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Abstract. In this paper, we introduce a human-centric lighting control system 

optimized to support sleep and circadian coordination. We present an approach to 

optimize lighting that combines a “digital siblings” approach, i.e., a stochastic 
extension of a digital twin. It estimates and optimizes parameters in experimentally 

validated models of circadian and sleep regulation with a novel optimization 

algorithm for optimal timing of light exposure. We acknowledge that people have 
varying preferences for the lighting levels throughout the day based on their personal 

preferences and schedules and explicitly include this as a key parameter in our 

optimization strategy. Our results show that with the suggested lighting schedules, 
alignment of circadian rhythmicity to the desired sleep-wake schedule can be 

achieved with minimal disruption to people’s daily lives.  
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1. Introduction 

Human centric lighting that enhances health, performance and well-being has attracted 

the attention of the lighting industry in the recent years. Although the pathways through 

which light affects humans have been studied extensively [1], [2] to date little of these 

insights have been translated into practical lighting control systems. Nonetheless, there 

is strong evidence that better lighting systems can significantly improve wellbeing and 

health. Light is the main time cue for the human biological clock. This internal 

pacemaker regulates a number of physiological systems including hormone production, 

heart-rate and body temperature, thus influences our daily sleep-wake pattern, alertness 

and cognitive performance. Evolution has shaped our physiological processes to follow 

the natural cycle of light and darkness. Yet, indoor life and electric light have muddled 

our natural light exposure patterns. Nowadays, people are typically exposed to low 

daytime lighting and receive excessive exposure to light during the night. This un-natural 

light exposure acutely suppresses melatonin and sleepiness and delays the circadian 

clock inducing adverse effects for physiology and cognitive performance [3]. Moreover, 

social demands often oblige us to set an alarm that is out of phase of our propensity 

rhythm. In fact, a large part of the population is estimated to have social jet-lag [4], that 

is, circadian rhythms that are out of phase with people’s daily schedules. Circadian 

rhythm sleeping disorders such as insomnia, inefficient sleep and mismatch between 
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sleep and circadian rhythmicity are associated with adverse mental and physical 

outcomes [5]. These trends in general population health combined with the indoor 

lifestyle is one of the triggers for healthy building design to consider human centric 

lighting. Well-timed artificial light has potential as an effective time cue for the human 

biological clock [6], [7]. Yet, despite being technologically feasible, wide-scale 

adaptation of human centric lighting control as a tool that promotes health, well-being 

and sleep is still lacking. The main barriers that need to be overcome are 1) Precise 
monitoring of an individual’s actual circadian state; the individual differences in how 

humans perceive lighting, attributed partly to genetic variations in clock genes [8] and 

environmental influences [9], create a challenge for the translation of circadian research 

into lighting control. 2) Assessing circadian time using non-clinical and non-invasive 
sensor data; the current techniques for circadian monitoring are considerably invasive 

3) The creation of automated lighting control systems demands optimization algorithms 
based on quantified models on how humans process the light input that can be 

executed by automated control systems.  

Our recent work in [10] effectively addresses the first two challenges showing the 

feasibility of circadian phase estimation based on non-invasive light and actigraphy 

observations. We developed a digital siblings approach based on the statistical 

framework of a particle filter that not only estimates the circadian state but also 

adaptively calibrates model parameters to account for inter-individual differences in 

circadian response to light. We now address the third challenge by proposing an 

optimization algorithm for optimally adjusting the timing and levels of light exposure. 

We introduce an iterative optimization algorithm that derives personalized lighting 

schedules based on quantified models of the circadian and sleep mechanism. Ideally, 

people are exposed to the natural light-dark cycle, receiving bright daytime light and 

avoiding light exposure after sunset. Yet, we acknowledge that such lighting schemes 

are impractical to co-exist with modern lifestyle. After a day at work or school, people 

typically spend time with family or performing other leisure activities. We thus propose 

a novel optimization algorithm that takes into consideration personal lighting preferences. 

We exploit the fact that light is more biologically effective at certain times of the day 

than others, i.e., depending on when in the circadian trajectory it is administered, light is 

able to either phase advance or delay the human circadian clock. These phase shifts can 

be larger or smaller depending on the timing and magnitude of light exposure. The 

algorithm automatically finds when it is more effective to tune the light levels in order 

to exert the maximal circadian effect with the least disruption to a person’s private life.  

2. Circadian phase estimation  

The problem of setting the light to optimize sleep and circadian functioning prerequisites 

the accurate estimation of the underlying circadian state and understanding of the 

mechanisms that regulate sleep in humans. In this section, we briefly review the 

underlying mathematical models of the circadian pacemaker and sleep regulation and 

describe the statistical framework we developed to estimate the circadian state using non-

invasive light and actigraphy data.  
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2.1. Models of sleep and circadian regulation 

In order to model the sleep mechanism, we adopt the Phillips–Robinson model [11]. 

According to the model, sleep occurs because of a flip-flop switch between wake-

promoting (MA neurons) and sleep-promoting (VLPO neurons) that inhibit each other. 

Spontaneous wake-up occurs at the time ( ) that the firing rate of wake-promoting 

neurons, , surpasses a threshold value , while sleep onset occurs at the time 

( ) that  drops below the threshold value. The neuronal population is described 

by neuron mean cell body potential dynamics 

 

 (1) 

 

 (2) 

 

The mean cell body potential is related to the firing rates of neurons by the firing function  

 

 
(3) 

where . Switching between sleep and wake occurs because of a 

drive to the VLPO that has both homeostatic and circadian components, the homeostatic 

drive  with sensitivity  and circadian drive  with sensitivity  respectively,  

 (4) 

The homeostatic component of the drive is the homeostatic sleep pressure  which 

represents the sleep dept which increases with  

 (5) 

while the circadian component  is approximated by  

 (6) 

Light input affects sleep by directly steering the circadian component . In this paper, 

the dynamics of the circadian system are represented using the Jewett-Forger-Kronauer 

(JFK) model [12]. The circadian oscillation is described as a modified van der Pol 

oscillator with state variables x and y that oscillate according to  

 

 

 

(7) 

 

 (8) 

 

C. Papatsimpa and J.-P. Linnartz / Personalized Circadian Light: A Digital Siblings Approach 63



Light enters the model as illuminance . After an initial filtering operation, light input is 

transformed into the light drive signal B. The resulting photic drive depends on the ratio 

of activated photoreceptors  and the state variables x and y, suggesting that the 

circadian system has varying sensitivity to light throughout the day. 

 

 (9) 

 

where  describes the rate of photoreceptor activation following light exposure  

 

 (10) 

 

 

 (11) 

 

All model parameters values are listed in Table 1.  

Table 1. Model parameter values 

Circadian process Value Homeostatic process Value 
 0.13  4 nMs 

 0.55  2.9 mV 

 0.1  4.5 h 

 0.007  1 mVnM-1 

 37  10.2 mV 

 24.2h  10 S 

 0.4  2.1 mVs 

   1.8 mVs 

   1.3 mV 

 

The models are based on general population data and model parameter values have been 

determined by fitting average responses to physiological processes. Skeldon et al. [13] 

showed that changes in circadian and homeostatic parameters can explain the observed 

inter-individual differences in the timing and duration of sleep. Since we want to predict 

individual responses to the light input, we make a plea to consider parameter value 

characterization in our system design. Given the limited size of our training dataset, and 

in order to avoid over-fitting, we initially chose the circadian parameter  (representing 

the intrinsic circadian period in humans) to be calibrated based on real user data as there 

is strong evidence that the impact of light exposure on sleep timing strongly depends on 

the intrinsic circadian period in humans [14].  

2.2. Digital siblings framework 

To verify and compare the impact of multiple alternative light recipes, developing a 

digital twin of the human circadian pacemaker mechanism would be attractive. However, 

a deterministic approach of a digital twin is out of reach for our purpose: as the 

observations are inherently noisy and incomplete, we need a stochastic approach. We 

interpret the problem of generating a digital twin as one of characterizing the parameters 

and estimating the state of the human pacemaker. To this end, the statistical approach of 
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a particle filter is an appropriate framework. Instead of a deterministic update of the state 

of the physical model based on input from the monitoring system, we generate a large  

set of samples (particles), each representing a possible state,  thus consisting of possible 

values resulting from noisy input and uncertain model parameters. We interpret every 

particle as a digital sibling of the real human. Siblings slightly differ from each other and 

from the real human not only in key model parameters, but also in their experiences, such 

as differences in their exposure to light. These differences represent uncertainties and 

noise in our ability to monitor the human. That is, we use the particle filter in a way that 

it accounts for both “nature and nurture” of the siblings, by estimating model parameters 

and state, respectively. The siblings evolve and re-incarnate: particles are filtered and 

resampled according to their likelihood given the observed data. During cycles of 

executing the particle filter algorithm, siblings that have parameters that do not fit the 

model are discarded and replaced by siblings that inherit parameters (and states) that fit 

the observations better and (hopefully) converge towards the real human. The particle 

filter propagation and measurement update operations are schematically presented in 

Figure 1.  

 
 

Figure 1. Schematic depiction of particle filter operations. State variables are combined in state vector  and 

individual-specific  parameters  are  captured  in  with initial probability distribution   

represents  the prediction  update  step of the particle filter, realized by evaluating the system dynamics in 

equations (1)-(11). The term   represents how  the  new  parameter  distribution depends  on  

the (previous) parameter, state, and observation at instant . 

We begin with an initial particle distribution. 1) Each particle (sibling) is an instantiation 

of a random variation of initial model parameters drawn from realistic distribution of 

such parameter values in humans and is exposed to an instantiation of random variation 

of the measured light exposure drawn from a distribution of the error mechanisms of the 

light sensor. 2) The prediction step propagates each sibling based on the system’s 

dynamics as described by the set of equations (1)-(11). 3) If a measurement is available, 

each sibling is evaluated against its fit to observations of the human response (e.g. wake-

up time). 4) A resampling operation then discards siblings in the areas of low probability 

and reincarnates the siblings with parameters and states that have a better fit. This 

repeating process results in a set of values for the model parameters that update with 

every new observation. A more elaborate description of the mathematical framework can 

be found in [10]. This digital twin framework ensures a personalized representation of 

individual people that is connected and continuously updated by data from the real user.  
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3. Light optimization  

The problem of setting the light to optimize circadian aspects does not fit a traditional 

control systems approach. The impact of light exposure on the circadian mechanism is 

not instantaneous but requires evaluation of the process for several hours after the actual 

timing of light exposure, the history of light exposure of several days also has an 

influence. Thirdly, user preferences might drive the shape of the optimization, as light 

that is biologically optimal is not always preferred by the user. Here, we present our 

solution to this complex optimization problem. 

3.1. User satisfaction 

The circadian impact of light needs to be weighed against immediate acute needs to 

perform tasks or to feel comfortable. These acute needs depend on the individual light 

preferences, on the activities performed and possibly on many other aspects. We follow 

the common observation that each user has its own preferred illuminance level 

, where we take the preferred illuminance level   [in lx] to be dependent on 

the i-th hour. Here,  denotes the total duration of the observation. Prior to the tests, 

users had the possibility to self-select different lighting levels depending on what lighting 

they found comfortable based on their schedules. We are aware of limitations as human 

tend not to intervene with light settings unless they are dissatisfied. Nonetheless, lacking 

better data, we used these observations as being representative for the most preferred 

illuminance levels throughout the day. The human eye senses brightness approximately 

logarithmically over a moderate range, thus, following [15], we model user satisfaction 

for lighting level  as a log-normal shaped function according to 

 

exp
ln ln

 (12) 

Here, parameter sigma  describes the tolerance for illuminance of each individual; 

some people are only satisfied with a small range of illuminance values while others are 

more tolerant.  

3.2. Mathematical formulation of the lighting control system 

We consider a dimmable lighting system denoted as , where  is the 

illuminance level [lx] of the i-th hour,  and  corresponds to the 

illuminance level when the lighting system is fully turned on. The goal is to optimize 

vector , i.e., the light levels, such that we simultaneously minimize the social jet-lag and 

lighting discomfort. We quantify social jet-lag as the timing difference between the 

unconstrained wake-up times ( ) and the enforced (by social constraints e.g. alarm) 

wake-up timing ( ), by controlling the light levels in  Given the circadian system 

dynamics (1)–(11) and the user preference model (12), the lighting control problem may 

be formulated as a constraint optimization problem as: 

 

 
2 In this paper, the vectors are represented in bold. 
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 (13) 

That is subject to: 

, 

, 

Here,  is the objective function. The enforced wake-up time  is the time that the 

user sets his/her alarm, while the spontaneous wake-up time  is derived by the 

mathematical model described by the set of Equations (1)–(11), using  as the input in 

Equation (9). The first constraint is a physical requirement that the dimming level should 

be between 0 and . The second constraint ensures users' comfort by offering 

satisfying lighting conditions to their preference, i.e., user satisfaction function is not 

allowed to drop below a certain threshold (e.g.,  ensures that a user is 60% 

satisfied with the lighting level). 

3.3. Solution to the optimization problem 

The relationship describing the system dynamics (1)–(11) is highly non-linear, and the 

impact of light  on the wake-up time  is not direct, but requires the evaluation of 

the process for several hours afterwards. As a result, a closed-form expression for  

cannot be found analytically. To solve this, we follow a numerical approach. The 

iterative optimization algorithm exploits the fact that light is more biologically effective 

at certain times of the day than others by tuning the light levels at the time slots that are 

able to introduce larger shifts in the spontaneous wake-up times but exert the least 

disruption to the user. We use an iterative scheme that operates by introducing a small 

change to the light level step by step in an appropriately chosen time interval. The 

underlying principle is to take the interval that additional light has the highest biological 

impact and least user disruption. Formally, in the k-th iteration step, we change the 

lighting level to the time slot  that then minimizes the weighted sum of the impact on 

wake-up time and user disruption, i.e., we chose 

 

 (14) 

Here,  represents the satisfaction of the user for a lighting level  consequently, 

minimizing the objective function  minimizes the disruption of the user. 

Parameter  weights the input of each objective function. The searching is stopped when 

the improvement drops below a certain threshold. 

4. Results 

The results presented here are based on data from a field study with 15 participants 

(average age years). The participants were asked to join the study for 7 days 

following their normal daily routines. Each participant wore a Philips Actiwatch 

Spectrum Pro measuring actigraphy (sleep onset and offset times) and light intensity.  
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First, we applied the digital sibling framework to the field data in order to estimate the 

intrinsic circadian period of each participant (model parameter  ). Our results confirm 

the large inter-individual variability in circadian period. In fact, in our limited sample 

size, the estimated intrinsic circadian period was distributed with 24.12h ± 0.21, 

matching clinically measured distribution of intrinsic circadian period in humans [16]. 

People do not only show variability in genetic predistortions, e.g., variability in , but 

also in the light levels they are exposed throughout the day. Data from the field study, 

presented in Figure 2, reveal the large inter- and intra-individual differences in the daily 

patterns of light exposure, i.e., the timing and magnitude of light exposure varied both 

between participants, but also from day to day within the same participant. The digital 

siblings approach results in a personalized to every participant circadian model that 

enables more accurate predictions of how users respond to light exposure. 

 
Figure 2. Inter- and intra-subject variability in daily light exposure [in log lux] throughout the 24 hour day. 
Illustrative examples through polar plots in 2 study participants. 

The efficacy of lighting control could potentially be optimized by individual tailoring, 

based on personal light preferences and considering the internal rhythms of users. As an 

illustrative example, we present optimization results for a single participant. This 

participant is characterized by an average intrinsic circadian period ( ), 

however, he typically receives bright light during the late evening and night (see Figure 

2) which considerably delays his sleep cycle. In fact, the participant typically wakes-up 

at 8.5h ± 0.69 and sleeps at 0.6h ± 0.23. If this participant sets an alarm at 07:30 (

7.5), this would mean that his biological rhythm is ~1 hour misaligned with his daily 

schedule. We thus wish to optimize the lighting levels to correct this circadian 

misalignment. Since most people spend a large part of their days in indoor public 

settings, they usually have little ability to control their lighting conditions. We thus 

 
Participant 2, day 1 

 
Participant 2, day 2 

 
Participant 2, day 7 

 
Participant 12, day 1  

Participant 12, day 2 
 

Participant 12, day 7 
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present optimization results for a domestic setting (early morning and late evening and 

night) as a light intervention is easier and more practical to realize in such settings. For 

the simulations, tolerance  is set to 0.6 and the preferred illuminance level  is set to the 

hourly daily average illuminance prior to the lighting intervention. The resulting lighting 

schedule, presented in Figure 3a, is characterized by increased light levels in the early 

morning, as soon as the participant wakes up, and dim light levels during the late evening 

and night, i.e., the time of the day that light introduces the largest delays in the biological 

clock. As seen in Figure 3b, the new lighting setting is estimated to gradually shift the 

sleep pattern of the participant, resulting in earlier wake-up and sleep times compared to 

the sleep schedule without any lighting intervention. In fact, in the last day of the 

intervention (day 7), the sleep cycle is estimated to be advanced by approximately 48 

minutes resulting in the desired wake-up time (alarm at 07:30).  

Figure 3. a) Algorithm suggested lighting schedule superimposed with pro-intervention daily average light 
exposure. b) Resulting daily shift in sleep cycle compared with sleep pattern prior to the intervention. Results 
are presented for an example participant with intrinsic circadian period , and tolerance   

5. Conclusions 

A well-functioning internal clock is of utmost importance for good sleep and optimal 

functioning during wake. Disturbances in sleep-wake patterns due to the absence of a 

strong time cue or an ill-timed signal for the circadian system can result in a lack of 

energy, cognitive deficits and compromised sleep quality. Despite the insights of how 

light affects human physiology, the benefits of these insights are not (yet) captured by 

practical lighting control systems. The natural intra-individual and inter-individual 

variability of internal time advocates against “one-size-fits-all” lighting interventions 

and highlights the need for a personalized approach to human-centric lighting. Here, we 

present a lighting control system optimized to provide personalized lighting that supports 

sleep and aligns the circadian mechanism to people’s daily schedules. Our optimization 

  
 

 
 

 

 
         (a)                                                  (b) 
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strategy combines a “digital siblings” framework of the circadian mechanism, i.e., a 

stochastic extension of a digital twin, with a novel optimization algorithm that takes into 

consideration both the biological effects of light and personal lighting preferences. We 

arrive at well-timed and feasible lighting schedules that are able to gradually shift the 

sleep pattern of participants and align their sleep cycles to their daily schedules. 

Schedules are feasible in the sense that these fit within the personal tolerances to light 

level deviations.  
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