Journal of Ambient Intelligence and Smart Environments 0 (0) 1
10S Press

Lantern: A domain specific language for
energy awareness in smart-homes

Jon Robinson **Kevin Lee ® and Kofi Appiah®

2 School of Science and Technology, Nottingham Trent University, Nottingham, UK

E-mail: jon.robinson@ntu.ac.uk

b School of Information Technology, Deakin University, Melbourne, Australia

E-mail: kevin.lee @deakin.edu.au

¢ Department of Computer Science, University of York, York, UK

E-mail: kofi.appiah@york.ac.uk

Abstract. This paper argues that energy consideration should be central to software development. It speculates that including
the notion of energy awareness in programming language design for domain specific languages (DSLs) is a novel way in which
energy-aware and energy-efficient applications can be developed. It outlines the design criteria and rationale for using a language-
focused approach for energy-awareness. It proposes Lantern, a DSL for supporting energy awareness in Cyber-Physical Systems
software development. Lantern allows the development of applications that better manage and reduce the carbon footprint of
devices. The design of Lantern is aimed at supporting the general development of Cyber-Physical Systems. This paper focuses

on the scenario of smart homes, using statically defined locations within a specified environment.

Keywords: Home Automation, Energy Awareness, Distributed Systems

1. Introduction

Energy-awareness and the ability to dynamically
adapt the power consumption of electronic devices
has become an important challenge in reducing the
carbon footprint of individuals and organisations.
Today’s computers and smartphones may appear to be
energy efficient, but they consume approximately
10% of the world’s electricity [1]. For example, the
higher power consumption of an iPhone (322kWh per
year) has been attributed to wireless communication
and data usage. With the expected exponential
increase in wireless communication and data usage
due to the prevalence of Internet of Things (IoT)
technologies [2], there will be more demands on
energy consumption to power these abilities or
services. Thus, the next generation of computing will
be driven by enormous amounts of data transmission,
storage and processing, calling for new and efficient
energy-aware programming approaches.

Over the past several decades programming
languages have been designed either to be general
purpose for a wide range of needs or domain specific
to support the development of specific applications.
This paper focuses on designing and implementing a
domain specific language (DSL) called Lantern to act
as mid-way point between full programming
languages and specific languages to solve a particular
problem domain.

The research described in this paper builds upon
existing work [3] by investigating how energy
demands within smart environments can be
effectively managed by developing a new DSL which
is specifically for efficient energy consumption within
environments, rather than as an extension to an
already existing language. This paper argues that
controlling the energy consumption of highly
distributed connected devices (e.g. IoT or other smart
devices) can be better managed by designing a new
language and middleware around the notion of
low-energy.

1876-1364/0-1900/$35.00 (©) 0 — IOS Press and the authors. All rights reserved

mailto:jon.robinson@ntu.ac.uk
mailto:kevin.lee@deakin.edu.au
mailto:kofi.appiah@york.ac.uk

2 J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes

The remainder of the paper is organised as follows.
Section 2 provides a background on the current
state-of-the-art in energy awareness in software
development. Section 3 introduces Lantern to support
the development of energy-aware software along with
the case study of smart-homes. Section 4 provides a
language centric evaluation and discussion for the
next language iteration. Finally, Section 5 provides
some conclusions and discusses future work.

2. Energy-awareness in software development

There is an ever-increasing burden on moving away
from the use of fossil fuels to clean or renewable
energy which presents today’s society with a number
of challenges. Hence, reducing carbon production to
limit the exposure of greenhouse gases has become a
major challenge for the 21st century.

While efforts are being made to reduce the
greenhouse gases through the production of clean
energy, energy-awareness is vitally important when
applied to society and their consumption habits. This
area is being investigated and acted upon through
different regional and government initiatives to
provide more energy aware cities and buildings. With
the advent of pervasive computing, and more latterly
with the introduction of IoT devices, sensors are
becoming more integrated into buildings and homes.
Coupled with actuators, sensor systems can impact
the environment in which they are located.
Energy-awareness in embedded systems has already
resulted in extensive research into efficient energy use
in relation to their primary components (e.g. CPU and
wireless communication) and ability to power
scavenge.

The current approach to energy-aware systems
development is to include loose notions of energy into
an existing system by introducing functionality that
adapts power use rather than modifying the
underlying development. Another common way of
reducing energy in the embedded world is to take a
more efficient way of controlling the underlying
hardware. The purpose of Lantern is to introduce
energy-awareness into the design of a language rather
than as an add-on or secondary consideration which
provides a unique way in developing energy-aware
systems.

Embedded systems that have been designed for
improved performance may offer some form of
energy efficiency. However, energy efficiency in

embedded systems can be achieved if the architectural
or circuitry levels have been designed with this in
mind [4]. Static techniques can be used at the
architectural level as embedded systems are typically
used for well-defined applications. Other approaches
may include the use of multi-core and multi-level
caches.

In [5] a technique for mapping concurrent tasks
onto a heterogeneous multiprocessor architecture in
order to minimise the power consumption of a
multimedia based embedded system is introduced.
The design in [5] explores Pareto curves and
scenarios generated at design time to minimise energy
consumption.

Ma et al. [6] proposed an approach similar to [5],
where a security-aware and energy-efficient
scheduling algorithm aims to reduce energy
consumption while ensuring real-time and security
requirements. Based on feedback control theory, they
employ a feedback unit to keep track of the CPU
utilisation and manage the security level dynamically.
Using low power modes, Awan and Petters [7]
proposed a novel enhanced race-to-halt approach to
reduce the overall system energy consumption to be
integrated into practical embedded systems. Their
technique computes the break-even time for each
mode using offline analysis and uses it to save extra
leakage energy in lower priority tasks.

Several proposals focus on micro-architectural
techniques for saving energy in specific components
of embedded systems. These techniques leverage
application properties or variations in workload to
dynamically reconfigure the components of the
system to save energy [8].

The notion of energy-awareness also applies to
mainstream electronic products (such as mobile
phones, tablets, laptops and other mobile devices) and
network systems. This can manifest itself through
power usage policies to limit and throttle the devices’
CPU, wireless and cell power use in communications
to adaptive screen brightness to improve the power
drain on batteries between recharge cycles. This
consideration is becoming more socially important [9]
considering the change in technology used by the
general population over the past 20 years.

Complementing the advances in energy-awareness
found within IT, embedded and mobile systems, there
are challenges in the production of energy-aware
software systems. There are several main areas of
focus of energy-awareness in software development.
Application-level approaches advocate applications

J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes 3

being energy-aware and controlling their own energy
use [10]. Tools can support the monitoring of
applications to provide information as to their energy
usage [11, 12] or middleware’s can enable efficient
energy usage in applications without them explicitly
being aware of this focus [13, 14]. The need for a
dedicated programming language with resource
constraints to streamline usage was identified in [15]
and has been a research trend mainly for security [16].
In [17], updates to the International Technology
Roadmap for semiconductors (ITRS) [18] are
discussed.

The ITRS provides a roadmap of hardware and
software technologies in the design and development
of silicon systems. The road map outlines the trends
of future technologies to address challenges regarding
the cost of design and power / energy use. The later
challenge is where the Lantern system is placed.
Future trends within the ITRS show that power-aware
systems are currently a challenge in the control of
electronic devices. Thus, with the popularity of the
uptake of IoT devices, programming them in an
energy-aware manner is an important problem to
address.

The majority of the approaches to
energy-awareness are runtime-based, however, this
can come at the expense of requiring more energy.
The alternate approach, advocated in this paper, is to
build energy-awareness into the programming
language used to develop software solutions and
aligns with the trends in the ITRS. Current
programming languages provide developers with
functionality to coordinate and control devices (for
instance, MQTT and IFTTT) when producing
software systems. However, when considering the
energy-awareness issues associated with, for example,
mobile devices, power efficient algorithms have to be
developed within a general-purpose language or
development platform. Currently, languages which
are built around the notion of energy have not been
explored thoroughly. The remainder of this paper
proposes and demonstrates the Lantern DSL with
special emphasis on home automation, which
generally fills the gap in energy aware programming
languages.

3. The Lantern energy-aware domain specific
language

The primary contribution of Lantern is to
investigate how programming and control languages

can become more energy-aware by taking the
approach of building a new language from the ground
up and incorporating the notion of energy-awareness
in its design and implementation. This ensures that
language concepts, constructs and processes can be
seamlessly introduced into a language which
promotes energy-awareness and provides the
developer with a way of expressing how to control
and allow environments to react based on their energy
demands. This allows us to directly address the
question of controlling the energy consumption of
highly distributed connected devices (e.g. Internet of
Things (IoT) or other smart devices) can be better
managed by designing a new language and
middleware around the notion of low-energy.

The focus of this iteration of Lantern is on the
relatively static domain of smart-homes; it is
acknowledged that Cyber-Physical Systems (CPS)
also contain mobile and dynamic devices - these will
be considered in future versions of Lantern. The
requirements of the language are to offer an
expressively rich DSL by introducing the concept of
energy-awareness within its core. This is to allow the
language to adapt to changing power demands within
the environment that requires language constructs
which simplify and facilitate in the management and
coordination of an environment. Some of the
fundamental design considerations in driving the
design and implementation of the language and
middleware would be: finding, binding and adapting
to constantly varying environment smartness (through
embedded or mobile sensors and devices);
compositional expressiveness to adapt to changing
environmental and energy contextual information; and
middleware requirements underpinning the language
concepts and notions. By providing a service oriented
architecture, where services will be running within an
ad hoc adaptive middleware layer, the compositional
and energy adaptive capabilities of the language and
middleware will also include the rudimentary notion
of identity. Linked with these identities will be an
expressive predicate-based adaptive language which
will monitor, adapt and refine the power usage of the
location and subsequent environment.

A relevant scenario in which energy-awareness is
vital is to address the issues faced within the older
community living within their own homes. Fuel
poverty in the UK is defined as low income
households where fuel (Gas and Electricity) bills cost
more than the national average or the amount spent on
Gas and Electricity would mean any income that is

4 J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes

left would make them fall below the UK official
poverty line [19]. Therefore, fuel poverty is a major
concern for older people within the UK as they live on
limited funds [19]. In the UK, over 40,000 people
died unnecessarily during the 2014/15 winter period
due to fuel poverty whereby older members of the
community have reduced and rationed their energy
use by turning off or limiting sources of heating
because of high energy bills [20]. This anxiety and
fear resulting from fuel poverty is a relevant and
pressing social problem. Tackling fuel poverty also
improves the living standards and conditions for
people with low income, results in fewer winter
deaths and reduces cost for the National Health
Service (NHS) [21].

Lantern positions itself well with being able to
address the issues relating to fuel poverty and the
anxiety it can cause with older people. However,
Lantern is not designed primarily for the purpose of
the case study but is instead addressing the problem of
energy-awareness and control of distributed devices.
The case study does show an application of the
language which could address a related real-world
energy usage problem. This does not address issues
regarding anxiety or distrust of older people with
technology. However, this does complement existing
work on how these systems can be used by these types
of users [22]. Lantern can monitor the energy
consumption of devices, coupled with sensor streams
providing contextual environmental information can
help manage devices within a suitably smart home. A
simple example would be the monitoring and turning
on or off heating appliances within the home based on
the activity and location of the individual. A
somewhat contrived example could be where an
individual has left the fire on within the living room
and then has gone to sleep (either within the same
room or a different one). If they had moved, telemetry
will be generated based on their current location
which would result in the fire being turned off.
Alternatively, if they fall asleep in the chair the
system can maintain an ambient temperature until
they have awoken. However, this does not fully
embrace the notion of energy awareness advocated by
the authors that all areas of energy reduction need to
be considered.

It is not until considering more complex situations
in which reducing their overall energy consumption
and habits can a benefit be seen. In this case, by
monitoring the energy use and including a
recommender component, Lantern can have an impact

on the behaviour of the older person so that they are
more confident in their actions having a more positive
effect on their energy expenditure. The recommender
system can also link into tariff rates of energy
suppliers and determine more optimal times to take
advantage of cheaper energy and recommend to the
user to change their times or habits. For example,
cooking their lunch using an oven or microwave,
kettle to boil water or water heating can be affected by
the time of day. Even by changing their habits by a
few minutes can result in a cumulative effect where
financial savings can be made over a period of time.
Lantern underpins this but in addition, can provide the
monitoring and adaptive awareness to reduce the
energy consumption for their entire home as a whole.

Ground Floor 1 Floor

a @ Kitchen g“g mﬂﬁm @ Bedroom1 &

| D

B o

Fig. 1. An example home

llﬁflﬁmi . __@. Bathroom ly
' ST\
/

Bedroom 2

Figure 1 illustrates the home of an elderly person.
The home has two floors; a ground floor consisting of
kitchen, front room and stairs, and a first floor
consisting of 3 bedrooms, a bathroom and stairs
where energy usage will be monitored and responses
performed.

Therefore, this will expose developers to a
language which allows them to express programs in
terms of how energy-aware they are and how to adapt
to changing energy demands. The approach taken has
been to design a language and middleware around the
notion of energy consumption and awareness rather
than be added as an extension to an existing language.
Lantern allows the control of a set of intelligent
devices by making them energy-aware and adaptive
within an environment. Building systems to control ad
hoc devices within environments is not new, but the
focus on building the language and middleware
around the notion of energy consumption, saving and
awareness is novel. The Lantern compiler (which is
written in C++) translates Lantern code into Java
which is then compiled and linked in to the Lantern
Middleware (which is currently implemented in Java).

J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes 5

The middleware that has been developed provides just
enough functionality to support the language. This is
because the Lantern system is an exploration into
representing energy-aware concepts within a language
and to see what things need to be considered for
developing a more encompassing language and
middleware. See section 4 for more details.

Interfacing with devices (hardware) take place
through the use of proxy services (written in Java)
which exposes the capabilities of the underlying
hardware to the Lantern Middleware. These boundary
based proxy services will be found and accessed
through constructs of the language and expose
developers to functionality on offer from the device.

Lantern provides a logical and intuitive set of
language constructs in which developers can build
systems to control, coordinate and adapt to energy
requirements within an environment. The language
introduces the concept of energy-awareness in its
make up but there are other existing methods in which
software can be designed and implemented. For
example, SysML [23] and MARTE [24] provide
designers with a rich UML based modelling language
to design and produce software for embedded devices.
However, these methods do introduce problems
regarding the amount of time, complexity,
terminology and constructs required to design and
produce a sophisticated system. Lantern on the other
hand provides a more intuitive language to express the
requirements of the developer and provides them with
hierarchical based approach to controlling the
real-time energy requirements of devices within the
Lantern environment. This is based on the language
being created from the ground up with notions of
energy and control within its syntax. Section 4
discusses this further by focussing on the
expressiveness of the language within the problem
area. Another area in which Lantern provides benefits
is in the dynamic reconfiguration and coordination of
devices through the use of aliases and binding
variables which protects the developer from the
low-level intrinsic detail of the composition and
linkage of relevant devices. This is opposed to the
aforementioned approaches where timing and
coordination can pose problems. Hence, this approach
provides a more natural way for developing these
types of systems.

3.1. Key language constructs

The notion of energy-awareness is represented
through the use of control zones and language
constructs to manage and adapt resources with those
zones depending on individual’s energy needs. The
central concepts and notions of energy consumption,
awareness and usage are modelled in both aspects of
the Lantern ecosystem (i.e. language and middleware)
while the compositional and adaptive nature provided
by Lantern is implemented as part of the middleware.
Only those concepts that are exposed within Lantern
are usable by developers. An overview of the
hierarchical nature of the constructs and how they fit
together with other concepts are illustrated in
Figure 2(a).

The central design criteria for the language was to
take a low-energy/energy-aware approach to
programming language design. In this case,
environments allow direct mapping to physical
buildings while areas located within these buildings
can be linked to locations. Once these physical
mappings have been defined within the language, the
power use of devices and smart devices can be
monitored, maintained and adapted based on what
instructions the end-user provides. The language can
adapt and react based on environmental state
information and user generated complex events within
the system. The decision to take this direction was
because of the nature of the exploratory work of the
Lantern system. Limiting the domain to statically
located devices rather than mobile physical devices
was to ensure that a core language could be
developed. This is being built upon in another iterative
development cycle which includes support for mobile
systems and provides a more expressive language.

A similar approach has been taken to other
languages where a compiler has been developed
which will compile and then link each generated
service or user-generated control program into the
middleware [3]. Figure 2(b) shows how the language
relates to other system components.

User generated services and programs are
translated into Java and compiled and then linked into
the middleware as service agents. These can be either
control agents (i.e. the user generated programs for
controlling the power utilisation of an area) or system
agents which control devices and allow them to
interface with the middleware.

The main components that have been developed in
this phase are the compiler, middleware and device

6 J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes

. Lantern Control
Environment program Service
Location Compiler
Consumption Middleware
Overrides
Identity Device Services
Conditions Devices
(a) Hierarchical overview o (b) Language and compiler /

language constructs middleware stack

Fig. 2. An overview of Lantern

services. The middleware layer is to provide support
to test the ideas behind the language rather than
providing a fully rich middleware. By evaluating the
language, and determining what works well will
inform the next language iteration.

3.2. Environment and Location

The environment construct is to provide a top-level
container definition for a set of defined sub-locations
within an area. Multiple environments can be defined
which provide configuration, adaptation, control and
accessibility to the devices which are on offer within
the sub-locations defined within them. These
locations could cover a wide variety of different types
and smartness levels. As each location can provide
access to a number of devices which exposes
telemetry and capabilities to the middleware, the
linkage of what is available would be defined within
the location construct. This would allow the
association between an area and a number of
sub-locations where the end-user would be exposed to
the conditional and adaptive nature of the system for
controlling their power consumption. The syntax of
the environment construct is shown as follows.

[environment(<area>): {
[location(<internal location>): { [devices]x }]x

bl

The environment construct will, when used in
context of the rest of the Lantern description, provide
the constraints on the environment by determining
how to manage the effective use of energy within the
enclosed area. The location construct is used to define
one or more sub-areas within an environment. The
purpose of the location is to allow the linkage and
association of controllable smart devices within that
sub-area to be identified and linked into the
middleware. Once linked in, telemetry and the control

of the devices can then be maintained. The syntax of
the location construct is as follows.

location(<room/location name>) : {

[uses device(<device name>) <—

input(<telemetry type>) |

|

[uses device(<device name>) —> output(<device id>) J]x*

}

Devices allow the connectivity of smart objects to
the environment. Devices defined here are place
holder references that can be used within condition
constructs and allows the linkage of device variables
to receive input (i.e. telemetry) or as a means to
control by associating them to corresponding aliases.
This provides an interface for not only receiving
telemetry data that can be generated from the device
but also act as a conduit in the control and use of the
device. The input keyword is used to allow the
capture of a type of telemetry on offer by the device
while the device connector construct -> or <—
provides the direction of flow of information. In the
case of receiving information, the device connector
specifies the direction coupled with the type of data
which is to be associated within the middleware.
The device keyword allows a device to be created and
maintained and any data or control requirements will
be accessible under the device variable name that has
been specified. Therefore, any environmental readings
generated by this device will be internally
represented, accessed and available through the
associated variable name. Information can flow from
a device to the middleware but control can also be
maintained on the device by using the —> and output
constructs. This provides the middleware with the
ability to regulate whether the device is turned on or
off.

Figure 3 illustrates locations in the scenario where
the kitchen, front room and bedroom have been
defined along with a set of devices and aliases linking
to existing sensors and devices.

3.3. Consumption and Override

The consumption construct allows the developer to
define the consumption rules for a given location
based on how much energy is being consumed. Rules
can be provided that allow the customisation and
adaptation of areas based on environmental factors
and stimuli. The consumption construct acts as a
container unit which binds together all actions that
need to be taken in an area. For instance, the

J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes 7

environment (house): {

location (front—room) : {

uses device(heating) <— input(temperature)

uses device(heating) —> output(temperature—control)
uses device(tv) <— input(powerl)

uses device(tv) —> output(powerl—control)

uses device(lights) <— input(power3)

uses device(lights) —> output(power3—control)
uses device(movement) <— input(movement)

}

location (bedroom) : {

uses device(bedroom—lights) <— input(bedroom—lights)

uses device(bedroom—lights) —> output(bedroom—lights—control)

uses device(movement) <— input(bedroom—motion)
uses device(bedroom—heating) <— input(bedroom—heating)

uses device(bedroom—heating) —> output(bedroom—heating—control)

}
location (kitchen) : {
uses device(kitchen—cooker) <— input(cookerpower)
uses device(kitchen—cooker)
uses device(kitchen—kettle) <— input(kettlepower)
uses device(kitchen—kettle)

)

uses device(kitchen—lights <— input(kitchen—lights)

uses device(kitchen—lights) —> output(kitchen—lights—control)

uses device(kitchen—movement) <— input(kitchen—motion)
}
}

—> output(cookerpower—control)

—> output(kettlepower—control)

Fig. 3. The environment of the home

consumption of energy within an area (i.e. the
environment) can be controlled so that if it exceeds an
energy threshold, the language and middleware will
re-configure devices appropriately to reduce their total
energy usage so that it falls below this threshold. The
syntax of the consumption construct is as follows.

consumption(<environment>):{

[override(<location> > <energy threshold>)
— { /x ... x/ }]x

}

Introducing a consumption concept into the
language allows for the monitoring and maintenance
of the total energy use within the given environment.
When defining the use of energy, a set of overrides
are specified which allow fine grained energy usage
monitoring and control of the locations within the
environment. For example, a building could have a
number of locations defined within it. When coupled
with the override construct, the consumption levels of
each of these locations can be monitored and adapted
depending on environmental stimuli and user
generated rules governing the forcible reduction of
energy usage of devices.

When defining how to respond to the changing
power usage within a location, the override construct
is used to provide the fine tuning of how to handle the
devices within the location which can impact
environmental changes in state. Overrides allow the
middleware and language to react to a stimuli or
condition occurring which results in some form of

intervening reaction. Each override definition
identifies the location and how much the energy
consumption threshold is for the area. Lantern will
automatically calculate the total power usage for the
location by using the associated devices specified by
the user in the corresponding location construct. As
each of these associated devices will be able to
provide power usage telemetry as well as
environmental state data, the associated location
variable will be able to provide a snapshot on the
current energy usage for its domain. This energy level
is consumed by the corresponding override statement
which executes a number of conditional checks to
allow the adaptive reduction in energy consumption.
These overrides only come into play once the
threshold has been exceed, in most cases, these will
not be performed and normal reconfiguration and use
of the environment outlined in the identity construct
would take precedent. Only when there is an
exceptional spike in energy consumption would the
consumption overrides start altering the power usage
and availability of associated devices within the
location, thereby overriding and ignoring any user
specific conditions for normal use. The syntax of the
override construct is as follows.

[override(<location> > <energy threshold>)
— { /% ... /= }]x

When used in conjunction with the consumption
construct, a set of overrides can be configured which

8 J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes

allows a variety of scenarios where different energy
thresholds can be encountered. The effect or resulting
action to take place on the firing of an override clause
is specified using a set of condition constructs which
can allow the dynamic reconfiguration of devices
based on the current environmental state.

The consumption section defines what needs to be
done for the house environment when power usage
exceeds a pre-defined amount. For example, the
kitchen override specifies how many Watt’s need to be
consumed before which the associated override kicks
in and adapts the power utilisation within that area. In
this case, a condition for checking if the microwave
and cooker are on then to reduce the power provided
to the cooker by 30%. Another condition is to check
to see if the microwave, cooker and kettle are on at the
same time and to perform multiple actions as a result
(i.e. reduce the cooker power by 20% and set the
buzzer). It is through these overrides that the location
will adapt itself so that power is reduced until a later
time when additional conditions can re-configure the
power usage of devices. In this iteration of the
language, a weak notion of power has been adopted
(where everything is in Watt’s). By introducing % of
power to control devices, allows reducing power
needs using a simple representation. However, in
practice, this was found to be not powerful enough
(see section 4.4) and the next version of the language
includes more strongly typed energy, temperature and
time representations.

3.4. Identity

User identity is represented within the language
using the identity construct. The notion of identity is
weakly represented within the middleware itself as
users are equipped with RFID and NFC badges/tags
as well as smartcard swipe access. This loose notion
of identity does lead to a number of challenges which
still need to be addressed within the middleware. For
instance, the issues relating to identity conflict and
identity resolution where more than one person is
contained within a sub-location such as a shared
office. However, from a language point of view, it
takes an agnostic approach where users can specify
how they want devices and the environment to react
based on a set of conditions describing what to do in
specific cases. By allowing the language to have an
opaque notion of identity, the issues revolving around
how to coordinate and determine the precedence of

conditions for multiple users in the same area can be
left to the middleware.

The language definition of identity allows users to
specify how they wish the environment (i.e. the
sub-location) to respond to both system-based stimuli
as well as more complex aggregate conditionals
which can occur over time. The following shows the
syntax for specifying an identity.

[(identity:<user identity >):(location: <location>) {
I .. %/
bl

Identities are associated to an end-user which is
maintained and monitored by the middleware when
they move between locations. Each user can specify
any number of details regarding how they want a
specific location to react. This is specified by linking
the identity to a specific location and then defining the
state changes that need to be monitored and reacted
to. For example, in Figure 6, an identity for the user
bill has been defined and linked to each location in the
home. Within each room, there are a number of smart
devices as well as devices controlling the ambient
temperature and light levels. In this particular
scenario, the user has specified that the heating is
required to be turned on at 7.30am in the morning and
then specifies two additional conditional statements
which dictate when to turn the heating on or off
thereafter to ensure that the ambient temperature of
the room is maintained.

3.5. Conditions

Conditional statements provide a degree of
flexibility in the minute-to-minute monitoring and
adaption of an environment. They are associated to
two constructs (override and identity) which allows
the fine grained control of smart devices within a
particular location or environment.

Conditions follow a simple cause and effect
relationship whereby any condition that evaluates to
true will perform the associated effect, or action. As
events are generated and propagated throughout the
middleware, a snapshot of the state is maintained for
each location. This allows state information to form
over time rather than waiting for the off chance that
multiple events and compound events are received at
the same instant in time. Conditions access this
location specific state information provided by the
middleware to determine the validity of the statement.

J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes 9

consumption (house): {

override (front—room > 300) — {

condition(heating > high) —> action(heating = off)

condition(lights == on) and condition(!movement) —> action(lights = off)

condition(tv == on) and condition(!movement) —> action(tv off)

}

override (bedroom > 100) —> {

condition(! bedroom—movement) and condition(bedroom—lights == on) —> action(bedroom—lights = off)

}

override (kitchen > 1000) —> {

condition (kitchen—microwave == on) and condition (kitchen—cooker on) —> action(reduce(kitchen—cooker —> 30%))
condition (kitchen—microwave == on) and condition (kitchen—cooker on) and condition(kitchen—kettle == on) —>
action (reduce(kitchen—cooker —> 20%)) and action(buzzerwarning = on)

}
}

Fig. 4. The Consumption of the home

In its simplest form the condition construct syntax is
in Figure 5.

Conditions can be used as a single instance or part
of a more complex aggregate of conditions. The
conditional predicate of the statement either evaluates
to true or false but can be formed out of more
complex combinations of conditionals using standard
and, or and not operators. It is only once all
conditionals evaluate to true will the associated action
be performed. Additional keywords and concepts are
available to be used within the formation of
conditions to expand on their expressiveness. For
example, the definition of user types which are of a
given type and associated to a form of telemetry from
a device can allow a degree of flexibility in the terms
used in their construction.

Events are used to transmit information around the
middleware and are used as a basis to populate state
information regarding the devices within a given
location. The middleware maintains this state and
provides the ability to form unbounded time-based
event states. This means that multiple events can be
received in a short time whereby they are deemed to
have a causal relationship with one another. Building
upon this is the notion that user generated events can
be triggered based on a set of expected events and can
be used in the composition of more complex states. In
order to create a user generated event, the new-event
keyword is used which will relay it to the middleware
layer and is based on a key-data tuple pair. For
example, in the following, a new user generated event
is created once the condition has been received.

condition(temperature > 20) —>
action(new—event("stable—temp", temperature, 10))

In this case, the action is triggered which allows the
new-event keyword to be used to generate a message
with data that needs to be sent. By adding the ability to
create new user generated events allows the language
to be extendible and react to other non-system related
events generated by devices.

Direct manipulation of devices can also be
achieved through the action construct by specifying
directly the state that device needs to be in. For
instance, by explicitly setting a device to on will
direct the middleware to interact with the device and
change its state. This is accomplished within the
middleware through the use of services residing on
individual devices which provide a way of
manipulating and controlling the underlying device,
as illustrated in Figure 6. In this example, the device
associated to one of the heating variables can allow
the direct manipulation of its state. However, the
comparison of the state/value contained within this
variable is checked against a user-generated typed
variable linked to a specific device and sets a specific
threshold. The language also allows for comparison
against a statically defined numeric value as well. In
this example, the at keyword is used which allows the
condition to trigger based on a temporal event, in this
case as soon as the system time becomes 7.30, the
condition will be triggered.

Conditions can use the standard set of comparison
operators as found in other languages, namely,
equality (==) , greater (>), less than (<) and not (!).
Conditions can be formed by any combination of and,
or, not conjunctions and allows the precedence
ordering of combinations. Power handling can also be
accomplished by using the reduce keyword in the
action statement. The purpose of this is to allow any
suitably equipped smart device which can interact
with a physical device (for example a cooker or heater

10 J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes

condition:: condition(<clause>) [join—operator <condition>]* —> action | [join—operator action]x*
clause :: <variable | now | at> comparison—operator < variable | time | integer >

action:: action(<perform—action>)

join—operator:: and | or | not

comparison—operator:: > | < | ! | == =
perform—action ::

set—variable | reduce | new—event | notify —message

Fig. 5. Conditions

unit) to reduce its power consumption by a given
amount - as illustrated in the kitchen location of
Figure 6

3.6. Aliases

The final key component of the language is
providing the semantics for linking telemetry streams
and power control functionality to variables which
can be manipulated within the user defined program.
Aliases are used to allow variables to be bound to
real-world objects and sensor streams using a proxy
pattern. Figure 7 highlights the syntax of the different
styles of aliases that can be defined.

A binding-alias allows the connection of a user
defined binding variable to be associated to a
real-world device. The declared binding variable is
then used as a conduit through which information and
control can flow depending on the type of
connectivity (i.e. —> implies that information can flow
from system to device, while <- implies information
flowing from device to system). Each binding variable
provides state (either in the form of telemetry that has
been provided) and timing information for use when
handling events or combinations of complex events.
As binding-alias’s provide contextual information
from a device they are considered bounded variables
whereby an association is defined and maintained
between construct and device. Information flow is
dictated by the connectivity operator which defines
which direction information flows. For binding aliases
which require telemetry to be received, the
input-connector is used. However, if control of the
device is required, an additional binding-variable has
to be created to handle control messages and is used
in conjunction with the output-connector when
associating the binding variable with a device.

The second type of alias is a declaration-alias
which allows users to define their own variables with
a specific integer value or threshold. These types of
aliases can be bound or un-bound to a device
depending on the context that the variable is to be
used. For instance, an alias could be defined thusly,

alias (low integer) = define (20).
In this case, the variable simply is assigned a static
value which can be accessed throughout the programs
lifetime. However, as it is un-bounded, i.e. it is not
linked to a particular device, no contextual
information is required or used to determine if the
variable is being used in the correct context with
regard to a device. If it were a bounded variable, an
explicit link to a device would be given. For example,
alias (low integer) = define (20)
<— heating, in which heating is an alias
connected to a device can be used (of type heating).
Here, as context is provided by the linkage between
this static variable declaration and a device (through
another alias definition / proxy to a device) checks can
be made to ensure that the type of telemetry data
matches with the type definition of the variable.

When binding a device to a variable or interfacing
any hardware, contextual information regarding the
capabilities and offerings of a system-based service
representing the physical device (hardware) is needed
to be specified. As system agents act as proxies to
real-world devices, they are programmed to offer a set
of capabilities. It is through these capabilities that the
resolution and binding process takes place between a
binding variable and associated device (hardware).
For example, when defining a system device, the
capabilities would follow on from previous work [3]
in which each device can specify what their
capabilities are when defining the service. Figure 8
illustrates an example of this.

Here, the device-type acts as type identifier for the
classification of the device. If telemetry is generated
by the device, the service will have a telemetry-type
definition which defines the type of information
which is generated. If a device is controllable, i.e. it
can be manipulated by turning on or off, or in some
cases reducing the power consumed to a lower
amount, the controllable identifier will either be yes or
no. Associated to whether it can be controlled, the
controllable-state identifier is used to indicate what
type of actions can be performed. In this example,
boolean is specified to indicate that it can be either on

J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes 11

(identity :bill):(location:front—room) {

condition(at(7:30)) —> action(heating = on)

condition(temperature < temperature_threshold) and condition(now > time(07:30)) and
condition(now < time(20:00)) —> action(heating = on)

condition(temperature > temperature_threshold) —> action(heating = off)
condition(lights == off) and condition (movement) —> action(lights = on)
condition(at(20:00)) and condition(!movement) —> action(lights = off)
condition(at(20:00)) and condition(!movement) —> action(heating = off)
condition(at(20:00)) and condition(tv == on) and condition(!movement) —> action(tv = off)
condition(!movement) —> action(heating = off) and action(lights = off)

}

(identity : bill):(location :bedroom) {

condition(at(20:00)) —> action(bedroom—heating = on)

condition (bedroom—temperature < bedroom_temperature_threshold) and condition(now > time(20:00)) and
condition (now < time(08:00))—> action(bedroom—heating = on)

condition (bedroom—temperature > bedroom_temperature_threshold) —> action(bedroom—heating = off)
condition (bedroom—lights == off) and condition (bedroom—movement) —> action(bedroom—lights = on)
condition (bedroom—lights == on) and condition (!bedroom—movement) —> action (bedroom—lights = off)
condition(at(7:30)) and condition(!bedroom—movement) —> action (bedroom—heating = off)

}
(identity:bill):(location:kitchen) {

condition (kitchen—lights == off) and condition (kitchen—movement) —> action(kitchen—lights = on)
condition (kitchen—lights on) and condition (!kitchen—movement) —> action (kitchen—lights = off)
condition(kitchen—cooker == on) and condition (!kitchen—movement) —> action (kitchen—cooker = off)
condition(kitchen—kettle == on) and condition (!kitchen—movement) —> action (kitchen—kettle = off)
recommend (condition(kitchen—kettle == on), now, 10) —> action(notify —message(‘‘Kettle should be used at a better time’’)
}
Fig. 6. Example identity and conditions for a location
alias :: <binding—alias> | < declaration—alias >
binding—alias :: alias (<binding—variable>) <input—connector | output—connector> <device>
declaration—alias :: alias(<variable variable—type>) = define (<integer>) [<input—connector> <device> |

device:: [(] device—type [, device—capabilities]x [)]
output—connector:: —>
input—connector :: <—

Fig. 7. Aliases

aliases {

alias (temperature—control) —> device (temperature, front—room)

alias (temperature) <— device (temperature, front—room)
alias (temperature_threshold
#
}

integer) = define(21) <— temperature

Fig. 8. Corresponding capabilities list in device system agent

or off. More sophisticated devices which can offer a
variable control over the device, i.e. reduce its power
consumption by offering more states, would link to
the reduce construct. The location identifier allows
the device to indicate where it is located as searching
for “heaters” could potentially return a set containing
all heaters rather than one specific one. To help in the
resolution process, key-data pairs can be used to help
resolve to a single device.

3.7. Recommendations

Beyond the key constructs introduced in the
preceding sub-sections, Lantern incorporates a

rudimentary recommender system. The recommender
allows processing of tariff information which is
provided by utilising information from energy
suppliers websites. At present this is done by hand
and is stored locally within the system. The purpose
of the recommender is to allow the system to offer
suggestions to the end-user and inform them if
performing the action at an alternative time could
provide some cost savings. The time-window
parameter specifies how much time to consider before
and after the current time. If a better alternative has
been found within this window, then a
recommendation will be made. This language feature
has been added to complement other work that the

12

authors are undertaking in looking into ways of
reducing the energy footprint of an individual within
their home.

The recommend construct is triggered when
a condition statement or composite set of conditional
statements evaluates to true. If this is the case, the
associated action is performed which can allow either
a direct notification to be passed to the user or by
generating another event. The basic syntax of the
recommend key word is as follows.

recommend(<condition> [and <condition >]*, now, time—window

action | [join—operator action] x

An example use of the recommender and how it can
influence the system is as follows.

recommend(condition(kettle == on)

and condition(movement == true)

and condition (oven == on), now) —>

action(new—event("too—much", true)) and

condition (too—much == true) —> action(reduce(oven —> 50%

3.8. Energy-aware software compositions

To demonstrate the usefulness and applicability of
the language a supporting middleware has been
developed based on previous work [3] to support
energy-aware software compositions. The middleware
provides control, communication and monitoring
capabilities of connected devices and user defined
programs for controlling and adapting the power
usage of the language. Figure 2(b) provides an
overview of the hierarchical nature of the Lantern
Stack. The Lantern compiler was developed under
C++ and compiles Lantern code into Java which is
subsequently compiled to a set of Java files and linked
into the Lantern Middleware. The middleware was
developed using Java to enable portability and
availability of the middleware on different platforms.

Constructs within the language provide exposure to
hardware devices that control what functionality is on
offer to the middleware. This is through a set of proxy
devices which act as an interface between the

middleware and hardware. In addition, the
middleware handles the control, coordination,
adaptation, discovery/resolution, monitoring and

environmental state of all devices and services
running within the distributed middleware.

Devices (hardware) represent the physical smart
assets which have been subsumed within physical
locations. To interface with these devices, two types
of software agents are used which act as proxies

J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes

between the physical and middleware representations
of devices. The control agent provides a conduit for
controlling the given device by offering a set of
capabilities which describe the type, location and
controllable aspects of the device. In addition they
allow any user generated contextual information to
help in the discovery and resolution process as well as
allow the middleware to control the operation of the
device. There are three modes that are supported, on,
off and reduce which align with system concepts
present within the language. Conversely, System
agents provide telemetry from the device. Each
service representation only allows information to flow
in a single direction: control information flows to the
device while telemetry flows from a device. Keeping
these separate allows a simpler model for representing
the devices so that they align with their corresponding
Lantern constructs (in this case the uses and input or
output connectors). One or more environments can be
defined which act as zones of control and map to
real-world notions of a physical environment such as
a building. Inside each environment, one or more
locations can be defined which represent physical
locations within a building. Inside of these locations,
devices will be found which can allow for the
transmission or manipulation of state.

When writing system or control agents, contextual
information is used to define their type along with
their capabilities. This information is used in the
lookup / discovery process by which variables are
created within the language and then dynamically
bound to an associated service at run-time.

Lantern allows the developer to write systems
which uses some of the principles from Design by
Contract. For example, the use of a similar notion to
those of assertions through condition and alias
variables. These are used to specify condition
matching through the use of late dynamic binding
variables for the matching of devices to services.
Verification is handled in a number of ways by
providing syntax and type verification. For example
with user variables or conditions, if the variable is not
linked to the correct type of device, an error will
occur at run-time. This allows for a stronger type
association to the condition or alias to ensure that the
correct context is used, or identify an ambiguity if
more than one variable is defined but linked to
another device. In addition, Lantern also supports the
developer with contextual associations between the
main constructs so that services can be written which
verify the presence of devices within the context of

J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes 13

their use. This ensures that a logical set of
abstractions of devices used within strongly defined
areas. Verification of systems is an extremely
important issue in the development of robust, adaptive
software. In future versions of the language this issue
will be addressed more deeply.

The middleware also provides the coordination and
control functionality to maintain all devices located
within environments. State information which is
transmitted as telemetry event messages are passed
throughout the middleware layer. These event
messages are exposed to Lantern and forms the basis
of triggering corresponding conditional statements.
As events are bound to time, location and device, the
middleware layer provides a comprehensive way of
providing state information which can be accessed
and used within the language. State information can
represent one or more device states / telemetry as well
as offering the ability to form complex user generated
conditional statements where events can occur over a
given time rather than at the same instant.

Lantern allows users to generate programs based on
their requirements for an environment and how to
control and adapt to changing demands of power
utilisation. These programs are compiled by a
compiler which has been implemented to generate
agents which work on behalf of users. At present, this
is controlled by a single instance whereby all
environments are maintained by a single top-level
management agent which controls all requirements
specified within each of the abstractions. However,
this is to be expanded upon to fit in with the rest of the
model of the middleware whereby each will be
represented by a variety of agents.

4. Evaluation

The central purpose of this paper is to introduce the
Lantern language for developing energy-aware
systems. To evaluate the language, a set of metrics
need to be considered which look at the language
comparisons, expressivness, and energy-awareness.
Therefore, the metrics used intend to highlight:

— comparison: this looks at high-level aspects of
Lantern versus C++ to provide an indication of
some of the differences between an energy-aware
and a general-purpose language.

— expressiveness: this requires looking at concepts
and notions within the language and will inform

a comparison of language constructs to base an
evaluation on.

— energy-aware: this focuses on energy-aware
concepts and structures which facilitate in
energy-aware programming notions.

4.1. Language comparison

The purpose of the Lantern language is to address
whether energy-awareness can be expressed within a
language rather than as an addon to an existing
language. Because of this, Lantern is feature rich
when considering how it can adapt to changing needs
within an environment and facilitate the binding, and
reconfiguration of connections to other agents and
devices. Table 1 shows a high-level comparison
between Lantern and C++. Other languages could
have been used for this comparison but C++ has good
constructs like object-oriented, exceptions and
templates suitable for system development, and thus,
a reasonable choice for comparison.

Table 1

Language comparisons

Metric H Lantern H C++
Extendable Y Y
Object-oriented N Y
General purpose N Y
Energy-aware ready Y N
Environment Y N
representation

Location representation Y N
Consumption Y N
requirements

Power telemetry Y N
Power representation Y N
Adaptive power needs Y N
Device Discovery and Y N
Binding

Device re-discovery and || Y N
configuration

Event based Y N
Type based Partial Strong
Inheritance N Multiple

This is through the nested constructs dealing with
the environment and location and how different rules
can be attributed to areas. These constructs allow for
the initial bind and subsequent re-binding and
discovery of agents within the middleware. Primarily,

14 J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes

adapting to changing energy demands requires
interpreting and reacting to telemetry generated
through service agents interfacing with physical
devices. Constructs that deal with initial discovery (or
devices for example) are the alias, device , input and
output constructs. When interpreting and responding
to changes, the constructs dealing with override,
condition and action enable altering and adapting the
environment based on environmental state
information. Higher-level constructs, such as
environment and location enable higher-order
configuration and adaption details regarding the
physical smart space being controlled.

4.2. Expressivness

When determining the expressivness of a language,
it can be subjective when coming up with metrics
which can be used. The approach that has been taken
is to use a scenario-based method whereby three
scenarios have been created and compiled to show the
expressivness of the language when modelling these
situations. The first scenario models a smart house (as
introduced in the example used in this paper). The
second models a smart office environment, while the
third scenario is more specialised and is used to
control the energy needs for an older person to help
them make reduce their energy footprint.

For each of these scenarios, a comparison is made
between the constructs and key language notions used.
Table 2 compares each scenario.

From this it is possible to observe the following.
Although the scenarios were programmed using
Lantern, it can be seen that the amount of keywords
and lines of code to produce each scenario highlights
how little code is needed. No C++ equivalent was
produced to directly compare against but it can be
assumed that more code would need to be produced to
provide for a similar level of functionality.

The lantern language provides specialised
constructs for the linkage to physical devices,
discovery, and subsequent binding to devices located
within a defined area. By providing structures to
represent an environment and sub-locations within it
provides a clean way of grouping requirements and
power adaptability together.

4.3. Energy-aware constructs

As Lantern is a domain specific language for
expressing energy-aware concepts within a language,

Table 2

Expressivness comparisons

Metric Scenario || Scenario || Scenario
1 2 3
Lines 119 66 140
Blank Lines 4 4
Comment Lines 1 2
Environments 1 1 1
Total keywords 692 366 886
Locations 3 1 2
Consumptions 1 1 1
Overrides 3 1
Override Conditions 4
Aliases 20 10 21
Identities 1 1 1
Variable declarations 1 1 1
Conditions 19 9 15
Actions 19 9 15
Notifications 0 11
Time bound 8 5 5
Complex conditions 14 8 12
Telemetry Devices 11 5 12
Control Devices 8 3 9
Input flow 11 5 11
Output flow 8 4 9
Reductions 1 0 1
Recommendations 0 0 11

an important area to evaluate is the energy-aware
expressiveness and how this impacts on the
generation of code to adapt to changing energy needs.
Table 3 shows the use of energy-aware constructs for
each of the scenarios.

Table 3
Energy notion comparisons

Metric Scenario || Scenario || Scenario

1 2 3
Overrides 3 1 2
Override Condition 6 4 5
Dependancies
Reductions 1 0 1
Reconfigurations 19 9 15
(based on conditions)
Devices controlled 8 3 9
Recommendations 0 0 11

When evaluating the language, the constructs that
facilitate adapting the environmental energy use
(overrides and conditions which lead to a change in
the environment) vary depending on the complexity

J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes 15

of the scenario. For instance, scenario 1 was for a
smart house with several devices in a few rooms when
compared with scenario 2 (a smart office) show that
the complexity and number of constructs used depend
on the number of devices available in the
environment. The more complex the environment and
higher number of devices, translates into a greater
number of conditions and overrides used overall
within the system.

Scenario 3 models a house which has a couple of
rooms to notify older users of when to do things.
Specifically, this is recommending when a better time
to perform the user action should take place to help
improve the energy use within the home. This pulls in
the recommender component of the system which
uses tariff information relating to how much it costs to
use energy from a supplier at different times of the
day. Used in conjunction with conditions allows the
scenario system to offer suggestions. Data to see if
this changed the end user habits were not monitored.

Overall, introducing energy-aware constructs within
the language allows producing fairly straight forward
systems to adapt to energy needs.

4.4. Discussion

In this section, a comparison of the Lantern
language has been provided using several scenarios to
highlight the expressivness of the language. However,
the intention behind the Lantern system was to
investigate ways in which energy-awareness and
control can be integrated into a language for
coordinating cyber-physical systems with an
emphasis on statically located devices and
environments. This was a multi-step process where an
initial language (Lantern) was first developed to
explore what issues lay in providing a domain specific
language for controlling the energy use of devices and
services within an environment. Based on what was
learnt from this initial phases, a more in-depth
language (PLECO) is under development which
learns from the ewillxperiences gained from Lantern.
From these experiences the areas which need
expanding from this first phase can be summarised as:

— Mobility: As the system was for statically
located physical devices (e.g. embedded
hardware IoT device integrated into the
environment), there was no constructs for
dealing with the possibility of devices physically
moving. These mobile issues are currently being

considered in the current iteration of the
language and how this impacts on the
coordination and control.

— Energy: The Lantern system provides a
simplified notion of energy representation within
the language (i.e. how much power does an
environment utilise). This is currently being
expanded on to consider strongly typed energy
constructs which allow for a better energy
representation.

— Identity: Identity is weakly defined within
Lantern and a better way of representing identity
is being investigated. At present there are issues
with scalability when linking users to locations
which needs addressing. In this instance, a
group-based membership is being developed
which also allows security considerations to be
considered. In addition, anonymous and the
obfuscation of identities are being
accommodated for.

— Improved control structures and language
constructs for handling more complex
interactions and reacting to non-time bound
interactions.

— Providing a more advanced middleware and
organisation layer for developing and managing
complex environments.

Another area of focus in the next iteration of
Lantern is to look at scalability and optimisation.
Comprehensive benchmarking will be performed to
determine the effectiveness of Lantern against other
approaches. This will consider language-based
metrics (lines, man hours, keywords, etc.) along with
middleware metrics (adaptation, connectivity,
discovery, etc.). These as well as other enhancements
and considerations are being considered in the next
iteration phase of the system called PLECO [25].

5. Conclusion and future work

This paper has argued that designing energy-aware
languages from first principles is a better way for
introducing the concepts of low-carbon usage than
through existing approaches of integrating systems
into existing languages. The approach of exploring
concepts through successive exploratory
energy-aware languages has been taken. The initial
iteration, Lantern, has introduced a language and
middleware which has been outlined within this paper

16 J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes

whereby the approach to energy-awareness and
efficiency has been through the design and production
of a language where the central notion of reducing
energy has informed its design. This has resulted in an
energy-aware language where developers are exposed
to language constructs and processes aimed at
providing an efficient way for managing resources
within an environment. As an iterative approach has
been taken, a number of areas have been highlighted
in this cycle which informs the next iteration.

For instance, one such expansion would be to
integrate a more powerful recommender system and
an activity/behaviour identification component which
has been developed separately to the main Lantern
system [22]. This will enable the system to be more
powerful and be able to expose the developer to
external tariffs and activity identification which can
have a bearing on the efficiency of managing a static
environment.

Another area of work is on identity resolution and
conflict management. At present the Lantern system
has been based on the assumption of a single
occupant. However, this is inadequate when faced
with real-world scenarios where environments will be
shared between multiple people. The middleware at
present provides a fairly simple model of the world.
The scalability of the approach which has been taken
will be expanded upon along with more seamless
integration of technology.

Lantern was the first iteration of exploring
energy-aware languages; the next cycle is considering
a number of areas that have been identified as
requiring more work. Principally, these fall into the
areas of: identity resolution; location and identity
mapping; improved energy representations and other
language improvements; recommending new actions;
and, increasing the scalability of the infrastructure
and language to accommodate mobile ad-hoc systems
rather than be solely based on statically located
devices. The next step is incorporating these areas
into the next iteration of the language (PLECO).

References

[1] B. Walsh. “The surprisingly large energy footprint of the digital
economy”, Time Magazine, (2015).

[2] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami. “Internet
of things (iot): A vision, architectural elements, and future
directions”, Future Generation Computer Systems, 29(7), pp.
1645-1660, (2013).

[3] J. Robinson, I. Wakeman, D. Chalmers. “Composing software
services in the pervasive computing environment: Languages or
apis?”, Pervasive and Mobile Computing, 4(4), pp. 481-505,
(2008).

S. Mittal. “A survey of techniques for improving energy

efficiency in embedded computing systems”, International

Journal of Computer Aided Engineering and Technology, 6(4),

pp. 440-459, (2014).

P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David,

J. Vounckx, R. Lauwereins. “Managing dynamic concurrent

tasks in embedded real-time multimedia systems”, Proceedings

of the 15th international symposium on System Synthesis, pp.

112-119, (ACM, 2002).

[6] Y. Ma, N. Sang, W. Jiang, L. Zhang. “Feedback-controlled
security-aware and energy-efficient scheduling for real-time
embedded systems”, Embedded and Multimedia Computing
Technology and Service, pp. 255-268, (Springer, 2012).

[71 M. A. Awan, S. M. Petters. “Enhanced race-to-halt: A leakage-

aware energy management approach for dynamic priority

systems”, 2011 23rd Euromicro Conference on Real-Time

Systems, pp. 92-101, (IEEE, 2011).

S. Mittal, J. S. Vetter. “A survey of methods for analyzing and

improving gpu energy efficiency”, ACM Computing Surveys

(CSUR), 47(2), p. 19, (2015).

C. A. Bjorkskog, G. Jacucci, L. Gamberini, T. Nieminen,

T. Mikkola, C. Torstensson, M. Bertoncini. “Energylife:

pervasive energy awareness for households”, Proceedings of

the 12th ACM international conference adjunct papers on

Ubiquitous computing-Adjunct, pp. 361-362, (ACM, 2010).

[10] E. Alessi, P. Thoman, G. Georgakoudis, T. Fahringer,
D. S. Nikolopoulos. “Application-level energy awareness for
openmp”, International Workshop on OpenMP, pp. 219-232,
(Springer, 2015).

[11] N. Amsel, B. Tomlinson. “Green tracker: a tool for estimating
the energy consumption of software”, CHI'10 Extended
Abstracts on Human Factors in Computing Systems, pp. 3337—
3342, (ACM, 2010).

[12] M. Sabharwal, A. Agrawal, G. Metri. “Enabling green it
through energy-aware software”, IT Professional, 15(1), pp. 19—
27, (2013).

[13] N. Nikzad, O. Chipara, W. G. Griswold. “Ape: an
annotation language and middleware for energy-efficient mobile
application development”, Proceedings of the 36th International
Conference on Software Engineering, pp. 515-526, (ACM,
2014).

[14] Y. Xiao, R. S. Kalyanaraman, A. Yli-Jadski. “Middleware for
energy-awareness in mobile devices”, Proceedings of the Fourth
International ICST Conference on COMmunication System
softWAre and middlewaRE, p. 13, (ACM, 2009).

[15] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, I. Stark.
Mobile Resource Guarantees for Smart Devices, pp. 1-26,
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), URL
https://doi.org/10.1007/978-3-540-30569-9_1.

[16] D. Franzen. “Quantitative bounds on the security-critical
resource consumption of javascript apps”, , (2016).

[17] G. Smith. “Updates of the itrs design cost and power models”,
2014 IEEE 32nd International Conference on Computer Design
(ICCD), pp. 161-165, (2014).

[18] Semiconductor Industry Association. “The international
technogy roadmap for semiconductors”, URL http://www.itrs2.
net, (2013).

[4

=

[5

—

[8

—_

[9

[

https://doi.org/10.1007/978-3-540-30569-9_1
http://www.itrs2.net
http://www.itrs2.net

J. Robinson et al. / Lantern: A domain specific language for energy awareness in smart-homes 17

[19] Department of Energy & Climate Change, UK
Government. “Annual fuel poverty statistics report”,
URL https://www.gov.uk/government/statistics/
annual-fuel-poverty-statistics-report-2016, (2016).

[20] Office for National Statistics, UK Government. “Excess winter
mortality in england and wales”, URL https://www.ons.gov.
uk/peoplepopulationandcommunity/birthsdeathsandmarriages/
deaths/bulletins/excesswintermortalityinenglandandwales/
2015t02016provisionaland2014t02015final, (2016).

[21] J. Hills. “Getting the measure of fuel poverty”, Hills Fuel
Poverty Review, (2012).

[22] J.Robinson, K. Aappiah, R. Yousaf. “Improving the well-being
of older people by reducing their energy consumption through

energy-aware systems”, Proceedings of the 9th International
Conference on eHealth, Telemedicine, and Social Medicine
(eTELEMED 2017), pp. 161-165, (2017).

[23] OMG, Systems Modelling Language SysML, URL http:/
www.omgsysml.org, (2017)

[24] OMG, UML Profile for MARTE: Modelling and Analysis of
Real-Time Embedded Systems, V1.1, URL http://www.omg.
org/spec/MARTE/1.1/PDF/, (2011)

[25] J. Robinson, K. Lee, and K. Appiah, “Pleco: New energy-
aware programming languages and eco-systems for the internet
of things”, in The Eighth International Conference on
Smart Grids, Green Communications and IT Energy-aware
Technologies. 1ARIA, 2018.

https://www.gov.uk/government/statistics/annual-fuel-poverty-statistics-report-2016
https://www.gov.uk/government/statistics/annual-fuel-poverty-statistics-report-2016
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/excesswintermortalityinenglandandwales/2015to2016provisionaland2014to2015final
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/excesswintermortalityinenglandandwales/2015to2016provisionaland2014to2015final
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/excesswintermortalityinenglandandwales/2015to2016provisionaland2014to2015final
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/excesswintermortalityinenglandandwales/2015to2016provisionaland2014to2015final
http://www.omgsysml.org
http://www.omgsysml.org
http://www.omg.org/spec/MARTE/1.1/PDF/
http://www.omg.org/spec/MARTE/1.1/PDF/

	Introduction
	Energy-awareness in software development
	The Lantern energy-aware domain specific language
	Key language constructs
	Environment and Location
	Consumption and Override
	Identity
	Conditions
	Aliases
	Recommendations
	Energy-aware software compositions

	Evaluation
	Language comparison
	Expressivness
	Energy-aware constructs
	Discussion

	Conclusion and future work
	References

