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Abstract. Virtual borders are employed to allow humans the interactive and flexible restriction of their mobile robots’ workspaces
in human-centered environments, e.g. to exclude privacy zones from the workspace or to indicate certain areas for working. They
have been successfully specified in interaction processes using methods from human-robot interaction. However, these methods
often lack an expressive feedback system, are restricted to robot’s on-board interaction capabilities and require a direct line of
sight between human and robot. This negatively affects the user experience and interaction time. Therefore, we investigate the
effect of a smart environment on the teaching of virtual borders with the objective to enhance the perceptual and interaction
capabilities of a robot. For this purpose, we propose a novel interaction method based on a laser pointer, that leverages a smart
home environment in the interaction process. This interaction method comprises an architecture for a smart home environment
designed to support the interaction process, the cooperation of human, robot and smart environment in the interaction process,
a cooperative perception including stationary and mobile cameras to perceive laser spots and an algorithm to extract virtual
borders from multiple camera observations. The results of an experimental evaluation support our hypotheses that our novel
interaction method features a significantly shorter interaction time and a better user experience compared to an approach without
support of a smart environment. Moreover, the interaction method does not negatively affect other user requirements concerning
completeness and accuracy.
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1. Introduction

Nowadays, physical environments become more
and more smart comprising different kinds of sen-
sors and actuators for the perception and manipula-
tion of the environment. These devices are connected
via a network with each other, and in combination
with intelligent software, such a smart environment
is able to provide context-aware services to humans
resulting in an intelligent environment [4]. A certain
form of a smart environment, which we deal with in
this work, is a smart home equipped with computing
and information technology providing services to res-
idents [2]. When additionally integrating a robot into
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a smart environment, this combination is referred to a
network robot system (NRS), which extends the per-
ceptual and interaction capabilities of the robot and en-
vironment [38]. This allows especially mobile robots,
which are able to move in the environment using their
locomotion system [10], to provide complex services
to the residents, e.g. providing sophisticated health-
care services [25], tidying up rooms [33] or supporting
humans in a kitchen [35]. The locations, that can be
reached using the locomotion systems, are defined as
the mobile robot’s workspace.

Although residents appreciate the services of mobile
robots in their home environments, there are scenar-
ios in which humans want to restrict the workspaces
of their mobile robots, i.e. they want to define restric-
tion areas. For example, restriction areas are needed
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(1) to exclude intimate rooms, such as bed- or bath-
rooms, due to privacy concerns [48], (2) to exclude car-
pet areas from the mobile robot’s workspace to avoid
navigation errors [18] or (3) to indicate certain areas
for working, such as spot vacuum cleaning [16]. These
scenarios can be summarized to the problem, that we
deal with in this work: the restriction of a 3-DoF mo-
bile robot’s workspace and change of its navigational
behavior according to the humans’ needs. A 3-DoF
mobile robot operates on the ground plane and has
three degrees of freedom, i.e. 2D position and orienta-
tion. The described problem is highly relevant for users
living in human-robot shared spaces, such as home
environments. Since a restriction area cannot be di-
rectly perceived by the mobile robot due to computa-
tional or perceptual limitations and/or explicit knowl-
edge of a human is required, an interaction process
between human and robot is necessary. This interac-
tion process has to (1) allow a transfer of spatial in-
formation concerning the restriction areas and (2) has
to provide a feedback channel to inform the human
about the progress of the interaction process and its re-
sults.

Current state-of-the-art solutions focus on methods
from the field of human-robot interaction (HRI) to
specify restriction areas. For this purpose, the con-
cept of a virtual border is employed, which is a non-
physical border not directly visible to the user but
that effectively and flexibly restricts a mobile robot’s
workspace [43]. Thus, a mobile robot changes its nav-
igational behavior and respects the user-defined re-
striction areas. In order to specify a virtual border
in an interaction process, a user employs an inter-
action method, that is built around a user interface
for interaction. Current interaction methods are either
based on visual displays or mediator-based pointing
gestures, e.g. using a laser pointer as pointing de-
vice [45]. Especially, the latter one is a natural and in-
tuitive method of non-verbal communication making it
applicable by non-expert users [46]. These non-expert
users are residents of home environments and do not
have much experience with robots but can interact with
common consumer devices, such as tablets or smart-
phones.

However, despite of the natural and intuitive in-
teraction using pointing gestures, this category of in-
teraction methods requires a direct line of sight be-
tween human and robot’s on-board camera. Due to the
limited field of view of mobile robots’ cameras, this
yields a limited interaction space affecting the qual-
ity of interaction negatively, e.g. in terms of interac-

tion time. Moreover, the feedback capabilities are lim-
ited to the mobile robot’s on-board components, e.g.
non-speech audio [22] or colored lights giving feed-
back [5]. This also affects the quality of interaction
negatively, e.g. in terms of user experience. Therefore,
in this work our objective is the investigation of the
role of a smart home environment in the interaction
process to overcome these limitations. We hypothesize
that the additional components of a smart home envi-
ronment can improve the interaction time and user ex-
perience compared to a solution without support of a
smart environment because additional sensors and ac-
tuators increase the perception and interaction capabil-
ities. Moreover, we hypothesize that other user require-
ments, such as accuracy and completeness of the inter-
action method [45], will not be negatively affected.

Based on this objective, we contribute the following
aspects to the state of the art. We investigate the ef-
fect of a smart environment on the interaction process
of restricting a mobile robot’s workspace. Therefore,
we propose a novel interaction method incorporating
a smart home environment and laser pointer as inter-
action device. This interaction method encompasses
(1) an architecture for a smart environment designed
to support the interaction process, (2) the cooperation
of human, robot and smart environment in the inter-
action process, (3) a cooperative perception including
stationary and mobile cameras to perceive laser spots
and (4) an algorithm to extract virtual borders from
multiple camera observations.

The remainder of this paper is structured as follows:
in the next section, we give an overview of related
works concerning the restriction of mobile robots’
workspaces, the integration of robots into smart en-
vironments and interaction opportunities of network
robot systems. Based on our objective and contribu-
tions of related works, we point out a research gap and
formulate three open research questions as basis for
the remainder of this work. Afterwards, we first for-
mally define a virtual border as a concept to flexibly
define restriction areas. This is the basis for our novel
interaction method addressing the problem of restrict-
ing a mobile robot’s workspace. Details on the inter-
action method and how it addresses the research ques-
tions are given in Section 4. Subsequently, we evalu-
ate the interaction method in comparison to a baseline
method with the focus on the test of our hypotheses.
Finally, we conclude our work, point out current limi-
tations and suggest future work.
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2. Related work

2.1. Mobile robot workspace restriction

As already stated in the introduction, current solu-
tions to restrict the workspace of a mobile robot are
based on sole HRI without support of a smart environ-
ment. Commercial solutions comprise magnetic stripes
placed on the ground [29] and virtual wall systems
based on beacon devices [8], that emit infrared light
beams. Despite their effectiveness, they are intrusive,
i.e. additional physical components on the ground are
necessary to restrict the workspace, and inflexible, i.e.
restriction areas are limited to certain sizes and shapes.
Thus, they are not applicable for our problem because
the considered scenarios require restriction areas of ar-
bitrary sizes and shapes. An alternative is sketching re-
striction areas on a map of the environment contain-
ing occupancy probabilities [1]. These maps are cre-
ated by today’s home robots and are used for naviga-
tion purposes. However, this interaction method is in-
accurate, i.e. there are strong inaccuracies between the
user-defined restriction areas as a result of an interac-
tion process and the restriction areas to be intended for
restriction by a human. This is caused by a correspon-
dence problem between points on the map and in the
environment [45]. In order to address this shortcom-
ing, Sprute et al. introduced a framework for interac-
tive teaching of virtual borders based on robot guid-
ance [43]. This allows a user to guide a mobile robot,
e.g. using a laser pointer as interaction device, and
specify a virtual border as the robot’s trajectory [46].
Although this interaction is accurate due to the accu-
rate localization of the mobile robot, the framework
suffers from a linear interaction time regarding the bor-
der length and lacks an expressive feedback system.
This is caused by the requirement concerning a di-
rect line of sight between human and robot and limited
on-board feedback capabilities. A comprehensive user
study dealing with different HRI methods for teach-
ing virtual borders revealed augmented reality as the
most powerful interface for the given task [45]. How-
ever, this approach requires specialized hardware, i.e.
a RGB-D tablet, which limits the potential number of
users. Nonetheless, the user study showed that 36%
of the participants, i.e. the second largest group, also
preferred a laser pointer as interaction device due to
its simplicity, comfort and intuitiveness during interac-
tion. These advantages of a laser pointer are also re-
vealed in other robot tasks, such as guiding a mobile

robot to a 3D location [21], controlling a robot using
stroke gestures [19] and teaching visual objects [34].

2.2. Network robot systems

In order to benefit from the advantages of laser
pointers and reduce their limitations caused by the
requirement concerning a direct line of sight for in-
teraction and limited on-board feedback capabilities,
we investigate the incorporation of a smart home en-
vironment with additional sensors and actuators into
the interaction process. This integration of robots into
smart environments is known as network robot systems
(NRS) [38]. Such a system is characterized by five el-
ements: physical embodiment, autonomous capabili-
ties, network-based cooperation, environment sensors
and actuators and human-robot interaction. Other re-
lated terms are ubiquitous robots [23], physically em-
bedded intelligent systems (PEIS) [36], Kukanchi [30]
and informationally structured environment [31]. This
ubiquitous robotics paradigm is leveraged to provide
more complex and more efficient robot services to hu-
mans. For example, Sandygulova et al. developed a
portable ubiquitous robotics testbed consisting of a
kitchen equipped with a wireless sensor network, a
camera and mobile robot [37] and Djaid et al. inte-
grate a robot wheelchair with a manipulatable arm
into an intelligent environment [11]. Other applica-
tions comprise the improvement of a mobile robot’s
object search [41], the development of a human-aware
task planner based on observations of the smart en-
vironment [9] and a gesture-based object localization
approach for robot applications in intelligent environ-
ments [42]. All these approaches show that the coop-
eration between robots and a smart environment can
improve the quality of robot applications, e.g. through
enhanced perception and interaction abilities [40].

2.3. Interaction in smart environments

However, only a single attempt was made to employ
a smart environment to restrict the workspace of a mo-
bile robot, i.e. Liu et al. use several bird’s eye view
cameras mounted in the environment to visualize a top
view of the environment on a tablet’s screen on which
the user can draw arbitrary restriction areas [26]. But
this approach relies on a full camera view coverage of
the environment and does not deal with partial occlu-
sions, e.g. by furniture. Therefore, it is not applicable
to our problem because a home environment is typi-
cally not fully covered by cameras due to privacy con-
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cerns [3]. Nonetheless, there are already works deal-
ing with the recognition of laser pointer gestures us-
ing cameras of a smart environment, e.g. Shibata et al.
propose a laser pointer approach to allow humans to
control a mobile robot [39]. Similarly, Ishii et al. use
cameras integrated into the environment for laser spot
tracking allowing a human to define stroke gestures
with a laser pointer to control a network-connected
mobile robot [19]. These approaches are no more lim-
ited to the mobile robot’s field of view and thus in-
crease the interaction space. However, the gestures are
exclusively recognized by cameras integrated in the
smart environment. Hence, the interaction strongly de-
pends on the number of cameras in the environment
and their fields of view. There is no work considering
a cooperative behavior employing cameras from the
smart environment and the mobile robot for this task.
This would be an opportunity to overcome issues con-
cerning camera view coverage and occlusions. More-
over, smart environments provide additional visualiza-
tion capabilities that could be used to provide feedback
to the human, e.g. visual displays integrated into the
environment [6,20].

2.4. Research gap

These findings lead us to the general question, we
want to answer in this work: how can a smart home en-
vironment improve the interaction process of restrict-
ing a mobile robot’s workspace using a laser pointer
with respect to the interaction time and user expe-
rience? This question involves research questions of
(1) which sensors and actuators of a smart environment
can be used to benefit the interaction process, (2) how
to realize a cooperation of human, robot and smart en-
vironment in the interaction process and (3) how to co-
operatively perceive and combine multiple camera ob-
servations of laser points to restrict the mobile robot’s
workspace. These questions are the basis for the re-
mainder of this work, which will be answered by pro-
totypically implementing a solution and an empirical
evaluation.

3. Virtual borders

Before we present our solution to the given prob-
lem, we first introduce the concept of a virtual border
in more detail. As already mentioned, this is a non-
physical border not directly visible to a human but re-
spected by a mobile robot during navigation. It com-

prises spatial information necessary to define a restric-
tion area in an interaction process. Thus, a virtual bor-
der can be used to interactively specify restriction ar-
eas, such as carpets or privacy zones. This concept was
already formally defined as a triple V = (P, s, δ) in a
previous work [44]. The three components of a virtual
border are described below:

1. Virtual border points P : These are n > 1
points pi ∈ R

2 with 1 < i < n organized as
a polygonal chain, that specifies a boundary of
a restriction area on the ground plane. There are
two types of virtual borders: (1) a closed polyg-
onal chain (polygon) and (2) a simple polygo-
nal chain (separating curve). The former one di-
vides an environment into an inner and outer
area, while the latter one does not directly parti-
tion an environment. Thus, its first and last line
segments are linearly extended to the physical
borders of the environment to allow the separa-
tion of the area. This formulation allows the defi-
nition of restriction areas with arbitrary sizes and
shapes.

2. Seed point s: This is a point on the ground plane
s ∈ R

2 indicating the area to be modified by the
human in the interaction process, i.e. the area to
be restricted.

3. Occupancy probability δ: This component
specifies the occupancy probability of the area to
be modified as indicated by the seed point s.1

In order to enforce a mobile robot to change its navi-
gational behavior, a virtual border has to be integrated
into a map of the environment. Such a map is used
by mobile robots to autonomously navigate in the en-
vironment, i.e. calculating a path from a robot’s start
to a goal pose considering physical obstacles [27]. For
this purpose, a 2D occupancy grid map (OGM) [28]
representation is chosen due to its popularity in robot
navigation and guidance. It models the physical envi-
ronment, i.e. walls or furniture, in terms of discrete
cells containing occupancy probabilities, i.e. free, oc-
cupied and unknown areas. To integrate a virtual bor-
der into a map of the environment, we employ a map
integration algorithm [44]. The input is a map of the
physical environment Mprior and a user-defined vir-
tual border V . The output of the map integration al-

1In this work, we only consider 100% to indicate occupied areas,
but in the future this component could be used to model levels of
restriction. For example, an occupancy of 75% could mean that a
mobile robot should avoid this area unless it is necessary.
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gorithm is a 2D OGM Mposterior containing physical
as well as the user-defined virtual borders. Thus, when
considering Mposterior as basis for navigation, a mo-
bile robot changes its navigational behavior accord-
ing to the user-defined restrictions. Furthermore, the
algorithm can be iteratively applied with different vir-
tual borders V ∗ = {V1, V2, . . . , VN }, i.e. the output of
the i-th interaction process becomes the input of the
i + 1-th interaction process. This map integration al-
gorithm has already been proven to be correct, i.e. it
changes the mobile robot’s navigational behavior, and
flexible, i.e. a human can specify arbitrary virtual bor-
ders [45]. For this reason, we also employ the algo-
rithm in this work to allow users the definition of re-
striction areas.

4. Workspace restriction in a smart home

Due to the advantages of mobile robot applications
integrated into smart environments and the drawbacks
of current solutions for our problem, i.e. the restric-
tion of a mobile robot’s workspace and change of its
navigational behavior, we take up the opportunity of
an enhanced perception and interaction capability pro-
vided by a smart home environment in this work. To
this end, we first present a smart home design and ex-
plain how smart home components can be leveraged to
address limitations of current solutions. Subsequently,
we describe how these smart home components are
incorporated into the interaction process between hu-
man and robot. Thus, this cooperative behavior results
in a novel interaction method based on human-robot-
environment interaction. Finally, we present details on
the cooperative perception based on smart home’s and
mobile robot’s cameras, which is a fundamental part of
the proposed interaction method. It is the goal to com-
bine multiple camera observations of laser points and
extract a single virtual border from these observations.
For this purpose, we developed a novel multi-stage al-
gorithm addressing several challenges.

4.1. Smart environment design

As stated in Section 2, laser pointers are quite pop-
ular for human-robot interactions involving the trans-
fer of spatial information due to their natural interac-
tion mimicking human pointing gestures. For exam-
ple, our baseline method for the restriction of a mo-
bile robot’s workspace employs a laser pointer as in-
teraction device [46]. Nonetheless, this kind of inter-
action features some drawbacks. The major drawback

of the existing interaction method is the requirement
concerning a direct line of sight between human and
robot when specifying virtual borders. Thus, the mo-
bile robot has to follow the laser spot, but it is re-
stricted by velocity constraints, which lead to a rel-
atively long interaction time. Moreover, only limited
feedback about the current state of the interaction pro-
cess can be conveyed using simple on-board LEDs and
non-speech audio sound, e.g. the robot provides a beep
sound whenever a laser spot is detected. However, no
complex feedback concerning the spatial information
of the specified virtual borders can be provided to the
human using these communication channels. Another
drawback of the baseline approach is the interaction to
change between different states of the interaction pro-
cess, e.g. specifying virtual border points or the seed
point. For this purpose, visual codes generated by the
laser pointer or push buttons on the mobile robot are
provided. But visual codes can be error-prone due to
changing light conditions and interaction using buttons
requires the user to be in the vicinity of the robot.

Addressing these shortcomings of the baseline ap-
proach, we propose the incorporation of additional
smart home components in the interaction process as
the answer to our first research question. This deals
with the question of which sensors and actuators of
the smart environment can be used to benefit the in-
teraction process. Our proposed smart home environ-
ment is shown in Fig. 1 and mainly consists of three
components: (1) a camera network comprising station-
ary RGB cameras, (2) a smart display and (3) a smart
speaker allowing the processing of voice commands.
The first component, i.e. the camera network, is in-
tended to increase the perceptual capabilities in com-
bination with the mobile robot’s on-board camera. Sta-

Fig. 1. A person defines a virtual border in the environment using
a laser pointer. The spot is observed by stationary cameras in the
environment (yellow and red) and a mobile camera on a robot (blue).
A smart display (top right) provides visual feedback of the complex
spatial information, and a smart speaker facilitates interaction.
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tionary cameras are integrated (yellow and red fields of
view) to cover certain areas of the environment, while a
mobile camera mounted on a robot (blue field of view)
can observe areas that are not covered by the station-
ary cameras due to their installation or occlusions, e.g.
under the table. Hence, this combination allows per-
ception even if the stationary cameras do not cover all
areas of the environment, which is typically the case
in smart home environments. The second component,
i.e. the smart display, is intended to provide expressive
feedback to the user by visualizing the progress and
result of the interaction process. Finally, it is the idea
to employ a smart speaker to facilitate the change of
different states of the interaction process using voice
commands.

4.2. Human-robot-environment interaction

In order to achieve our objective of a reduced inter-
action time and increased user experience compared to
the baseline approach, we propose a new interaction
method leveraging the combination of a mobile robot
and the described smart home environment in the in-
teraction process. We denote this combination as net-
work robot system (NRS) in the following. This in-
teraction method is intended to answer our second re-
search question of how to realize a cooperation of hu-
man, robot and smart environment in the interaction
process. As pointed out in the introduction, the interac-
tion process between human and robot (1) has to allow
a transfer of spatial information from human to robot
and (2) has to provide feedback about the interaction
process from robot to human. The first property is ad-
dressed by allowing a user to specify virtual borders by
“drawing” directly in the environment using a common
laser pointer. A laser spot is cooperatively perceived by
the stationary camera network and the mobile robot’s
on-board camera.

The interaction method comprises several internal
states, that reflect the three components of a virtual
border as described in Section 3. The states are de-
scribed as follows:

– Default: The NRS is in an inactive state and ig-
nores all user interactions.

– Border: The NRS recognizes laser spots that are
used to specify virtual border points P . If the sta-
tionary cameras perceive a user’s laser spot, the
system automatically sends a mobile robot to this
area. Thus, the mobile robot autonomously navi-
gates to this area and can act as mobile camera if
the stationary cameras lose track of the laser spot.

– Seed: The NRS recognizes laser spots and calcu-
lates the seed point s. Similar to the Border state,
a mobile robot simultaneously moves to the laser
spot position if a stationary camera perceives a
laser spot. The seed point s indicates the restric-
tion area, i.e. δ = 1.

– Guide: This state is similar to the Default state,
but the user can guide the mobile robot using the
laser pointer without storing the laser spots. The
state should be never reached if at least one of
the stationary cameras’ fields of view covers a
part of the restriction area and can send the mo-
bile robot to this area. However, we incorporate
this state into our interaction method to ensure its
functionality in case of an absence of stationary
cameras. In this case, a user has to manually guide
the mobile robot to the restriction area because
the robot cannot be automatically sent to the area
due to missing information of the smart environ-
ment. Hence, the system degenerates to the base-
line approach, i.e. a system without support of a
smart home environment.

In order to switch between the different states, a user
can employ the following speech commands, that are
perceived and processed using the smart speaker inte-
grated into the smart home:

– Define border: This command is used to start
the specification of virtual border points P , thus
switching to state Border.

– Define seed: This command is used to start the
specification of a seed point s, thus switching to
state Seed.

– Guide robot: The system’s internal state switches
to Guide so that a user can guide the mobile robot
using the laser pointer.

– Save: This command is employed when a user
wants to integrate and save his or her user-defined
virtual border into the map of the environment.

– Cancel: If a user does not want to save his or her
user-defined virtual border, he or she can cancel
the interaction process. Hence, the internal state
changes to Default.

Finally, we realize the second property of an interac-
tion process, i.e. a feedback channel from robot to hu-
man, by extending the baseline’s feedback system. In
addition to mobile robot’s non-speech audio sound and
colored light feedback indicating state changes and
the detection of a laser spot, we use the smart dis-
play integrated into the environment to provide more
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Fig. 2. Architecture of the cooperative perception for specifying virtual borders based on multiple camera views.

complex feedback. This includes the visualization of
the 2D OGM of the environment, the mobile robot’s
current position on the map and the progress of the
spatial information transfer. After successfully accom-
plishing an interaction process, the mobile robot’s
workspace containing the user-defined virtual borders
is also shown on the display.

4.3. Cooperative perception

While the incorporation of the smart display and
smart speaker in the interaction method is straightfor-
ward, the incorporation of the camera network, which
is used to increase the interaction space, is more chal-
lenging. There are mainly two reasons: (1) multiple
cameras, stationary and mobile, have to be integrated
into an architecture that supports the interaction pro-
cess and (2) a single virtual border has to be ex-
tracted from multiple camera observations including
noisy data.

4.3.1. Architecture
Addressing the first aspect, we propose the archi-

tecture, that is illustrated in Fig. 2, as a first part of
our answer to the third research question of how to
cooperatively perceive and combine multiple camera
observations to restrict the mobile robot’s workspace.
The architecture consists of M stationary cameras in-
tegrated in the environment and N mobile cameras on
mobile robots.2 Each camera independently performs
laser point detection in image space resulting in a 2D

2Although we consider a single mobile robot in this work, we de-
signed the architecture with multiple mobile cameras due to scala-
bility options in the future.

point p ∈ R
2 for each detected laser spot. We ap-

ply the laser point detection algorithm from the base-
line approach that is based on illumination and mor-
phologic properties of a laser spot, i.e. circular shape,
specific size and extreme brightness compared to its
local environment [46]. Subsequently, each point p is
projected into 3D world space P ∈ R

3 using either a
ground plane model in case of the stationary cameras
or an additional depth image in case of the mobile cam-
eras. The aim is to make laser point observations inde-
pendent of the cameras. Since the resulting points are
points on the ground plane, they degenerate to 2D po-
sitions with respect to the map coordinate frame. This
coordinate frame is the origin of the environment’s
map and does not contain a third dimension because
we focus on 3-DoF mobile robots. All camera trans-
formations with respect to the map coordinate frame
are known to ensure transformations from the cam-
eras’ to the map’s coordinate frame. These transforma-
tions belong to the Special Euclidean group SE(3) and
are determined in advance during installation. In case
of a mobile robot, this transformation is dynamically
adapted according to the localization of the robot in the
environment. After projecting the points into the map
coordinate frame, all points are incorporated into a sin-
gle 2D point set describing all laser point detections in
space independent of the camera source. Finally, a vir-
tual border is extracted from this point set.

4.3.2. Virtual border extraction
While the extraction of the seed point s is not chal-

lenging, the extraction of the polygonal chain P in-
cludes several challenges that need to be adequately
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addressed. For example, the 2D point set acquired
from multiple camera observations contains data points
of a single user-defined polygonal chain P . However,
this point set also contains (1) noisy data points and
possibly (2) additional clusters. These can occur due
to errors in the laser point detection algorithm or other
areas in the environment, that have the same charac-
teristics as a laser point. Moreover, the data points can
be (3) spatially redundant since the points are obtained
from different cameras that may have an overlap of
their fields of view, e.g. two overlapping static cameras
of the environment or an overlap between a static cam-
era and the mobile robot’s camera. Moreover, calibra-
tion inaccuracies of the cameras and localization er-
rors of the mobile robot can lead to (4) inaccurate user-
defined points. Finally, the (5) generation of a polygo-
nal chain from the point set is challenging because the
polygonal chain can have an arbitrary shape. We ad-
dress these challenges with a novel multi-stage virtual
border extraction algorithm, which is the second part
of our answer to the third research question. Figure 3
illustrates the stages of the algorithm with two exem-
plary polygonal chains in the first and second row. We
reference this figure throughout this subsection to ex-
plain the multi-stage algorithm.

Clustering The first stage of the extraction algorithm
is the clustering stage as denoted in Algorithm 1. The
input is a 2D point set pointsetIn as shown in the first
column of Fig. 3, and the data points belonging to the
polygonal chain pointsetOut are the result. This stage
is designed to addresses the first two challenges of
the virtual border extraction step, i.e. extracting of the
user-defined polygonal chain and discarding noisy data

Algorithm 1 Clustering step

Fig. 3. Processing stages extracting a polygonal chain from a point set including noise. Each row corresponds to a user-defined point set, a
polygon in the first and a separating curve in the second row. The first column visualizes the input point set containing virtual border points but
also noise and other clusters. The points assigned to the virtual border cluster are colored green in the second column. Thinning the virtual border
cluster yields the red point set in column three. This is used to generate a polygonal chain as shown in the last column.
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points and irrelevant clusters. A cluster is a group of
spatially nearby data points, while noisy data points
are single data points that do not belong to a clus-
ter. Irrelevant clusters are characterized by certain ex-
pansion characteristics, that indicate the spatial expan-
sion of the cluster measured as Euclidean distance be-
tween the diagonal points of the cluster’s minimum
bounding box. Due to the flexibility of a virtual bor-
der, i.e. a user can define arbitrary shapes, we applied
the DBSCAN [12] algorithm for clustering the data
points (l. 3). This is a density-based clustering algo-
rithm that can find clusters with different shapes and
sizes. It is parameterized by eps to define the distance
threshold for a neighboring point and minPts to define
a core point. This is a point that has at least minPts
points within its distance eps. The result of the DB-
SCAN algorithm is a set of clusters where each point
of pointsetIn is assigned to a cluster. Noisy data points,
that do not belong to a cluster, are discarded. After-
wards, the algorithm selects the largest cluster with
certain expansion characteristics defined by minExp
and maxExp. To this end, we order the clusters by their
sizes (number of points) in descending order (l. 4) to
iterate over the clusters beginning with the largest clus-
ter (l. 5ff.). The additional parameter minSize is a lower
threshold for the size of a cluster to exclude small clus-
ters due to noise. In each iteration, it is checked if the
expansion of the current cluster c lies within the ex-
pansion thresholds minExp and maxExp to ignore ir-
relevant clusters (l. 6). The first cluster, that fulfills this
condition, is returned as cluster of the polygonal chain.
The result is visualized in the second column of Fig. 3
as green points. The black points are either noise or
irrelevant clusters.

Thinning The second stage of the algorithm is the
thinning stage (Algorithm 2), that reduces the num-
ber of points in the largest cluster from the previ-
ous stage. It is designed to remove spatially redun-
dant data points and to smooth data points due to lo-
calization errors and calibration inaccuracies. Thus, it
addresses the third and fourth challenge of the vir-
tual border extraction step. For this purpose, the thin-
ning algorithm identifies spatially nearby data points
and replaces them by their mean value. To this end,
the point p with most neighbors within a distance
maxNeighborDist is selected (l. 4) and its neighboring
points n are determined (l. 5). If there is at least one
neighboring point (l. 6), the mean point is calculated
for these points p ∪ n (l. 7). Afterwards, these points
are removed from the initial pointsetIn (l. 8) and the

Algorithm 2 Thinning step

mean point is added to pointsetOut (l. 9). In case that
no data point has at least one neighboring point (l. 10),
the iterative procedure terminates. Finally, all remain-
ing points contained in pointsetIn, i.e. points without
neighbors, are added to pointsetOut (l. 12), i.e. the set
containing the thinned points. Thus, the thinned cluster
includes the initial points, that do not have neighboring
points, and mean points representing subsets of the ini-
tial points. The result is shown in the third column of
Fig. 3. Compared to the second column containing the
cluster of the polygonal chain, there are fewer points
due to the reduction of data points.

Polygon generation Finally, the thinned point set is
the input pointsetIn for the last stage, in which the
polygonal chain polygon is generated (Algorithm 3).
This algorithm consists of two phases, i.e. forward and
backward, and addresses the fifth challenge of the vir-
tual border extraction step. Since a polygonal chain
has a starting and ending point, we first select an ar-
bitrary point of pointsetIn as starting point and collect
neighboring points in one direction. If there is no more
neighboring point available, we again select our start-
ing point and collect neighboring points in the other
direction. Afterwards, the selected points are concate-
nated. In this context, direction corresponds to the se-
quence of the points of the polygonal chain. For ex-
ample, considering an arbitrary point of a polygonal
chain, which is not the starting or ending point, there
are two directions from this point, i.e. the directions to
the starting and ending point. To realize this behavior,
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Algorithm 3 Polygon generation step

we first initialize two empty polygonal chains dir1 and
dir2 for each direction (l. 2), and we set the variable
forward, that indicates the phase of the algorithm (l. 3).
We then select an arbitrary point p (here at index 0) of
pointsetIn, mark it and append it to dir1 (l. 4ff.). Af-
terwards, the nearest neighboring point n within a dis-
tance maxNeighborDist, that it not already marked, is
selected (l. 8). If there is a neighboring point n avail-
able (l. 9), we append n to one of the temporary polyg-
onal chains depending on the variable forward, mark n

and select n as the current point p (l. 10ff.). This pro-
cedure is repeated until there is no neighboring point n

available for the current point p (l. 16), i.e. the neigh-
boring points for the first direction are collected. In this
case, we select our initial point again as current point
p and switch the variable forward to collect neighbor-
ing points along the other direction (l. 17ff.). Subse-
quently, the same procedure is performed until there

Table 1

Parameter values for the algorithms

Stage Parameter Value

Clustering eps 0.5 m

minPts 1

minExp 0.3 m

maxExp +∞ m

minSize 10

Thinning maxNeighborDist 0.1 m

Polygon generation maxNeighborDist 0.5 m

is again no neighboring point n available (l. 21) or all
points of pointsetIn are marked (l. 7). As a last step,
the order of the temporary polygonal chain dir1 is re-
versed (l. 22), and dir2 is appended resulting in the fi-
nal polygonal chain (l. 23). This is necessary to create
a single polygonal chain with a single direction. The
result is visualized in the last column of Fig. 3.

We use the parameter values shown in Table 1 for
the algorithms. These were determined experimentally.

5. Experimental evaluation

In order to evaluate our proposed interaction method
and our hypotheses concerning user requirements,
such as interaction time, user experience, complete-
ness and accuracy, we conducted an experimental eval-
uation involving multiple participants and three sce-
narios for restriction areas in a smart home environ-
ment. The evaluation was inspired by the USUS frame-
work, that provides a methodological framework to
evaluate certain aspects of a system involving the in-
teraction of human and robot [47].

5.1. Independent variables

In our experiment, we manipulated a single indepen-
dent variable, i.e. the interaction method. This variable
can have one of the two values:

1. Robot only: This is the baseline approach simi-
lar to Sprute et al. [46], that is based on sole HRI.
A user interacts with the mobile robot by sketch-
ing the desired virtual border on the ground plane
using a laser pointer. The mobile robot detects
the laser spot employing its on-board camera and
follows the laser spot using visual servoing tech-
nique if it attempts to leave the camera’s field
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of view [7]. In order to switch between differ-
ent states of the interaction method, the user can
push buttons on the backside of the robot or em-
ploy visual codes generated by the laser pointer.
Feedback about the interaction method’s current
state is provided through on-board colored LEDs
and sound when switching between states. Addi-
tionally, beep tones are uttered when the system
acquires virtual border points P or a seed point s.

2. Network robot system (NRS): This is our pro-
posed approach based on a NRS described in
Section 4. Additional to the mobile robot, the
NRS features stationary cameras in the envi-
ronment as additional sensors to perceive laser
points. A voice control allows switching between
system’s states using voice commands. Among
colored LEDs and non-speech audio sound on
board the mobile robot, a smart display inte-
grated into the environment acts as additional
feedback device. This shows a 2D OGM of the
environment and the user-defined virtual borders.

5.2. Hypotheses

The objective of the experimental evaluation was the
test of the following hypotheses:

– Hypothesis 1: Due to the extended perceptual ca-
pabilities, the interaction time is shorter when em-
ploying the NRS compared to the Robot only in-
teraction method. We define the interaction time
as the duration between the start, i.e. the first time
employing the laser pointer, and the end of user
interaction, i.e. the integration of the virtual bor-
der into the given map of the environment.

– Hypothesis 2: Due to the extended feedback and
interaction capabilities, the user experience is bet-
ter when employing the NRS compared to the
Robot only interaction method. We define the user
experience as a set of aspects concerning the in-
teraction method, such as positive feeling, intu-
itiveness, demand, learnability and feedback.

– Hypothesis 3: The completeness does not signif-
icantly get worse when employing the NRS com-
pared to the Robot only interaction method. We
define the completeness as the success rate at
which a user successfully completes an interac-
tion process. We register a successful interaction
process if a participant can correctly specify the
virtual border points P (independent of their ac-
curacy) and can correctly specify a seed point s
indicating the restriction area.

– Hypothesis 4: The accuracy does not signifi-
cantly get worse when employing the NRS com-
pared to the Robot only interaction method. We
define the accuracy as the overlap between the
user-defined virtual border as the result of the
interaction process and the user-intended virtual
border as required by the experimental scenarios.

5.3. Setup

To test our hypotheses, we motivated our experi-
mental setup by three scenarios for restriction areas
as presented in the introduction, i.e. (1) privacy zones,
(2) carpets and (3) dirty areas. For this purpose, we set
up a home environment in our 8 m × 5 m lab envi-
ronment comprising free space, walls, plants and fur-
niture, such as tables and chairs. Additionally, we inte-
grated adjustable walls with a height of 0.5 m to model
two different rooms in the environment. Besides, we
placed a carpet on the ground and some dirt in one
area of the environment as basis for the evaluation sce-
narios. An image and 3D sketch of the environment is
shown in Fig. 4.

As a mobile robotic platform, we employed a Turtle-
Bot v2 equipped with a laser scanner for localization
and a front-mounted RGB-D camera. This is a typical
evaluation platform whose mobile basis is similar to a
vacuum cleaning robot with differential-drive wheels.
The camera’s color images were captured with a reso-
lution of 640 × 480 pixels, and the depth sensor had a
resolution of 160 × 120 pixels. Additionally, the robot
had a colored on-board LED, three push buttons and a
speaker. A prior OGM of the environment (2.5 cm per
cell) was created beforehand using a Simultaneous Lo-
calization and Mapping (SLAM) algorithm running on
the mobile robot [15], and the mobile robot was local-
ized inside the environment using the adaptive Monte
Carlo localization approach [13]. This allows the robot
to determine its 3-DoF pose, i.e. position and orienta-
tion, with respect to the map coordinate frame.

In order to take advantage of a smart home environ-
ment as described in Section 4.1, we mounted three
RGB cameras with an image resolution of 1920×1080
pixels on the ceiling (2.95 m height, pitch angle of
90◦). Thus, they provided top views of the environ-
ment. Their fields of view partly overlapped as illus-
trated in Fig. 4b, but they did not cover the entire en-
vironment. Hence, there was only a partial observation
of the environment, which is typical for home environ-
ments. All RGB cameras were calibrated, i.e. their in-
trinsic camera parameters were known, and their rela-
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Fig. 4. Image and 3D sketch of the lab environment. The three evaluation scenarios are numbered, and the three cameras’ fields of view are
visualized in red, green and blue. The position of the smart display for feedback is encircled in red, and the mobile robot’s initial pose is depicted
in the bottom right of the sketch.

tive transformations with respect to the map coordinate
frame were determined in advance. We denote these
stationary cameras as red, green and blue camera. The
interaction using speech commands relied on a Wiz-
ard of Oz method in which a human operator reacted
on the speech commands of participants, i.e. switch-
ing between system’s states per remote control. We
did not use a voice-controlled intelligent personal as-
sistant, such as Amazon’s Alexa or Google Assistant,
due to network restrictions in the university’s network.
However, this method was not recognized by the par-
ticipants and did not change the way in which a partic-
ipant interacted with the system. Moreover, we placed
a 22-inch smart display on a table near the restriction
areas to provide visual feedback to the participants.
This display was network-connected to the system and
showed the progress of the interaction process, i.e. the
OGM of the environment, the mobile robot’s current
pose and virtual borders if specified by the user.

5.4. Procedure

After setting up the experimental environment, each
participant was introduced to the following three eval-
uation scenarios. These scenarios covered both types
of virtual borders and are good representatives for re-
striction areas:

1. Room exclusion: The user wants the mobile
robot to not enter a certain room due to privacy
concerns. For this purpose, the user draws a line
separating the room from the rest of the environ-
ment. This area is in the fields of view of the red
and green camera. The length of the polygonal

chain P is 0.70 m long, and the area has a size of
approximately 8.00 m2.

2. Carpet exclusion: The user wants the mobile
robot to circumvent a carpet area (2.00 m ×
1.25 m) while working. To this end, he or she
draws a polygon around the carpet and specifies
the inner area as restriction area. This area is in
the fields of view of the green and blue camera.

3. Spot cleaning: The user wants his or her vacuum
cleaning robot to perform a spot cleaning in a
corner of a room. Hence, he or she draws a sepa-
rating curve around the area and specifies the rest
of the room as restriction area. This dirty area is
indicated by paper snippets on the ground and is
partly covered by the blue camera. The polygonal
chain has a length of 3.60 m and encompasses an
area of 3.20 m2.

In addition to the camera view coverage of the restric-
tion areas as described, it was possible that participants
temporarily occluded restriction areas with their bod-
ies depending on their positions during interaction.

In this experiment, we applied a within-subjects de-
sign, i.e. each participant evaluated both interaction
methods in all three evaluation scenarios. The order
of the selected interaction method was randomized
to avoid order effects. After selecting an interaction
method, an experimenter explained a participant how
to employ the selected interaction method, i.e. a short
introduction into the different states of the system,
how to switch between states and how to use the laser
pointer. Afterwards, a participant had some time to get
familiar with the interaction device, i.e. the participant
could use the laser pointer and guide the mobile robot.
This took approximately five minutes. Subsequently,
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the participant started to specify virtual borders for the
three scenarios. The order of the different scenarios
was randomized. At the beginning of each scenario,
the mobile robot’s initial pose was set to a predefined
pose to allow the comparison between the results. This
initial pose, that was not covered by a stationary cam-
era, is shown in the bottom right of Fig. 4b.

The shortest paths to the restriction areas in the
three scenarios were between 2.50 m and 5.40 m (Sce-
nario 1: 5.40 m, Scenario 2: 2.50 m and Scenario 3:
3.00 m). Since we applied a within-subjects design,
this procedure resulted in six runs per participant (three
scenarios and two interaction methods) and a partic-
ipant could compare both interaction methods. After
performing the practical part of the experiment, each
participant was asked to answer a post-study question-
naire concerning his or her user experience with the in-
teraction methods. An experiment with a single partic-
ipant took approximately 20 minutes in total.

5.5. Measurement instruments

During the experiment, the time needed to specify a
virtual border for each participant, interaction method
and scenario was measured. Thus, we obtained six
measurements for each participant. The time measure-
ment started with the change from the Default state
to one of the active states and ended with the integra-
tion of the virtual border into the prior map. Moreover,
the time measurement was decomposed according to
the three active states of the system, i.e. guiding the
mobile robot (Guide), specifying virtual border points
(Border) and the seed point (Seed), to identify reasons
for potential time differences between the interaction
methods.

In addition to the time, an experimenter documented
if a participant successfully specified a virtual border
for an evaluation scenario, i.e. a participant could spec-
ify the virtual border points P (independent of their ac-
curacy) and a seed point s. The success values are used
to assess the completeness of an interaction method.
To this end, we calculate the ratio between the num-
ber of successful runs and the total number of runs for
each interaction method and scenario.

To measure the user experience, participants were
asked to answer a post-study questionnaire. In addition
to general information, such as age, gender and ex-
perience with robots, the questionnaire contained five
statements concerning the user experience, that could
be rated on 5-point Likert items with numerical re-
sponse format. This questionnaire was inspired by the

questionnaire of Rouanet et al., who used a similar
questionnaire to assess the usability and user expe-
rience of human-robot interfaces [34]. The question-
naire included the following statements about the ex-
periment (translated from German):

1. I had problems to define the virtual borders
(1 = big problems, 5 = no problems)

2. It was intuitive to define the virtual borders
(1 = not intuitive, 5 = intuitive)

3. It was physically or mentally demanding to de-
fine the virtual borders (1 = hard, 5 = easy)

4. It was easy to learn the handling of the interac-
tion method (1 = hard, 5 = easy)

5. I liked the feedback of the system
(1 = bad/no feedback, 5 = good feedback)

Furthermore, the participants were asked if the smart
environment supported the interaction process. They
could answer the question with yes or no.

The fourth evaluation criterion is the accuracy, that
we assessed by calculating the Jaccard similarity in-
dex (JSI) between a user-defined UD and its associated
ground truth GT virtual border:

JSI(GT, UD) = | GT ∩ UD |
| GT ∪ UD | ∈ [0, 1] (1)

This value indicates the overlap between two virtual
borders. To calculate this overlap, a ground truth map
GT was manually created for each scenario in advance,
which contained the physical environment as well as
the virtual border. After each run of the experiment,
the resulting user-defined map UD was automatically
saved and associated with its ground truth map GT for
evaluation of the accuracy.

5.6. Participants

The experiment was conducted with a total of 15
participants (11 male, 4 female) with a mean age of
M = 28.8 years and standard deviation of SD = 11.4
years. The age group ranged from 17 to 55 years. Par-
ticipants were recruited from the local environment
by word of mouth and rated their experience with
robots on a 5-point Likert item ranging from no ex-
perience (1) to highly experienced (5) with a mean of
M = 3.2 and standard deviation of SD = 1.4. This
corresponds to a moderate experience with robots and
comprises users owning a mobile robot, such as a vac-
uum cleaning robot. However, they only deploy the
mobile robots in their home environments according to
the manual and do not know how they internally work.
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5.7. Tools

We implemented all components of the system as
ROS nodes [32]. ROS is a modular middleware ar-
chitecture that allows communication between several
components of a system, that are called nodes. ROS is
the de facto standard for robot applications and pro-
vides a large set of tools to accelerate prototyping
and error diagnosis. We organized all our nodes in
packages to allow the easy distribution of our imple-
mentation. In order to save resulting maps of an in-
teraction process for evaluation purposes, we imple-
mented a node that directly stores the map on the hard
disk whenever a new map is defined by a participant.
Furthermore, we used integrated time functionality of
ROS to perform time measurements for the evaluation.
The visualization on the smart display was based on
RVIZ, which is a 3D visualization tool for ROS.

5.8. Analysis & results

To test our hypotheses, we report the analysis and
results of the experimental evaluation in this subsec-
tion. In case of statistical tests to identify differences
between the interaction methods, we chose a signifi-
cance level of α = 0.05.

5.8.1. Interaction time
The interaction times of the experiment are summa-

rized in Fig. 5. Each bar comprises the measurements
of all 15 participants for an interaction method and
scenario. Hypothesis 1 stated that the interaction time

Fig. 5. Interaction time for both interaction methods (blue and red
contours around bars) based on the scenarios. Each bar is subdivided
into the three active states of the system.

would be reduced when using the NRS compared to the
Robot only interaction method. To test this hypothesis,
we first ran Shapiro–Wilk tests to test for normality of
the data (differences in the interaction times between
the two interaction methods), which is an assumption
of parametric statistical hypothesis tests, e.g. a paired
t-test. These tests only became significant for the third
scenario (p = 0.016). Thus, we assume the data of the
first two scenarios to be approximately normally dis-
tributed, while the third scenario is not normally dis-
tributed. Moreover, we interpreted the corresponding
boxplots for outliers (1.5 × interquartile range). The
boxplots revealed that there were some outliers in the
data. Due to the presence of outliers and the violation
of normality in the third scenario, we performed a non-
parametric Wilcoxon signed-rank test to compare both
interaction methods. The statistical results show that
there is a significant difference between the interaction
methods in all evaluation scenarios:

– 1. Room exclusion: Z = −3.411, p < 0.001
– 2. Carpet exclusion: Z = −3.408, p < 0.001
– 3. Spot cleaning: Z = −3.409, p < 0.001

Our proposed NRS approach is significantly faster
compared to the baseline approach. This results in
speedups of 2.8, 2.2 and 2.2 for Scenarios 1, 2 and 3.

The reason for this significant difference is revealed
by the decomposition of the time measurements. While
the time for the Robot only approach is composed of all
active states of the system, our NRS approach does not
include the Guide state. This is a consequence of the
human-robot-environment interaction where the NRS
automatically sends the mobile robot to the intended
restriction area when a laser spot is detected by a sta-
tionary camera. Therefore, the user is not restricted to
the mobile robot’s line of sight and does not have to
manually guide the mobile robot to the intended re-
striction area. Thus, the NRS approach can avoid the
time in the Guide state. This time primarily depends
on the distance between the robot’s start pose and the
restriction area. As described in Section 5.4, the dis-
tances in our scenarios ranged from 2.5 m to 5.4 m. If
the distances would be smaller, the time in the Guide
state would also decrease. However, we think that we
chose the distances quite liberally since much larger
distances would be even realistic, e.g. in typical home
environments with a single charging station for the mo-
bile robot.

Another reason for the time difference between the
interaction methods is the time in the state Border,
which is linear with respect to the border length [46].
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Fig. 6. User experience for both interaction methods showing mean and standard deviation depending on the statements.

Thus, if the user-defined virtual border is short, e.g.
0.70 m for Scenario 1, our NRS approach is only
slightly faster in this state, i.e. 4 seconds difference.
But if we consider a larger virtual border, e.g. the
6.50 m long border around the carpet (Scenario 2), our
approach is even 26 seconds faster on average. The
reason for this is the mobile robot’s velocity limitation
(0.2 m/s) to ensure a safe and smooth movement of the
robot. By using our NRS approach, this speed limita-
tion can be reduced if the laser spot is in the field of
view of one of the stationary cameras. Our interaction
method is then only limited by the detection rate of the
cameras (25 frames/s). Hence, it also features a linear
interaction time, but with a smaller gradient.

Another speedup is achieved when specifying the
seed point (Seed state) because a user can directly in-
dicate the seed point with laser points, which are de-
tected by a stationary camera. In case of the Robot only
approach, a user additionally has to rotate the mobile
robot around its vertical axis to adjust the camera’s
field of view. This rotation takes additional interaction
time. In summary, the results support Hypothesis 1.

5.8.2. User experience
In order to assess the user experience and test Hy-

pothesis 2, i.e. the user experience is better when em-
ploying the NRS compared to the Robot only interac-
tion method, we considered the participants’ answers
of the questionnaire introduced in Section 5.5. The par-
ticipants’ answers to the questionnaire are visualized
in Fig. 6 with their mean (M) and standard deviation
(SD) per statement and interaction method.

Since Likert-item data violate the assumption of
normality, we ran a Wilcoxon signed-rank test on the
15 answers per statement to determine whether there

are statistically significant differences between both
interaction methods. We found statistically significant
differences for all statements in the questionnaire:

– Statement 1: Z = −3.051, p = 0.002
– Statement 2: Z = −2.830, p = 0.004
– Statement 3: Z = −3.126, p < 0.001
– Statement 4: Z = −2.373, p = 0.023
– Statement 5: Z = −2.745, p = 0.005

Our proposed interaction method based on a NRS is
better rated by the participants for all statements com-
pared to the baseline approach. Participants had signif-
icantly less problems defining the virtual borders with
a NRS (M = 4.53) than without support of a smart en-
vironment (M = 3.80).3 A reason could be that some
participants had problems to rotate the mobile robot
around its vertical axis, e.g. to specify the seed point.
In this case, they moved the laser spot too fast so that
the robot’s on-board camera could not follow the spot
on the ground. In contrast to this, our approach avoids
this problem by the additional cameras in the environ-
ment. Participants also found our approach more intu-
itive (M = 4.60 and M = 3.60) because they could
more directly specify a virtual border without concen-
trating on the mobile robot. This was automatically
sent to the restriction area when a stationary camera
detected a laser spot. Furthermore, the speech com-
mands provided a more intuitive interaction medium

3Although the median should be used to describe the central ten-
dency in non-parametric tests, we report the mean value in this para-
graph to better reveal the differences between the interaction meth-
ods. This is valid since we consider an interval-level of measure-
ment [17]. Moreover, since other studies often report mean values
for Likert-items, we also want to make our results better comparable.



490 D. Sprute et al. / Interactive restriction of a mobile robot’s workspace in a smart home environment

Fig. 7. Answers of the participants to the question if the smart envi-
ronment supported the interaction process.

to change the system’s internal state than pushing on
the robot’s buttons. The strongest effect was measured
for Statement 3 that shows that our approach is less
physically or mentally demanding (M = 4.47) com-
pared to the baseline approach (M = 3.13). This co-
incides with the results of the interaction time as re-
ported in Section 5.8.1. Another difference was ob-
served for the learnability of the interaction methods
(NRS: M = 4.60 and Robot only: M = 3.87). Since
both interaction methods are based on a laser pointer as
interaction device, the handling of a laser pointer does
not influence the learnability. However, it could be eas-
ier to learn the speech commands than the assignments
of the buttons to change between states of the system.
Furthermore, the guiding of the mobile robot could af-
fect the rating. Finally, there is a significant difference
for the feedback of the interaction method (M = 4.33
and M = 3.07). Since the feedback system of the NRS
is a superset of the baseline’s feedback system, a major
reason for this difference is the additional smart dis-
play that visualizes the OGM with the user-defined vir-
tual borders. This kind of feedback is missing for the
Robot only approach that only features sound and col-
ored LED feedback. The answers to the question if the
smart environment supported the interaction process
are summarized in Fig. 7. Most of the participants (14
out of 15) felt that the smart environment supported
the interaction process. In summary, Hypothesis 2 is
supported by the results.

5.8.3. Completeness
Hypothesis 3 stated that the completeness does not

significantly get worse when employing the NRS com-
pared to the Robot only interaction method. The suc-
cess rates are summarized in Fig. 8 as bars. Both in-
teraction methods feature the same high success rate,
i.e. 91.1% on average. Furthermore, the success rates
for the three scenarios are the same (93.3% for Sce-
narios 1 and 2; 86.7% for Scenario 3). There were
nine participants who performed all their runs success-
fully, four participants who failed for one of their six
runs, and two participants incorrectly defined a virtual

Fig. 8. Completeness for both interaction methods depending on the
scenarios.

Fig. 9. Quantitative accuracy results for both interaction methods
depending on the scenarios.

border in two of their six runs. The reason for these
incorrect runs was the definition of the seed point s.
While some participants were confused where to spec-
ify the seed point s, especially in Scenario 3, other
participants were unfocused and noticed their mistake
on their own after performing the experiments. There
were no problems with the definition of the virtual bor-
der points P . Since both interaction methods feature an
equally high completeness, we assume Hypothesis 3 to
be supported by the results.

5.8.4. Accuracy
Finally, Hypothesis 4 stated that the accuracy does

not significantly get worse when employing the NRS
compared to the Robot only interaction method. The
JSI values resulting from the experimental evaluation
are presented in Fig. 9. To test the hypothesis, we
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again explored the data for normality and outliers us-
ing Shapiro–Wilk test and boxplot interpretation. The
Shapiro–Wilk tests did not become significant for any
scenario indicating a normal distribution of the data.
However, since the data for Scenarios 2 and 3 contain
some outliers, we preferred a Wilcoxon signed-rank
test to a paired t-test. The statistical results were dif-
ferent for the three scenarios:

– 1. Room exclusion: Z = −0.594, p = 0.588
– 2. Carpet exclusion: Z = −3.110, p < 0.001
– 3. Spot cleaning: Z = −2.497, p = 0.010

There is no significant difference for Scenario 1 (NRS:
Mdn = 0.971, Robot only: Mdn = 0.974), the NRS
(Mdn = 0.856) performs significantly better than the
Robot only (Mdn = 0.779) in Scenario 2 and the Robot
only (Mdn = 0.906) has a significant higher accuracy

than our NRS (Mdn = 0.878) in Scenario 3. However,
although the results are significant for Scenario 3, the
difference between the medians is only 0.028, which is
not notable in practice. This can also be qualitatively
observed in Fig. 10, where the JSI can be visually inter-
preted as the fill degree of the green cells with respect
to the cells encompassed by the blue contour. The re-
sults depicted in the figure are representative examples
of different participants whose accuracy values coin-
cide with the overall results per scenario and interac-
tion method. The accuracy for Scenario 1 and 3 is sim-
ilar, but there is a small difference for Scenario 2. The
NRS interaction method features a higher fill degree
of the green area with respect to the area surrounded
by the blue contour compared to the Robot only ap-
proach. A reason could be that it is harder to specify
the carpet’s corners when guiding the robot compared

Fig. 10. Visualization of representative accuracy results. The first row shows ground truth maps for all three scenarios containing occupied
(black), free (white) and unknown (gray) areas. The yellow cells indicate the area to be specified by a participant during an interaction pro-
cess (GT). The robot’s start pose is visualized as a red arrow. The following rows visualize the qualitative accuracy results for both interaction
methods. A user-defined area as result of an interaction process is colored in green and red. Green pixels indicate the overlap of ground truth and
user-defined areas (GT ∩ UD), while red pixels show areas defined by the user but not contained in the ground truth map (UD \ GT). A blue
contour surrounds the union set of both areas (GT ∪ UD). Colors are only used for visualization.
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to our NRS approach. The highest accuracy value is
achieved in Scenario 1 because the user excludes a rel-
atively large area compared to the length of the virtual
border. Thus, there is only minimal room for errors.
In summary, the accuracy results support Hypothesis 4
because there is no significant degradation of the accu-
racy when employing the NRS approach.

5.9. Discussion

We designed our experimental evaluation according
to the idea that the environment is partially observed
by stationary cameras and that there are typical restric-
tion areas, such as carpets or privacy zones. This is a
typical setting for a smart home environment. In this
case, our results suggest that a smart environment can
significantly improve the interaction time (Hypothe-
sis 1) and user experience (Hypothesis 2) while not
negatively affecting the completeness (Hypothesis 3)
and accuracy (Hypothesis 4).

However, there are two important aspects, that in-
fluence the speedup in the interaction time: (1) the
stationary cameras’ coverage of the environment and
(2) the distance between the mobile robot’s start pose
and the restriction area. If we would decrease the num-
ber of cameras in the environment and thus the cam-
era coverage, this would result in a smaller reduction
of the interaction time. This would finally degenerate
to the baseline approach if there is no camera cover-
age. Moreover, the speedup strongly depends on the
distance between the mobile robot’s start pose and the
restriction area, which influences the performance of
the baseline approach. This is due to the fact that the
baseline approach requires a direct line of sight be-
tween human and robot, and thus a human first has
to guide the mobile robot to the restriction area. For
these reasons, it is not possible to report a specific
speedup value. Nonetheless, in the evaluation scenar-
ios we chose a typical camera coverage and reason-
able distances, which are typical for home environ-
ments with a single charging station for a mobile robot.
Hence, we conclude that the interaction time improves
with the support of a smart environment, but we cannot
report a specific speedup value. Therefore, the reported
speedups in Section 5.8.1 are intended to give an esti-
mate and are only valid for this specific experimental
evaluation.

In case of the user experience, participants appreci-
ated aspects, such as a reduced mental or physical de-
mand during interaction and an improved feedback of
the system. These are effects of the incorporation of

the smart environment’s components. However, a par-
ticipant also wished an even stronger feedback system.
The participant did not like the change of attention be-
tween the sketching of the virtual border on the ground
and the view on the smart display, which was posi-
tioned aside on a table. Therefore, we conclude that
our choice of smart home components improved the
user experience significantly but the incorporation of
more expressive feedback channels could improve the
user experience even more.

6. Conclusions & future work

In this work, we investigated the effect of a smart
home environment on the interaction process of re-
stricting a mobile robot’s workspace. For this purpose,
we developed a novel interaction method leveraging a
smart home environment and laser pointer in the in-
teraction process. This NRS was designed to support
the interaction process in terms of perception and in-
teraction abilities. To this end, we first selected smart
home components that we employed to realize a coop-
erative behavior between human, robot and smart envi-
ronment in the interaction process. Especially, the co-
operative perception involving stationary and mobile
cameras to perceive laser spots and an algorithm to
extract virtual borders from multiple camera observa-
tions is a major contribution of this work. This coop-
eration between mobile robot and smart environment
neutralized the mobile robot’s perceptual and interac-
tion limitations. This was supported by an experimen-
tal evaluation that revealed an improvement of interac-
tion time and user experience compared to a baseline
method while preserving the high completeness and
accuracy of the baseline. Hence, we conclude that a
smart environment can improve the interaction process
of restricting a mobile robot’s workspace.

Nonetheless, the experimental evaluation also re-
vealed current limitations of this work. For example, a
participant wished a stronger feedback system without
change of attention between the restriction area on the
ground and the map shown on the smart display. For
this purpose, an augmented reality solution would be
promising, e.g. projectors integrated into the smart en-
vironment could visualize the user-defined virtual bor-
ders directly on the ground without change of atten-
tion. Although there are already solutions in the in-
dustrial context [14,24], projectors are not yet widely
distributed in current smart homes. Moreover, we cur-
rently evaluated our interaction method with a sin-
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gle mobile robot, which is valid for most households.
However, it would be interesting to incorporate multi-
ple robots into the interaction process to increase the
number of mobile cameras. Our proposed architecture
already considers this aspect (Fig. 2), but more work
on the cooperation between multiple mobile robots in
such a scenario is needed.
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