple stores and ontologies,
and systems that include a large number of devices utilizing semantics.

As of today, numerous practical tools are available for addressing Semantic Web
representations in pervasive environments. Le-Phuoc et al. [84] introduced RDF On the
Go, which offers an RDF storage and a query processor for mobile devices. About
reasoning tools for mobile devices, Crivellaro et al. [85] developed µJena, which is
one of the first tools serving to manage ontologies and RDF stored in mobile devices.
LOnt [86] is another effort of implementing Jena API for mobile devices. Gu et al. [87]
proposed a mobile framework for ontology processing and reasoning. The reasoner
contains a forward chaining rule-based inference engine, but it only supports a subset
of OWL ontology inference rules. Similarly, µOR [88] reasoner and “MiniOWL and
MiniRule” [89] reasoner also reasons over a subset of OWL entailments. Bossam [90] is
a Rete-based forward chaining inference engine designed for dynamic and conflicting
knowledge space. It promotes the effectiveness of ordinary rule engine’s OWL reasoning
capability. Finally, AndroJena [91] is another important effort to enable Android based
mobile devices with semantic reasoning capabilities.

RDF stores - also called triple stores - are capable to store, manage, and process
large amounts of data in RDF models. The current RDF stores supporting these features
include Virtuoso, Apache Jena - TDB, Sesame, Oracle Spatial and Graph, BigData, and
AllegroGraph. These databases are able to store semantic data in RDF. Some of these
have support for querying and reasoning from stored RDF graphs and are capable to
combine inserted RDF data with stored background knowledge. Moreover, NoSQL
databases [92] have been experimented for RDF data management as well. However,
these databases are not specialized for RDF; thus, querying of RDF graphs, RDF
schemas, and expressive ontologies are not directly supported. RDF database storage
schemes are based on RDF triples and graphs. Special indexing and query techniques
are needed to manage RDF graphs, which makes traditional data management systems
perform poorly with graph-based data.

Current RDF database solutions are developed mainly for querying static data on the
Web. However, pervasive systems consist of large amounts of devices require good

42

performance for RDF stores as the large amount of data needs to be stored, shared and
queried. Frequent updating operations on the RDF graph, which is common for data
generated in pervasive environments, may cause poor performance [93].

In open pervasive environments, it is impossible to define a “complete” model
without priori knowledge of the applications that will utilize it. With the open world
assumption, Semantic Web technologies are well suited for modelling pervasive
environments. The CONtext ONtology (CONON) [94] is one of the earliest context
models that encompasses a common upper ontology for the general concepts in pervasive
computing, as well as domain-specific ontologies that apply to different subdomains,
such as smart homes. In [95], Lassila and Khushraj consider representing context using
DL, where OWL DL is used as a concrete example. Chen et al. [12] utilize OWL to
represent context information. Prolog [96] and Java Expert System Shell (Jess) [97] are
utilized to realize rule-based reasoning. Wang et al. [98] also modelled context by OWL
in semantic space project. They designed a two-layer context model for expressing
context information, and reasoning was implemented using Jena. Korpipää et al. [99]
also presented a lightweight ontology for context-aware mobile devices.

Moreover, ontologies and reasoning have been widely utilized in mobile recommen-
dation systems. Buriano et al. [100] discuss the role of ontology in a context-aware
recommender system, including specifying the input representation, allowing defining
intra-context dependencies, sharing information, and reasoning about it. Naudet et al.
[101] suggest a set of ontologies and a rule-based matchmaking approach to develop
context-aware recommender systems to deliver multimedia content. Ciaramella et al.
[102] propose a situation-aware service recommender system, which helps to locate
appropriate services proactively. It includes a semantic layer which infers current
situations of the user by exploiting domain ontology and semantic rules. A fuzzy
inference layer handles the vagueness of some conditions of these rules and outputs an
uncertainty degree for each situation determined by the semantic layer. Kritsotakis et al.
[103] present a personalized context-aware indoor navigation system enhanced with
Semantic Web technologies.

IoT interconnects a vast quantity of devices to the Internet. A large amount of
data is provided by diverse heterogeneous sources and the context of data may change
frequently. Semantics help to tackle the challenges related to software, services, and
algorithms, that is, “to support interoperable machine to machine and ‘thing’ to ‘thing’
interaction over a network” [104]. Generally, semantics improves interoperability at the
application layer, as devices share the meaning of the communicated data. By adding

43

support to meta-data, semantics provides tools for tackling the challenges related to
discovery and search engine technologies as well.

At its best, research and development on IoT can produce a dynamic and universal
network where billions of identifiable things communicate with each other whenever
and wherever communication is needed. Things become context-aware, configure
themselves, exchange information, and show intelligent behavior when exposed to new
environments and unforeseen circumstances. Intelligent decision-making algorithms
enable rapid responses and revolutionize the ways business value is generated [104].
To make sense of this vast amount of heterogeneous dynamic data and to utilize it
meaningfully in real applications, data must be enriched in the way that it can be easily
and efficiently shared and interpreted by machines. Semantic technologies provide
promising solutions for achieving this.

Wei et al. [105] studied semantic annotations and rule-based reasoning for sensor
data by utilizing current Semantic Web concepts and they noted that rule-based reasoning
with ontologies is the most promising approach for deriving knowledge from sensor
data. They considered reasoning with sensor data to low-level services where raw
sensor data is aggregated and preprocessed from various sources. High-level services
take derived facts provided by low-level services as input and infer new knowledge
from high-level ontologies for context-aware applications. Bikakis et al. [106] studied
different reasoning techniques and pointed out several benefits of rule-based reasoning,
including simplicity, flexibility, formalism, expressive power, modularity, high-level
abstraction, and integration with ontologies. They suggested combining ontologies and
rule-based reasoning techniques for contextual reasoning. Contextual reasoning studies
reasoning with distributed contexts in dynamic environments [107] and could provide an
approach to perform reasoning with variable contexts in IoT environments.

Barnaghi et al. survey approaches of utilizing of semantic technologies in IoT [108],
and point out semantic technologies to be important for facilitating data integration
and interoperability for IoT. For example, semantic technologies are used in the
home automation prototype system for monitoring and controlling heating and air
conditioning [109]. A smart farming system is proposed in [110], where Global Sensor
Networks (GSN) middleware and SSN ontologies are utilized to automate monitoring
and controlling of farming activities. Zhou et al. [111] propose semantic modeling for
facilitating demand response optimizations in smart grids with automated real-time load
prediction and curtailment. Hristoskova et al. [112] propose ontology-based framework
for providing personalized medication for patients, and automated emergency alerting

44

and advanced decisions support system for physicians. Preist et al. [113] demonstrates
micro architecture for automated logistics supply chains based on Semantic Web service
descriptions.

2.5 Summary

In this chapter, we presented the state of the art of data and knowledge representations.
We presented standardized Semantic Web languages and representations designed for
resource-constrained devices and pervasive applications with sensor data and a small
ontology examples. Moreover, we presented recent work about semantic technologies
being implemented in pervasive systems. In Chapter 3 and Chapter 4, we introduce
our representations that fulfils our design goals, and in Chapter 5, we compare these
representations with most representations we discussed in this chapter with the criteria
of expressive power and resource consumption.

45

46

3 Entity Notation

This chapter represents, together with the next chapter, the main contribution of this
dissertation, Entity Notation (EN). EN is a lightweight data and knowledge representation
that can be utilized by resource-constrained devices and environments. Our main goal is
to connect networked devices to knowledge-based systems and SemanticWeb. This
chapter presents EN for RDF data, and the next chapter presents EN Schema for
transferring ontologies.

3.1 Design considerations

One main challenge in connecting networked devices to knowledge-based systems in
pervasive environments is that sensors produce raw data in a variety of formats. Hence,
each format needs its own solution when sensors are connected to knowledge-based
systems. If the networked devices all utilize the same data representation and that
representation is compatible with Semantic Web knowledge models, this connection
is much easier to realize and tools, such as inference mechanisms, knowledge bases,
and semantic query techniques would be available for applications consuming the data.
Moreover, such a data representation would allow application developers to easily utilize
devices implemented and deployed by others. We tackle this challenge in this chapter.

As RDF and ontology models are based on triple representations, we design a
uniform syntax, EN, based on the triple structure for expressing RDF models and OWL
2 ontologies. Moreover, we suggest a compact format for transmission when resources
are constrained. The compact format shortens the representation with templates and
prefixes.

To meet the objectives formulated in the introduction, we specify the following
requirements for EN:

– First, it must be suitable for networked devices with modest computing and communi-
cation resources. For example, an unsophisticated embedded sensor should be able
to compose EN packets using minimal computation power and deliver packets to
knowledge-based systems in an energy efficient manner.

– Second, EN must be expressive enough for representing basic RDF and OWL 2 DL
ontology models in a uniform syntax. It should be possible to transform any RDF and

47

OWL 2 DL description into EN packets, and vice versa. Transforming RDF/XML
into EN packets is essential as XML is one of the most widely used serializations for
RDF and OWL utilizes XML syntax, as well. Though a number of other serializations
exist and have been standardized by W3C recently, many available reasoning tools
utilize RDF/XML, such as Jena [40] and Closed World Machine (CWM) [114].

– Third, EN must support distributed knowledge production and incremental knowledge
integration. Our goal is that devices and Semantic Web applications can produce
small pieces of knowledge, one piece at a time, and these pieces can be discovered,
transferred and integrated into larger ontologies. Incremental knowledge integration
will be an important feature for the knowledge bases of pervasive systems.

– Fourth, EN must be able to carry information between devices and Semantic Web
applications. EN is required to be general and precise in expressing knowledge about
any topic, but we target EN for pervasive environments.

– Fifth, the information carried in EN packets needs to be identified in a unique fashion.
This is an important feature for an Internet scale system when all the possible usages
of the information cannot be specified in advance.

Figure 2 presents the role of EN among Semantic Web technologies. The standard
Semantic Web stack is adapted from [115]. Currently, W3C offers standardized solutions
for all layers under the Rules layer. RDF and RDF Schema are used as a description
language for resources, then there is an ontology layer on top on them. Ontologies
describe relationships between types of resources, but they do not indicate how to
compute such relationships. As shown in Figure 2, EN and EN Schema are alternative
syntaxes for XML and XML Schema. All entities in EN and EN Schema can be
transformed into corresponding resources in RDF and ontologies.

RDF provides a good semantic basis for Entity Notation. The RDF model is based
on RDF statements with triple (Subject, Predicate, Object) structure. These statements
describe resources. The subject and object identify the two resources being described;
the predicate identifies a property or characteristic of the subject. These resources may
be IRIs, blank nodes, or literals. Besides, in RDF, information is identified in a unique
fashion by IRIs.

To fulfil the requirements, we define two EN formats: the complete format and the
short format. The complete format has sufficient expressive power, as it follows the
triple notation of RDF. Moreover, we adopt almost all terms from RDF Schema and
OWL 2 in the complete format. Due to the triple notation, it will be straightforward

48

Fig. 2. EN’s role in Standard Semantic Web Stack.

to serialize RDF and ontologies into complete EN packets and vice versa. On the
other hand, lightweight short packets can support resource-constrained devices and
communication links. Support for incremental knowledge definition and communication
will be provided as well. We define for RDF and OWL a uniform EN and EN Schema
syntax that does not constrain the type of information. Finally, EN uses Universally
Unique Identifiers (UUIDs) [116] and IRIs for unique identification.

We design EN to represent RDF in pervasive environments; this means RDF model
can be serialized into a set of EN packets that can then be transferred. Then, we
describe EN Schema for transferring other elements in ontologies. Design details of EN
Schema will be presented in Chapter 4. Generally, EN and EN Schema are based on
describing entities and their relationships with values and other entities. An entity is
some identifiable whole, concrete or abstract. Concrete entities can be, for example,
sensors, objects, and measurements. Abstract entities can be OWL elements, such as
concepts and relations between them. This definition of entity is different from that of
entity introduced in [19], because we include the option of PropertyType, which can
be associated with PropertyValue. This definition will be utilized in the rest of this
dissertation.

In an entity description, we identify one entity and then build a number of triples
about it. An entity description is of the form:

EntityType EntityId

PropertyName PropertyValue

...

PropertyName PropertyValue

49

EN is designed for transferring data and knowledge. Hence, the main EN syntax has a
format that presents entity descriptions as a set of EN packets. EN packet is defined as a
sequence of Universal Coded Character Set (UCS) characters containing one entity
description.

In general, EntityType and EntityId determine the type and the identifier of an
RDF subject or OWL element. They are followed by a number of property pairs
(PropertyName, PropertyValue), which specify relationships or characteristics of this
entity. PropertyValues can be other EntityIds or literals. Multiple pairs can be defined
for the same EntityId simply by listing the (PropertyName, PropertyValue) pairs of
these triples one after another. We include type information for EntityId, because it is
important to identify the type of EntityId, when EN packets are transferred to RDF
statements and EN Schema to ontologies. Similar to other RDF syntaxes, EN can also
include optional type information for literal property values. PropertyType follows
PropertyValue and is separated with two caret characters, like this:

PropertyValue^^PropertyType

Type of PropertyValues are XML Schema data types [117]. However, when Proper-
tyValue is not a literal, PropertyType cannot be specified with this approach. When
PropertyValue is an entity, its type information can be given with a seperate entity
description:

EntityType EntityId

EN utilizes plain literals and typed literals. When PropertyValue is a string (i.e. literal),
a language tag can be attached to the string. The language tag has to be a well-formed
string according to [118]. However, in this thesis, most experiments are developed for
pervasive applications, where EN has its main role in M2M communications. Hence, we
are not utilizing language tags in the examples.

Table 1 presents the mapping from EN to RDF. When an EN packet is mapped
to RDF statements, EntityId maps to the subject of a triple, PropertyNames map to
predicates, PropertyValues map to objects, and EntityType maps to the type of the
subject. PropertyType maps to the type of an object. After transforming into RDF
statements, the identified entities are instances of classes which are defined in the
schema.

50

Table 1. Mapping of EN to RDF.

EN RDF

EntityType Type of a subject (rdf:type)

EntityId Subject of a triple

PropertyName Predicate of a triple (but cannot be rdf:type)

PropertyValue Object of a triple

PropertyType (optional) Type of an object (rdf:type)

Language tag of string literal (optional) Language Tag of String Literal

Square brackets and angle brackets are utilized to identify the level of knowledge
an EN and EN Schema packet should be mapped to. When an entity description is
wrapped in square brackets ([and]), the EN packet should be transferred to RDF data.
When an entity description is wrapped in angle brackets (< and >), it is an EN Schema
packet and should be transferred to ontologies. Designing different brackets for EN and
EN Schema benefits a pervasive system with processing efficiency. When a device
is receiving both EN data and EN Schema simultaneously, they can be very easily
distinguished and delivered to different parsers. For example, knowledge-based systems
for IoT applications may process large and highly dynamic EN data with more stable
and small EN Schema. Hence, knowledge-based systems could build TBox knowledge
with EN schema as quickly as possible for processing a large amount of EN data.

The complete EN format resembles the triple structure of RDF and OWL 2. To
shorten packets, we utilize a template that contains descriptions of the constant part of a
set of complete EN packets and placeholders for the variable items. Such a template is
utilized to build short EN packets that need to contain only a template identifier and the
variable items.

3.2 Formal description

EN is a text/plain Multipurpose Internet Mail Extensions (MIME) type format, and
encoded in UCS characters. The Extended Backus-Naur Form (EBNF) [119] definition
of EN packet and EN Schema packet has the following structure:

EN-packet = complete-EN | short-EN;

EN-Schema-packet = complete-EN-Schema | short-EN-Schema;

complete-EN = "[", entity-type, entity-id, {property-pair}, "]";

complete-EN-Schema = "<", entity-type, entity-id, {property-pair}, ">";

51

short-EN = "[", template-id, {short-entity-id? |

{short-propertyvalue}?}, "]";

short-EN-Schema = "<", template-id, {short-entity-id? |

{short-propertyvalue}?},">";

property-pair = propertyname, propertyvalue;

propertyvalue = entity-id | literal;

short-propertyvalue = short-entity-id | literal;

literal = typed-literal | plain-literal;

typed-literal = literal-string,language-tag?"^^"literal-type;

plain-literal = literal-string,language-tag?

entity-type = (* Full IRI determining an entity’s type *);

entity-id = (* Full IRI identifying a single entity *) |

blank-node;

template-id = (* UUID identifying a template *);

propertyname = (* Full IRI identifying a property *) | blank-node;

propertytype = (* Full IRI determining a propertyvalue’s type *);

short-entity-id = (* Short IRI identifying an entity *) | blank-node;

literal-string = (* String for representing a fixed value,

enclosed in double quotes *);

language-tag = @(* String for determining the language of a string

*)

literal-type = (* Full IRI identifying a XML Schema data type *)

blank-node = (* Identifier for a blank node *)

This EBNF definition is utilized as a formal meta syntax notation for EN. This notation
can be utilized as a reference, when developing tools for checking the correctness of EN
packets. In this EBNF definition, a full IRI is a character string used to identify a name
of a Web resource. Full IRIs can be shortened with prefixes, this produces short IRIs.
The IRIs of complete packets are full, as this minimizes the processing of EN packets
when transforming into RDF and OWL 2 knowledge. Short IRIs in short packets do
not cause extra processing for resource-constrained devices, as these devices do not
construct full IRIs.

UUID is an identifier standard [116], which enables identifying information without
central coordination. Each UUID is unique over the whole system, which is a critical
feature when a general solution is required. Utilization of UUIDs guarantees unique
template identifiers. Moreover, templates can be created by any device of the system, in
a distributed fashion, and without any central registry.

52

The syntax of EN and EN Schema utilizes only a small number of special characters,
thus a device needs to process a small set of characters when composing and decomposing
EN and EN Schema packets. Special characters in the EN and EN Schema syntax
include backslashes, square brackets, angle brackets, white spaces, double quotes, carets,
and commercial at. Square brackets are used to determine the start and end of data
packets, while angle brackets are used to determine the start and end of EN packets
expressing higher level ontology knowledge. White spaces separate tokens. Double
quotes determine the start and end of values (that can contain white spaces). This is
because some data types such as base64Binary data type can contain white spaces but
not double quotes. Caret chararacter is required when including a typed literal and a
commercial at is required when including a language tag. An escape character ‘\’ is
needed when special characters occur in the packet content. The escape sequences are
listed in Table 2. However, when special characters occur in literals, double quote is the
only escape character which requires an escape character ‘\’.

Table 2. Escape Characters in EN.

Escape Sequence Meaning

\\ Backslash (\)

\" Double Quote (")

\[and \] Square brackets ([and])

\< and \> Angle brackets (< and >)

\ White Space()

\^ Caret (^)

\@ Commercial at(@)

IRIs are used to identify information in the EN packets; in this dissertation, the
namespace "http://ee.oulu.fi/o#" is used for these IRIs. Entity descriptions specify
claims about the world. EN follows the open world assumption, which means that the
truth-value of a statement may be true irrespective of whether or not it is known by any
single observer or agent to be true [121]. One entity description makes claims about an
entity. Semantics of a set of entity descriptions are arranged as an interpretation which
makes the statement true.

53

3.3 Complete packet format

The format for complete EN packets follows closely that of RDF statements. A basic
RDF statement contains a (subject, predicate, object) triple. A complete EN packet
contains knowledge that can be mapped to a set of RDF statements:

[subject predicate object]

[subject predicate object]

...

[subject predicate object]

In addition to information about subjects, predicates, and objects, an EN packet
mandatorily contains type information of subjects, and may contain type information of
objects as well. This is a prerequisite for implementing ontology-based inference. The
predicates, types, and objects of the subject can also be mapped in a straightforward
manner. A complete EN packet that can be transformed into RDF statements has the
form:

[EntityType EntityId

PropertyName PropertyValue

...

PropertyName PropertyValue]

EntityType and EntityId determine the type and the identifier of the subject. Together,
they define the primary entity an EN packet is about. EntityId is a unique identifier for
an entity of the type described by EntityType. These items are followed by a number of
property pairs (PropertyName, PropertyValue). PropertyName specifies a predicate and
PropertyValue specifies an object, which can be an entity or a literal. When PropertyType
is included, a complete EN packet has the form:

[EntityType EntityId

PropertyName PropertyValue^^PropertyType

...

PropertyName PropertyValue^^PropertyType]

PropertyType can be included in any property pair of an EN packet. EntityType,
EntityId, PropertyName, and PropertyType are identified in a unique fashion by IRIs.
XML Schema data types are supported for literal types. Literals (including literal IRIs)
are enclosed in double quotes.

54

Some objects can be other entities. In this case, the value of a property is an identifier
of the other entity (i.e. EntityId). PropertyType can not be linked to such property values.
Here is an example of three EN packets describing a line segment between a mobile
sensor and a fixed point:

[http://ee.oulu.fi/o#Linesegment http://ee.oulu.fi/o#linesegment25

http://ee.oulu.fi/o#startsFrom http://ee.oulu.fi/o#locaSensor767

http://ee.oulu.fi/o#endsWith http://ee.oulu.fi/o#position798

http://ee.oulu.fi/o#distance "1100"]

[http://ee.oulu.fi/o#LocaSensor http://ee.oulu.fi/o#locaSensor767

http://ee.oulu.fi/o#owner "JohnSmith"

http://ee.oulu.fi/o#longitude "25.47"

http://ee.oulu.fi/o#latitude "65.06"]

[http://ee.oulu.fi/o#Position http://ee.oulu.fi/o#position798

http://ee.oulu.fi/o#annotation "Good Place for Collecting berries"

http://ee.oulu.fi/o#longitude "25.4545"

http://ee.oulu.fi/o#latitude "65.062"]

When PropertyType information is included, these EN packets are:

[http://ee.oulu.fi/o#Linesegment http://ee.oulu.fi/o#linesegment25

http://ee.oulu.fi/o#startsFrom http://ee.oulu.fi/o#locaSensor767

http://ee.oulu.fi/o#endsWith http://ee.oulu.fi/o#position798

http://ee.oulu.fi/o#distance

"1100"^^http://www.w3.org/2001/XMLSchema#float]

[http://ee.oulu.fi/o#LocaSensor http://ee.oulu.fi/o#locaSensor767

http://ee.oulu.fi/o#owner

"JohnSmith"^^http://www.w3.org/2001/XMLSchema#String

http://ee.oulu.fi/o#longitude

"25.47"^^http://www.w3.org/2001/XMLSchema#float

http://ee.oulu.fi/o#latitude

"65.06"^^http://www.w3.org/2001/XMLSchema#float]

[http://ee.oulu.fi/o#Position http://ee.oulu.fi/o#position798

http://ee.oulu.fi/o#annotation

"Good Place for Collecting berries"

^^http://www.w3.org/2001/XMLSchema#String

http://ee.oulu.fi/o#longitude

"25.4545"^^http://www.w3.org/2001/XMLSchema#float

http://ee.oulu.fi/o#latitude

"65.062"^^http://www.w3.org/2001/XMLSchema#float]

55

One location is measured by a location sensor, while another is a prefixed geospatial
point marked as a good place for collecting berries. We could implement some simple
rule-based inference based on these packets. For example, the system could calculate
the distance between these two points, and recommend a user to collect some berries,
when he/she is nearby.

A complete packet can be transferred to a Turtle description in a straightforward
fashion because of the natural relationship between EN and RDF. The entity type can be
represented as a Class and the entity identifier is the identifier of the resource. Property
names and values can be mapped directly. PropertyType is either represented as a Class
or a XML Schema data type. To maintain a straightforward mapping between the EN
and syntaxes of RDF and to keep syntaxes of RDF simple to process, we do not use
nesting. However, when EN is transferred to RDF/XML, we do use the shorthand for
resource classes, that is, we replace rdf:description with the resource type and hence
do not need to use rdf:type. We also use identifiers, i.e. the rdf:ID attribute instead of
rdf:about for making shorter packets.

The three EN packets (without PropertyType) listed above can be transformed into
the following Turtle document; the corresponding RDF graph is shown in Figure 3:

@prefix e:<http://ee.oulu.fi/o#>.

@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.

@prefix xml:<http://www.w3.org/XML/1998/namespace>.

@prefix xsd:<http://www.w3.org/2001/XMLSchema#>.

e:linesegment25 a e:Linesegment;

e:distance "1100";

e:endsWith e:position798;

e:startsFrom e:locaSensor767.

e:locaSensor767 a e:LocaSensor;

e:latitude "65.06 ";

e:longitude "25.47";

e:owner "JohnSmith".

e:position798 a e:Position;

e:annotation "Good Place for Collecting berries";

e:latitude "65.062";

e:longitude "25.4545".

56

Fig. 3. RDF graph of the line segment example.

The second example presents data from a temperature, acceleration, and magnetic
field sensor. This is the same data that is presented in Chapter 2 in EN syntax:

[http://ee.oulu.fi/o#TempAccMagSensor

http://ee.oulu.fi/o#tempAccMagSensor01

http://ee.oulu.fi/o#timeStamp "2012-05-18T12:00:00"

http://ee.oulu.fi/o#accX "618"

http://ee.oulu.fi/o#accY "319"

http://ee.oulu.fi/o#accZ "671"

http://ee.oulu.fi/o#magX "123"

http://ee.oulu.fi/o#magY "234"

http://ee.oulu.fi/o#magZ "345"

http://ee.oulu.fi/o#temp "22.5"]

57

The recommended naming convention of the EN follows that of ontologies: entity
types (mapping to class names in ontologies) start with an initial capital letter, property
names (mapping to property names in ontologies) start with initial lowercase letters.
When a property value is an entity, the property name contains a verb and a noun; when
the value is a literal, the property name contains only a noun. Identifiers (mapping to
individuals in ontologies) are otherwise identical to entity type names but they start with
a lowercase letter and end in a number. One exception for naming identifiers is that
blank node identifiers start with an underscore and a colon, and end with a number. IRI
references are used, i.e. fragment identifiers are used heavily. As usual, xml:base is used
in creating full IRIs from the identifiers.

3.4 Short EN format

Complete EN packets can be long because of meaningful type names and IRIs. We
suggest a technique based on templates and prefixes to shorten the packets. The basic
idea is that a template contains the description of the constant part of a sequence of
EN packets and placeholders for the variable items. The short packet sent over the
communication links needs to contain only a template identifier and the variable items.
It should be noted that short EN packets can be transformed to complete packets without
semantic loss and vice versa.

A set of complete EN packets can then be assembled by replacing the template’s
placeholders with the values contained in the short packet. Prefixes are used to shorten
IRI references. However, we do not utilize recursive or iterative data structures.

Which items in the complete packets should be treated as constant parts and which
items should be treated as variable items? It is clear that EntityType and PropertyName
should be constant items. Then, EntityId and PropertyValue could be variable parts.
However, they can also be constants. EntityId can be constant when, for example, a
sensor always sends data about the same entity. A short packet without EntityIds has the
following format:

[UUID PropertyValue PropertyValue ... PropertyValue]

When a short packet format includes EntityIds, the format is:

[UUID

EntityId PropertyValue PropertyValue ... PropertyValue

......

58

EntityId PropertyValue PropertyValue ... PropertyValue

]

UUID in the short packet is used to identify the template. In its canonical form, a UUID
is 128 bits long, consisting of 32 hexadecimal digits. For human-readable display, digit
groups are separated by hyphens. In URN format, a UUID looks like this:

urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

There are alternative lengths for UUIDs, such as 64 bits, 32 bits and, 16 bits. We can
choose UUIDs of different length based on the size of the identifier space a pervasive
system requires: short UUIDs guarantee unambiguous identification for a small scale
system; while 128 bits UUIDs need to be used for an Internet-scale system. Table 3
gives examples for short UUIDs. The hexadecimal numeral length of UUIDs is utilized
for parsing and serializing packets. When the packets are delivered, the UUIDs are
serialized as a part of a string.

Table 3. Examples of short UUIDs.

UUID length [bit] Example

16 urn:uuid:59a7

24 urn:uuid:35e6af

32 urn:uuid:e81d4fae

64 urn:uuid:cea700a0c91e6bf6

When a small scale sensing system is integrated into a larger one, alternative 128 bit
UUIDs can be generated for the templates and the conversion between short and long
UUIDs can be performed using look-up tables. This look-up table can be built on the
gateway forwarding data from the small scale system to the larger one, for example. We
utilize 24 bit UUIDs later in this chapter and will utilize both 24 bit UUIDs and full 128
bit UUIDs in the prototypes presented in Chapter 5.

Figure 4 shows an example of using different templates to transfer the same location
measurement (introduced in the earlier example). This example presents how sensors
can have different templates for different application scenarios and corresponding short
packets can have different variable items. In the figure, Sensor 1 sends a short packet,
including UUID, EntityId and all three PropertyValues to the knowledge-based system.
This packet is the longest short packet among the alternatives, as all possible variable

59

Fig. 4. Different short EN formats transferred from sensors to a knowledge-based system.

items are included in this short packet. But in this case, only one template is needed for
all location sensors producing this kind of measurements. This short packet format
might be used when several sensors produce location data and the amount of memory
needed for templates is to be minimized. This template is shown in the first row of Table
4.

Sensor 2 sends a short packet, including UUID and all three PropertyValues. The
corresponding template contains the EntityId. As shown in the second row of Table 4,
three placeholders in this template reserve places for the values of owner, longitude,
and latitude, respectively. Compared with the previous one, this template can only be
utilized by a specific location sensor. Then, the number of templates is determined by
that of location sensors.

Sensor 3 in Figure 4 sends a shorter packet without an owner item. This template
might be used when the sensor is owned by the same person for a long time. Sensor 4
sends a short packet containing only the owner item. This might be the case when the
user does not move for a long time (for example, the user is sleeping).

Sensor 5 sends a short packet only including a UUID. Clearly, this is the shortest
packet among all alternatives. The whole packet is only seventeen bytes long, and all the
actual information is encoded in the template. This might be used in the case that all

60

variables are stable for a long time. The shortest possible packet can be achieved when a
16 bit UUID is utilized and a packet only includes the UUID, then, the packet length is
seventeen bytes. The corresponding template is in the last row of Table 4.

Table 4. Templates for the sensors in Figure 3.

Template for Sensor 1:

urn:uuid:7bcf45

Prefix: EE:http://ee.oulu.fi/o

[http://ee.oulu.fi/o#LocaSensor ?1 http://ee.oulu.fi/o#owner ?2 http://ee.oulu.fi/o#longitude ?3
http://ee.oulu.fi/o#latitude ?4]

Template for Sensor 2:

urn:uuid:7bcf39

Prefix: EE:http://ee.oulu.fi/o

[http://ee.oulu.fi/o#LocaSensor http://ee.oulu.fi/o#locaSensor767 http://ee.oulu.fi/o#owner ?1
http://ee.oulu.fi/o#longitude ?2 http://ee.oulu.fi/o#latitude ?3]

Template for Sensor 3:

urn:uuid:7bcf78

Prefix: EE:http://ee.oulu.fi/o

[http://ee.oulu.fi/o#LocaSensor http://ee.oulu.fi/o#locaSensor767 http://ee.oulu.fi/o#owner
"JohnSmith" http://ee.oulu.fi/o#longitude ?1 http://ee.oulu.fi/o#latitude ?2]

Template for Sensor 4:

urn:uuid:7bcf57

Prefix: EE:http://ee.oulu.fi/o

[http://ee.oulu.fi/o#LocaSensor http://ee.oulu.fi/o#locaSensor767 http://ee.oulu.fi/o#owner ?1
http://ee.oulu.fi/o#longitude "25.47" http://ee.oulu.fi/o#latitude "65.06"]

Template for Sensor 5:

urn:uuid:7bcf66

Prefix: EE:http://ee.oulu.fi/o

[http://ee.oulu.fi/o#LocaSensor http://ee.oulu.fi/o#locaSensor767 http://ee.oulu.fi/o#owner
"JohnSmith" http://ee.oulu.fi/o#longitude "25.47" http://ee.oulu.fi/o#latitude "65.06"]

3.5 Negotiating short packets

For most resource-constrained sensors, sending predefined short packets is the easiest
way to minimize resource consumption because no template negotiation is needed.
More capable devices can negotiate the usage of short packets during their operation.

61

Fig. 5. Sequence diagram of the rejection of utilizing short packets.

An initiator with a template can suggest the short packet format. When an initiator
suggests a respondent to use short packets, the respondent can either refuse or agree. If
the respondent agrees to use the suggested template, it can request the template from the
initiator if it does not have it in the memory. To use the template, the respondent needs
to be able to identify the placeholders from the template in order to include the right
values in the short packet.

The negotiating process is always done between two peers. Figure 5, 6, and 7 show
the negotiating process. Figure 5 presents the message sequence when an initiator
requests to utilize a template, but the respondent refuses to utilize this template. The
acknowledgment message sent by the initiator confirms this and the initiator sends
complete packets. Figure 6 presents the sequence when an initiator requests to utilize a
template, and this is agreed by the respondent. The acknowledgment message sent by
the initiator confirms this and short packets are then sent in the following data transfer.
Figure 7 presents the sequence when an initiator requests to utilize a template, the
respondent agrees to utilize this template and requests the template at the same time.
The acknowledgment message sent by the initiator confirms this. The initiator sends first
the template and then short packets during the data transfer.

Templates can be transferred as EN packets. Because the syntax of the templates
does not comply with the complete packet format, we cannot transfer them as EN
packets directly. But a template itself is also an entity that can be described with

62

Fig. 6. Sequence diagram of the agreement of utilizing short packets.

Fig. 7. Sequence diagram of the agreement of utilizing short packets and respondent need
a template.

63

statements about the templateId, statements, and placeholders. Namespace prefixes can
also be included in the template. Statements can be described using RDF reification in
EN syntax (see [122], RDF Reification subsection). We use complete EN packets for
expressing templates and there is no short packet format for them. Here, is the formal
EBNF description for template packets:

EN-template = template-packet, {statement-packet};

template-packet = "[", template-type, template-Id, UUID-pair,

{prefix-pair}, {statement-pair}, {placeholder-pair},"]";

UUID-pair = templateId-IRI, UUID-value;

prefix-pair = prefix-IRI, prefix-value;

statement-pair = hasStatement-IRI, statement-id;

placeholder-pair = hasPlaceholder-IRI, placeholder-id;

statement-packet = "[", statement-type, statement-id, reification, "]";

reification = subject-IRI, entity-id, predicate-IRI, property-name,

object-IRI, value | placeholder-id;

template-type = (* IRI identifying a template class *);

template-Id = (* IRI identifying a single template *);

templateId-IRI = (* IRI identifying a templateID property *);

UUID-value = (* UUID identifying a template, 128-bit value *);

prefix-IRI = (* IRI identifying a prefix property *);

prefix-value = (* IRI identifying a prefix *);

hasStatement-IRI = (* IRI identifying the hasStatement property *);

hasPlaceholder-IRI = (* IRI identifying the hasPlaceholder property *);

entity-id = (* IRI identifying an entity *);

property-name = (* IRI identifying a property *);

statement-type = "http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement";

statement-id = (* IRI identifying a statement *);

placeholder-id = (* IRI identifying a placeholder *);

subject-IRI = "http://www.w3.org/1999/02/22-rdf-syntax-ns#subject";

predicate-IRI = "http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate ";

object-IRI = "http://www.w3.org/1999/02/22-rdf-syntax-ns#object ";

value = (* String for representing a fixed property value *);

The following example shows a template with three placeholders. This is the template
used by the sensor 2 in Figure 4. A packet defining the template entity is as follows:

64

[http://ee.oulu.fi/o#Template http://ee.oulu.fi/o#template875

http://ee.oulu.fi/o#templateID

"urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"

http://ee.oulu.fi/o#hasStatement http://ee.oulu.fi/o#statement1

http://ee.oulu.fi/o#hasStatement http://ee.oulu.fi/o#statement2

http://ee.oulu.fi/o#hasStatement http://ee.oulu.fi/o#statement3

http://ee.oulu.fi/o#hasStatement http://ee.oulu.fi/o#statement4

http://ee.oulu.fi/o#hasPlaceholder http://ee.oulu.fi/o#?1

http://ee.oulu.fi/o#hasPlaceholder http://ee.oulu.fi/o#?2

http://ee.oulu.fi/o#hasPlaceholder http://ee.oulu.fi/o#?3]

Here are four reification packets in EN format for expressing the

statements.

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement

http://ee.oulu.fi/o#statement1

http://www.w3.org/1999/02/22-rdf-syntax-ns#subject

http://ee.oulu.fi/o#locaSensor767

http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate

http://ee.oulu.fi/o#owner

http://www.w3.org/1999/02/22-rdf-syntax-ns#object

http://ee.oulu.fi/o#?1]

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement

http://ee.oulu.fi/o#statement2

http://www.w3.org/1999/02/22-rdf-syntax-ns#subject

http://ee.oulu.fi/o#locaSensor767

http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate

http://ee.oulu.fi/o#longitude

http://www.w3.org/1999/02/22-rdf-syntax-ns#object

http://ee.oulu.fi/o#?2]

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement

http://ee.oulu.fi/o#statement3

http://www.w3.org/1999/02/22-rdf-syntax-ns#subject

http://ee.oulu.fi/o#locaSensor767

http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate

http://ee.oulu.fi/o#latitude

65

http://www.w3.org/1999/02/22-rdf-syntax-ns#object

http://ee.oulu.fi/o#?3]

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement

http://ee.oulu.fi/o#statement4

http://www.w3.org/1999/02/22-rdf-syntax-ns#subject

http://ee.oulu.fi/o#locaSensor767

http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/1999/02/22-rdf-syntax-ns#object

http://ee.oulu.fi/o#LocaSensor]

These EN packets define a template which is presented in the second row of Table 4.
Template EN packets are verbose because of the usage of RDF Reification. However, the
same EN template packets can be delivered to multiple devices when they are required.
Prefix can also be included in tempalte EN packets when needed.

3.6 Chaining EN packets

Packet chaining operates by chaining packets destined to the same output together [123].
Chaining EN packets can be useful in systems that consist of devices with different
capabilities. For example, a gateway could receive packets from sensors, add additional
values, and send the extended packets further to knowledge-based systems for reasoning
over the data. In this section, we introduce different EN packet chaining solutions.

Figure 8 presents a scenario in which a sensor sends short packets to three gateways.
The gateways are receiving the same packet from a location sensor and forwarding
different packets to knowledge-based systems. Gateway 1 decodes the short packet
partially, changes the template identifier to a new one and adds a timestamp value. The
whole packet needs not to be decoded; the user name and location values can be handled
in the format received as a character string. The knowledge-based system can then
decode the data completely. Gateway 2 has a similar mechanism to Gateway 1, but it
only forwards selected values. In this case, it deletes the “owner” value and adds a
timestamp.

Gateway 3 works in a simpler way. It does not parse the packet it receives, but
simply adds another packet in front of it and forwards them together. The first packet
contains template identifier and a timestamp, and they are added by the gateway. The

66

Fig. 8. Chaining EN packets.

second packet is the packet received from the sensor as it is. Some other nodes in
pervasive systems, e.g. knowledge-based systems, can decompose the packets and use
the values. The knowledge-based system is the only node that needs to decode the
values encoded in the template identifiers and needs to have the knowledge to interpret
the chain as one packet.

This method allows any number of packets to be chained. As long as the receiver
knows the individual packets of the packet chain, the packets can be interpreted correctly.
In other words, the server can assemble a complete packet from several short packets
and the data can be picked from short packets correctly.

More capable gateways can perform a larger variety of operations on EN packets.
They can have the capability to discover templates, transform short packets into complete
format, pick variables from complete packets, compose new EN packets and transfer
them to other system nodes.

3.7 Supported data structures

In this section, we present how different data structures can be represented with EN.
These data structures are widely utilized for knowledge representations and pervasive

67

systems. Although some of these structures are deprecated in RDF 1.1, they are
supported by EN. In this section, we introduce how to represent RDF blank nodes,
RDF Container, RDF Collection, and RDF Reification. Moreover, we also consider
representing arrays and enumerations with EN.

EN triples enable the definition of graphs, just as RDF statements do. Blank nodes
are used to indicate explicitly the existence of a thing, without using the identifier of that
thing. The difference between blank nodes and other entities is in the interpretation; they
cannot be accessed outside the interpretation they occur in.

However, the handling of blank nodes needs to be considered carefully as extra
blank nodes may need to be introduced when transforming from RDF graphs into EN
packets. Blank nodes are used in RDF to describe unnamed resources. They can be used
as intermediate nodes for dealing with n-ary relationships. We use the following naming
convention for blank node identifiers: an identifier starts with an underscore and a colon
and continues with lowercase letters and a number, for example:

_:blanknode01

This representation follows the blank node naming in RDF/XML and N3. Other entities
in the same set of EN packets processed at the same time can refer to blank nodes, but
entities outside this set of EN packets cannot refer to this blank node identifier. EN does
not support other ways for expressing blank nodes.

RDF provides containers and collections for expressing collections of members.
These members can be entities or literals. Containers, including rdf:Bag, rdf:Seq, and
rdf:Alt are used to describe an unclosed set of members, while collections are used
to express a closed set. EN supports containers and collections. They are like other
entities: they consist of EntityType, EntityId, and (PropertyName, PropertyValue) pairs.
EntityType defines the type of the data structure, and EntityId identifies the data structure
with an IRI. EntityId starts with the type of the container or collection and ends with a
number. Then, we have a "http://ee.oulu.fi/o#hasItem" property, which has EntityIds or
literals as property values. For example, an rdf:Bag container containing two location
sensor descriptions can be expressed as follows:

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag

http://ee.oulu.fi/o#bag208

http://ee.oulu.fi/o#hasItem http://ee.oulu.fi/o#locaSensor767

http://ee.oulu.fi/o#hasItem http://ee.oulu.fi/o#locaSensor768]

A reification is a statement about another statement. Expressing reifications in EN
packets follows that of RDF. An entity statement has three properties: a subject, a

68

predicate and an object for expressing the original statement. RDF reification vocabulary,
including rdf:Statement, rdf:subject, rdf:predicate and rdf:object, is used in EN. The
following example illustrates reification. First, the complete packet is:

[http://ee.oulu.fi/o#LocaSensor

http://ee.oulu.fi/o#locaSensor767

http://ee.oulu.fi/o#owner "JohnSmith"]

The reification for this packet is:

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement

http://ee.oulu.fi/o#statement65

http://www.w3.org/1999/02/22-rdf-syntax-ns#subject

http://ee.oulu.fi/o#locaSensor767

http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate

http://ee.oulu.fi/o#owner

http://www.w3.org/1999/02/22-rdf-syntax-ns#object "JohnSmith"]

The corresponding Turtle document for this reification is:

@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

<http://ee.oulu.fi/o#statement65>

a rdf:Statement;

rdf:subject <http://ee.oulu.fi/o#locaSensor767>;

rdf:predicate <http://ee.oulu.fi/o#owner>;

rdf:object "JohnSmith".

Arrays and enumerations are common data structures in programming languages. An
array stores a collection of data in one or more dimensions, and an enumeration stores a
list of values for variable items of the same type. They can be built from simple data
types. An array consists of a collection of members, with each of them identified by one
or more integer indices. We use "http://ee.oulu.fi/o#hasItem" property again to express
an item in an array. Array indices start from 1. We can store a (longitude, latitude) pair
in an array as follows:

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Array

http://ee.oulu.fi/o#array1801

http://ee.oulu.fi/o#hasItem "25.47"

http://ee.oulu.fi/o#hasItem "65.06"]

The items are listed in the order determined by the indices. A short packet for a
one-dimensional array looks like this:

69

[urn:uuid:89b47e EE#array1801 "25.47" "65.06"]

In this packet, the prefix EE is used to shorten a full IRI. The complete representation of
arrays is verbose but, on the other hand, can be easily transformed into RDF models. The
short packets are not much longer than their representation in programming languages.
The corresponding template for this short packet is:

urn:uuid:89b47e

Prefix: EE:http://ee.oulu.fi/o

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Array ?1

http://ee.oulu.fi/o#hasItem ?2

http://ee.oulu.fi/o#hasItem ?3]

The corresponding Turtle document for this array is:

@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

<http://ee.oulu.fi/o#array1801>

a <http://www.w3.org/1999/02/22-rdf-syntax-ns#Array>;

<http://ee.oulu.fi/o#hasItem> "25.47";

<http://ee.oulu.fi/o#hasItem> "65.06".

Arrays can have more than one dimension. For example, a two-dimensional array
is a one-dimensional array having one-dimensional arrays as items. We can store a
two-dimensional array as follows:

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Array

http://ee.oulu.fi/o#array1801

http://ee.oulu.fi/o#hasItem http://ee.oulu.fi/o#array2901

http://ee.oulu.fi/o#hasItem http://ee.oulu.fi/o#array2902]

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Array

http://ee.oulu.fi/o#array2901

http://ee.oulu.fi/o#hasItem "25.47"

http://ee.oulu.fi/o#hasItem "65.06"]

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Array

http://ee.oulu.fi/o#array2902

http://ee.oulu.fi/o#hasItem "27.47"

http://ee.oulu.fi/o#hasItem "68.06"]

70

With a similar approach, an enumeration can be represented in EN packets. An
enumeration contains a set of predefined literals. "http://ee.oulu.fi/o#hasItem" property
is utilized to express one item in an enumeration again. Here, is an example of storing
compass directions (north, south, east, and west) in an enumeration.

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Enum

http://ee.oulu.fi/o#enum2746

http://ee.oulu.fi/o#hasItem "North"

http://ee.oulu.fi/o#hasItem "South"

http://ee.oulu.fi/o#hasItem "East"

http://ee.oulu.fi/o#hasItem "West"]

The corresponding short EN packet looks like this:

[urn:uuid:ac3e476 EE#enum2746 "North" "South" "East" "West"]

The template for this short packet is:

urn:uuid:ac3e476

Prefix: EE:http://ee.oulu.fi/o

[http://www.w3.org/1999/02/22-rdf-syntax-ns#Enum ?1

http://ee.oulu.fi/o#hasItem ?2

http://ee.oulu.fi/o#hasItem ?3

http://ee.oulu.fi/o#hasItem ?4

http://ee.oulu.fi/o#hasItem ?5]

The corresponding Turtle document for this array is:

@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

<http://ee.oulu.fi/o#enum2746>

a <http://www.w3.org/1999/02/22-rdf-syntax-ns#Enum>;

<http://ee.oulu.fi/o#hasItem> "North";

<http://ee.oulu.fi/o#hasItem> "South";

<http://ee.oulu.fi/o#hasItem> "East";

<http://ee.oulu.fi/o#hasItem> "West".

3.8 Limitations

EN has sufficient expressive power, because the complete format follows the triple
structure of RDF. Moreover, it supports many data types and the basic data structures of

71

programming languages. EN allows building complex data structures from simple data
types. However, as EN is deliberately kept simple, these data structures must be built
from entities and relations between them. As a result, processing large data structures
can require considerable resources.

One limitation of EN is that it does not support nesting. Nesting is widely supported
by data representations and it compresses a representation. Here again, we left nesting
deliberately out from EN to simplify the structure of individual packets, because we are
aiming to minimize the lengths of individual packets, though this may lead to larger
size for the complete description. Instead of nesting, IRI references and blank node
identifiers are utilized to determine relations. One advantage of a set of small packets
over a single large packet is that the small packets can have different routing paths.
Moreover, a larger data structure can be sent in smaller pieces once at a time. This
can also be done by lower layer protocols. This is possible with EN as every piece of
information is identifiable and discoverable.

We restrict the usage of blank nodes in EN packet sets. Other entities in the same
set of EN packets can refer to a blank node, but entities outside this set of EN packets
cannot refer to that blank node identifier. When including blank nodes, a set of EN
packets has to be processed together.

3.9 Summary

In this chapter, we introduced EN in detail, including design considerations, syntax,
different packet formats, packet negotiating and chaining, supported data formats, and
limitations. We focused on basic EN that can be transferred into RDF statements. We
emphasize that EN is a lightweight data representation, which facilitates connecting
resource-constrained devices to knowledge-based systems.

72

4 Entity Notation Schema

The previous chapter described how to transfer data. For a knowledge-based system,
this means representing and transferring RDF statements with EN packets. In this
chapter, we describe EN Schema for transferring ontologies. This enables EN to achieve
the goal of semantic interoperability in pervasive environments. We present design
considerations and illustrate with a small sensor ontology example how OWL 2 elements
can be presented utilizing EN Schema.

4.1 Design considerations

As today’s mobile devices have considerable computing, storage, and communication
resources, they can play a big role in pervasive environments. But to do this, they
need to access knowledge in a flexible fashion from highly dynamic environments.
Knowledge transfer is one of the key issues to enable advanced functionality.

OWL 2 is a standardized Semantic Web language designed for modelling complex
knowledge. Ontologies contain fundamental elements including axioms, entities, and
expressions. Axioms are the basic statements that an OWL ontology expresses. Entities
are elements that refer to real-world things, and expressions combine entities to form
complex descriptions from basic ones. Most semantic reasoners are based on OWL 2,
and RDF/XML is the only syntax that is mandatory to be supported by OWL 2 tools.
However, different syntaxes of OWL 2 have mainly been designed for storing and
utilizing knowledge and for editing and presentation purposes. We are not aware of any
knowledge representation optimized for communication, although such a representation
would enable richer functionality and decrease the communication payload for pervasive
environments.

We suggest utilizing EN and EN Schema for transferring ontologies. EN Schema
facilitates ontology transfer between mobile devices and knowledge-based systems.
Moreover, when ontologies represented with OWL 2 can be transformed into EN and EN
Schema, knowledge-based systems complying with Semantic Web technologies can be
supported. Similarly to EN for RDF, EN Schema for ontologies has a complete format,
which can represent ontology elements in a straightforward fashion. On the other hand,
the short format is suitable for communication when resources are constrained. The
complete format can easily be transformed into the short format, and vice versa.

73

Fig. 9. Ontology-based processing in pervasive environments.

Figure 9 presents how EN facilitates knowledge processing in pervasive environ-
ments, consisting of resource-rich servers, resource-constrained sensors, and ontology-
enabled devices. By ontology-enabled devices, we refer to mobile devices capable of
utilizing ontologies to model the application domain and reason about the properties of
the application domain [26]. An ontology-enabled device can access ontologies from a
server, and data from resource-constrained devices, such as sensors. It is also possible to
access data from a server, which is not shown in this figure. Hence, the device has all
the knowledge required for inference and other ontology-based processing. EN and EN
Schema play an important role in this scenario, as they enable knowledge transfer to
ontology-enabled devices from other devices in pervasive environments.

We set the following requirements for EN Schema:

– First, EN Schema must be expressive enough for representing OWL 2 DL ontology.
OWL 2 DL is selected, because it enables reasoners, in principle, to always answer
“Yes” or “No”. Moreover, up-to-date reasoners can support the entire OWL 2 DL
features, but, not for OWL 2 Full. It should be possible to transform any description
of OWL 2 DL knowledge into EN Schema, and vice versa. Fulfilling this goal enables
serializing OWL 2 DL ontologies into EN Schema. This is essential, as OWL 2 is
preferred by W3C and the most widely used syntax, and many reasoning tools are
based on OWL 2.

74

– Second, EN Schema must support distributed ontology definitions. This feature
allows decomposing an ontology description into individual packets. This results in
a distributed description that can be transferred even one EN Schema packet at a
time. Individual packets for one ontology can be distributed to different devices, at
different times, and be transferred via different routes. Individual packets produced
by different devices can also be transferred incrementally to compose a large shared
ontology. This feature enables transferring ontologies in a very flexible fashion in
highly dynamic pervasive environments. For example, an ontology-enabled device in
Figure 9 can access knowledge incrementally with individual EN packets when it
needs.

– Third, EN Schema must have an optimized syntax for communication links with
limited bandwidth to transfer EN Schema when resources are constrained. In addition,
we require EN Schema to be flexible enough for pervasive systems so that system
designers can configure optimized EN and EN Schema for different systems.

We meet these requirements as follows:

– First, to have enough expressive power, EN Schema offers a format aligned with
OWL. In the complete format, we adopt almost all terms from OWL and RDFS. It is
straightforward to serialize OWL ontology into EN Schema and vice versa.

– Second, EN Schema supports distributed ontology definitions directly, as EN Schema
allows fine-grained description of ontologies into EN Schema packets.

– Third, to support simple communication links, EN Schema offers compact short
packets, which are easy to serialize and parse. Techniques based on templates and
prefixes are utilized to shorten the packets. Each short packet type has a unique
identifier and can hence be discovered and identified in an unambiguous fashion
even when the packets of an ontology are not delivered as one set. Furthermore, EN
Schema is flexible as it offers a large variety of possibilities for the designer to decide
how much information to be included in packets and how much to be included in
templates.

4.2 Complete packet format

We present our solution for expressing entities of an ontology with the complete EN
Schema format in this section. Entities in the EN Schema are abstract concepts and
relations between them, for example, classes, properties, individuals, and restrictions.

75

Complete packet format and short packet format follows the EBNF structure defined in
Section 3.2. A complete packet for EN Schema is of the form:

<EntityType EntityName

EntityRelation RelationName

...

EntityCharacteristics CharacteristicsName>

As we discussed above, EN and EN Schema support incremental and distributed
definitions for entities. A device might first possess only this description:

<EntityType EntityName>

Any number of EntityRelation or EntityCharacteristics can be added for this EntityName
gradually, when it receives EN Schema packets about the same entity. A complete
packet for EN Schema must always contain EntityType and EntityName. In addition, a
packet can contain any number of (EntityRelation, RelationName) pairs and any number
of (EntityCharacteristics, CharacteristicsName) pairs (including zero for both). Hence,
these are valid EN Schema packets:

<EntityType EntityName

EntityRelation RelationName>

<EntityType EntityName

EntityCharacteristics CharacteristicsName>

As we mentioned in Chapter 3, entity descriptions are enclosed within angle brackets (<
and >) for EN Schema. In this entity description, EntityType describes the primary
type of an entity. For example, the type owl:Class indicates the next token as a class
name, while the type owl:ObjectProperty indicates the next token as an ObjectProperty.
EntityName is interpreted to specify the primary entity this packet is about. Any number
of descriptions (i.e. pairs) about this entity can follow this token without repeating
EntityName. EntityRelation presents a relationship between this entity and some other
entities such as rdfs:subClassOf and rdfs:domain. The value of EntityRelation (i.e.
RelationName) determines some other entity. Type information is implicitly defined by
EntityRelation. For example, the value of rdfs:subClassOf has the type owl:Class, while
the value of owl:onProperty has the value of owl:Property. An entity can have other type
information described as EntityCharacteristics. For example, an ObjectProperty can be
announced as a TransitiveProperty. In this general form, there is no limitation for the
amount or ordering of pairs.

76

Table 5. Mapping of EN Schema to OWL.

EN Schema OWL

EntityType Type of an element (rdf:type)

EntityName Name of an OWL element

EntityRelation OWL constructor that relates one OWL element
to another

EntityCharacteristics Characteristics of elements (rdf:type)

RelationName Name of an OWL element as the target of the
relation

CharacteristicsName Characteristics of OWL elements

A complete packet can be transformed into an OWL description straightforwardly, as
presented in Table 5. EntityName can be mapped to an element name directly, while
EntityType indicates the type of the element. Relationships between entities, such as
rdfs:subClassOf and rdfs:domain, can be mapped to OWL constructors. EntityCharac-
teristics can be mapped to characteristics of elements the term with utilizing rdf:type,
while CharacteristicsName can be mapped directly to characteristics name in OWL.

Table 6 lists the RDF and RDFS vocabulary that can be utilized in EN Schema. That
is, EN Schema packets can contain these constructs. Moreover, EN Schema utilizes all
OWL 2 constructs. More details of OWL 2 constructs can be found from [124].

77

Table 6. RDF and RDFS vocabulary for EN and EN Schema.

Construct Description

rdfs:Class The class of classes.

rdfs:Literal The class of literal values.

rdfs:Datatype The class of RDF datatypes.

rdf:XMLLiteral The class of XML literal values.

rdf:Property The class of RDF properties.

rdfs:domain A domain of a property, a Class.

rdfs:range A range of a property, a Class.

rdfs:subClassOf The entity is a sub-class of a class.

rdfs:subPropertyOf The entity is a sub-property of a property.

rdfs:label A human-readable name for the entity.

rdfs:comment A description of the entity.

rdfs:Container The class of containers.

rdf:Seq The class of ordered containers.

rdf:Bag The class of unordered containers.

rdf:Alt The class of containers of alternatives.

rdfs:ContainerMembershipProperty The class of container membership properties.

rdf:n (digital number) Enumeration, each of these is a sub-property of
rdfs:member.

rdf:List The class of Lists.

rdf:first The first item in the list.

rdf:rest The rest of the list after the first item.

rdf:nil Indication of the end of the list.

rdf:Statement The class of statements, used for RDF reification.

rdf:subject The subject of the statement, used for RDF
reification.

rdf:predicate The predicate of the statement, used for RDF
reification.

rdf:object The object of the statement, used for RDF
reification.

rdfs:seeAlso Further information about the entity.

rdfs:isDefinedBy The definition of the entity.

rdf:value Idiomatic property used for structured values.

78

rdf:type is not utilized in EN. We always specify EntityType before the name of
an entity. When transforming a set of EN packets to an RDF graph, the relation of
EntityType and EntityId is converted to rdf:type.

Next we present how to represent different OWL 2 DL elements with EN and
EN Schema with a small sensor ontology example. We introduce basic constructs
for building classes, properties, instances, and their basic modelling features. These
are most of the essential features that OWL 2 supports. We follow the ordering of
W3C OWL 2 Primer [125]. Base URI xml:base="http://ee.oulu.fi/o/" is utilized in all
following examples of complete EN Schema packets.

4.2.1 Classes and instances

In general, classes represent sets of individuals. In modelling, class definitions describe
the concepts in ontologies. We define a named class in EN Schema as follows:

<owl:Class ClassNameA>

For example, Sensor class can be defined as follows:

<owl:Class Sensor>

This EN Schema packet can be transformed into the following OWL fragment in Turtle:

:Sensor a owl:Class.

We define an instance as an EN packet as follows:

[ClassNameA instancenameA]

For example, a location sensor can be defined as an instance of the Sensor class:

[http://ee.oulu.fi/o#Sensor http://ee.oulu.fi/o#locaSensor767]

This can be transformed into the following fragment in Turtle:

http://ee.oulu.fi/o#locaSensor767 a http://ee.oulu.fi/o#Sensor;

4.2.2 Class hierarchies

OWL 2 utilizes rdfs:subClassOf to relate a specific class to a more general one. In EN
Schema, a subclass relation can be defined as follows:

79

<owl:Class ClassNameB

rdfs:subClassOf ClassNameC>

For example, Sensor and LocationSensor classes can be defined like this:

<owl:Class LocationSensor

rdfs:subClassOf Sensor>

This can be transformed into the following OWL fragment in Turtle:

:LocationSensor a owl:Class.

:LocationSensor rdfs:subClassOf :Sensor.

As we introduce more EN Schema constructs, we add details to these classes. For an
ontology defined in a distributed fashion, it is important to relate the distributed parts
with each other. OWL 2 provides a mechanism by which classes are considered to be
semantically equivalent. Namely, OWL construct equivalentClass is utilized to identify
equivalence between classes. EN Schema utilizes this construct straightforwardly:

<owl:Class ClassNameD

owl:equivalentClass ClassNameE>

For example, a user might import a new class SensorwithMemoryLimitation, which is
an identical concept with MemoryConstrainedSensor. In this case, we can claim that the
classes SensorwithMemoryLimitation and MemoryConstrainedSensor are the same
class as follows:

<owl:Class SensorwithMemoryLimitation

owl:equivalentClass MemoryConstrainedSensor>

This packet can be transferred into OWL fragment in Turtle as follow:

:SensorwithMemoryLimitation a owl:Class;

owl:equivalentClass :MemoryConstrainedSensor.

4.2.3 Class disjointness

Class disjointness announces that membership in one class specifically excludes
membership in another. This is done as follows in EN Schema:

<owl:AllDisjointClasses _:blanknodeA>

owl:members CollectionA>

<en:Collection CollectionA

80

hasClassItem ClassNameF

...

hasClassItem ClassNameG>

We give each collection an identifier, and utilize the term hasClassItem to list all items
for this collection. Below, we utilize one extra new prefix “en” that has the value
"http://ee.oulu.fi/o/en#" as a prefix for the collection entity, as there is no OWL 2
standard prefix for this term:

<en:Collection CollectionID

hasClassItem ClassNameH

...

hasClassItem ClassNameI>

For example, we can announce that no individual can be an instance of both Sensor class
and Person class as follows:

<owl:AllDisjointClasses _:blanknode01

owl:members collection101>

<en:Collection collection101

hasClassItem Sensor

hasClassItem Person>

These can be transferred into OWL fragment in Turtle as follow:

[] a owl:AllDisjointClasses;

owl:members (:Sensor :Person).

4.2.4 Object properties

Properties present entity relations in a general form, i.e. binary relations for individuals
in classes. Two kinds of properties can be distinguished: object properties and datatype
properties. Object properties present relations between individuals of two classes. In EN
Schema, an object property can be declared as follows:

<owl:ObjectProperty ObjectPropertyNameA>

We use the example presented in Section 3 as an example. A line segment measured
from the location of one location sensor can be defined like this:

<owl:ObjectProperty startsFrom>

[http://ee.oulu.fi/o#linesegment25

http://ee.oulu.fi/o#startsFrom http://ee.oulu.fi/o#locaSensor767]

81

This can be transformed into the following fragment in Turtle:

http://ee.oulu.fi/o#linesegment25

http://ee.oulu.fi/o#startsFrom http://ee.oulu.fi/o#locaSensor767.

We can also state that two individuals are not connected by a property with EN Schema
as follows:

<owl:NegativePropertyAssertion _:blanknode02

owl:sourceIndividual IndividualA

owl:assertionProperty DatatypePropertyB

owl:targetIndividual IndividualB.

>

For example, we can define the line segment is not measured from the point of one
location sensor. In EN Schema, it can be defined like this:

<owl:NegativePropertyAssertion _:blanknode03

owl:sourceIndividual http://ee.oulu.fi/o#linesegment25

owl:assertionProperty http://ee.oulu.fi/o#startsFrom

owl:targetIndividual http://ee.oulu.fi/o#locaSensor767.

>

The corresponding fragment in Turtle is as follow:

[] rdf:type owl:NegativePropertyAssertion;

owl:sourceIndividual http://ee.oulu.fi/o#linesegment25;

owl:assertionProperty http://ee.oulu.fi/o#startsFrom;

owl:targetIndividual http://ee.oulu.fi/o#locaSensor767.

4.2.5 Property hierarchies

EN Schema allows to specify a sub-property relation between properties, which behaves
similarly to a sub-class relation between classes. In EN Schema, a sub-property relation
can be declared as follows:

<owl:ObjecttypeProperty ObjectPropertyNameA

rdfs:SubPropertyOf ObjectPropertyNameB>

For example, we can define that hasMother is a sub-property of hasParent:

<owl:ObjecttypeProperty hasMother

rdfs:SubPropertyOf hasParent>

82

This can be transformed into the following OWL fragment in Turtle:

:hasMonther rdfs:subPropertyOf :hasParent.

Moreover, there is also possibility to define property equivalence, in the same way as
defining class equivalence. Equivalent property can be defined as follows:

<owl:ObjectProperty PropertyNameB

owl:equivalentProperty PropertyNameC>

4.2.6 Domain and range restrictions

There are several ways to restrict a property, including specifying a domain and a range
for a property. Domain and range restrictions carry implicit additional information about
individuals. We utilize the RDFS constructs rdfs:domain and rdfs:range for an object
property as follows:

<owl:ObjectProperty ObjectPropertyNameC

rdfs:domain ClassNameJ

rdfs:range ClassNameK>

The following object property presents that a sensor is owned by a person.

<owl:ObjectProperty hasOwner

rdfs:domain Sensor

rdfs:range Person>

This packet can be transformed into the following OWL fragments in Turtle:

:hasOwner a owl:ObjectProperty;

rdfs:domain :Sensor;

rdfs:range :Person.

4.2.7 Equality and inequality of individuals

Similarly to constructs for identifying equivalence and difference between classes and
properties, sameAs, differentFrom, and allDifferent are utilized for describing relations
between individuals.

<EntityType EntityId

owl:sameAs individualC>

<EntityType EntityId

83

owl:differentFrom individualD>

<EntityType EntityId

owl:DifferentIndividuals individualE>

For example, the fact that sensor001 is different from sensor002 can be expressed in EN
as follows:

<owl:NamedIndividual sensor001

owl:differentFrom sensor002>

This packet can be transformed into:

:sensor001 a owl:NamedIndividual;

owl:differentFrom :sensor002.

4.2.8 Datatype properties

Datatype properties present relations between an individual and literals or XML Schema
data types. Domain and range can also be stated for datatype properties as it is done for
object properties. EN Schema supports rdfs:Literal and XML Schema data types that are
built-in OWL data types. EN Schema describes a datatype property like this:

<owl:DatatypeProperty DatatypePropertyNameA

rdfs:domain ClassNameL

rdfs:range xsd:datatype>

The following is an example using a datatype property. It describes that sensors have
memory capacity expressed as a float.

<owl:DatatypeProperty hasMemoryCapability

rdfs:domain Sensor

rdfs:range xsd:float>

These packets can be transformed into the following OWL fragments in Turtle:

:hasMemoryCapability a owl:DatatypeProperty;

rdfs:domain :Sensor;

rdfs:range xsd:float;

Likewise, EN Schema supports negative datatype property as follow:

<owl:NegativePropertyAssertion _:blanknode04

owl:sourceIndividual IndividualF

84

owl:assertionProperty DatatypePropertyC

owl:targetValue Value1.

>

For example, we can define that a sensor’s memory capacity is not 32kb. In EN Schema,
it can be defined like this:

<owl:NegativePropertyAssertion _:blanknode05

owl:sourceIndividual http://ee.oulu.fi/o#locaSensor767

owl:assertionProperty http://ee.oulu.fi/o#memoryCap

owl:targetValue "32768"

>

The corresponding fragment in Turtle is as follow:

[] rdf:type owl:NegativePropertyAssertion ;

owl:sourceIndividual http://ee.oulu.fi/o#locaSensor767;

owl:assertionProperty http://ee.oulu.fi/o#memoryCap;

owl:targetIndividual 32768.

4.2.9 Advanced class relationships

Advanced class relationships include complex classes, property restrictions, property
cardinality restrictions, and enumerations of individuals. These relationships are about
how named classes, properties, and individuals can be used as building blocks to define
new classes.

Complex classes

New classes can be constructed by using owl:intersectionOf, owl:unionOf, owl:complementOf,
and owl:oneOf class operators, as follows:

<owl:Class ClassID

owl:intersectionOf CollectionID>

<owl:Class ClassID

owl:unionOf CollectionID>

<owl:Class ClassID

owl:complementOf CollectionID>

As introduced in Section 4.2.3, collection is an identified entity and utilizes the term
hasClassItem to list all items for this collection. Similarly, it is also possible to use class

85

constructors together with a rdfs:subclassOf constructor to indicate necessary, but not
sufficient, conditions for a class:

<owl:Class ClassNameM

rdfs:subClassOf ClassNameN

owl:intersectionOf CollectionID>

If we want to make a new class to express memory constrained location sensor, this
can be achieved by applying intersectionOf constructor on LocationSensor class and
MemoryConstrainedSensor class. We can have a new class in EN Schema:

<owl:Class MemoryConstrainedLocationSensor

owl:intersectionOf collection201>

<en:Collection collection201

hasClassItem LocationSensor

hasClassItem MemoryConstrainedSensor>

These two packets can be transformed into OWL representation like this:

:MemoryConstrainedLocationSensor a owl:Class;

owl:intersectionOf (:LocationSensor :MemoryConstrainedSensor).

Property restrictions

A property restriction describes an anonymous class. All individuals of this class satisfy
the specified restriction. OWL distinguishes two kinds of property restrictions: value
constraints and cardinality constraints. Term owl:onProperty is always utilized with
property restrictions.

OWL typically utilizes nesting to represent property restrictions. Because we do not
use nesting in EN and EN Schema, we create restriction entities and give an identifier
for each of them. In this way, we split a complex nesting structure into smaller packets.
EN Schema describes restrictions like this:

<owl:Class ClassName

owl:equivalentClass RestrictionID>

<owl:Restriction RestrictionID

owl:onProperty PropertyName

owl:allValuesFrom ClassName>

<owl:Restriction RestrictionID

owl:onProperty PropertyName

86

owl:someValuesFrom ClassName>

<owl:Restriction RestrictionID

owl:onProperty PropertyName

owl:hasValue Individual>

<owl:Restriction RestrictionID

owl:onProperty PropertyName

owl:hasSelf ClassName>

For example, the following complete packets specify a Class Sensorowner which
links to Sensor class with own property:

<owl:Restriction Sensorowner

owl:onProperty own

owl:someValuesFrom Sensor>

These packets can be mapped to OWL syntax in Turtle as follows:

:SensorOwner owl:equivalentClass [

rdf:type owl:Restriction ;

owl:onProperty :own;

owl:someValuesFrom :Sensor].

Property cardinality restrictions

Similar to identifications for collections, we give each restriction an identifier. Cardinality
restriction is a special property, which enables to specify the number of individuals
involved in the restriction. There are three kinds of cardinality restrictions, which specify
maximum, minimum, and exact amounts:

<owl:Restriction RestrictionID

owl:onProperty PropertyName

owl:maxCardinality value>

<owl:Restriction RestrictionID

owl:onProperty PropertyName

owl:minCardinality value>

<owl:Restriction RestrictionID

owl:onProperty PropertyName

owl:exactCardinality value>

For example, the following complete packets specify that sensing nodes having more
than one physical sensors are sensorgroup:

87

<owl:Class Sensorgroup

rdfs:subClassOf Sensor

rdfs:subClassOf restriction001>

<owl:Restriction restriction001

owl:onProperty hasPhysicalSensor

owl:minQualifiedCardinality "2">

These packets can be mapped to OWL syntax in Turtle as follows:

:Sensorgroup a owl:Class;

rdfs:subClassOf [a owl:Restriction;

owl:minQualifiedCardinality "2";

owl:onProperty :hasPhysicalSensor],

:Sensor.

Enumeration of individuals

OWL 2 provides a possibility to describe a class by enumerating the individuals of this
class. EN Schema can support this feature utilizing equivalentClass and a collections of
individuals:

<owl:Class ClassName

owl:equivalentClass CollectionId>

Such a collection includes a set of individuals:

<en:Collection CollectionId

hasItem IndividualId

...

hasItem IndividualId>

For example, we can build a class for sensors in TS354 like this:

<owl:Class SensorsinTS354

owl:equivalentClass collection301>

<en:Collection collection301

hasItem locationSensor203

hasItem temperatureSensor357>

These packets can be mapped to OWL syntax as follows:

:SensorsinTS354 a owl:Class;

owl:equivalentClass [a owl:Class;

owl:oneOf (:locationSensor203 :temperatureSensor357)].

88

4.2.10 Advanced use of properties

In this section, we now focus on other capabilities with properties, including property
characteristics, property chains, and keys.

Property characteristics

Property characteristics specify additional type information for properties. We can
utilize EN Schema to describe inverse object property, symmetric object property,
asymmetric object property, transitive object property, disjoint object property, reflexive
object property, irreflexive object property, functional object property, and inverse
functional object property. They can be presented in EN Schema like this:

<owl:ObjectProperty PropertyName

owl:inverseOf PropertyName>

<owl:ObjectProperty PropertyName

rdf:type SymmetricProperty>

<owl:ObjectProperty PropertyName

rdf:type AsymmetricProperty>

<owl:ObjectProperty PropertyName

rdf:type TransitiveProperty>

<owl:ObjectProperty PropertyName

Owl:propertyDisjointWith PropertyName>

<owl:ObjectProperty PropertyName

rdf:type ReflexiveProperty>

<owl:ObjectProperty PropertyName

rdf:type IrreflexiveProperty>

<owl:ObjectProperty PropertyName

rdf:type FunctionalProperty>

<owl:ObjectProperty PropertyName

rdf:type InverseFunctionalProperty>

For example, the transitive object property locatedIn can be presented as:

<owl:ObjectProperty locatedIn

rdf:type TransitiveProperty>

And its corresponding OWL syntax is:

:locatedIn a owl:ObjectProperty;

a owl:TransitiveProperty.

89

Among these property characteristics, the expression of inverse object property and
disjoint object property characteristics differ from the others as these two have another
property name as their value. We can take the property hasOwner as an example. It
might have an inverse object property:

<owl:ObjectProperty hasOwner

owl:inverseOf own>

The corresponding OWL fragment is:

:hasowner a owl:ObjectProperty;

owl:InverseProperties :own.

Property chains

Property chains allow defining a property as the composition of several properties.
This is a new feature only available in OWL 2. EN Schema supports this feature by
utilizing owl:propertyChainAxiom collection and a collection of properties. EN Schema
describes restriction like this:

<owl:ObjectProperty ObjectProperyNameD

owl:propertyChainAxiom collection302>

<en:Collection collection302

hasItem ObjectProperyNameE

hasItem ObjectProperyNameF

hasItem ObjectProperyNameG

...

>

The following property chain means that when a device made an observation and that
observation has a result, the result is the one produced by the device.

<owl:ObjectProperty hasResult

owl:propertyChainAxiom collection303>

<en:Collection collection303

hasItem madeObservation

hasItem ObservationResult

>

The corresponding OWL fragment is:

:hasResult owl:propertyChainAxiom (:madeObservation :ObservationResult).

90

Keys

Keys allow each named instance of a class expression to be uniquely identified by the set
of values which these properties attain in relation to the instance. Keys can be expressed
in EN Schema as follows:

<owl:Class ClassNameO

owl:haskey collection401>

<en:Collection collection401

hasItem ObjectProperyNameH

hasItem ObjectProperyNameI

...

>

For example, each instance of Class device is unique identified by an UUID:

<owl:Class Device

owl:hasKey collection402>

<en:Collection collection402

hasItem hasUUID

...

>

And the corresponding OWL fragment is:

:Device owl:hasKey (:hasUUID ...).

4.2.11 Advanced use of datatypes

This section presents more advanced features of datatype usage, which is introduce
in OWL 2. Datatypes can be restricted via facets, borrowed from XML Schema
Datatypes. For example, we define a new datatype for a mobile device’s memory size by
constraining the datatype integer to values between (inclusively) 0 and 17179869184.

<rdfs:Datatype mobiledevicemomorysize

owl:onDatatype xsd:integer

owl:withRestrictions collection502>

<en:Collection collection502

hasItem anonymous1

hasItem anonymous2

>

91

<owl:Class anonymous1

xsd:minInclusive "0"^^xsd:integer

>

<owl:Class anonymous2

xsd:maxInclusive "17179869184"^^xsd:integer

>

And the corresponding OWL fragment is:

mobiledevicemomorysize

owl:withRestrictions

([xsd:minInclusive "0"^^xsd:integer]

[xsd:maxInclusive "17179869184"^^xsd:integer]) ;

owl:onDatatype xsd:integer.

With a similar approach, datatypes can be combined just like classes by complement,
intersection and union. Moreover, a new datatype can be generated by enumerating the
data values it contains.

4.2.12 Document information and annotations

Similar to other syntax, EN Schema also supports features for providing information
about the ontology itself, including annotation assertion, defining names for an ontology,
and importing other ontologies.

We could add information to one of the classes of the ontology, giving a natural
language description of its meaning. EN Schema utilizes rdfs:comment like this:

<owl:Class Sensor

rdfs:comment "A device which detects or measures a physical property

and records, indicates, or otherwise responds to it."^^xsd:string>

And the corresponding OWL fragment is:

:Sensor rdfs:comment

"A device which detects or measures a physical property

and records, indicates, or otherwise responds to it."^^xsd:string.

We can also provide a name for an ontology, which is generally the place where the
ontology document is located.

<owl:Ontology http://ee.oulu.fi/o/IoTOntology>

92

And the corresponding OWL fragment is:

<http://ee.oulu.fi/o/IoTOntology> a owl:Ontology.

We utilize Turtle syntax for defining prefixes in EN Schema. For example, the standard
expansion for owl is defined as follows:

@prefix owl: <http://www.w3.org/2002/07/owl#>.

OWL allows the import of the contents of entire ontologies in other ontologies, using
import statements. With EN Schema, we define the import like this:

<owl:Ontology http://ee.oulu.fi/o/IoTOntology

owl:imports http://ee.oulu.fi/o/SensorOntology.owl>

And the corresponding OWL fragment is:

<http://ee.oulu.fi/o/IoTOntology> owl:imports

<http://ee.oulu.fi/o/SensorOntology.owl>.

4.2.13 Sensor ontology example

Part of the EN Schema packets we introduced in previous sections can be assembled
to form the sensor ontology example presented in Figure 10. This ontology includes
several concepts about sensors, some characteristics, and restrictions for these sensors,
and relations among them. Though this small ontology has only 4360 bytes, it offers a
formal description to support rule-based reasoning. For example, when an individual
location sensor sends packets about its owner and capability to a computing node that
has this ontology, the received information can be registered and cataloged. After that,
location measurements from this sensor can potentially be utilized to infer activities of
this user.

4.3 Short packet format

The complete format offers a solution for representing and transferring ontologies.
Complete packets can be quite long because of meaningful IRIs and verbose OWL
constructors. Similar to the idea for RDF statements, we utilize templates and prefixes
to shorten the packets. A template contains a description of the constant part of a set of
EN Schema packets and placeholders (expressed by a question mark followed with an
integer) for the variable items. The packet sent over the communication links needs to

93

Fig. 10. Sensor ontology example.

94

contain only a template identifier and the variable items. A set of complete packets can
then be assembled by replacing the template’s placeholders with the values contained in
a short packet. Prefixes are used to shorten IRI references.

Generally, the EntityType, EntityRelation, and EntityCharacteristicsName should
be constant parts for the short packets, while the EntityName, RelationName, and
CharacteristicsName could be variable items. Different from complete packets, short
packets do not have the restriction that one packet can only describe one entity. Any
number of entities and their description can be described in one short packet. A short
packet describing one entity has the following format:

<UUID EntityName Value ... Value>

Here, we use “Value” for expressing names for the relations and characteristics. When a
short packet format includes EntityNames for several entities, the format is:

<UUID

EntityName Value ... Value

......

EntityName Value ... Value

>

Moreover, a short packet can include names for some entities, but exclude some others.
For example, the EntityName for the last few values is excluded like this:

<UUID

EntityName Value ... Value

......

Value ... Value

>

The short packet format is quite flexible; hence, it leaves space for designers to optimize
their pervasive systems. A good system design minimizes the usage of resources, like
bandwidth, memory, and CPU cycles, by optimizing information allocation between
templates and short packets.

An UUID in a short packet is used to identify the template. Figure 11 presents an
example of using different templates to transfer the same ontology fragment about the
sensor class and its relations. It shows two mobile devices with different templates,
and the corresponding short packets they receive. A mobile device at the left side is
accessing a short packet starting with a 32 bit UUID and following with all values about
sensor class within one short packet. The mobile device has the following template:

95

Fig. 11. The example ontology in use.

<owl:Class ?1>

<owl:ObjectProperty ?2

rdfs:domain ?3

rdfs:range ?4

owl:inverseOf ?5>

<owl:DatatypeProperty ?6

rdfs:domain ?7

rdfs:range ?8>

In this template, there are eight placeholders in total for class name, object property
name, its domain, its range, its inverse property name, datatype property name, domain,
and range of this property. Placeholders from multiple complete packets can reserve
places for values in one short packet. In other words, one short packet can be transformed
into more than one complete packet.

A mobile device at the right side hosts templates for three complete packets:

<owl:Class ?1>

<owl:ObjectProperty ?1

rdfs:domain ?2

96

rdfs:range ?3

owl:inverseOf ?4>

<owl:DatatypeProperty ?1

rdfs:domain ?2

rdfs:range ?3>

These complete packets can then be assembled and transferred separately. Compared
with the short packet at the left side, the short packets at right side are 39.5% longer. On
the other hand, multiple templates introduce flexibility. Each of these templates only
includes essential constructors for one kind of element in an ontology. For example,
when another datatype property needs to be transferred, the third template (related to the
datatype property) can be adopted to reuse.

By using the template above, only an UUID and a set of values need to be included
in short packets when ontology descriptions are transferred between devices and
knowledge-based systems. In this way ontology can be transferred without information
loss.

4.4 Summary

In this chapter, we presented EN Schema for representing OWL ontologies. We
introduced design requirements, complete and short EN for representing OWL 2
knowledge, utilization of OWL constructs in EN Schema, and a small sensor ontology
example. We emphasize that EN Schema enables semantic interoperability in pervasive
environments.

97

98

5 Evaluation

In this chapter, we evaluate EN and EN Schema. We first present small evaluations and
prototypes of a few system components. Then we present larger prototypes of complete
systems that utilize a wider set of EN features. First, we compare the expressive power
of EN against other alternatives. Then, we evaluate the lengths of EN messages in a
simulated system and with well-known data sets and ontologies for both EN and EN
Schema. The simulator also verifies that EN can be utilized to control devices, such as
robots. In the first small prototype, EN is utilized in a wearable sensor for detecting and
reporting the well-being of elderly people. With the second prototype, we analyze the
resource usage of EN and alternative representations. The first larger prototype adopts
EN to build a knowledge-based system for ambient social interactions. EN is utilized to
transfer Global Positioning System (GPS) data and social data produced by human users
of mobile phones. In the second larger prototype, we study how EN can be utilized in a
general framework for two layer inference.

The author of this thesis performed all the research in the Section 5.1, Section
5.2, and Section 5.3. Section 5.4 presents experiments of transferring ontologies. The
author of this thesis developed the first version of the parser for OWL and Pingjiang Li
developed the second version of the parser for OWL 2 based on the latest EN Schema
design. Section 5.5 presents two sensor prototypes. The author of this thesis designed the
EN descriptions, developed the PC side applications of these prototypes, was involved in
the resource consumption evaluation of the sensors, and analyzed the results. Embedded
programming was done by Dr. Janne Haverinen and Mr. Markus Koskimies. Section 5.6
presents an ambient social interaction application. The author of this thesis designed
the general framework, EN for ambient social interactions, and analyzed EN in the
prototype. Together with Ekaterina Gilman, Paweł Kwiatkowski, Tomasz Latkowski,
Alma Pröbstl, Bartłomiej Wójtowicz, and Jukka Riekki, the author performed the
design, implementation, and testing of the prototype. Section 5.7 presents the two-layer
inference framework. The author of this thesis was responsible for EN related work, was
involved in the prototyping, and performed the analysis. Davide Fucci was involved in
the brainstorming and discussions.

99

5.1 Expressive power

We first consider the expressive power of EN. In Table 7, we compare the semantic
expressive power of EN against RDF/XML [126], N3 [44], SenML [46], and JSON-LD
[10]. Among these alternatives, RDF/XML, N3, JSON-LD, and EN can be mapped to
graphs [127]. Hence, they support ontologies straightforwardly. RDF/XML and N3
have a triple centric structure as the base representation. Other alternatives, including
SenML, JSON-LD, and EN, follow the entity centric approach. SenML has a more free
form data structure, which cannot be mapped to graphs in a similar fashion. Hence,
SenML data cannot be utilized by knowledge-based systems as easily as the other
alternatives. On the other hand, SenML may be easy to produce by devices, because it
can be mapped easily to the basic data structures of programming languages. JSON-LD
shares this benefit with SenML. Meanwhile, short EN is also easy to produce as it has
such a simple structure. Describing types of entities is important for all data formats,
because it enables linking to higher level knowledge. All alternatives can express entity
types, but complete EN packets require this as a mandatory element. RDF, N3, and
JSON-LD support rich XML Schema data types, while SenML supports only four basic
data types, that is, floating point, integer, Boolean value, and string. All these data
formats support external semantic information. RDF and N3 support mechanisms to
import additional knowledge. EN does not have a similar mechanism, but its packet
structure enables a natural way of knowledge integration. SenML and JSON-LD support
additional semantics via linking to other Web resources.

Table 7. Comparison of expressive power.

RDF/XML N3 SenML JSON-LD EN

Mapping to Graphs Y Y N Y Y

Triple Centric Structure Y Y N N N

Entity Centric Structure N N Y Y Y

Device Type Y Y Y Y Y

Data Types XSD XSD 4 types XSD XSD

External Semantics Y Y Y Y Y

100

5.2 Resource usage

We discuss the resource usage of EN and introduce a way to optimize a system at design
time in this section. From the examples presented earlier, it can be seen that when a
device sends data to other system nodes as short EN packets, a packet needs to contain
only the template identifier and the variable items. A receiver can assemble the complete
packet without any information loss as long as it has the template. EN leaves space for
the designers for optimizing their pervasive systems by tuning packet lengths and the
number of templates to produce an optimal combination of bandwidth usage for sending
short packets and Central Processing Unit (CPU) and memory usage for processing the
packets.

Next, we sketch how resource usage can be controlled at design time by considering
the number of templates. We focus mainly on resource-constrained devices. We assume
that:

n = number of variable items in a complete packet.

The items are EntityIds, PropertyNames, and PropertyValues in EN packets. Entity-
Types are excluded, because they do not appear in Short EN packets. The number of
items in a corresponding short packet varies depending on templates used. The shortest
packet only includes a UUID, while the longest one includes all variable items. Hence,
we assume:

p = number of variable items in a short packet, p ∈ [0,n].

We consider the minimal and maximal number of templates. The minimal amount of
templates is one, it is achieved when all networked sensors send identical messages and
all variable items are encoded in short packets. For example, if there are five location
sensors sending their owners’ locations, the template presented for Sensor 1 in Table 4
can be utilized for all these five sensors. The maximum amount of templates is achieved
when only UUIDs are included in each short packet, similar to Sensor 5 in Figure 3.

Assuming the number of different values of the item i as xi, we can calculate the
maximum number of templates as:

n

∏
i=1

xi.

101

For example, there might be five temperature sensors and 50 different temperature
values. In this case, the number of items is two, i.e. a packet contains one EntityId and
one PropertyValue. 250 (5 times 50) templates are required if only UUID is included in
short packets. 250 different UUIDs are required as well.

For a system not having templates for every different combination of values, we
need to consider both the amount of variable items in the short packets and values of
these items. We assume that, when p>0, items from xn−p+1 to xn are included in the
short packet (indices start from 1). When p equals n, exactly one template is needed, as
all values are in short packets. When p is smaller than n,

n−p

∏
i=1

xi

templates are needed to communicate all possible values. Every short packet has p

values. The values for the rest of the variables are encoded in the templates.
As the resource-constrained sensors do not store templates, but just construct short

packets, the amount of memory required by templates does not need to be considered.
Instead, we estimate how placing one variable item from a short packet to a template
affects resource usage. Briefly, such an operation increases the number of templates by a
factor of xi. Instead of writing the value to the short packet, the resource-constrained
sensor needs to select the correct template identifier for the short message. This produces
more code and hence more memory is needed to store the program and more CPU
cycles to execute it. On the other hand, bandwidth usage decreases as one less variable
item is included in the short packet.

We estimate memory usage with fm(p) , CPU usage with fc(p), and bandwidth
usage fb(p). We normalize them to Fb(p), Fm(p), and Fc(p). Resource consumption
can be optimized by selecting the optimal number of items for short packets. The costs
of different resources can be considered. If all resources have the same cost, the designer
can minimize:

Fb(p)+Fm(p)+Fc(p).

When the costs are different, the designer can use weights to present differences and
minimize:

wb ∗Fb(p)+wm ∗Fm(p)+wc ∗Fc(p).

102

As all these functions strongly depend on the underlying technology and the
implementation of the software, these functions will not be discussed in more detail
here.

It should be noted that the sensors do not need to have any information about the
templates, they only insert template identifiers in the messages they send. Usage of short
packets can be decided by the engineer at design time. The second option is that the
sensors negotiate the usage during communication.

5.3 Simulator and RDF/XML data sets

In this section, we evaluate EN by using a device simulator and some standard RDF/XML
datasets. To evaluate EN, we develop Java functions and applications to encode and
decode EN packets. An EN encoder realizes the functionality of encoding RDF/XML
documents into a set of EN packets. A decoder, in its turn, performs this process in the
opposite direction. Figure 12 and Figure 13 present the main components of an encoder
and a decoder, respectively. It should be noted that when EN is processed in embedded
devices, the encoding process is often easier than this, because an embedded device
builds EN packets directly from its internal data values, not from RDF/XML.

The encoding process from RDF/XML to EN is as follows: First, the encoder
reads an RDF/XML file and preprocesses it. In the next step, RDF statements are split
and grouped based on their EntityIds. That is, statements about the same entity are
grouped together. Then, the complete packet encoder serializes statements with Jena and
builds complete EN packets. If the communicating peers utilize short packets, complete
packets are matched with the templates used by the peers, and short packets including
only UUIDs and values are built. Finally, packets are sent to the recipients.

The decoder works in the opposite direction: when a recipient receives a packet, the
decoder checks whether the packet is a short packet or a complete packet. Short packets
can be recognized based on the UUIDs that are always the first items. For short packets,
templates and prefixes are utilized to build complete packets. After that, complete
packets are transformed into RDF/XML.

The simulator contains four types of devices: cleaning robots, temperature sensors,
location sensors, and wireless devices designed for reporting a patient’s well-being to
nurse [128]. The simulator consists of a server and user interface for each device.

Users can simulate the devices by writing messages on the user interface, assembling
short packets or complete packets, and sending them to a server. A message contains

103

Fig. 12. EN encoder.

Fig. 13. EN decoder.

one or more packets. When a server receives a message, it transforms the packets into
RDF/XML, adds them into an ontology model, and reasons on data in the model for
deducing a result based on pre-defined rules. The deduced result is delivered to the
specific device or all devices according to the entity of the deduced packet. For example,
when the deduced packet contains an entity identification of a cleaning robot, a message
is sent to this robot. We include one packet in front of other packets in each message to
describe the message itself, including the type, the sender, receiver, and a sequence
number. This packet is also included in the corresponding template; but the sequence
number is the only item that is included in short packets. This added packet is useful
in the simulator and some real implementations. In those implementations that same
information is carried by a lower layer protocol, such an packet is not needed.

104

Fig. 14. The simulator is sending EN messages with cleaning robot.

Figure 14 shows a situation in which the cleaning robot has sent a short packet to the
server and has just received a command as a response. The cleaning robot can assemble
both complete and short messages, and receives messages in the corresponding format
from the server. The server responds to the robots’ messages automatically, by sending
the deduced packet. The left screenshot in Figure 14 shows the following short packet
sent from the robot to the server:

[urn:uuid:9c38ee "900" "2008-05-26T05:00:00" "false"]

In this message, the identifier urn:uuid:9c38ee determines the template, 900 is the
sequence number, and the last two values are the previous cleaning time of the room and
the Boolean value of “light on” context. The server reasons with the following rule
(slightly modified from a real Jena rule):

(EE#TS354,lightIntensity,off) ∧ (EE#TS354,previousCleaningTime,?PT)

∧ greaterThan(currentTime-PT,24hours)

-> (cleaningRobot521,clean,roomTS354)

This rule states that room TS354 needs to be cleaned when over 24 hours has elapsed
from the previous cleaning and the lights are off. It is assumed that a room is empty
when lights are off. When this rule is fired, the server commands the cleaning robot to
clean the room by the following short packet:

105

Fig. 15. The lengths of RDF/XML, Turtle, complete packets and short packets with 24 bit
UUIDs in the device simulator.

[urn:uuid:bd61dee5-e9b8-422e-948d-e7799caae04b "1001" EE#TS354 "pending"]

In this message, 1001 is sequence number. The following values tell that the room to be
cleaned is TS354 and the action status is pending. The status “pending” is generated
with another rule of the reasoner for every new task. Other statuses are “interrupted” and
“completed” for tasks of cleaning robots.

In the simulator, the server and the robots can send seventeen different packets
in total: the server can send requests to the robots, while the robots can reply to the
server’s requests, and send asynchronous information to the server. The lengths of these
seventeen packets in different formats are shown in Figure 15. It can be seen that the
short EN packets utilizing 24-bit UUIDs contain on average 20% of the characters of
complete packets and 10% of those of the corresponding RDF document.

In the second experiment, we selected RDF files from the W3C standard test sets
[129] for evaluating the EN syntax. 35 RDF data files were selected, containing most
of the data structures and data types. Some of the RDF files were modified slightly.
Modifications included deleting annotations and adding EntityType when necessary.
EntityTypes were added to avoid blank nodes as EntityTypes and makes RDF/XML files
more readable. XML annotations were deleted as well.

Figure 16 presents the lengths of different representations for the RDF data (from
left to right): RDF/XML, N3, EN complete packet and EN short packets with different

106

Fig. 16. RDF data file lengths for different representations.

templates. N3 is generated with an online converting service. 2 When a template with all
possible placeholders is utilized, we have the longest short packets with the EntityId and
all property values (third from the right in Figure 16). Short packets with all property
values, but not EntityIds are somewhat shorter, as expected (second from the right in
Figure 16). As an extreme case (at the right in Figure 16), packets can contain only
UUIDs. The average length of the longest short packets is around 11% of that of the
corresponding RDF/XML files. The average length of short packets with property values
is around 8% of RDF/XML, while in the shortest case, the packets only with UUIDs is
just 5% of that of the corresponding RDF files. This is the case when 16 bit UUIDs are
utilized. The ratio of the short packet size to that of the RDF file can be even smaller for
larger data structures; specifically, when the structures contain large constant parts.

XML annotations were removed. Complete EN format is more compact than
RDF/XML in most cases, like expressing triple structure. But RDF/XML can be more
compact for expressing collections, containers and reifications because of nesting. Our
experiment with simulator and RDF data set verified that EN is a compact representation,
hence, delivering EN packets can be done in a resource-efficient manner.

5.4 Transforming ontologies

In this section, we evaluate transforming ontologies to EN Schema and vice versa.
We have developed a Java based implementation to verify transforming EN Schema

2http://www.easyrdf.org/

107

Fig. 17. EN Schema encoder for Ontologies.

Fig. 18. EN Schema decoder for Ontologies.

packets from and to OWL ontologies. Similar to the encoder and decoder for EN, this
software has also EN encoder for OWL and EN decoder for OWL. The encoder realizes
the functions of transforming OWL ontology into complete packets, and then to short
packets if necessary. The decoder performs this process to the opposite direction. Figure
17 and Figure 18 present the main components of the encoder and decoder, respectively.

The encoding process is as follows: First, the encoder reads an OWL ontology file
and preprocesses it. In this step, the component checks the content of this ontology and
removes the information that is not needed by mobile devices, like human readable
annotations and comments. In the next step, OWL elements are grouped into groups,

108

including classes, datatype properties, object properties, individuals, restrictions, and
collections. Among these groups, individuals are transferred to EN packets, while others
are transferred to EN Schema packets. Then, the complete packet encoder reads entities
from these groups, connects PropertyNames and PropertyValues to them, and places
them within brackets. When two communicating peers use short packets, complete
packets are matched with available templates, and short packets including only UUIDs
and values are built. Finally, the packets are sent to recipients.

The decoding component works in the opposite way: when a recipient receives a
packet, it checks whether the packet is a short packet or a complete packet by checking
UUIDs. For short packets, templates and prefixes are utilized to build complete packets.
After that, complete packets are transformed into OWL syntax according to the mapping
rules introduced in the previous chapter, and added to an OWL ontology.

109

Table 8. EN Schema packets and corresponding OWL fragments in RDF/XML.

EN Schema: <owl:Class Environment rdfs:subClassOf Context>

OWL: <owl:Class rdf:ID="Environment">

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

EN Schema: <owl:Class Researcher rdfs:subClassOf Person>

RDF/XML: <owl:Class rdf:ID="Researcher">

<rdfs:subClassOf>

<owl:Class rdf:resource="#Person"/>

</rdfs:subClassOf>

</owl:Class>

EN Schema: <owl:Class Light rdfs:subClassOf Enviroment>

RDF/XML: <owl:Class rdf:ID="Light">

<rdfs:subClassOf rdf:resource="#Enviroment"/>

</owl:Class>

EN Schema: <owl:Class Robot rdfs:subClassOf Device>

RDF/XML: <owl:Class rdf:ID="Robot">

<rdfs:subClassOf rdf:resource="#Device"/>

</owl:Class>

EN Schema: <owl:ObjectProperty personLocatedin rdfs:domain Person

rdfs:range Location owl:inverseOf hasPersoninside>

RDF/XML: <owl:ObjectProperty rdf:about="#personLocatedin">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Location"/>

<owl:inverseOf rdf:resource="#hasPersoninside"/>

</owl:ObjectProperty>

EN Schema: <owl:DatatypeProperty lightIntensity rdfs:domain Light

rdfs:range xsd:boolean>

RDF/XML: <owl:DatatypeProperty rdf:ID="lightIntensity">

<rdfs:domain rdf:resource="#Light"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>

</owl:DatatypeProperty>

110

Table 8 presents selected elements in one ontology and their corresponding EN
Schema packets. We utilized the ontology we presented in Chapter 4. This is a very
lightweight ontology, but still includes all basic elements, including 22 classes, eleven
datatype properties, seven object properties, and some individuals. With the encoder and
decoder we introduced in this section, we successfully transform this ontology into EN
and EN Schema packets, and vice versa. After transforming into EN and EN Schema
and then back to OWL, we compare this OWL file with original OWL file and confirm
that they are semantically equal with manual comparison. The order of fragments
of elements can be changed in this process, but all elements and their properties and
relations are the same as in the original file.

In addition to this test, we evaluate Complete EN Schema packet with a set of eight
ontologies, which are well known and widely utilized in pervasive, IoT, and other
domains. These ontologies include COBRA-ONT [130], Semantically Interconnected
Online Communities (SIOC) ontology [131], Semantic Sensor Network Ontology [14],
IoT-Lite ontology [132], Organization ontology [133], and the sample ontology of
OWL 2 primer [125]. COBRA-ONT includes a collection of ontologies for describing
vocabularies in an intelligent meeting room use case. We are testing with COBRA-ONT
ontologies version 0.6 which contains Ebiquity-geo, Ebiquity-meetings, and Ebiquity-
actions ontologies. The SIOC ontology is designed for describing online communities
such as forums, blogs, mailing lists, and wikis. The SSN ontology describe the sensors
and observations, and related concepts in pervasive environment. The IoT-Lite ontology
is a lightweight ontology to represent IoT resources, entities, and services. It is also a
meta ontology that can be extended in different domains. The Organization Ontology
is designed to enable publication of information on organizations and organizational
structures including governmental organizations. It is designed as a generic, reusable
core ontology that can be extended or specialized for use in particular situations. Finally,
the sample ontology of OWL 2 primer is utilized for verifying OWL 2 features.

Figure 19 presents the comparison of the lengths of different syntaxes, including
Functional Syntax, EN and EN Schema, Turtle, Manchester Syntax, RDF/XML, JSON-
LD, N-Triple, and OWL/XML (from left to right). Complete EN Schema and EN
packets are tested in this evaluation. We noticed that EN and EN Schema are among most
lightweight syntaxes. Among alternatives, they are most compact representations for five
ontologies, including COBRA-ONT: ebiquity-meeting, SIOC, SSN, the Organization
Ontology, and OWL 2 primer sample ontology. For other ontologies, EN and EN
Schema are second, third, or forth compact representations among eight alternatives.

111

Fig. 19. Comparison of the lengths of Functional Syntax, EN and EN Schema, Turtel, Manch-
ester Syntax, RDF/XML, JSON-LD, N-Triple, and OWL/XML with different ontologies.

112

Taking SSN ontology as an example, the length of EN Schema and EN is about 36.6%
of N-Triple and about 52.8% of RDF/XML.

Moreover, we have verified that major constructs of OWL 2 ontologies can be
transformed to EN Schema. We tested these transformation with ontologies mentioned
before. Especially, example ontology of OWL 2 primer include new constructs of OWL
2. All OWL 2 constructs presented in this sample ontology are transformed successfully.
OWL constructs related to classes, instances, class hierarchies, class disjointness, object
properties (excluding NegativePropertyAssertion), property hierarchies, domain and
range, equality and inequality of individuals, datatype properties(excluding Negative-
PropertyAssertion), owl:intersectionOf, owl:unionOf, owl:complementOf, property
restrictions, property cardinality restrictions (excluding ExactCardinality), property
characteristics (excluding ReflexiveProperty, IrreflexiveProperty, and FunctionalProp-
erty), owl:propertyChainAxiom, and owl:hasKey have been verified. Our tests also
verify that EN Schema is often a more compact representation than other alternatives for
representing OWL 2 ontologies.

5.5 Sensor prototypes

In this section, we present two prototypes. This first one is a well-being reporter, and the
second one extends this system to a general sensor system consisting two sensors and a
knowledge processing component on a PC.

5.5.1 Well-being reporter

To evaluate EN in small resource-constrained devices, we built a pervasive system
prototype reporting the wellbeing of an elderly person. This system contains a wearable
sensor device and a PC application. The sensor detects possible falling down of the
person carrying it and irregular temperatures as well. Figure 20 presents the main
components and the data flow of the system. In this system, a sensor composes EN
packets and sends them to the PC application. This application decodes the packets and
transforms them into RDF statements. The template is stored in the EN decomposer.
Therefore, template cost is not considered. The PC application integrates the received
values into a small ontology and triggers an inference engine. The engine detects
abnormal situations and stores the reasoned facts into the ontology. The system reports
these situations to persons whose contact information has been configured to the system.

113

Fig. 20. Main components and data flow of the well-being reporter.

Fig. 21. A wearable sensor for detecting well-being.

The sensor node used in the experiments is shown in Figure 21. The sensor node
consists of an Atmel’s 8-bit ATmega32 MCU with 32kB flash and 2kB Static random
access memory (SRAM), a short range radio link and sensors; a 3-axis magnetometer,
a 3-axis accelerometer, and a thermometer. In addition, the sensor node includes a
push button and a real time clock; thus, it can send a time stamp together with the
measurements. The software of the sensor node has been implemented as a standalone
application and no operating system has been used.

An EN packet generated by the sensor node contains a timestamp, acceleration
and magnetic field data and the binary state of the push button. All data items are
represented by 16-bit signed integers except the timestamp for which 32-bit unsigned
integer representation has been used. Floating point data type was avoided in order to
decrease the memory footprint of the C standard library. The EN packet, including 128
bit UUID and the sensor readings, is generated simply by using sprintf function, as

114

shown below. The string (i.e. EN packet) produced by the sprintf function is sent to the
PC application by calling write function which is associated with the low-power radio
interface of the sensor. The C code for generating the EN packet is the following:

sprintf(b,

"[urn:uuid:311b4e80-d9fd-11de-8a39-0800200c9a66

\"%lu\" \"%d\" \"%d\" \"%d\" \"%d\" \"%d\" \"%d\"

\"%d\" \"%d\"]",

timestamp, acceleration_x, acceleration_y,

acceleration_z, magnetic_x, magnetic_y,

magnetic_z, temperature, buttonstate);

write((const char*) b, strlen(b));

From this code, it can be seen that sensors can generate EN packets in a simple and
straightforward fashion. The UUID value is used as a constant and concatenated with
the produced values.

The PC application detects possible falling down and abnormal temperature from
sensory data. Generally, individual values can easily be extracted from short EN packets
when the types and the order of the values are known. This enables fast preprocessing of
sensor data with lightweight algorithms - which in its turn reduces the burden of the
inference engine. For example, for detecting abnormal temperature, temperature values
can be extracted from the message strings and cached for three minutes. Then, the mean
value can be calculated from the cached values and sent to the reasoner. Moreover,
falling down can be detected by first extracting accelerometer readings from EN packets
(from the character strings) and then processing them with a fall detection algorithm.
When resources are constrained, a simple algorithm can be utilized. The algorithm can
first detect total acceleration exceeding a predefined threshold (indicating a physical
impact). After such acceleration, the algorithm can analyze if the predefined threshold
value for the vertical inclination angle is exceeded for a certain period of time, which
suggest a non-standing posture. A non-standing posture following a physical impact is
categorized as a fall.

EN packets can be transformed into RDF statements, as introduced in Chapter 3.
New RDF statements trigger the reasoner when they are added into the ontology. The
reasoner matches RDF statements with the antecedents of rules in its rule set. The
reasoning produces new RDF statements and adds them to the ontology.

The resource usage of this sensor, including CPU cycles, power consumption and
transmission time is shown in Figures 22 - 25. We compare EN with N3 and RDF/XML

115

Fig. 22. Packet lengths of different representations.

Fig. 23. CPU clock cycles of generating different representations.

because of their similar semantic expressive power. EN, N3, and RDF/XML were
generated and sent using sprintf and write functions as discussed above.

Figure 22 compares the lengths of EN, N3, and RDF/XML packets sent by the same
sensor. EN has nearly the longest possible short packet, as 128 bit UUID is utilized, and
all values are included in the short packet, but EntityId is not included. The length of an
EN packet is around 53% of that of the corresponding N3 packet, and around 31% of
that of the corresponding RDF/XML packet. The bandwidth required for transferring a
packet is roughly proportional to its length. Memory usage is roughly proportional to
the lengths of the packets as well.

We measured that the code to generate an EN packet takes about 21,000 clock cycles
to execute on ATmega32 MCU. This is around 68% of generating the corresponding N3
packet and around 40% of generating the corresponding RDF/XML packet. The exact
number of clock cycles depends on the C compiler and the code optimization settings.

116

Fig. 24. Power consumption of generating different representations.

Fig. 25. Transmission time of different representations.

We focus on energy consumption of two operations, i.e. encoding/decoding data
with the MCU and sending/receiving data packets with the transmission chip. The
overall energy consumption thus consists of computing energy and communication
energy:

EOverall = EComp +EComm.

We do not consider energy consumption of sensing electronics, RAMs, and LEDs,
because this consumption is independent of data formats. Computing energy is strongly
dependent on MCU cycles and communication energy on message lengths:

EOverall = f (Cycle)+ f (Length).

The power consumption of Atmel’s 8-bit ATmega32 MCU is 1.1mA at 1Mhz with
3V operating voltage. We assume that each instruction takes one clock cycle to execute,

117

so an average of:
0.0011A×3V×0.000001s = 3.3nJ

energy is required for each executed instruction. Hence, the code for generating each
EN packet consumes the energy:

21000×3.3nJ = 69.3µJ.

The radio interface of the sensor node is implemented using Bluegiga’s WT12 Bluetooth
module. The maximum power consumption of this Bluetooth module is 60 mA at 3V
operating voltage. The data rate of WT12 Bluetooth module is 350 kbps when the Radio
Frequency Communication (RFCOMM) protocol stack is used. Transmission time
in Figure 25 stands for the time required to send the packet using the 350 kbps data
rate. The transmission time for sending each EN packet is around 53% of that of the
corresponding N3 packet, and around 31% of that of the corresponding RDF/XML
packet.

One EN packet can be send in approximately 2.7 ms. This consumes energy
approximately:

0.06A×3V×0.0027s = 500µJ.

The energy consumption scales linearly with the payload size. The total energy
consumption of each EN packet is approximately:

69.3µJ+500µJ = 569.3µJ,

while the radio interface consumes 88% of the total energy consumption. When
compared with N3 and RDF/XML, generating and sending an EN packet consumes
energy around 56% of that of the corresponding N3 packet, and around 32% of that
of the corresponding RDF/XML packet. There are low-power radio solutions which
are superior to Bluetooth in energy consumption, but changing the radio does not
affect these ratios. This experiment also verifies that EN packets can be successfully
transformed into RDF and can be directly utilized by Jena reasoning engine.

5.5.2 General sensor system

We extended the elderly people reporter system to a general sensor system, consisting of
two sensor nodes and a knowledge processing component on a PC. We measured the
resource usage of encoding and decoding different data formats of the same data in this

118

Fig. 26. Architecture of the general sensor system in our experiment.

sensor system. As shown in Figure 26, Sensor A encodes the different formats and
sends them to Sensor B. Sensor B decodes the received data formats to formats that
are easy to use by the knowledge-processing component. For instance, EN packets
are converted to RDF/XML documents and EXI documents are converted to XML
documents. RDF/XML, N3, SenML in XML and JSON, and JSON-LD are considered
as easy-to-use formats, so Sensor B simply forwards them. All these packets are sent
from Sensor B to a knowledge processing component on a PC and integrated into the
OntoSensor [13] ontology. As a result, the data generated by sensor nodes is compatible
with the knowledge system, which can reason additional knowledge and actions based
on this data.

We evaluate EN against RDF/XML, N3, different formats of SenML and JSON-LD,
using resource usage as criteria. In our experiment, we assume that encoded messages
are delivered under similar circumstances, i.e. using the same protocol, along the same
route. Comparing the selections of formats with previous section, SenML and JSON-LD
are added, because they are emerging standards and have potential for large scale IoT
systems.

Sensors in the system are similar to the one which we used in the well-being reporter
prototype. Sensor A measures temperature, as well as acceleration and magnetic field
in three dimensions. The MCU core is the same, but it has more Flash (256kB) and
SRAM (128kB) memory. The Flash memory is needed for storing the program code,
and SRAM is used to store program data, such as variables.

As we were interested in the payload only, we did not use any specific protocol, but
simply created a message and sent it with Bluetooth. In this prototype, we did not use
sprintf function to generate packets. Instead, we fill the data values in a function by
handling a character array. SenML/EXI messages were encoded using the “Embeddable
EXI implementation in C” software (EXIP). 3 The available EXIP software was utilized.
However, there is still a possibility to optimize memory footprint with EXIP by leaving
out the functionality not needed in this experiment. All messages were sent by calling
the write function, which is associated with the low-power radio interface of the sensor

3http://exip.sourceforge.net/.

119

node. Examples of these data packets in RDF/XML, N3, SenML, and JSON-LD are
presented in Section 2.2, and examples of EN packet are presented in Section 3.3. Here
is a template for the short EN packet shown in the example of Section 3.3:

[http://ee.oulu.fi/o#TempAccMagSensor

http://ee.oulu.fi/o#tempAccMagSensor01

http://ee.oulu.fi/o#timeStamp ?1

http://ee.oulu.fi/o#accX ?2

http://ee.oulu.fi/o#accY ?3

http://ee.oulu.fi/o#accZ ?4

http://ee.oulu.fi/o#magX ?5

http://ee.oulu.fi/o#magY ?6

http://ee.oulu.fi/o#magZ ?7

http://ee.oulu.fi/o#temp ?8]

The corresponding short EN packet is:

[urn:uuid:311b4e80-d9fd-11de-8a39-0800200c9a66 "2012-05-18T12:00:00"

"618" "319" "671" "123" "234" "345" "22.5"]

Figure 27 presents the packet lengths of different formats communicated between Sensor
A and Sensor B. These packets contain the same data and semantic information. Short
EN format is the most compact format, while SenML/EXI is the second shortest packet.
Compact JSON-LD is the longest packet format, while the other formats produce
somewhat shorter packets. The shortest format (Short EN) is about 28% of the longest
format (Compact JSON-LD).

Figure 28 presents the amount of CPU cycles needed to generate the messages by
Sensor A. It is clear that generating EXI messages requires much more computation. All
other messages are produced by filling measurement values in a string.

As shown in Figure 29, generating SenML/EXI messages requires more energy
(MCU Energy in the figure) than other alternatives, but transmission energy consumption
for SenML/EXI is among the lowest ones. Energy consumption is calculated as presented
on pages 117-118. When comparing overall energy consumption on Sensor A, the short
EN format requires the least energy and N3 requires the second least. Generating short
EN messages only consumes about 24% of generating SenML/EXI messages, which
consumes the largest amount of energy.

On Sensor B, messages with RDF/XML, N3, SenML in XML and JSON, and
JSON-LD data format are forwarded to the knowledge processing component without

120

Fig. 27. Packet lengths of different data formats communicated between Sensor A and Sen-
sor B.

Fig. 28. CPU cycles consumed by Sensor A.

121

Fig. 29. Energy consumption on Sensor A.

any decoding. Three data formats, i.e. SenML/EXI, EN complete packet, and EN short
packet, require decoding. EN packets are converted to RDF/XML and EXI packets are
converted to XML documents. To test how small energy consumption can be achieved,
we implemented a function on Sensor B that transforms short EN packets directly to
RDF. With this function, the energy consumption of a short packet on Sensor B is only
about 38% of the corresponding complete packet. This case is referred in the following
text and figures as “EN/ShortPacket”.

EN packets are transformed to RDF/XML, which can directly be utilized by the
knowledge processing component. SenML/EXI packets are transformed to XML.
Figure 30 presents how much transmission energy is needed for reception and MCU
energy needed for decoding operation on Sensor B. Transmission energy consumption
equals to overall energy consumption on Sensor B for those data formats that only need
forwarding. Figure 31 shows the overall energy consumption for both sensors, including
data sending, receiving, encoding, and decoding operations. SenML/EXI processing
generates XML and requires additional processing for producing RDF/XML. We can
also conclude that the short EN packets require the least energy to produce data in
RDF/XML.

The overall MCU energy consumption for encoding and decoding data depends on
the corresponding algorithms, and EXI is clearly the most complex one. The transmission
energy consumption of different formats scales linearly with the payload size. Short EN
format requires the smallest amount of transmission energy, while SenML/EXI requires
the second least amount of transmission energy. However, SenML/EXI requires quite a

122

Fig. 30. Energy consumption for the decoding operation on Sensor B.

Fig. 31. Overall energy consumption of the sensor system.

123

lot computation so the total energy consumption is the second largest. SenML/XML and
SenML/JSON require a similar amount of energy in our experiment. Compact JSON-LD
format consumes the largest amount of overall energy because of its longest messages.
RDF/XML messages are second longest. N3 requires less energy than others but more
than Short EN. Short EN packets consume the least energy among these formats, 88%
of the second best alternative (N3), and 29% of the worst one (Compact JSON-LD).

As a conclusion, short EN is the best data format, when energy consumption has to
be minimized, N3 being the second best. For those systems with limited communication
resources but not limited with computing resources, Short EN is the best and SenML/EXI
the second best. However, for systems with limited computing resources, SenML/EXI
is not an alternative. If only Sensor A is required to minimize energy consumption,
short EN and N3 are the best alternatives. If only Sensor B is required to minimize
energy consumption, for example, it is a very simple gateway without any processing
capabilities, then short EN would be the best option. This experiment verifies that EN
packets can be successfully transformed into RDF and can be directly utilized by Jena
reasoning engine.

5.6 Ambient social interactions

Ambient social interactions can be defined as human like interactions in AmI environ-
ments [134]. Such interactions exist not only between AmI systems and humans, but
also among humans. To enable ambient social interactions, pervasive systems need to
aggregate information from the social information of users, available services, and the
physical environment. This aggregation can improve user experience and enable novel
functionality for ambient social applications. Building knowledge-based systems is
a convenient way to enable ambient social interactions. Heterogeneous information,
like user profiles, shared social information (e.g. common goals) and real time sensor
measurements (e.g. location) can be integrated into knowledge-based systems using
Semantic Web technologies.

We identify ambient social interactions as an important direction of research in
pervasive computing. However, the challenges presented earlier, such as minimizing the
resource usage, are valid for ambient social interactions as well. EN can be adopted to
tackle the challenges of utilizing Semantic Web technologies for implementing intelligent
applications for ambient social interactions. Hence, we implement a larger prototype to
verify EN in this application area. We suggest a knowledge-based framework for ambient

124

social interactions. EN is utilized in this framework for connecting all information
together, including sensor data, social content, and Semantic Web-based inference. In
order to verify our framework, we implement an application that reasons over social
content produced by users and real-time location data to enable interactions among
multiple users. We demonstrate a location-based reminder service, which presents
reminders and maps to mobile users based on their needs.

5.6.1 General framework

Figure 32 presents a general framework to build knowledge-based systems for ambient
social interactions. Information from heterogeneous sources, such as social information,
physical environment, and available services, is aggregated to knowledge-based systems.
Social information is not only for individuals, but also for communities. Communities
are groups of people with common roles, interests or tasks. Social information can be
extracted from profiles, subscriptions, and social networks. The physical environment
offers information about the physical surroundings of users, such as location, time,
noise level, and temperature. Available services are other important sources for
knowledgebased systems. Services provide more complex and processed data, for
instance from networked sensors.

Knowledge-based systems are key enablers for ambient social intelligence. As
described earlier, they include knowledge bases and reasoners. Knowledge bases
store formal models of knowledge, and reasoners infer new logical relations from the
knowledge bases. Moreover, we utilize Semantic Web technologies and ontology-based
methods. As shown in Figure 32, users and applications are considered as actors in our
framework. They consume deduced results produced by knowledge-based systems.
However, users can also act as sources of social information by entering information with
their mobile devices. Moreover, observations can be performed by sensors to monitor
users’ activities. Knowledge-based systems enable the aggregation of user specific social
information, sensor produced data, and all other information. That is, knowledge-based
systems establish the common meaning of entities and their interactions. Interacting
entities are able to share not only data, but also semantics for ambient social intelligence.
Knowledge-based systems provide mechanisms to identify implicit logical connections
and enable semantic interoperability straightforwardly and unambiguously.

However, knowledge-based systems require a lot of computing resources from the
hosting devices. A knowledge base can consume a large amount of memory, which is not

125

Fig. 32. Framework for knowledge-based systems for ambient social interactions.

available at mobile devices. Also reasoning is a resource consuming process and only a
limited set of mobile devices currently available can perform this operation continuously.
Hence, it is a common practice to build big knowledge bases and complex reasoning
processes on the server side. However, this introduces communication overload for
the ambient system. A lightweight communication mechanism is needed to decrease
communication overload.

5.6.2 EN for ambient social interactions

Aggregating heterogeneous information from different sources requires a general,
powerful, and flexible representation. EN fulfills these requirements and is suggested
to interconnect all information sources and consumers. As EN is compatible with
Semantic Web models, such as RDF and OWL 2, it can be utilized together with popular
social information, like Friend of A Friend (FOAF) ontology and RDF Site Summary

126

(RSS) social syndication. Moreover, EN is lightweight and can hence decrease the
communication load.

We demonstrate two scenarios. In the first scenario, two persons share a task of
buying pizza at noon, and the one who is closer to the pizza restaurant (that is the Point
of Interests (PoI)) will get an alert with a map and a suggestion to visit the restaurant. In
the second scenario, a wife specifies a shared task with her husband to pick up their
kids from school (that is the PoI). The couple has decided to pick up their kids as early
as possible. Thus, at the predefined time, the one who is closer to the school gets a
reminding alert with a map on his or her mobile phone and a suggestion to pick up their
kids.

Here are two examples of utilizing EN packets in our scenarios. In the first packet,
Alice is sharing a task with Bob, which is to pick someone up at the University of Oulu.
Hence, this is social information:

[http://ee.oulu.fi/o#SharedTask

http://ee.oulu.fi/o#pickupSharedTask101

http://ee.oulu.fi/o#ownerID "Alice"

http://ee.oulu.fi/o#peerID "Bob"

http://ee.oulu.fi/o#interestingPlace

http://ee.oulu.fi/o#universityofOulu]

The following packet represents the location sensor measurement of Alice. This is
physical environment information:

[http://ee.oulu.fi/o#LocationSensor

http://ee.oulu.fi/o#locaSensor767

http://ee.oulu.fi/o#ownerID "Alice"

http://ee.oulu.fi/o#longitude "25.468"

http://ee.oulu.fi/o#latitude "65.058"]

The first packet about pickupSharedTask101 can be transformed to the upper RDF graph
of Figure 33. The graph includes three resources: the task owner, the peer, and the place.
The second packet about the location sensor can be transformed to the lower RDF graph
of Figure 33.

127

Fig. 33. RDF graphs for task and location entities.

With templates and prefixes, we can shorten these two examples as follows:

[urn:uuid:76eac2 "Alice" "Bob" EE#universityofOulu]

[urn:uuid:539ea2 "Alice" "25.468" "65.058"]

EN is also employed to represent other data communicated between the server and
the clients, including generating new tasks, deleting tasks, and browsing information of
tasks, users and positions. These packets can be transformed into RDF statements, and
added among the facts in the ontology. Figure 35 and Figure 36 present part of this
ontology.

5.6.3 Event map

To verify the framework and EN, we have implemented an ambient social application,
Event Map, which provides reminders for mobile users. The application renders maps to
mobile devices’ displays. PoIs, and the locations of the users are shown on the map.

128

Fig. 34. Event Map Application.

The shared tasks are presented as well. The application is normally executed in the
background and maps with reminders come to the foreground when there is important
information to be shown.

Figure 34 presents the event map application, which consists of two main parts:
a client and a server. The client consists of user interface showing the map, a task
generator, and a GPS receiver. With the task generator, users can specify their preferences
and settings: which reminder to show, when to show them, and with whom to share
tasks. Both location data and specified tasks are sent as short EN packets to the server.
Examples of these packets are presented in Section 5.6.2. The server consists of an EN
decomposer, a domain ontology, a reasoning engine, and a map view generator. This
experiment verifies that the EN decomposer transforms EN packets to RDF statements.
These RDF triples are added into the domain ontology and trigger the inference engine.

The domain ontology is a small knowledge base. We define an ontology in OWL,
which includes predefined PoIs (such as restaurants and schools), user profiles, shared
tasks, and other facts relevant to the system. The inference engine is a rule-based
system which utilizes the ontology and pre-designed rules to constantly check if any
task defined by any user can be executed and triggers corresponding rules. When a user
is to be reminded about a task, the map view generator renders a map according to the
task settings. This map is sent to a specific person at a specified time. Figures 35 and 36
show the structure of knowledge about shared tasks and users in the domain ontology
we developed. Figure 35 presents knowledge about SharedTasks, including the target

129

places of tasks, the persons a task being shared with, and the distance from current
places to target places and shared members. Figure 36 presents knowledge about users,
including the ID of users, the location of users, the shared tasks of users, and whether
the user is a member of a certain group of sharing tasks. The RDF statements, as shown
in the RDF graph of Figure 33 (top), are added as instances of the shared task. The RDF
statements, as shown in the RDF graph of Figure 33 (bottom), are added as instances
of the user-related knowledge. Table 8 shows some rules defined for our application
scenarios. The left column describes the rule in natural language and the right column
presents the Jena rules, applied to the ontology.

The prototype fully implements the framework presented in Figure 32. We utilize
user locations and shared tasks as suppliers to the knowledge-based system. As can be
seen from Figure 34, the knowledge-based system in our implementation consists of
domain ontology and inference engine components. The logic flow of the application is
the following: After a user starts the application and logs in, he or she can create his or
her own tasks. These task descriptions are then sent to the server. After tasks have been
created, the application starts to run in the background, allowing users to perform their
daily routine. The application appears at the foreground only when the execution time
of a task is reached. Task descriptions are represented as RDF statements, and GPS
sensors continuously send location data as EN packets. EN data trigger reasoner to
reason with predefined knowledge and rules. New knowledge about reminders and map
information is generated by the reasoner, stored in the ontology, and sent to the user
when the execution time of a task is approaching.

We implement Event Map client application on Nokia N95 mobile phones as a
Java ME application. The server is implemented with Java and the inference engine is
implemented with Jena [40]. TBox and ABox knowledge is stored as RDF/XML files.
TCP is utilized for connecting client and server, and EN packets are payload of TCP.

We tested the system in an open access Wi-Fi network. Two groups of users specified
both tasks of buying pizza and picking up kids, and then shared them with each other.
Then, they were asked to drive in the central area of Oulu. While driving, they received
maps and reminders. The concepts of the tasks, points of interests and the logic of the
application were clear to the users and they could easily manage tasks by themselves.
The field test also demonstrated that users are eager to share their location and task
information “as long as I [Test user] am in control what, when and whom I share it
with”. The overall application was considered as a nice system which actually could be
used as “one part of a calendar application”. In the real-world test, all predefined tasks

130

Fig. 35. Knowledge about Shared Tasks.

131

Fig. 36. Knowledge about Users.

132

were inferred correctly, but only around 80% of the predefined tasks were shown in time
and correctly due to Internet connection problems.

In all tested situations, the system behaved as expected; hence, we conclude that our
rule set is adequate for the given task. The left picture in Figure 37 is a screen shot
from an emulator, which demonstrates the picking up kids scenario. A red mark at the
upper left corner specifies the target location and a blue mark at the lower right corner
specifies the current location of the user. Also a text reminder of this task is shown to
the user. The picture at the right captures the real user interaction with the application
during the field test.

Table 9. Social interaction rules for event map.

Rule description Reasoning rule

This rule checks for the shared
task (?sharedTask) whether Bob
(?user) is closer to the point of
interest (?place).

[rule1_check_closest_user:
(?sharedTask rdf:type sw:SharedTasks)
(?sharedTask sw:hasPersonToGo ?person)
(?sharedTask sw:smallestDistance ?smallestDistance)
(?sharedTask sw:hasSharingMember ?user)
(?user sw:X ?userX)(?user sw:Y ?userY)
(?sharedTask sw:hasPlace ?place)
(?place sw:X ?placeX)(?place sw:Y ?placeY)
countDistance(?userX, ?userY, ?placeX,
?placeY, ?distance)
lessThan(?distance, ?smallestDistance)
noValue(?smallestDistance sw:firedFor2 ?sharedTask)
—>
remove(1,2)
(?sharedTask sw:smallestDistance ?distance)
(?sharedTask sw:hasPersonToGo ?user)
(?smallestDistance sw:firedFor2 ?sharedTask)
hide(sw:firedFor2)]

133

Rule description Reasoning rule

This rule checks if the current
time (?currentTime) is within the
shared task validity time
(?validity), if it is then the task is
ready to be executed, hence its
transmission property becomes
"transmission_succeded". Also,
the new time for task execution
is set according to task
repetition property.

[rule2_set_transmission_for_shared_task:
(?sharedTask rdf:type sw:SharedTasks)
(?sharedTask sw:time ?time)
(?sharedTask sw:transmission ’no_transmission’)
now(?currentTime)
validityTime(?time, ?validity)
le(?time, ?currentTime)
ge(?validity, ?currentTime)
(?sharedTask sw:repetition ?repetition)
setTime(?repetition, ?time, ?newtime)
(?sharedTask sw:hasPlace ?place)
(?place sw:X ?placeX)(?place sw:Y ?placeY)
(?sharedTask sw:hasPersonToGo ?user)
(?user sw:X ?userX)(?user sw:Y ?userY)
noValue(?user sw:firedFor3 ?task)
—>
remove(1,2)
(?sharedTask sw:time ?newtime)
(?sharedTask sw:transmission ’transmission_succeded’)
(?user sw:firedFor3 ?sharedTask)
hide(sw:firedFor3)]

This rule gathers all necessary
information for the shared task
(?sharedTask) which is ready to
be executed (transmission
property equals
"transmission_succeded").
This information is obtained to
generate the map with the
reminder.

[rule3_send_map_for_shared_task:
(?sharedTask rdf:type sw:SharedTasks)
(?sharedTask sw:time ?time)
(?sharedTask sw:transmission ’transmission_succeded’)
(?sharedTask sw:repetition ?repetition)
(?sharedTask sw:hasPlace ?place)
(?place sw:X ?placeX)(?place sw:Y ?placeY)
(?sharedTask sw:hasPersonToGo ?user)
(?user sw:X ?userX)(?user sw:Y ?userY)
(?sharedTask sw:comment ?comment)
—>
mapInfo(?sharedTask,?comment,?user,?userX,
?userY,?place,?placeX,?placeY,?repetition,?time)]

Next, we analyze the performance of EN in our implementation. There are six different
kinds of short EN packets in total in this implementation. GPS data packets are sent to a
server with a frequency of one packet per second, and other packets are sent on request.
Different short packets have slightly different compression ratios to corresponding

134

Fig. 37. Application screenshots.

N3 and RDF/XML packets. During this test, two users shared ten tasks during one
hour. The short EN packet format contains about 49% of the characters of N3 packets
and about 23% of those of the corresponding RDF/XML. The bandwidth and energy
required for transferring a packet are roughly proportional to its length. Compared
with other knowledge serializations, EN packets can be very compact, hence, the
communication overhead over server and mobile client communication links can be
significantly reduced. This enables building knowledge-based systems on the server side
with small communication overhead.

5.6.4 Summary

In this section, we presented our work towards building knowledge-based systems
to enable ambient social interactions. We discussed a general framework to enable
knowledge-based systems in ambient social interactions and utilization of EN in this
framework. EN enables semantics for social and sensory data. The implemented
scenario demonstrates the usefulness of our framework. The implementation also
verifies that EN packets can be transformed to RDF statements and can be added into a
knowledge base to trigger the inference engine. EN and Semantic Web technologies
offer promising solutions for heterogeneous information integration.

By their nature, ambient social applications must be available for users anytime and
anywhere. What is more, they are expected to be lightweight, allow normal mobile

135

phone routine, and respond fast. Knowledge-based systems facilitate different social
interactions, even though it is a challenge to utilize the servers for mobile applications
due to the latency the communication introduces. EN is a lightweight representation to
decrease the amount of transferred data.

Building knowledge-based systems for social applications brings a clear separation
of the functionality between system components. That is, an advantage of this approach
is that we can isolate the application logic from other components of the system. The
application logic is mainly performed by rules which can be easily modified and extended
on the fly, without a recompilation of the whole system. Hence, the functionality of the
system can be easily changed.

5.7 Two-Layer inference framework

In this section, we apply EN to a two-layer inference framework to enable Semantic Web
technology-based intelligent functionality for pervasive environments. In addition to con-
necting data sources to knowledge-based systems, this framework supports distributed
inference. When compared with the framework of ambient social interactions, EN is
not utilized only to decrease the amount of communication, but also to communicate
schema knowledge between devices, and this enables distributed reasoning.

This section presents the design of this framework and illustrates its usage by a
use case. The framework enables two-layer inference according to the capabilities of
different devices. In this framework, resource-constrained devices deliver measurement
data to a server and mobile devices. Ontology-enabled mobile devices (see Chapter 4)
perform simple inference tasks (low-level inference) based on the data from sensors. The
server supports full capabilities of semantic technologies, such as advanced inference,
context extraction and reuse, and coordinating the devices. Low level inference engines
can be deployed on mobile devices to perform RDF inference and limited OWL-based
inference. When inference is performed on ontology-enabled mobile devices, there is no
need to transfer sensory data and user profiles to the server side. That is, the framework
facilitates minimizing the amount of communication.

5.7.1 Design

Figure 38 shows a concept diagram of the two-layer inference, which includes an
ontology and a rule set. The low-level inference makes use of ABox level and small

136

Fig. 38. Two-layer inference framework.

parts from TBox level. These parts include knowledge directly relating to the possible
RDF statements in ontology-enabled mobile devices. It’s possible to access additional
knowledge from ontology when needed. The usage of TBox level knowledge results
in more capable low-level inference than utilizing only RDF, but the low level does
not support any rule-based inference. The high level inference engine can support the
full capabilities of ontological inference and rule-based inference. Complex intelligent
functionality, like multiple user interactions and device interoperability, can be realized
at the high level.

Figure 39 illustrates how two-layer inference can be deployed at devices in pervasive
environments. A server, ontology-enabled mobile devices, and resource-constrained
sensor nodes form the two-layer inference system. A knowledge-based system manages
a domain ontology at the server, which hosts all advanced knowledge-based applications.
All Semantic Web functionalities, like reasoning, publishing semantic data and semantic
matching, can be implemented at the server side. Mobile devices share parts of the
domain ontology from the server and perform low-level inference based on shared
ontology and RDF statements. Sensors have limited resources and can only send data

137

Fig. 39. Framework of two-layer inference.

to the mobile devices. The data can also be forwarded to the server, when necessary.
Servers and mobile devices can send commands to some sensors as well.

EN and EN Schema play an important role in the communications. The knowledge-
based system on the server can compose EN Schema packets to transfer parts of the
ontology to the ontology-enabled mobile devices. Then, these devices decompose EN
Schema packets and get the knowledge they need in their applications, depending on
applications and scenarios. The ontology-enabled mobile devices can also compose
EN Schema packets and transfer them to the knowledge-based system on the server.
The resource-constrained sensors cannot handle any ontology or reasoner, but still,
they can compose EN packets based on their measurements and transfer them to the
ontology-enabled mobile devices or the server. The knowledge-based system can reason
on the transferred data and offer deduced results for these resource-constrained devices.

138

5.7.2 Use case

In this section, we extend the children pickup scenario (presented in section 5.6.2) as
a use case to illustrate the usability of this framework. The extended scenario is the
following:

A couple is driving home from different working places after working, and one of
them needs to pick up their children from the kindergarten. The couple has decided to
pick up their children as early as possible. When a parent has left the workplace, she/he
is reminded to pick up the children if she/he is expected to arrive kindergarten with less
time. At the same time, another reminder will be shown to advise the spouse to drive
home directly.

This scenario includes Radio-frequency Identification (RFID) technology: when a
parent gets off work, he/she touches with his phone an RFID tag nearby the exit of
the building to record the time he leaves. Devices for this scenario include: mobile
phones with GPS receivers for children, a server and ontology-enabled mobile devices
with RFID readers, GPS receivers and map applications for parents. The following
example demonstrates how data is passed among the main components, and how simple
inference and complex inference is achieved.

An EN packet like this records the time a parent leaves the work place:

[urn:uuid:739ae5 "ExitB" "JohnSmith" "2010-03-25T16:21:40"]

Here, is the corresponding RDF/XML statement of this EN packet.

<e:RfidTag rdf:ID="rfid21">

<e:tagType>ExitPlace</e:tagType>

<e:personTouching>JohnSmith</e:personTouching>

<e:timeTouched>2010-03-25T16:21:40</e:timeTouched>

</e:RfidTag>

Inference can be performed in the mobile device based on this RDF statement and an
ontology. In the following SWRL rule, a person who leaves the building after 15:00 (3
p.m.) is assumed to go home:

Implies(Antecedent timeTouched(?person, ?time1)

swrlb:greaterThan(?time1, 15:00:00)

Consequent(gohome(?person))

)

139

The embedded reasoner on the ontology-enabled device deduces that John Smith is
going home, and starts to send GPS data to the server. The GPS packet with the user’s
name, longitude and latitude data in EN syntax is the following:

[urn:uuid:7bcf39 "JohnSmith" "25.47" "65.06"]

This packet can also be transformed into an RDF statement. In this scenario, high level
inference can be applied for interaction among multiple devices. For example, mobile
map applications can estimate the driving distances of the parents. Moreover, high level
inference can decide who should visit the kindergarten by using the following SWRL
rule:

Implies(Antecedent drivingdistance(?person1, ?dis1)

drivingdistance(?person2, ?dis2)

swrlb:greaterThan(?dis1, ?dis2)

Consequent(showReminder(?person1 "Please visit kindergarten

to pick up your kids")

showReminder(?person2 "Please go home directly")))

The above example shows the utilization of the inference engine at two levels. More
complex reasoning can be performed based on the data from more sensors and users.
Three kinds of devices with different capabilities are considered: resource-constrained
sensors, ontology-enabled mobile terminals and servers. The two-layer inference
framework can be deployed on ontology-enabled terminals and servers. Ontology-
enabled terminals support fast and local reasoning react the changing environment, while
servers afford complex inference and other resource-consuming semantic functionalities.

5.8 Summary

In this chapter, we verified with simulation, data sets and prototypes that EN and EN
Schema are expressive ontology-based representations amenable to distributed systems.
The semantic expressive power is comparable with most standardized knowledge
representations. Meanwhile, it is so lightweight that small resource-constrained device
can afford it; this is a unique feature which makes EN an ideal solution for building
pervasive systems. Our sensor system results show that EN can have shorter packets and
requires less processing resources and energy for encoding and decoding packets.

We developed larger prototypes that utilized most features of EN and EN Schema.
These features include modelling basic RDF and OWL 1.1. EN features which are not

140

verified in these experiments include: arrays and enumeration. These prototypes verified
that EN is an ideal candidate as an underlying representation for different information
sources. It is expressive for representing information from social and physical contexts.
Moreover, the two layer inference framework presents transferring TBox knowledge
with EN schema to ontology-enabled devices and harnessing the computing capabilities
of the pervasive system.

141

142

6 Discussion

In this dissertation, we addressed the topic of data and knowledge exchange, which is
one key issue when knowledge-based systems are built for pervasive environments. This
chapter summarizes the dissertation by collecting results from the previous chapters and
analyzing how research objectives were achieved. We also summarize the contribution
of this dissertation, discuss open issues, and suggest future work.

6.1 General analysis

One of the key issues of data and knowledge exchange in pervasive systems is a syntax
for encoding knowledge that fulfills the requirements of pervasive environments. EN and
EN Schema are lightweight, powerful, and human-readable representations for data and
knowledge exchange. They have been designed especially for pervasive environments
and applications, but can be utilized in the wide application area of distributed systems.
EN is an affordable syntax for resource-constrained sensors and supports Semantic
Web models at the same time. Devices can compose EN packets with small computing
resources, and still the data can be transferred into knowledge models. EN can be
the payload of various underlying protocols, such as HTTP, TCP, and sensor network
protocols; hence, information from different sources can be expressed and transferred.
These features make EN a flexible representation for pervasive environments. Moreover,
EN is designed as a lightweight representation for well-known knowledge models,
which enables distribution of knowledge. Ontology knowledge fragments produced by
any person and any device in everyday environments can be integrated into a knowledge
base unambiguously. Moreover, EN Schema facilitates moving knowledge based
processing from servers to mobile devices. Finally, EN and EN Schema are text-based
representations that are completely architecture and language independent.

Among general representation categories used for representing context in pervasive
environments, such as key-value pairs, ontology-based representations, and case
based representations [28], EN and EN Schema can be classified as ontology-based
representations, because of their compatibility with well-known knowledge models. EN
and EN Schema are unique in their combination of expressiveness and compactness.

EN is mainly targeted to resource-constrained devices and our main emphasis is to
transfer simple data structures efficiently. We deliberatively kept EN simple to minimize

143

Fig. 40. The role of EN in distributed systems.

the amount of resources required from devices for processing data. However, in spite of
its simplicity, EN can be utilized to send different types of information between devices.
Complex data structures can be built from simple ones.

The role of EN in distributed systems is illustrated in Figure 40, which presents
communication between a sensor and a server. Sensors and servers need to have an
EN composer and a decomposer for utilizing EN. A composer produces EN packets
from sensor measurements. A decomposer transforms EN packets into a knowledge
representation that can be utilized by the knowledge processing component, for example,
a reasoner at the server side.

EN has the potential to connect resource-constrained sensors to Semantic Web.
EN plays a role in the “Knowledge hierarchy” suggested by Barnaghi, et al. [108].
Resource-constrained sensors could form a whole new periphery for Semantic Web
providing a significant amount of real-time measurement data. Figure 41 presents
the role of EN in bridging the gap between Semantic Web and networked sensors.
Networked sensors can compose either complete or short EN packets depending on their
capabilities. All these packets can be transformed into Semantic Web representations
at the gateways. Knowledge bases and Semantic Web applications can access sensor
data and knowledge straightforwardly. Moreover, some devices in sensor networks can
perform the commands that the Semantic Web applications produce.

EN has short packets that can be composed by simply concatenating UUID and
values. There is no need to handle any complex algorithms, nor predefined shorthands
when composing short packets. The packet format is compact, and it has a simple

144

Fig. 41. EN bridges the gap between Semantic Web and networked sensors.

grammar. On the other hand, EN has a complete format that can be transformed into
other knowledge representations in an unambiguous fashion. This enables Semantic
Web-based intelligent functionality, such as inference over context data and collaboration
among devices.

Utilization of unique identifiers (IRIs and UUIDs) makes EN a scalable solution.
IRIs and UUID-based approach is well suited to distributed systems. IRIs describe
entities in pervasive environments unambiguously. UUIDs with different lengths can be
selected based on the size of sensing system: most pervasive systems only need 16 bits
or 24 bits UUIDs, while 128 bits UUIDs can identify short messages and templates for
an Internet-scale system. Meanwhile, short UUIDs can be mapped to full UUIDs using
look-up tables. This facilities the integration of small scale systems to larger ones.

We offer flexibility for designers to optimize their systems. EN supports UUIDs with
different lengths, short packets with different variable items, alternatives for negotiating
packets, and different methods for packet chaining on gateways. Short packets can
be used over simple and unreliable communication links and offer a large variety of
possibilities on how much information is included in packets and how much in templates.
The calculations we presented in Section 5.2 can be utilized to minimize the cost of a
sensing system. That is, bandwidth, memory, and CPU requirements of a system can be
balanced by tuning the amount of variable items in short packets.

6.2 Revisiting the research objectives

In this section, we return to the research objectives introduced in Section 1.2 and
consider how this research meets these objectives.

The first objective was lightweightness, that is, to design a representation that can
be utilized by any resource-constrained device. For achieving this objective, EN was
designed to produce short packets which in their simplest form are only seventeen

145

bytes long, and still have good expressive power. Our evaluations show that EN is
much shorter than corresponding RDF/XML and N3 representations and requires lesser
resources for encoding and decoding. With this representation, any simple sensor
in pervasive environments should be able to connect with knowledge-based systems
using minimal computation power and energy, and to deliver packets to other system
components in a resource-efficient manner.

The second design objective was interoperability, that is, to design a representation
that facilitates transferring different levels of knowledge. For achieving this objective,
we designed EN and EN Schema for transferring knowledge at different levels. Both
data and knowledge can be transferred utilizing EN and EN Schema. This makes EN
and EN Schema practical representations when intelligent functions are based on OWL
2.

The third design objective was generality, that is, to design a representation that is
feasible for general distributed systems and can be utilized by different applications and
systems. For achieving this objective, we utilized unique identifiers as the information
should always be identifiable. This is important for a general scalable system when
all the possible usages of the information cannot be specified in advance. Moreover,
EN and EN Schema can be utilized to transfer different types of data and knowledge,
they supports a good selection of data structures, and they have sufficient expressive
power. We verified EN an EN Schema with several prototypes; and transferred different
types of information with EN as payload. Hence, we can state that EN is a general
representation.

All in all, we achieved the objectives by developing a lightweight and general data
and knowledge representation that advances interoperability.

6.3 Contributions

Our contribution is threefold. First, we design Entity Notation (EN), a lightweight
representation that can be handled by resource-constrained sensors, transferred over
low-power communication links with limited bandwidth, and transformed into knowl-
edge representations in a straightforward fashion.

Several alternatives were presented in Chapter 2 and most of them were evaluated
in Chapter 5. When compared with EN, other Semantic Web syntaxes require more
computing and communication resources, and other formats and approaches do not offer
similar transformations to Semantic Web knowledge models.

146

Second, we present EN Schema for knowledge exchange. The constructs of EN
Schema extend EN into a uniform representation language for different Semantic
Web languages for pervasive environments.

When considering the other knowledge representations presented in Chapter 2, they
do not provide a similar combination of short messages and expressive power.

Third, we verify that EN is a practical solution. The verification is performed by
comparing the expressive power of EN and that of other representations, evaluating
EN utilizing resource consumption as the criteria, and implementing EN and EN
Schema for several pervasive systems and evaluating its benefits and shortcomings in
these systems.

With these comparisons and evaluations, we verify that EN and EN Schema have
sufficient semantic expressive power, require modest resources for pervasive systems,
and are compatible with Semantic Web representations.

As a conclusion, the main contribution of this dissertation are EN and EN Schema,
publicly available representations for exchanging data and knowledge models of
Semantic Web. Such a syntax bridges the gap between Semantic Web and devices, such
as sensors and actuators. If all devices could communicate using the same compact
format that can be easily transformed to common knowledge representations, knowledge-
based systems in pervasive environments would be much easier to build and maintain.
This would facilitate implementing the general vision of pervasive computing described
by Mark Weiser.

6.4 Open issues and future work

There are still several issues that need more research, including coordination of semantics
in pervasive environments, protocol and resource usage, and privacy and security. We
discuss these issues in this section and consider future work as well.

It’s a challenge to coordinate semantics in heterogeneous and unpredictable pervasive
environments. Though a first step in this direction has already been undertaken in Section
5.7, more research is required. The focus is to coordinate heterogeneous components
communicating with EN and EN Schema and utilize the data and knowledge for
reasoning. Coordination of semantics requires a distributed architecture, in order to
allow components to publish and retrieve information. Moreover, it’s important to
support asynchronous interaction among components. Interaction should be uncoupled
in space and time in order to allow components to publish and retrieve information in

147

a flexible manner. Finally, scalability as a central issue because of the dynamic and
unpredictable nature.

In this dissertation, we focused on representations and utilized the available protocols
and radio interfaces in the prototypes. Optimized protocols, like Constrained Application
Protocol(CoAP) [11], are more suitable for resource constrained networks for decreasing
communication load. CoAP is complementary to HTTP as it is targeted for resource
constrained networks instead of traditional IP networks. Power, memory and computation
constraints were taken into account when CoAP was designed.

EN does not provide any security mechanisms at the packet level, as the possible
solutions are quite heavyweight operations for resource-constrained sensors. But
cryptographic protocols, like Secure Sockets Layer (SSL) [135], could be utilized by the
protocol transporting EN packets. For example, EN packets could be transferred using
HTTP over SSL. In addition, the aggregation of information sources poses challenges
for privacy. To solve this, data sent from mobile devices and applications could be
encrypted with the classical K-anonymity [136] criterion. Data accessed from social
networks are guarded by the corresponding privacy policies of each of those networks.

EN and EN Schema can be developed further. First, short packets could be utilized
for fast reasoning on mobile devices. In such a case, a reasoner would not need to have
templates nor transform EN and EN Schema into well-known knowledge representations.
Such reasoning would offer a lightweight mechanism for inference over network data.
Second, EN can be further developed for data streams. This idea is inspired by emerging
stream reasoning technologies [137], which offer a time based data model where data
items can be annotated with time stamps, either with the occurrence time or validity
time period. Third, EN and EN Schema could be utilized also to represent logic rules,
then all representations in a pervasive system could be transferred using one uniform
format. Fourth, the preliminary study of optimizing a system at design time could be
extended for more complex pervasive systems. Fifth, EN Schema could be evaluated
with larger ontologies. Other potential developments include a mechanism to discover
EN packets and data sources.

6.5 Concluding remarks

This dissertation addressed the topic of data and knowledge representations for pervasive
environments. EN and EN Schema are expressive ontology-based representations
amenable to distributed systems. EN is so lightweight that resource-constrained

148

devices can afford it. This is a unique feature which offers benefits when building
knowledge-based systems in pervasive environments. Moreover, EN is a candidate as a
representation for wide application areas of distributed systems.

Semantic technologies enable machine-interpretable representation formalism for
describing entities, sharing and integrating information, and inferring new knowledge.
In pervasive environments, semantics helps creating machine-interpretable and self-
descriptive data. EN combines expressiveness and compactness.

This dissertation presents the design details of EN and EN Schema and their
implementations on a simulator, embedded sensors, and smart phones. This thesis is one
step towards building knowledge-based systems for pervasive environments.

149

150

References

1. Weiser M (1991) The computer for the 21st century. Scientific American 265(9): 66-75.
2. Smith RG (1985) Knowledge-based systems concepts, techniques, examples. URI:

http://www.reidgsmith.com/Knowledge-Based_Systems_-_Concepts_Techniques\
_Examples_08-May-1985.pdf. Cited 2015/06/15.

3. Aarts E & Riuter BD (2009) New research perspectives on ambient intelligence. Journal of
Ambient Intelligence and Smart Environments 1(1): 5-14.

4. Encyclopedia (2015) Data. URI: http://www.encyclopedia.com/. Cited 2015/06/15.
5. Schreiber G & Raimond Y (2014) RDF 1.1 primer. URI: http://www.w3.org/TR/rdf11-primer/.

Cited 2015/06/15.
6. Hitzler P, Krötzsch M, Parsia B, Patel-Schneider PF & Rudolph S (2012) OWL 2 Web

ontology language primer (Second Edition). URI: http://www.w3.org/TR/owl2-primer/. Cited
2015/06/15.

7. Beckett D, Berners-Lee T, Prud’hommeaux E & Carothers G (2014) RDF 1.1 Turtle Terse
RDF triple language. URI: http://www.w3.org/TR/turtle/. Cited 2015/06/15.

8. Generic Sensor Format (GSF). URI: https://www.leidos.com/maritime/gsf. Cited 2016/06/29.
9. Crockford D (2006) The application/json media type for Java-Script object notation (JSON).

URI: http://tools.ietf.org/html/rfc4627. Cited 2015/06/15.
10. Sporny M, Longley D, Kellogg G, Lanthaler M & Lindström N (2014) JSON-LD 1.0

A JSON-based serialization for Linked Data. URI: http://www.w3.org/TR/json-ld/. Cited
2015/06/15.

11. Shelby Z, Hartke K & Bormann C (2014) Constrained application protocol (CoAP). URI:
http://tools.ietf.org/html/rfc7252. Cited 2015/06/15.

12. Chen H, Finin T & Joshi A (2005) The SOUPA ontology for pervasive computing. In: Tamma
V, Cranefield S, Finin TW & Willmott S(ed) Ontologies for Agents: Theory and Experiences.
Birkhäuser Basel: 233-258.

13. Russomanno DJ, Kothari CR & Thomas OA (2005) Building a sensor ontology: a practical
approach leveraging ISO and OGC Models. Proceedings of the 2005 International Conference
on Artificial Intelligence. Las Vegas, NV: 637-643.

14. W3C Semantic Sensor Network Incubator Group (2011) Semantic sensor network ontology.
URI: http://purl.oclc.org/NET/ssnx/ssn. Cited 2015/06/15.

15. Goddard W & Melville S (2004) Research methodology: an introduction. 2nd edition. Juta
Academic.

16. Riekki J, Su X & Haverinen J (2008) Connecting resource-constrained robots to knowledge-
based systems. Proceedings of the International Conference on Modelling, Identification and
Control. Innsbruck, Austria, ACTA Press.

17. Su X, Riekki J & Haverinen J (2009) Semantic support for resource-constrained robot swarm.
Proceedings of the 6th International Conference on Informatics in Control, Automation and
Robotics. Milan, Italy: 271-277.

18. Su X, Riekki J & Tarkoma S (2009) An approach to achieve context-aware maps: combining
semantic web technology with sensor data. Proceedings of the 5th International Conference on
Intelligent Environments. Barcelona, Spain, IOS Press: 193-203.

151

19. Su X, Riekki J & Haverinen J (2012) Entity Notation - enabling knowledge representations
for resource-constrained sensors. Personal and Ubiquitous Computing 16(7): 819-834.

20. Su X, Gilman E, Kwiatkowski P, Latkowski T, Pröbstl A, Wójtowicz B & Riekki J (2011)
Knowledge-based systems for ambient social interactions. Proceedings of the second In-
ternational Joint Conference on Ambient Intelligence. Amsterdam, Netherlands, Springer:
61-71.

21. Su X, Riekki J, Nurminen, JK, Nieminen J & Koskimies M (2015) Adding semantics to
internet of things. Concurrency and Computation: Practice and Experience 27(8): 1844-1860.

22. Maarala AI, Su X & Jukka R (2014) Semantic data provisioning and reasoning for the
internet of things. Proceedings of the 4th International Conference on the Internet of Things.
Cambridge, MA, IEEE: 13-18.

23. Maarala AI, Su X & Jukka R (In press) Semantic reasoning for advanced Internet of Things
applications. IEEE Internet of Things Journal.

24. Su X, Gilman E & Riekki J (2014) Building knowledge-based systems to enable ambient
social interactions. Journal of Ambient Intelligence and Smart Environments 6(2): 121-135.

25. Su X & Riekki J (2010) Transferring ontologies between mobile devices and knowledge-
based systems. Proceedings of the 8th IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing. Hongkong China, IEEE: 127-135.

26. Su X, Fucci D & Riekki J (2010) A framework to enable two-layer inference for ambient
intelligence. In: Augusto JC, Corchado JM, Novais P & Analide C (ed) Ambient Intelligence
and Future Trends - International Symposium on Ambient Intelligence. Springer: 29-36.

27. Su X & Riekki J (2010) Bridging the gap between semantic web and networked sensors: a
position paper. Proceeding of the 3nd International Workshop on Semantic Sensor Networks,
with 2010 International Semantic Web Conference. Shanghai, China, CEUR-WS.

28. Perttunen M, Riekki J & Lassila O (2009) Context representation and reasoning in pervasive
computing: a review. International Journal of Multimedia and Ubiquitous Engineering. 4(4):
1-28.

29. Strang T & Linnhoff-Popien C (2004) A context modeling survey. Proceeding of the Workshop
on Advanced Context Modelling, Reasoning and Management, with the Sixth International
Conference on Ubiquitous Computing. Nottingham, England.

30. Gruber TR (1993) A translation approach to portable ontology specifications. Knowledge
Acquisition 5(2): 199-221.

31. Studer R, Benjamins VR & Fensel D (1998) Knowledge engineering: principles and methods.
Data and Knowledge Engineering 25 (1-2): 161-197.

32. Baader F, Horrocks I & Sattler U (2007) Chapter 3: Description logics. In: Harmelen F,
Lifschitz V & Porter B (ed) Handbook of Knowledge Representation. Elsevier: 135-179.

33. Hitzler P, Krötzsch M & Rudolph S (2009) Foundations of Semantic Web technologies.
Chapman & Hall/CRC.

34. Soylu A, Causmaecker PD, Preuveneers D, Berbers Y & Desmet P (2011) Formal modelling,
knowledge representation and reasoning for design and development of user-centric pervasive
software: a meta-review. International Journal of Metadata, Semantics and Ontologies 6 (2):
96-125.

35. Brickley D & Guha RV (2014) RDF Schema 1.1. URI: http://www.w3.org/TR/rdf-schema/.
Cited 2016/06/29.

152

36. Horrocks I (2002) Reasoning with expressive description logics: theory and practice.
Proceeding of the 19th International Conference on Automated Deduction. Copenhagen,
Denmark, Springer:1-15.

37. Motik B, Grau BC, Horrocks I, Wu Z, Fokoue A & Lutz C (2012) OWL 2 Web ontol-
ogy language profiles (second edition). URI: http://www.w3.org/TR/owl2-profiles/. Cited
2016/06/29.

38. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B & Dean M (2004)
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. URI:
https://www.w3.org/Submission/SWRL/. Cited 2016/06/29.

39. Kifer M & Boley H (2013) RIF Overview (Second Edition). URI: https://www.w3.org/TR/rif-
overview/. Cited 2016/06/29.

40. Apache Jena (2016) Reasoners and rule engines: Jena inference support. URI:
http://incubator.apache.org/jena/documentation/inference/. Cited 2016/06/15.

41. Unisens - a universal data format. URI: http://www.unisens.org/index.php. Cited 2016/06/29.
42. Kwon TM (2004) Unified Transportation Sensor Data Format (UTSDF): Introduction.

Transportation Data Research Laboratory, Doc #2004021.
43. Berners-Lee T, Hendler J & Lassila O (2001) The Semantic Web. Scientific American. May

2001: 29-37.
44. Berners-Lee T & Connolly D (2011) Notation3 (N3): A readable RDF syntax. URI:

https://www.w3.org/TeamSubmission/n3/. Cited 2016/06/29.
45. W3C RDF Core WG (2015) N-Triples W3C RDF core WG internal working draft. URI:

http://www.w3.org/2001/sw/RDFCore/ntriples/. Cited 2016/06/29.
46. Jennings C, Shelby Z & Arkko J (2012) Media types for sensor markup language (SENML).

URI: https://tools.ietf.org/html/draft-jennings-senml-10. Cited 2016/06/29.
47. Schneider J, Kamiya T, Peintner D & Kamiya T (2014) Efficient XML Interchange (EXI)

format. URI: http://www.w3.org/TR/exi/. Cited 2016/06/29.
48. Shelby Z. (2012) Constrained RESTful Environments (CoRE) link format. URI:

http://tools.ietf.org/html/rfc6690. Cited 2016/06/29.
49. Davic I, Steiner T & J Le Hors A (2013) RDF 1.1 JSON alternate serialization (RDF/JSON).

URI: https://dvcs.w3.org/hg/rdf/raw-file/default/rdf-json/index.html. Cited 2016/06/29.
50. Nathan (eds) (2013) JSN3 unofficial draft. URI: http://webr3.org/apps/specs/jsn3/. Cited

2016/06/15.
51. W3C. (2010) JTriples. URI: http://www.w3.org/wiki/JTriples. Cited 2016/06/29.
52. Birbeck M (2009) RDFj: Semantic objects in JSON. URI: http://markbirbeck.com/blog/2009/

04/20/rdfj-semantic-objects-in-json/. Cited 2016/06/29.
53. Duerst M & Suignard M (2005) Internationalized Resource Identifiers (IRIs). URI:

https://www.ietf.org/rfc/rfc3987.txt. Cited 2016/08/17.
54. W3C (2011). JSON serialization examples. URI: http://www.w3.org/2011/rdf-wg/wiki/JSON-

Serialization-Examples. Cited 2016/06/29.
55. Sheth A, Henson C & Sahoo SS (2008) Semantic sensor web. IEEE Internet Computing

12(4): 78-83.
56. W3C (215) RDFa 1.1 primer - third edition rich structured data markup for web documents.

URI: http://www.w3.org/TR/xhtml-rdfa-primer/. Cited 2016/06/29.
57. Henson CA, Pschorr JK, Sheth AP & Thirunarayan K (2009) SemSOS: semantic sensor

observation service. Proceeding of the 2009 International Symmposium on Collaborative
Technologies and Systems. Baltimore, MD, IEEE: 44-53.

153

58. Toma I, Simperl E & Hench G, (2009) A joint roadmap for semantic technologies and the
internet of things. Proceeding of the 3rd STI Roadmapping Workshop Charting the next
Generation of Semantic Technology. Heraklion Greece.

59. Martin B & Jano B (1999) WAP binary XML content format. URI: http://www.w3.org/TR/
wbxml/. Cited 2016/06/29.

60. Noemax (2015) FastInfoset.net. URI: http://www.noemax.com/products/fastinfoset/index.
html. Cited 2016/06/29.

61. Kangasharju J, Tarkoma S & Lindholm T (2005) Xebu: A binary format with schema-based
optimizations for XML data. Proceeding of 6th International Conference on Web Information
Systems Engineering. New York, NY, Springer Berlin Heidelberg: 528-535.

62. Bournez C (2009) Efficient XML interchange Evaluation. URI: http://www.w3.org/TR/exi-
evaluation/. Cited 2016/06/29.

63. Cheney J (2001) Compressing XML with multiplexed hierarchical PPM models. Proceeding
of the Data Compression Conference. Snowbird, UT, IEEE: 163-172.

64. XML Solutions (1999) XMLZip. URI: http://www.xmls.com/. Cited 2015/06/15.
65. Buneman P, Grohe M & Koch C (2003) Path queries on compressed XML. Proceeding

of the 29th International Conference on Very Large Data Bases. Berlin, Germany, VLDB
Endowment: 141-152.

66. Min JK, Park MJ & Chung CW (2003) XPRESS: A queriable compression for XML data.
Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data.
San Diego, CA, ACM: 122-133.

67. Ng W, Yeung LW & Cheng J (2006) Comparative analysis of XML compression technologies.
World Wide Web 9(1): 5-33.

68. Fernández JD, Martínez-Prieto MA, Gutierrez C & Polleres (2011) Binary RDF rep-
resentation for publication and exchange (HDT). W3C Member Submission. URI:
http://www.w3.org/Submission/2011/SUBM-HDT-20110330/. Cited 2016/06/29.

69. Fernández JD, Martínez-Prieto MA & Gutierrez C (2010) Compact representation of large
RDF data sets for publishing and exchange. Proceeding of the 9th international semantic web
conference. Shanghai, China, Springer Berlin Heidelberg: 193-208.

70. Hasemann H, Kröller A & Pagel M (2012) RDF provisioning for the internet of things.
Proceeding of the 3rd International Conference on the Internet of Things. Wuxi, China, IEEE:
143-150.

71. Woods WA & Schmolze JG (1992) The KL-ONE family. Computers & Mathematics with
Applications 23 (2-5): 133-177.

72. Kifer M & Lausen G (1989) F-logic: a higher-order language for reasoning about objects,
inheritance, and scheme. Proceedings of the 1989 ACM SIGMOD international conference on
Management of data. Portland, Oregon, ACM: 134-146.

73. Heflin J, Hendler J & Luke S (1999) SHOE: A Knowledge Representation Language for
Internet Applications. Technical report CS-TR-4078, Department of Computer Science,
University of Maryland.

74. McGuinness DL, Fikes R, Stein LA & Hendler J (2002) DAML-ONT: an ontology language
for the Semantic Web. In: Fensel F, Hendler J, Lieberman H & Wahlster W (ed) Spinning the
Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press.

75. Fensel D, van Harmelen F, Horrocks I, McGuinness DL & Patel-Schneider PF (2001) OIL:
an ontology infrastructure for the Semantic Web. IEEE Intelligent Systems 16(2): 38-45.

154

76. McGuinness DL, Fikes R, Hendler J & Stein LA (2002) DAML+OIL: an ontology language
for the Semantic Web. IEEE Intelligent Systems 17(5): 72-80.

77. Carroll J, Herman I & Patel-Schneider PF. OWL 2 web ontology language RDF-based
semantics (Second Edition). URI: http://www.w3.org/TR/owl2-rdf-based-semantics/. Cited
2016/06/29.

78. Yu LY (2014) A deveoper’s guide to the Semantic Web. Springer-Verlag Berlin Heidelberg.
79. Horridge M & Patel-Schneider PF (2012) OWL 2 Web Ontology Language Manchester

Syntax (Second Edition). URI: https://www.w3.org/TR/owl2-manchester-syntax/. Cited
2016/06/29.

80. Fuchs NE, Kaljurand K & Kuhn T (2008) Attempto controlled English for knowledge
representation. In: Baroglio C, Bonatti PA, Małuszyński J, Marchiori M, Polleres A & Schaffert
S (ed) Reasoning Web. Springer Berlin Heidelberg: 104-124.

81. Cregan A, Schwitter R & Meyer T (2007) Sydney OWL syntax - towards a controlled
natural language syntax for OWL 1.1. Proceedings of the OWLED 2007 Workshop on OWL:
Experience and Directions. Innsbruck, Austria, CEUR-WS.

82. Hart G, Johnson M & Dolbear C (2008) Rabbit: developing a control natural language for
authoring ontologies. Proceedings of the 5th European Semantic Web Conference. Tenerife,
Canary Islands, Spain, Springer Berlin Heidelberg: 348-360.

83. Schwitter R, Kaljurand K, Cregan A, Dolbear C & Hart G (2008) A comparison of three
controlled natural languages for OWL 1.1. Proceedings of the 4th OWL Experiences and
Directions Workshop. Washington, USA.

84. Le-Phuoc D, Pareira JX, Reynolds V & Hauswirth M (2010) RDF on the go: an RDF storage
and query processor for mobile devices. Proceedings of the International Semantic Web
Conference 2010 Posters & Demonstrations Track. Shanghai, China, CEUR-WS.

85. Crivellaro F (2007) µJena: Gestione di ontologie sui dispositivi mobili. MSC Thesis of
Politécnico di Milano.

86. Koziuk M, Domaszewicz J, Schoeneich RO, Jablonowski M & Boetzel P (2008) Mobile
context-addressable messaging with dl-lite domain model. In: Roggen D, Lombriser C, Tröster
G, Kortuem G & Havinga P (ed) Smart sensing and context. Zürich, Switzerland, Springer
Berlin Heidelberg: 168-181.

87. Gu T, Kwok Z, Koh KK & Pung HK (2007) A mobile framework supporting ontology
processing and reasoning. Proceedings of the 2nd workshop on requirements and solutions for
pervasive software infrastructures, in conjunction with the 9th international conference on
ubiquitous computing. Innsbruck, Austria: 16-19.

88. Ali S & Kiefer S (2009) µOR - Micro a micro owl dl reasoner for ambient intelligent devices.
In: Abdennadher N & Petcu D (eds) Advances in grid and pervasive computing. Geneva,
Switzerland, Springer Berlin Heidelberg: 305-316.

89. Vazquez Gomez JI (2007) A reactive behavioural model for context-aware semantic devices.
Doctoral Dissertation of Universidad de Deusto.

90. Jang M & Sohn JC (2004) Bossam: an extended rule engine for OWL inferencing. In:
Antoniou G & Boley H (ed) Rules and rule markup languages for the semantic web. Hiroshima,
Japan, Springer Berlin Heidelberg: 128-138.

91. Androjena (2015) Porting of Jena to Android URI: https://github.com/lencinhaus/androjena.
Cited 2016/06/29.

155

92. Hecht R & Jablonski S (2011) Nosql evaluation: a use case oriented survey. Proceedings of
the 2011 International Conference on Cloud and Service Computing. Hong Kong, China,
IEEE: 336-341.

93. Abadi DJ, Marcus A, Madden SR & Hollenbach K (2007) Scalable Semantic Web data
management using vertical partitioning. Proceedings of the 33rd international conference on
Very large data bases. Vienna, Austria, VLDB Endowment: 411-422.

94. Wang XH, Zhang DQ, Gu T & Pung HK (2004) Ontology based context modeling and
reasoning using OWL. Proceedings of the Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops. Lugano, Switzerland: 18-22.

95. Lassila O & Khushraj D (2005) Contextualizing applications via semantic middleware. The
Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and
Services. San Diego, USA, IEEE: 183-189.

96. Clocksin, WF & Mellish CS (2003). Programming in Prolog: Using the ISO Standard.
Springer Science & Business Media.

97. Sandia National Laboratories (2013) Jess, the rule engine for the JavaTM platform. URI:
http://herzberg.ca.sandia.gov/. Cited 2016/06/29.

98. Wang X, Dong JS, Chin, CY, Hettiarachchi, SR & Zhang, D (2004) Semantic Space: An
Infrastructure for Smart Spaces, IEEE Pervasive Computing 3(3): 32-39.

99. Korpipää P & Mäntyjärvi J (2003) An ontology for mobile device sensor-based context
awareness. Proceedings of the 4th international and interdisciplinary conference on Modeling
and using context. Stanford, CA, USA, Springer-Verlag: 451-458.

100. Buriano L, Marchetti M, Carmagnola F, Cena F, Gena C & Torre I (2006) The role of
ontologies in context-aware recommender systems. Proceedings of the 7th International
Conference on Mobile Data Management. Nara, Japan, IEEE:80.

101. Naudet Y, Mignon S, Lecaque L, Hazotte C & Groues V (2008) Ontology-based matchmak-
ing approach for context-aware recommendations. Proceedings of the International Conference
on Automated Solutions for Cross Media Content and Multi-channel Distribution: Florence,
Italy, IEEE:218-223.

102. Ciaramella A, Mario GCAC, Lazzerini B & Marcelloni F (2009) Situation-aware mobile ser-
vice recommendation with fuzzy logic and semantic Web. Proceedings of the 9th International
Conference on Intelligent Systems Design and Applications. Pisa, Italy, IEEE: 1037-1042.

103. Kritsotakis M, Michou M, Nikoloudakis E, Bikakis A, Patkos T, Antoniou G & Plexousakis
D (2009) Design and implementation of a semantics-based contextual navigation guide for
indoor environments. Journal of Ambient Intelligence and Smart Environments 1(3): 261-285.

104. Sundmaeker H, Guillemen P, Friess P & Woelfflé S (2010) Vision and challenges for
realising the internet of things. CERP-IoT Cluster of European Research Projects on the
Internet of Things. Brussels, Belgium.

105. Wei W & Barnaghi P (2009) Semantic annotation and reasoning for sensor data. In: Barnaghi
P, Moessner K, Presser M & Meissner S (ed) Smart Sensing and Context. Guildford, UK,
Springer Berlin Heidelberg: 66-76.

106. Bikakis A & Antoniou G (2010) Rule-based contextual reasoning in ambient intelligence.
Proceedings of the 4th International Web Rule Symposium. Washington, DC, Springer Berlin
Heidelberg: 74-88.

107. Bikakis A, Patkos T, Antoniou G & Plexousakis D (2008) A survey of semantics-based
approaches for context reasoning in ambient intelligence. In: Mühlhäuser M, Ferscha A &

156

Aitenbichler E (ed) Constructing Ambient Intelligence. Darmstadt, Germany, Springer Berlin
Heidelberg: 14-23.

108. Barnaghi P, Wang W, Henson C & Taylor K (2012) Semantics for the internet of things:
early progress and back to the future. International Journal on Semantic Web & Information
Systems 8(1): 1-21.

109. Kao YW & Yuan SM (2012) User-configurable semantic home automation. Computer
Standards & Interfaces 34(1): 171-188.

110. Taylor K, Griffith C, Lefort L, Gaire R, Compton M, Wark T, Lamb D, Falzon G & Trotter
M (2013) Farming the web of things. IEEE Intelligent Systems 28(6): 12-19.

111. Zhou Q, Natarajan S, Simmhan Y & Prasanna V (2012) Semantic information modeling
for emerging applications in smart grid. Proceedings of the 9th International Conference on
Information Technology: New Generations. Las Vegas, NV, IEEE: 775-782.

112. Hristoskova A, Sakkalis V, Zacharioudakis G, Tsiknakis M & Turck FD (2014) Ontology-
driven monitoring of patients vital signs enabling personalized medical detection and alert.
Sensors 14 (1): 1598-1628.

113. Preist C, Esplugas-Cuadrado J, Battle SA, Grimm S & Williams SK (2005) Automated
business-to-business integration of a logistics supply chain using semantic web services
technology. Proceedings of the 4th International Semantic Web Conference. Galway, Ireland,
Springer Berlin Heidelberg: 987-1001.

114. W3C (2009) Cwm. URI: http://www.w3.org/2000/10/swap/doc/cwm.html. Cited
2016/06/29.

115. Berners-Lee T, Semantic Web -XML 2000, URI: https://www.w3.org/2000/Talks/1206-
xml2k-tbl/Overview.html. Cited 2016/06/26.

116. Leach P, Mealling M & Salz R, (2005) A universally unique IDentifier (UUID) URN
namespace. URI: http://www.ietf.org/rfc/rfc4122.txt. Cited 2016/06/29.

117. Biron PV, Permanente K & Malhotra A (2004) XML Schema Part 2: Datatypes Second
Edition. URI: http://www.w3.org/TR/xmlschema-2/. Cited 2016/06/15.

118. Phillips A & Davis M (2009) Tags for Identifying Languages, URI:
https://tools.ietf.org/html/rfc5646. Cited 2016/06/09.

119. Pattis RE EBNF: A Notation to Describe Syntax. URI: https://www.ics.uci.edu/ pattis/ICS-
33/lectures/ebnf.pdf. Cited 2016/06/29.

120. Russell S & Norvig P (2010) Artificial intelligence: A modern approach (3rd edition).
Prentice Hall.

121. Domingue J, Fensel D & Hendler, JA (2011) Handbook of Semantic Web Technologies,
Springer.

122. Manola F & Miller E (2004) RDF Primer. URI: https://www.w3.org/TR/2004/REC-rdf-
primer-20040210/. Cited 2016/06/29.

123. Michelogiannakis G, Jiang N, Becker D & Dally W (2011) Packet Chaining: Efficient
Single-Cycle Allocation for On-Chip Networks. IEEE Computer Architecture Letters 10(2):33-
36.

124. Bao J, Kendall EF, McGiommess DL & Patel-Schneider PF (2012) OWL 2 Web Ontology
Language Quick Reference Guide (Second Edition). URI: https://www.w3.org/TR/owl2-quick-
reference/. Cited 2016/06/09.

125. Hitzler P, Krötzsch M, Parsia B, Patel-Schneider PF, & Rudolph S (2012) OWL 2 Web
Ontology Language Primer (Second Edition). URI: https://www.w3.org/TR/owl2-primer/.
Cited 2016/06/09.

157

126. Gandon F & Schreiber G (2014) RDF 1.1 XML Syntax.URI: https://www.w3.org/TR/rdf-
syntax-grammar/. Cited 2016/06/09.

127. Shadbolt N, Beerners-Lee T & Hall W (2006) The semantic web revisited. IEEE Intelligent
Systems 21(3): 96-101.

128. Riekki J, Alakärppä I, Koukkula R, Angeria J, Brockman M & Saloranta T (2007) Wireless
pain monitoring. Proceedings of the 2nd International Symposium on Medical Information and
Communication Technology. Oulu, Finland: 1-7.

129. Grant J & Beckeet D (2004) RDF test cases, W3C Recommendation. URI:
http://www.w3.org/TR/rdf-testcases/. Cited 2015/06/15.

130. Chen H, Finin T & Joshi A (2003) An ontology for context-aware pervasive computing
environments. The Knowledge Engineering Review 18(3):197-207.

131. Berrueta D, Brickley D, Decker S, Fernández S, Görn C, Harth A, Heath T, Idehen K,
Kjernsmo K, Miles A, Passant A, Polleres A, Polo L & Sintek M (2007) SIOC Core Ontology
Specification. URI: https://www.w3.org/Submission/sioc-spec/. Cited 2016/08/12.

132. Bermudez-Edo M, Barnaghi P & Elsaleh T (2015) iot-lite Ontology. URI:
http://iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite. Cited 2016/08/12.

133. Reynolds D (2014) The Organization Ontology. URI: https://www.w3.org/TR/vocab-org/.
Cited 2016/08/12.

134. Ruyter BD (2010) Social interactions in ambient intelligent environments. Doctoral Disser-
tation of Eindhoven University of Technology.

135. Freier AO, Karlton P & Kocher PC (1996) The SSL protocol. version 3.0. URI:
http://home.mit.bme.hu/ hornak/adatbiz/ssl3/ssl-toc.html. Cited 2016/06/29.

136. Sweeney L (2002) k-Anonymity: A model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems 10(5): 557-570.

137. Su X, Gilman E, Wetz P, Riekki J, Zuo Y & Leppänen T (2016), Stream reasoning for
the internet of things: Challenges and gap analysis. Proceedings of the 6th International
Conference on Web Intelligence, Mining and Semantics. Nîmes, France, ACM:1-10.

158

A C T A U N I V E R S I T A T I S O U L U E N S I S

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/

S E R I E S C T E C H N I C A

565. Keränen, Pekka (2016) High precision time-to-digital converters for applications
requiring a wide measurement range

566. Koivuranta, Elisa (2016) Optical monitoring of flocs and filaments in the activated
sludge process

567. Lohikoski, Päivi (2016) Information processing in global virtual NPD projects

568. Kauppila, Osmo (2016) Integrated quality evaluation in higher education

569. Kisko, Anna (2016) Microstructure and properties of reversion treated low-Ni
high-Mn austenitic stainless steels

570. Postila, Heini (2016) Peat extraction runoff water purification in treatment
wetlands constructed on drained peatlands in a cold climate

571. Happonen, Tuomas (2016) Reliability studies on printed conductors on flexible
substrates under cyclic bending

572. Soderi, Simone (2016) Evaluation of industrial wireless communications systems’
security

573. Harjula, Erkki (2016) Energy-efficient peer-to-peer networking for constrained-
capacity mobile environments

574. Tolonen, Arto (2016) Product portfolio management over horizontal and vertical
portfolios

575. Suliman, Isameldin Mohammed (2016) Performance analysis of cognitive radio
networks and radio resource allocation

576. Karjalainen, Satu Maaria (2016) Identification of processes leading to long-term
wastewater purification in northern treatment wetlands

577. Ohenoja, Markku (2016) Computational methods for exploiting image-based data
in paper web profile control

578. Väliheikki, Ari (2016) Resistance of catalytic materials towards chemical
impurities : the effect of sulphur and biomaterial-based compounds on the
performance of DOC and SCR catalysts

579. Kinnunen, Tuomo (2016) Product management perspectives on stakeholder and
business opportunity analyses in the front-end of product creation

580. Heiderscheidt, Elisangela (2016) Evaluation and optimisation of chemical
treatment for non-point source pollution control : Purification of peat extraction
runoff water

C581etukansi.kesken.fm Page 2 Monday, August 29, 2016 10:39 AM

UNIVERSITY OF OULU P .O. Box 8000 F I -90014 UNIVERSITY OF OULU FINLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

Professor Esa Hohtola

University Lecturer Santeri Palviainen

Postdoctoral research fellow Sanna Taskila

Professor Olli Vuolteenaho

University Lecturer Veli-Matti Ulvinen

Director Sinikka Eskelinen

Professor Jari Juga

University Lecturer Anu Soikkeli

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-1334-7 (Paperback)
ISBN 978-952-62-1335-4 (PDF)
ISSN 0355-3213 (Print)
ISSN 1796-2226 (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

OULU 2016

C 581

Xiang Su

LIGHTWEIGHT DATA AND
KNOWLEDGE EXCHANGE
FOR PERVASIVE
ENVIRONMENTS

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

C
 581

AC
TA

X
iang Su

C581etukansi.kesken.fm Page 1 Monday, August 29, 2016 10:39 AM

	Abstract
	Tiivistelmä
	Acknowledgements
	Abbreviations
	Contents
	1 Introduction
	1.1 Background and motivation
	1.2 Objectives and scope
	1.3 Contributions
	1.4 Research methodology and history
	1.5 Dissertation structure

	2 Data and knowledge representations for pervasive environments
	2.1 Knowledge representations and reasoning
	2.2 Semantics for resource-constrained devices
	2.3 Representing OWL ontologies
	2.4 Related work about semantic technologies for pervasive computing
	2.5 Summary

	3 Entity Notation
	3.1 Design considerations
	3.2 Formal description
	3.3 Complete packet format
	3.4 Short EN format
	3.5 Negotiating short packets
	3.6 Chaining EN packets
	3.7 Supported data structures
	3.8 Limitations
	3.9 Summary

	4 Entity Notation Schema
	4.1 Design considerations
	4.2 Complete packet format
	4.2.1 Classes and instances
	4.2.2 Class hierarchies
	4.2.3 Class disjointness
	4.2.4 Object properties
	4.2.5 Property hierarchies
	4.2.6 Domain and range restrictions
	4.2.7 Equality and inequality of individuals
	4.2.8 Datatype properties
	4.2.9 Advanced class relationships
	4.2.10 Advanced use of properties
	4.2.11 Advanced use of datatypes
	4.2.12 Document information and annotations
	4.2.13 Sensor ontology example

	4.3 Short packet format
	4.4 Summary

	5 Evaluation
	5.1 Expressive power
	5.2 Resource usage
	5.3 Simulator and RDF/XML data sets
	5.4 Transforming ontologies
	5.5 Sensor prototypes
	5.5.1 Well-being reporter
	5.5.2 General sensor system

	5.6 Ambient social interactions
	5.6.1 General framework
	5.6.2 EN for ambient social interactions
	5.6.3 Event map
	5.6.4 Summary

	5.7 Two-Layer inference framework
	5.7.1 Design
	5.7.2 Use case

	5.8 Summary

	6 Discussion
	6.1 General analysis
	6.2 Revisiting the research objectives
	6.3 Contributions
	6.4 Open issues and future work
	6.5 Concluding remarks

	References

